
INSTITUT FÜR INFORMATIK

SCCharts: The Railway Project Report

Steven Smyth, Christian Motika,
Alexander Schulz-Rosengarten,

Nis Boerge Wechselberg, Carsten Sprung, and
Reinhard von Hanxleden

Bericht Nr. 1510
August 2015

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

SCCharts: The Railway Project Report

Steven Smyth, Christian Motika,
Alexander Schulz-Rosengarten, Nis Boerge Wechselberg,

Carsten Sprung, and Reinhard von Hanxleden

Bericht Nr. 1510
August 2015

ISSN 2192-6247

E-mail: {ssm, cmot, als, nbw, csp, rvh}@informatik.uni-kiel.de

Technical Report

Contents

1. Introduction 1
1.1. Safety-Critical Systems . 1
1.2. The Model Railway . 1
1.3. SCCharts . 2
1.4. SCCharts Railway Controller . 2
1.5. Contributions . 3
1.6. Outline . 3

2. SCCharts Extensions 4
2.1. KIELER Compiler . 5

2.1.1. New SCCharts Features . 6
2.2. Declarations . 6

2.2.1. Constants . 7
2.2.2. Arrays . 8
2.2.3. Extern . 9

2.3. Referenced SCCharts . 9
2.3.1. Implementation Details . 12

2.4. Hostcode . 14
2.4.1. Function Calls . 15

3. The Railway Project 16
3.1. The Model Railway Installation . 17

3.1.1. Railway Hardware . 17
3.1.2. Programming Interface . 18

3.2. The Overall Approach . 20
3.2.1. Station-2-Station Controllers . 20
3.2.2. Train Controller . 23
3.2.3. Mutual Exclusion Controllers . 24
3.2.4. Complete Railway Controller . 24

3.3. Controller Implementation . 25
3.3.1. Components . 25
3.3.2. TCP Communication . 27
3.3.3. GUIs . 29

3.4. Project Workflow . 29

i

4. Validation and Experimental Results 31
4.1. Source-Code Size . 31

4.1.1. Compilation . 32
4.1.2. SCCharts Compilation . 33

4.2. Compiler Performance . 35
4.2.1. Remarks on Compiler Performance 41

4.3. Tick Function Performance . 43

5. Survey Results 44
5.1. Survey Setup . 44

5.1.1. Future Work . 44
5.1.2. Participants . 44

5.2. Language Aspects . 45
5.2.1. Deterministic Behavior . 45
5.2.2. Programming Paradigms . 46
5.2.3. Problem Solving . 47
5.2.4. Language Difficulty . 48
5.2.5. Modularity . 49
5.2.6. Project Revisions . 50

5.3. SCCharts features . 51
5.4. Modeling Aspects . 53

6. Related Work 55
6.1. Model Railway Installation . 55
6.2. Model Railway Project 2007 . 56
6.3. Model Railway Project 2012 . 59

7. Wrap-Up 62

Bibliography 63

A. SCCharts Survey 65

B. Raw Controller Model Analysis Results 79

ii

List of Figures

1.1. Reactive system cyclic control loop . 2

2.1. SCCharts syntax overview . 4
2.2. SCCharts Transformation Dependencies for Extended SCCharts Features 5
2.3. Example of the declaration and usage of arrays in SCCharts 8
2.4. Clock example: delay . 10
2.5. Clock example: emitter . 10
2.6. Clock example: clock . 11
2.7. Clock example: fully expanded version of clock 12

3.1. Model railway installation . 16
3.2. Model railway scheme . 17
3.3. SCChart railway controller hierarchy . 20
3.4. Railway stations and circles . 21
3.5. Station-2-Station controller (without declarations and transition labels) . 22
3.6. Dynamic train controller (without declarations and transition labels) . . 23
3.7. Mutual exclusion controller (simplified) 24
3.8. Railway controller components . 26
3.9. Example views from the GUIs . 30
3.10. Project workflow . 30

4.1. Distribution of self-written code in LoC 31
4.2. Distribution of the complete C code before compilation 32
4.3. Number of model elements during compilation 34
4.4. Compile time for rail regression test models 36
4.5. Code size for rail regression test models 36
4.6. Normalized compile time for rail regression test models 37
4.7. Compile time for rail regression test models and final dynamic SCCharts

controller . 37
4.8. Code size for rail regression test models and final dynamic SCCharts

controller . 39
4.9. Normalized compile time for rail regression test models and final dynamic

SCCharts controller . 39
4.10. Compile time for rail regression test models and final dynamic SCCharts

controller (except June compiler version) 40
4.11. Normalized compile time for rail regression test models and final dynamic

SCCharts controller (except June compiler version) 40

iii

5.1. Language preferences . 45
5.2. Deterministic behavior . 45
5.3. Programming paradigms . 46
5.4. Problem solving . 47
5.5. Language difficulty . 48
5.6. Modularity . 49
5.7. Project revisions . 51
5.8. SCCharts feature importance poll . 52
5.9. Tools quality . 53
5.10. Modeling aspects . 53

6.1. Deadlock-free model of pass lane with turnout track 55
6.2. Net model of the kicking horse pass track 56
6.3. Railway project 2007 hardware schematics [from project website] 57
6.4. Railway project 2007 tool chain [from project website] 57
6.5. Railway project 2007 SCADE model part [from project website] 58
6.6. Railway project 2007 SCADE model part [from project website] 59
6.7. Controller communication from the railway project 2012 61
6.8. Segment scheme from the railway project 2012 61

iv

Abstract

SCCharts is a visual language proposed in 2012 for specifying safety-critical reactive
systems. We present the results of the first medium sized SCCharts case-study. The
case-study was conducted in the context of the railway project performed by students
at the Kiel University in the summer term 2014. The railway project is a regularly
occurring student training project that teaches principles of concurrent cyber-physical
systems on a complex live model railway demonstrator.

This report presents details of the first medium size SCCharts models created during
the project. We explain what additional language extensions to SCCharts were neces-
sary and how they were implemented. To handle performance issues that arose while
developing the controller, compiler enhancements became necessary and are evaluated
here. Furthermore, the participants completed a survey at the end of the project to con-
firm the goals that the SCCharts language and our SCCharts tool chain are suitable to
build complex controllers. In the survey, the participants compared both, the SCCharts
language and our SCCharts tools, with other modeling and classical programming lan-
guages and tools.

1. Introduction

1.1. Safety-Critical Systems

Reactive systems are computer systems that compute a function in a cyclic fashion.
They continuously interact with their environment and react to inputs with computed
outputs. Figure 1.1 visualizes a reactive system that repeatedly reads inputs from the
environment, computes a reaction on the basis of the given inputs, and writes the reac-
tion, i. e., the outputs to the environment. Therefore, the reactive system reacts with
computed outputs, i. e., the reaction, to given inputs. We call one reaction computa-
tion a tick. Additionally reactive systems have to fulfill their computations in a certain
amount of time, which is typically a requirement derived from (physical) properties of
their environment. Thus, reactive systems often deal with deadlines, which makes them
real-time systems. Reactive systems typically control their environment. Usually they
are also embedded into their environment and hence termed embedded systems. Fur-
thermore, reactive systems often control environments whose overall correct behavior is
crucial. Failing in the sense of reactive systems not only means computing an incorrect
output reaction but also not meeting the correct timing constraints, also called dead-
lines. The failure of such systems or parts of it may results in loss of human life or a
financial disaster. It is essential that these systems do not fail and guarantee safety .
Hence, many real-time and embedded systems also are safety-critical systems.

1.2. The Model Railway

The model railway1 of the Department of Computer Science at Kiel University is an
embedded system in the sense that the computer system which controls the trains is
embedded and not visible from the top. The model railway is a reactive system in the
sense that the controller controls the trains in a cyclic fashion. For each control cycle,
it reads sensor information about the position of trains, then computes which tracks
are set to which speeds and which switch points are set to straight or branch position.
The model railway system is a real-time system because the dynamics of the trains
imposes timing requirements/deadlines on the time for computation a reaction. The
model railway further is good example for a safety-critical system because crashes of
trains or electrical shorts must be avoided under any circumstance.

1http://www.informatik.uni-kiel.de/~railway/

1

http://www.informatik.uni-kiel.de/~railway/

An Instant / Tick

Read Input
Compute
Reaction Write Output

React iv e Sy st em

En v i r on m en t

Input Event Output Event

Figure 1.1.: Reactive system cyclic control loop [MvH14]

1.3. SCCharts

The recently proposed Sequentially Constructive Statecharts (SCCharts) are a syn-
chronous modeling language for reactive systems [vHDM+14]. SCCharts are based on
the sequentially constructive model of computation (SC MoC) [vHMA+13] and have
been designed with a special emphasis on safety-critical systems where determinism and
predictability play crucial roles.

An interactive and incremental design and modeling process has been proposed that
includes an incremental compilation approach. In this Single-Pass Language-Driven
Incremental Compilation (SLIC) approach SCCharts can be compiled interactively and
incrementally in a single pass based on a well-defined sequence of model transformations
down to C code. The interactive nature of the compilation lets the user chose from
numerous model transformation options. Interactive compilation enables the modeler
to understand not only the language features itself but also how each feature influences
his specific model semantically. This helps in building more robust and reliable models
which is crucial for safety-critical systems. [MSvH14]

1.4. SCCharts Railway Controller

The model railway installation contains 127 metres of tracks which can be controlled
concurrently including switch points, signals, lights and a track crossing. The system
is operated via a network of PC104 computers or TTP power nodes and is accessed
via Ethernet, TTP or CAN bus. The details of the railway system are illustrated in
Chapter 3.

2

In the summer term 2014 the participants of the railway project course2 were given
the task to design and implement a railway controller in SCCharts. The controller
should manage the train schedules and should be able to control up to eleven trains
simultaneously utilizing the underlying hardware. Testing the suitability of SCCharts
to create a sophisticated controller of this size was also part of the goal.

1.5. Contributions

We present the results of the SCCharts case-study in the context of the railway project
performed by students at the Kiel University in the summer term 2014. Specifically,

� we list which SCCharts language extensions were necessary to achieve the set
project goals. Therefore we explain why this improvements were mandatory and
how they were implemented.

� Secondly we present the first mid-to-large scale SCChart models and depict dif-
ferences in the creation and debugging of these models in comparison to smaller
models.

� We present the fully functional and remote controllable railway controller modelled
in SCCharts.

� Furthermore, we analyse the suitability of SCCharts for large team projects with
emphasis on composability, component testing, overall project overview and the
performance of the compiler tool chain.

1.6. Outline

Section 2 describes which features were considered helpful to finish the project success-
fully. It elaborates which of the features were implemented how and why we choose
these features. Section 3 starts with a more detailed introduction of the railway in-
stallation and the general set-up of the railway project. In continues with the project
goals that were set by the whole team and explains the approach the students have
taken. The experience that could be gathered throughout the project is then analysed
and rated in Section 4. Furthermore, the results of a conducted survey amongst the
projects participants comparing the SCCharts language and tooling with other popular
languages is presented in Section 5. Subsequently, Section 6 draws parallels to related
work and different approaches. The report concludes with a wrap-up of the case-study
in Section 7.

2http://rtsys.informatik.uni-kiel.de/confluence/display/SS14Railway

3

http://rtsys.informatik.uni-kiel.de/confluence/display/SS14Railway

2. SCCharts Extensions

The SCCharts language is divided in two main categories. Core SCCharts contain the
key ingredients of concurrent statecharts, namely concurrency and hierarchy, whereas
Extended SCCharts add syntactic sugar to the language (e. g., history, aborts, actions).
Figure 2.1 depicts all available SCCharts features as they were present at the beginning
of the railway project. The upper part contains the core features, whereas the extended
elements situate in the lower part.

A benefit of this language partitioning is that it is sufficient to ground the theo-
retical foundations of SCCharts on the minimal Core SCCharts sub-language, because
every Extended SCChart can be transformed into a semantically equivalent Core SC-
Chart [vHDM+14]. Therefore most of the new SCCharts features introduced in this sec-
tion try to avoid any alterations of the core language. As explained elsewhere [MSvH14]
this is particularly useful because we only need a transformation rule to handle a new
feature and without compromising the correctness of the subsequent tool chain.

Interface

declaration

Final state

Connector

Initial state

Root state

Named

simple state

Transition

trigger/effect

Region ID

Transition

priority

Conditional

termination

Anonymous

simple state

History transition

Entry/During/Exit

actions

Termination

Superstate

Signal

Immediate

transition

Suspension

Strong abort

Local declaration

Weak abort

Deferred transition

Count Delay

Pre-Operator

Initialization

Complex final

state

Figure 2.1.: SCCharts syntax overview [MSvH14]

4

2.1. KIELER Compiler

The SCCharts compilation implemented in the Kiel Integrated Environment for Layout
Eclipse Rich Client (KIELER) is based on model transformations as shown in Figure 2.2.
These transformations have dependencies to each other that may either be produced or
not-handled-by dependencies. The SLIC approach is based on these dependencies and
explained in detail elsewhere [MSvH14]. A sequence of model transformations is derived
from these dependencies where each transformation rule is applied just once for a model.
Sometimes there may be more than one model transformation available with different
optimization goals. The interactive fashion of the KIELER Compiler (KiCo) allows to
select certain model transformation options or even single transformations only to inspect
and optimize intermediate results. Because intermediate results are valid models they
can be fully inspected and understood by the modeler. This helps the modeler in building
reliable models because the modeler is able understand not only the language features
itself but also what each usage of a language feature semantically means for his or her
concrete model. As we learned from this project, it also helps the compiler writer to
build a reliable compiler because he or she is able to inspect intermediate results where
just certain model transformations were selected to be applied. Building reliable models
and having a reliable compiler both is crucial for developing safety critical systems.

C1: Basic Statecharts Features

C2: SyncCharts Features

C3: SCADE / QUARTZ / Esterel v7 Features

15. Entry
Action

16. Connector

12. During
Action

14. Initia-
lization

13. Exit
Action

11. Abort /
Conditional
Termination

10. Complex
Final State

6. Pure
Signal

5. Valued
Signal

9. Pre7. Count
Delay

8. Suspend

2. Deferred 3. History
1. Weak
Suspend 4. Static

Figure 2.2.: SCCharts transformation dependencies for Extended SCCharts fea-
tures [MSvH14]

5

2.1.1. New SCCharts Features

In preparation for the railway project course we proposed a list of new language features
at the Oberseminar in March 20141. The list contained five features we considered
mandatory for SCCharts being used as the main tool to build the railway controller,
namely constants, arrays, referenced SCCharts, aggregative functions such as map, and
extensions on the hostcode interface. As optional improvement we also considered structs
as an extension to the type system.

A short survey conducted amongst the project participants subsequent to the initial
tutorials of the course resulted in a similar list of desired features. A module concept,
now known as referenced SCCharts, was considered most important. Secondly, more
sophisticated functions in the development tools were desired. The KIELER compiler
interface needed a possibility to persist intermediate transformation results as well as
the generation of the final code in one step. Also, more meaningful error messages were
desired. Furthermore, the participants also determined arrays as mandatory.

This section describes all new SCCharts features in detail grouped by category. First,
all extensions to the declarations are explained. Then, the module concept of referenced
SCCharts is elucidated and subsequently the section closes with the hostcode additions.

As most transformation rules in the KIELER SCCharts implementation are realized in
XTend2 [vHDM+13], all new transformations are also written in XTend.

2.2. Declarations

Each scope, which is either a superstate or a region, of SCCharts may include a declara-
tion part. However, to emphasize the communication interface with the environment, the
declaration of the outer-most state, the root state, is usually called interface declaration.

A central term in the context of declarations in the underlying KIELER expression
language is a Valued Object (VO). VOs identify variables and all objects that derive from
these (e. g., signals). Therefore, a specific value in the expression language used in the
actual SCCharts implementation can either be a literal (e. g., true) or a VO.

Contrary to the first SCCharts implementation, VOs are now contained in declaration
groups which hold the particular attributes of the included objects. They hold a list of
VOs, their type and possible one or more of the keywords input, output, signal, static,
const, and extern, with the latter two being new features. Therefore, variables may
now be declared with an common type but still with individual initialization part. For
example, Listing 2.2 is now a perfectly valid interface declaration.

The three main additions to the declarations, namely constants, arrays, and external
declarations, are explained in the following sub-sections.

1http://www.informatik.uni-kiel.de/rtsys/teaching/ws13/osem1/
2http://eclipse.org/xtend/

6

http://www.informatik.uni-kiel.de/rtsys/teaching/ws13/osem1/
http://eclipse.org/xtend/

Listing 2.1: Old declaration example
1 input bool I1;

2 input bool I;

3 output int O1 = 0;

4 output int O2 = 1;

Listing 2.2: New declaration example
1 input bool I1, I2;

2 output int O1 = 0, O2 = 1;

2.2.1. Constants

To avoid magic numbers, particularly in team projects, constants are mandatory. More-
over, they do not impair the subsequent analyses in the compile chain because the valued
object is invariable. Additionally, they enable the modeler to use meaningful identifiers.

A VO is marked as constant if its declaration contains the keyword const. A constant
VO must have a initialization part as constant value for the VO. Listing 2.3 depicts a
constant definition of a VO.

Listing 2.3: Const declaration example
1 const float PI = 3.1415;

In the KIELER implementation, a single transformation rule transforms all constant
VOs into their literals. Since the constant declaration makes use of the initialization
part, following the SLIC approach the rule must be executed before the initialization
rule resolves these parts. Although we suggest to invoke the const rule just before the
initialization rule to maintain readability as long as possible during the SLIC, any point
of time before the initialization part should suffice.

The transformation is depicted in simplified form in Listing 2.4. The transformConst
method is called once for each scope. In lines 2-4 all const objects in this shallow scope
are filtered and returned as list. Subsequently, in the loop following line 5 the VOs are
replaced by their initialization value. Therefore, replaceAllReferencesWithCopy finds all
valued object references in the scope, including nested references, and replaces them.
Eventually the const VO is deleted in line 8.

Listing 2.4: Const transformation rule
1 def void transformConst(Scope scope) {

2 val constObjects = scope.valuedObjects.filter[

3 isConst && initialValue != null

4]. toList

5 for (const : constObjects) {

6 val replacement = const.initialValue

7 scope.replaceAllReferencesWithCopy(const , replacement)

8 const.delete

9 }

10 }

As the railway project team depends heavily on hostcode because of the tight binding
to the C API, we decided to provide a possibility to use const VOs in plain hostcode
descriptions. Hence, the rule was also extended by an annotation to perform a straight-
forward text replacement (not depicted in the listing). A const declaration annotated
with @alterHostcode also replaces textual occurrences of the VO name in hostcode. Since
this annotation extension is considered a work-around for the current project, usage is
not endorsed as it may be deactivated in future versions.

7

2.2.2. Arrays

To handle large amounts of data, arrays (or at least some kind of aggregate concept) are
essential. We decided in favour of arrays because this enabled us to directly support the
data format of the underlying host language (in our case C) and the data structures of
the railway API. More on the API will follow in Section 3.

The dependency analysis must be aware of different cardinalities and accesses on array
types. Therefore, if an array field is accessed with a literal (or a const VO) the dependency
analysis is able to determine a potential conflicting concurrent variable access. If the
field is accessed in a dynamic manner, the whole access is seen as scalar and distinction of
the unique array cells is not possible statically. The characterization of different variable
accesses is explained elsewhere [vHMA+13].

Hence, with exception of the extension of the dependency analysis, the implementation
of arrays is mainly a question of grammar modification. Besides the additions to the
expressions grammar, the SCCharts meta model had to be modified. The grammar rule
for VOs in the SCCharts Textual Language (SCT) is depicted in Listing 2.5. After the
name of the object the grammar in line 3 allows arbitrary many array cardinalities of
type int for multi-dimensional arrays. Nevertheless, the definition of these cardinalities
is optional. If they are omitted, the VO will stay a scalar.

Same is true for the SCT action grammar, which is responsible for the trigger and
effect handling of transitions. Here, assignments to variables must also be able to write
to single array elements. The index of such element may be an arbitrary expression
and is not restricted to a literal. The corresponding grammar rule is shown in List-
ing 2.6. General expressions and therefore also triggers are handled by the underlying
KIELER expressions and do not need SCCharts-specific adjustments. An example of
array declaration and usage in SCCharts can be seen in Figure 2.3.

Although it is entirely possible to manage arrays on extended SCCharts level and let
a transformation handle the conversion of all array objects into scalar VOs, we decided
against this approach and implemented arrays as core extension embedded in the under-
lying expression language. Therefore, arrays are also available in the low-level syntheses
of the tool chain (e. g., dependency analysis, guard generation in the circuit approach,
etc.). Furthermore, the array declaration can be copied nearly one-to-one to the host
language and named as defined in the host code.

Figure 2.3.: Example of the declaration and usage of arrays in SCCharts

8

Listing 2.5: SCT VO grammar rule
1 ValuedObject returns kexpressions :: ValuedObject:

2 name=ID

3 (’[’ cardinalities +=INT ’]’)*

4 (’=’ initialValue=Expression)?

5 (’combine ’ combineOperator = CombineOperator)?;

Listing 2.6: SCT assignment grammar rule
1 Assignment returns sccharts :: Assignment:

2 valuedObject =[kexpressions :: ValuedObject]

3 (’[’ indices += Expression ’]’)*

4 "=" expression = Expression ;

2.2.3. Extern

One useful mechanism when working tightly with an external API is the possibility to
tell the compiler not to care about the generation of a certain VO but still let it know
that it is present. Roughly speaking, this is what the extern keyword tells the compiler.
The VO is treated as any other VO and accessible in all analyses but ignored in the final
code generation step and not generated automatically. Instead, the programmer himself
is able to define it in a manually written code part and can use it in the generated code
of the SCCharts model.

External VOs are introduced by the extern keyword and are allowed to be combined
with any other combination of declaration keywords. They are not obliged to have a
type. An example of a valid external declaration is depicted in Listing 2.7.

Listing 2.7: Extern declaration example
1 extern railway_system;

Even though not much is known about the railway sytem in the example, the compiler
can still use it (e. g., in other hostcode calls), run analyses on it (e. g., dependency
analysis), and serialize it in the final code generation step.

2.3. Referenced SCCharts

Arguably the addition with the biggest impact is the referenced SCCharts feature,
the newly introduced modularity concept of SCCharts. Organize large models, divide
projects in smaller sub-projects, share work between a team are all examples that make
a module functionality indispensable.

Referenced SCCharts are similar to the referencing mechanism provided by Sync-
Charts [And96] or Esterel [Ber00]. The following clock example will explain the different
aspects of this feature. The first model delay (Figure 2.4) will wait a certain amount of
clock ticks before it proceeds. The number of ticks to wait in ticksToWait and the clock
signal clock are both coming from the environment. Hence, we can adjust the waiting
time and the frequency of the tick interval from outside the model.

9

1 scchart delay {

2 input int ticksToWait;

3 input bool clock;

4 int counter = 0;

5

6 initial state init

7 --> done immediate with

8 counter >= ticksToWait

9 --> init with

10 clock / counter = counter + 1;

11

12 final state done;

13 }

Figure 2.4.: Clock example: delay

In the beginning counter is initialized with zero and the model starts at the init state.
If the counter value reaches ticksToWait, the done states becomes active and the SCChart
terminates. Otherwise, the init state stays active and if a clock signal occurs, the counter
is incremented.

A second model emitter (Figure 2.5) should wait a specific amount of clock ticks and
emit a signal for one tick if the waiting time has passed. Therefore, emitter can make
use of delay. As usual we can declare a new state in line 6 but let it point to another
SCChart with the keyword references in line 7. After a reference target SCChart has
been determined, one binds the interface declaration of that SCChart to variables in the
actual scope. In line 8 emitter binds the clock of delay to the local clock variable and in
line 9 delay’s ticksToWait is bound to the local object metrum. Apart from the link to the
referenced SCChart the state behaves like a normal superstate. Hence, once the delay
state finishes, the emit state becomes active for one tick and emits the emit vairable.
Eventually, the cycle starts over again.

Although the clock to clock binding is done explicitly and recommended for clarity, a
binding of objects with the same name is not mandatory. The reference transformation

1 scchart emitter {

2 input bool clock;

3 input bool delay;

4 output bool emit = false;

5

6 initial state wait

7 references delay

8 bind clock to clock ,

9 ticksToWait to delay

10 >-> emit;

11

12 state emit {

13 entry / emit = true;

14 exit / emit = false;

15 }

16 --> wait;

17 }

Figure 2.5.: Clock example: emitter

10

will search for valid objects and generates an implicit binding if the explicit binding is
omitted.

Finally, a third model clock (Figure 2.6) simulates a clock. It receives a millisecond
signal in msClock as input and sends signals for seconds, minutes, and hours itself.
Therefore it comprises three concurrent regions and uses the emitter model to accomplish
the task. In the region seconds the clock of the emitter is bound to the millisecond clock,
the metrum is bound to the necessary interval for one second stored in the const SEC,
and the emit variable should be second. In a similar manner the region minutes handles
the signal emission minute. Here, the clock is linked to the generated seconds impulses
and the metrum will be constant MIN. The same is true for region hours w.r.t. minutes
using minute and constant HOUR to bind the emitter.

Hence, the SCChart clock uses the emitter model three times, which itself uses the
delay model. The fully expanded version of clock is depicted in Figure 2.7. After the
expansion the transformation order proceeds as usual.

1 scchart clock {

2 input bool msClock;

3 output bool second;

4 output bool minute;

5 output bool hour;

6 const int SEC = 1000;

7 const int MIN = 60;

8 const int HOUR = 60;

9

10 region seconds:

11

12 initial state seconds

13 references emitter

14 bind clock to msClock ,

15 metrum to SEC ,

16 emit to second

17 >-> seconds;

18

19

20 region minutes:

21

22 initial state minutes

23 references emitter

24 bind clock to second ,

25 metrum to MIN ,

26 emit to minute

27 >-> minutes;

28

29

30 region hours:

31

32 initial state hours

33 references emitter

34 bind clock to minute ,

35 metrum to HOUR ,

36 emit to hour

37 >-> hours;

38 }

Figure 2.6.: Clock example: clock

11

Figure 2.7.: Clock example: fully expanded version of clock

Since a link to a referenced SCChart results in the expansion of the target SCChart into
the actual model and therefore in an inclusion of arbitrary (extended) SCCharts features,
it is mandatory that the referenced SCCharts transformation is executed before any
other transformation is invoked. This procedure follows the SLIC approach mentioned
in Section 1.

2.3.1. Implementation Details

As can be seen in the listings of the clock example models emitter in Figure 2.5 and clock
in Figure 2.6, a state may reference another SCChart model with the keyword references.
With help of the Xtext3 framework the content assist will pop up suggestions for valid
SCCharts if asked. If any interface variables of the referenced model should be bound
to local VOs, the keyword bind provides the possibility to add a list of bindings.

Listing 2.8: SCT grammar binding rule
1 Binding returns sccharts :: Binding:

2 (annotations += Annotation)*

3 formal = [kexpressions :: ValuedObject|ID] ’to’

4 actual = [kexpressions :: ValuedObject|ID];

In the grammar (Listing 2.8) a binding is simply a connection from one VO to another
VO. The formal VO of the interface of the referenced model will be bound to the actual
VO in the model. Since the XText grammar cannot distinguish between the VOs of the

3http://www.eclipse.org/Xtext/

12

http://www.eclipse.org/Xtext/

two different models, the SCT scope provider 4 is responsible for resolving the different
scopes accordingly. One may notice that the rule also allows specific annotations for
each binding. With the binding rule formulated it is possible to extend the original
state rule of the SCCharts grammar (Listing 2.9).

Listing 2.9: SCT grammar state rule
1 State returns sccharts :: State:

2 (annotations += Annotation)*

3 (initial ?=’initial ’) (final ?=’final ’)

4 (type=StateType)? (’state’) (id=ID) (label=STRING)?

5 (

6 (’references ’ referencedScope = [sccharts :: State|ID]

7 (’bind’ bindings += Binding (’,’ bindings += Binding)*)?

8) | (’{’

9 (declarations += Declaration | localActions += LocalAction)*

10 ((regions += SingleRegion)(regions += Region)*)?

11 ’}’)

12)?

13 (outgoingTransitions += Transition)* ’;’;

Line 6 and 7 define the reference extension. In the actual implementation the refer-
encedScope may be another state identified by its ID. However, it might be possible to
extend this to regions as well in future versions. This referenced link is mandatory for
referenced SCCharts. The optional binding list follows. Different bindings are separated
by comma.

The transformation rule is depicted in Listing 2.10. In lines 2 - 10 the function invokes
the copyState of the SCChartsExtension to generate a copy of the referenced state. All
nested references are resolved first to ensure that the chain of VO bindings stays intact.
Then, it retains the local id and label and adds the state to the parent region. The copy
is called newState.

In lines 13 - 19 each object in the new state that is bindable will be checked. If it is
bound to a local VO it will be replaced. The remaining VO declarations will be removed
in lines 21 - 26. However, this will not guarantee that all interface declarations are
dealt with. Therefore, the next code block (lines 28 - 36) will search for any remaining
declarations in the copied state that are marked as input or output. Then, line 32, the
method tries to find a suitable VO in the local model. This resembles the implicit binding
mentioned earlier in Section 2.3. Each VO of the interface declaration that was not bound
explicitly may be bound implicitly if a corresponding VO can be found. Suitable VOs are
determined by ID. Hence, we recommend an explicit binding if possible because IDs in
different models may be equal and an implicit binding may be unintended. The interface
declaration will be removed after if has been processed.

Subsequently, the incoming and outgoing transitions to the original state will be redi-
rected to the new state in lines 38 - 39 and newState retrieves the initial and final flags of
the referencing state. Eventually, the original state that referenced the external model
is deleted. At this point the referenced state is fully embedded in the local model and
replaced the referencing state.

4in de.cau.cs.kieler.sccharts.text in KIELER

13

Listing 2.10: Referenced SCCharts transformation
1 def void transformReference(State state , State targetRootState) {

2 val newState = (state.referencedScope as State). copyState => [

3 allContainedStates.filter[referencedState]. immutableCopy.forEach[

4 transformReference(it)

5]

6

7 state.parentRegion.states += it

8 id = state.id

9 label = state.label

10]

11

12 // This has to be done for each bindable object.

13 for(eObject : newState.eAllContents.toList) {

14 if (eObject.isBindable) {

15 for(binding : state.bindings) {

16 eObject.valuedObjects.bindTo(binding)

17 }

18 }

19 }

20

21 state.bindings.forEach[binding |

22 newState.declarations.immutableCopy.forEach[

23 val objects = valuedObjects.filter[name == binding.formal.name]. toList

24 objects.immutableCopy.forEach[delete]

25]

26]

27

28 newState.declarations.immutableCopy.forEach[declaration |

29 if (declaration.isInput || declaration.isOutput) {

30 declaration.valuedObjects.forEach [

31 val newObject = (newState.eContainer as Scope). findValuedObjectByName(name)

32 newState.replaceAllOccurrences(it , newObject)

33]

34 declaration.delete

35 }

36]

37

38 state.incomingTransitions.immutableCopy.forEach[targetState = newState]

39 state.outgoingTransitions.immutableCopy.forEach[sourceState = newState]

40

41 newState => [

42 initial = state.initial

43 ^final = state.^final

44]

45

46 state.remove

47 }

2.4. Hostcode

SCCharts possesses a hostcode mechanism that allows a modeler to include hostcode
directly into the model. Text written in single quotes will be interpreted as hostcode.
Although this is not new to SCCharts several improvements have been made.

Basically, the code generation creates the tick function, the reset function, and the
declaration of used, not external variables. Additionally, in the C code generation, a
header with matching name will automatically be included to provide a comfortable way
to inject external objects or API.

14

2.4.1. Function Calls

As stated in Section 2.4 it is already possible to inject function invocations in models
(e. g., in triggers or effects). However, regarding the performed analyses in the compiler
this injected hostcode is a black box and the transformations do not know anything
about it. Therefore, the hostcode mechanism got refined with respect to function calls.

Listing 2.11: Function call grammar rule
1 FunctionCall returns FunctionCall:

2 ’<’ functionName=ID

3 (’(’ parameters += Parameter (’,’ parameters += Parameter)* ’)’)?

4 ’>’;

5

6 Parameter returns Parameter:

7 (callByReference ?= ’&’)?

8 expression = Expression;

Listing 2.11 depicts the new rules for such a function call. A call is introduced with
a left angle bracket and followed by the name of the function. Afterwards a optional
parameter list may follow. The call concludes with a right angle bracket. A parameter
holds any expression (meaning a literal, a VO, or again hostcode) and may be preceded
by an ampersand to indicate a call-by-reference.

With this calling convention in place the compiler is able to detect variable accesses in
hostcode function calls and can create dependencies accordingly. The function call rule
may appear anywhere where hostcode is allowed. An example is depicted in Listing 2.12.

Listing 2.12: Function Call Example
1 scchart FCMOVE {

2 int retVal , speed;

3

4 initial state s1

5 --> s2 immediate with / retVal = <move (100, &speed)>;

6

7 final state s2;

8 }

15

3. The Railway Project

As stated in the introduction in Section 1, the railway project was a bachelor and master
project course held in the summer term of 2014 at the Chair for Realtime and Embedded
Systems. Seven students attended the class accompanied by three supervisors. The goal
was to design and implement a railway controller that is able to control the railway
installation of the Department of Computer Science. In the initial tutorial phase of the
project the participants got to know SCCharts and the actual state of the compiler.
Afterwards they should estimate what was possible to implement in the remaining time
before the actual implementation phase began.

Since SCCharts and especially the SCCharts compiler are a rather new development,
this project was conducted in a fairly different manner than usual because the developers
of the compiler were also the supervisors. The information feedback of the students

Figure 3.1.: Model railway installation

16

IC_ST_0 IC_ST_1

IC_ST_2

IC_ST_3

IC_ST_4

IC
_L

N
_0

IC_LN_1
IC

_L
N

_2

IC_LN_3

IC_LN_4

IC
_L

N
_5

IC_JCT_0

OC_ST_0

OC_ST_2

OC_ST_3OC_ST_4

O
C

_L
N

_0

OC_JCT_0

OC_LN_1

OC_LN_2

O
C

_L
N

_3
OC_LN_4

O
C

_L
N

_5

OC_ST_1

IO_LN_0

IO
_L

N
_1

IO_LN_2 OI_LN_0

OI_LN_1

OI_LN_2

KI
O

_L
N

_0

KI
O

_L
N

_1

KH_ST_0

KH_ST_1

KH_ST_2

KH_ST_3

KH_ST_4

KH_ST_5

KH
_L

N
_0

KH_LN_1

KH_LN_7

KH
_L

N
_8

KH_LN_4

KH_LN_3

KH
_L

N
_2

KH_ST_6

KH_LN_6

KH_LN_5

Symbols

Inner Circle

Outer Circle

Kicking Horse Pass

Interconnections

Track segments

Bridge

Track specialties

Railroad crossing

Point or crossing

Directions

Unidirectional block

Bidirectional block with
forward direction

Preferred direction

Point operating unit

Lighting

Block signal

Block isolation

Electronics

Reed contact

http://www.informatik.uni-kiel.de/~railway/

Stephan Höhrmann, January 2006

0 1
0

0

1

0

1 105432 9876

16 15 14 1321 1920 18 17 12

22

23

0

11

23

7

6

5

8

12

13

17

19

20

21

22

23

26

25

24

29

27

9

14

0

3

2

1

10

11

18

16

28

4

15

42

42

Figure 3.2.: Model railway scheme

w.r.t. the compiler, bugs, and large models were most valuable. On the other side,
improvements and bugfixes were implemented in short cycles.

Section 3.1 introduces the model railway installation. Then, the overall approach of
the class and the modeled controller is presented in Section 3.2. The chapter continues
with the implementation details of the surrounding C code in Section 3.3 and concludes
with remarks about the project workflow in Section 3.4.

3.1. The Model Railway Installation

To present the model railway installation at first the hardware is detailed in Section 3.1.1.
The programming interface which controls the hardware is detailed in Section 3.1.2.
These sections only provide a brief introduction to the system. for more detailed infor-
mation, see the thesis by Höhrmann [Höh06].

3.1.1. Railway Hardware

Figure 3.1 shows the third generation of the model railway installation1 of the Depart-
ment of Computer Science at Kiel University. The hardware consists of 127 meters

1http://www.informatik.uni-kiel.de/~railway/

17

http://www.informatik.uni-kiel.de/~railway/

of tracks, 28 switch points, 58 signals, 24 lights and a railroad crossing [Höh06]. All
these parts are normal Commercial of-the-shelf (COTS) railway components which can
be found on numerous railway installations worldwide. The majority of the installation
is built with products of the company Fleischmann with some additions of third party
parts.

The track net is divided in 48 track segments. The complete track layout is depicted
in Figure 3.2. The tracks form three separate circles, called Inner Circle (IC), Outer
Circle (OC) and Kicking Horse Pass (KH). The name and design of the Kicking Horse
Pass are inspired by the original pass across the Canadian Rockies, an equally famous
and infamous pass built in the 1880s. Each of these circles has a station with several
parallel tracks. On the Inner and Outer Circle, trains are only allowed to travel in
one direction, namely clockwise on the Outer Circle and counter-clockwise on the Inner
Circle. The Kicking Horse Pass can be used in both directions and has a turnout track
in the middle of the circle. The three circles are interconnected to allow trains from one
circle to change to another circle.

Most of the track segments are equipped with redundant reed contacts at each end
of the segment. These contacts allow the controller to register passing trains, which are
equipped with small magnets at the front and at the back. One crucial feature is the
usage of non-magnetic tracks throughout the installation to avoid interferences between
the tracks and the reed contacts. Due to the redundancy, the sensor can also provide
informations about the travel direction of the train and a rough estimation of the speed.

The overall 245 sensors and actors are controlled by 24 computing nodes, mounted
under the intallation. Each node consists of a custom-build power electronics circuit
and a connected PC104 386 computer. As an alternative to the PC104 system, Time-
Triggered Protocol (TTP)2 power nodes can be used with the power electronics. The
PC104 nodes are interlinked via Controller Area Network (CAN) bus and Ethernet while
the power nodes can access a separate Ethernet, CAN bus and TTP bus. To control the
PC104 nodes of the installation, an Application Programming Interface (API) written in
C is available to the developer.

3.1.2. Programming Interface

The main programming interface is provided by the so-called Höhrmann-API [Höh06].
Using this API a separate controlling computer connects to the nodes via CAN bus or
User Datagram Protocol (UDP) and has the ability to retrieve status information from
the railway system or to change the status of the railway hardware. To initialize the
controller a railway system datastructure has to be initialized and a link to all nodes
has to be established as shown in Listing 3.1. When these connections have been created
the controller can claim the hardware and define boundaries for the length of a cycle.

To determine whether the railway is still properly connected and working as expected,
the API provides the function railway alive which is also shown in Listing 3.1.

2http://www.tttech.com/technologies/ttp/

18

http://www.tttech.com/technologies/ttp/

Listing 3.1: Railway controller initialization
1 struct railway_system *railway_initsystem(struct railway_hardware *hardware);

2 int railway_openlinks_udp(struct railway_system *railway, char *hostformat, char *device);

3 int railway_startcontrol(struct railway_system, unsigned mincycle, unsigned maxcycle);

4

5 int railway_alive(struct railway_system *railway);

When the controller has established a connection it can control the individual parts
of the hardware with several functions shown in Listing 3.2. Each of these functions
needs the railway system as the first parameter, followed by one or more parameters
to select the individual hardware part. The next parameters determine the desired state
of the component. Most of the parameters can be filled with predefined constants like
GREEN, YELLOW or RED for signal states, BRANCH or STRAIGHT for point states
or OFF, FWD, REV or BRAKE for the track settings. To select the track segments,
precompiler constants like IC ST 2 are available for each individual track.

Listing 3.2: Railway control functions
1 void setsignal(struct railway_system *railway, int block, int signal, int lights);

2 void settrack(struct railway_system *railway, int track, unsigned mode, unsigned target);

3 void setpoint(struct railway_system *railway, int point, int state);

4 void setlight(struct railway_system *railway, int light, int state);

5 void setgate(struct railway_system *railway, int gate, int state);

To track the movement of the trains the primary sensors are the reed sensors in the
tracks. Sensors can individually be interrogated and return their current status. The
primary function to read the status of these contacts is shown in Listing 3.3.

Listing 3.3: Railway contact query
1 unsigned getcontact(struct railway_system *railway, int block, int contact, int clear);

This function returns one of the following values:

NONE No new event has been detected.

FWD The last passing magnet has passed the sensor in forward direction

REV The last passing magnet has passed the sensor in reverse direction

UNI An event has been detected but no direction could be determined. This might
either happen with very fast trains3 or due to a defective reed sensor. The
firmware of the power electronics can differentiate between these faults and
presents an error message if one reed sensor seems to be faulty.

The API provides several additional fuctions like testing the existence or probing the
status of railway parts.

3Faster than 3 meter per second.

19

SCCharts Controller

tick

controller state

hostcode calls

Mutex Controller

Train Controller

Station-2-Station

requests

permissions
«delegate»

«delegate»

Figure 3.3.: SCChart railway controller hierarchy

3.2. The Overall Approach

The general approach to create a complete controller was a bottom-up design, starting
with smaller components which could be distributed among the group and combining
these components on higher layers. In general three layers of abstraction were used to
create a controller for the model railway. The lowest layer consists of so-called Station-2-
Station controllers. These models can be used to travel with any train from one specific
station to another adjacent station. These models were then used to create a general
train controller which is able to dynamically receive the next destination and select the
appropriate Station-2-Station controller. In the end 11 of these train controllers were
combined to create a complete railway controller. To manage the permissions on the
track segments, and to prevent train collisions, this railway controller needed additional
mutex controllers. Each of these mutex controllers is able to manage the permissions of
one track segment, resulting in 48 mutex controllers in the final controller. A schematic
visualization of this controller hierarchy can be seen in Figure 3.3.

3.2.1. Station-2-Station Controllers

Due to the track layout, which is shown in a simplified version in Figure 3.4, some
routes were not feasible. For instance a train in the Inner Circle Station traveling to the
Kicking Horse Station will always arrive there in reverse direction. If it should travel to
the station facing forward it must pass through the Outer Circle first. These indirect
connections were not modeled explicitly but built on the next layer.

The remaining connections were:

� One loop on the Inner Circle

� From Inner Circle to Outer Circle

20

Kicking Horse Pass

Inner Circle

Outer Circle

Figure 3.4.: Railway stations and circles

� From Inner Circle to Kicking Horse Station counter-clockwise

� One loop on the Outer Circle

� From Outer Circle to Inner Circle

� From Outer Circle to Kicking Horse Station clockwise

� One loop on the Kicking Horse Pass clockwise

� From Kicking Horse Station clockwise to Outer Circle

� One loop on the Kicking Horse Pass counter-clockwise

� From Kicking Horse Station counter-clockwise to Inner Circle

Each of these scenarios was modeled in a separate SCChart and had a similar interface
like in Listing 3.4.

Listing 3.4: Station-2-Station interface example
1 input int IC_JCT_0_perm , IC_LN_0_perm , IC_LN_1_perm , IC_LN_2_perm;

2 input int IC_LN_3_perm , IC_LN_4_perm , IC_LN_5_perm , IC_ST_0_perm;

21

Figure 3.5.: Station-2-Station controller (without declarations and transition labels)

3 input int IC_ST_1_perm , IC_ST_2_perm , IC_ST_3_perm , IC_ST_4_perm;

4 output bool IC_JCT_0_req [11], IC_LN_0_req [11], IC_LN_1_req [11], IC_LN_2_req [11];

5 output bool IC_LN_3_req [11], IC_LN_4_req [11], IC_LN_5_req [11], IC_ST_0_req [11];

6 output bool IC_ST_1_req [11], IC_ST_2_req [11], IC_ST_3_req [11], IC_ST_4_req [11];

7

8 input int trainNum;

9 input int depTrack;

10 input int destTrack;

11 input bool cleanup;

12 input bool debug;

13 output int arrTrack;

14 output bool trainTravelling;

Each train is assigned an individual number, which is passed to the controller as
the constant trainNum. The departure track of the train is passed via depTrack and the
desired arrival track is defined in destTrack. The controller has a form of load balancing
on the station tracks, meaning that a train won’t insist on the given track but changes
to another free track in the station if needed. The real arrival track is returned to the
controller via arrTrack. To assert mutual exclusion on the track segments, each segment
has a pair of request and permission variables. Each train can request the permission to
enter a track segment by setting the various request variables to true. These variables
always take the form XX YY Z req[trainNum] where XX stands for the current circle, YY
choses the general area (Station, Lane or Junction) and Z denotes the exact block.

The permission is granted by the mutex controller which is described in Section 3.2.3 as
a higher level controller. When the permission has been granted the variable XX YY Z perm
is set to trainNum.

A sample of a Station-2-Station controller is shown in Figure 3.5. The leftmost state

22

Figure 3.6.: Dynamic train controller (without declarations and transition labels)

takes care of leaving the station while the successive states manage the passage through
one track segment each. The Station-2-Station controller takes care of handling all
signals, points and tracks and fetches all relevant contact events. It requests the needed
track permissions and slows the train down (or stops it completely) if the next segment
is still occupied by another train. The states at the right end manage the load balancing,
the arrival at the station and the waiting time at the platform. When requesting the
station track it tries to grab the primary destination track, but will switch to any free
track if the destination is blocked. When entering the station it will first slow down and
then stop at the end of the station track. It then signals the arrival to the C controller
part, which causes the train to wait some time before terminating this Station-2-Station
controller.

3.2.2. Train Controller

The train controller, visualized in Figure 3.6, takes care of the complete dynamic man-
agement of one train. In this context dynamic management means that the controller
is not only using a predefined train schedule but is able to receive the next destination
during runtime and react to changes in the schedule. This schedule can be set by the
user using the Transmission Control Protocol (TCP) interface described in Section 3.3.2.
Each schedule consists of a list of destinations and a pointer to the active entry in this
list. If the train reaches the end of this list it restarts the schedule and takes the first

23

Figure 3.7.: Mutual exclusion controller (simplified)

element of the list as the next target. It the schedule is empty the train stays at the
current station until a new schedule is set.

To accomplish this, each train controller tracks the location of its individual train.
The primary control function can be found in the four states IC, OC, KH and KH which
are active when the train is standing in the corresponding station. In theses states the
controller polls the environment for the next destination. When the new destination
has been selected, the controller selects the shortest path and starts the corresponding
Station-2-Station controllers. In simple cases a single Station-2-Station controller can be
used directly and the termination points to the next station state. If no direct connection
between the current station and the destination exist, the controller combines multiple
Station-2-Station controllers and returns to the final station state after all intermediate
steps have been passed.

3.2.3. Mutual Exclusion Controllers

To manage the permissions on one track segment one separate region, as shown in
Figure 3.7, is modeled. This region contains one free state and one state for each train.
Each train can request the right to enter the segment by setting its request variable
to true. If the segment is free the mutex controller selects the train with the highest
priority which wants to enter and gives the permission to it. This permission is then
kept until the train releases the segment by setting the request to false again.

3.2.4. Complete Railway Controller

To build a complete railway controller the separate components have to be combined.
Each train is controlled by a separate train controller and each segment has to be man-
aged by a mutual exclusion controller. In addition one state for initialization of the
whole system is needed which reserves the initial tracks for the trains. Due to the design

24

this initial configuration is not determined from the railway system itself but explicitly
modeled.

3.3. Controller Implementation

The main part of the controller implementation process was done by modeling the SC-
Charts components according to the approach given in Section 3.2. When the modeled
controller should actively control the railway, it needs to be executed. The compilation
of SCCharts produces a sequentialized synchronous tick function. In this case C code
was synthesized. Consequently an additional environment, including a main function,
is needed to compile and execute this code.

In general a main function calling the tick function repeatedly would be sufficient to
simply run the modeled controller. But there are more aspects which must be considered
to create a working and usable controller.

The railway system is an event driven system. The synchronous model of time must
be preserved by consuming events only on tick-borders. Thus it is necessary to add
a separation layer between the hostcode calls in the synchronous tick function and the
railway API function calls. This layer of abstraction is also suitable for further abstraction
from the given railway API to offer a simplified and specialized interface for the hostcode
used in the SCChart model.

Another important aspect of the controller is user interactivity which cannot be han-
dled easily in the SCCharts model. A simple controller which drives all trains in an
predefined way might be sufficient for testing. But already at testing it is handy to al-
low the testers to pause and continue the controller in a secure way, instead of canceling
its execution.

In addition to these main extensions the controller also offers further features such as
measurement of consumed time during a tick and sanity checks of the railway behavior
with appropriate error handling.

Extending the generated controller by implementing these additional features and
aspects leads to a more complex controller.

3.3.1. Components

Figure 3.8 shows the different components of the railway controller and their communi-
cation interfaces. The diagram only illustrates the architecture of the controller imple-
mented in C. The structure of the SCCharts controller is explained in Section 3.2 and
only appears as the SCCharts Controller component.

The following paragraphs describe each component presenting its purpose, function-
ality and interaction with other components.

SCCharts Controller This component represents the compiled controller modeled in SC-
Charts. The generated code defines a sequential synchronous tick and reset function to

25

State Monitor

Hostcode

Railway Controller

SCCharts
Controller GUI Server

Railway API

hostcode calls

controller state

monitored
changes

current state

environment
changes

tick

direct changes

monitored changes

current state

GUI Clients
TCP + JSON

Main
Controller

Figure 3.8.: Component diagram of the railway controller in C

drive the modeled behavior. These functions are invoked by the Main Controller compo-
nent. The tick function itself uses functions defined by the intermediate hostcode API

allowing interaction with the railway and additional controller features. To gain more
detailed information about the inner state of the SCCharts Controller the State Monitor
accesses some internal variables.

Hostcode The Hostcode component defines a extended interface wrapping the rail-
way API by wrapping its functions and providing additional functionality. All needed
API functions are redefined with a smaller signature and parameterized functionality
is handled internally. This reduces and simplifies the hostcode calls in the SCChart
model. All functions changing the environment of the tick function are handled by the
Main Controller component to ensure a correct behavior according to the synchronous
constructive Model of Computation (MoC). Other functions which have no temporal
context are directly forwarded to the railway API.

In addition to these basic railway IO functions the Hostcode component also provides
an interface to more advanced features such as dynamic scheduling, network commu-
nication aware message logging, abstract train speed and other functions regarding the
trains behavior protocol.

Main Controller The core of the overall Railway Controller is the Main Controller compo-
nent. It contains the main function and consequently handles the complete start up of
all components and the correct shutdown sequences of the controller. The main pur-
poses are the correct management of the system and invoking the tick function provided
by the SCChart Controller. Additionally, it maintains a synchronous environment for the

26

tick function. All actions which change the environment are delayed until the current
tick ends and processed afterwards. Contact events and other events are polled via
the railway API at the tick border. Thereby event-based changes, such as the gates on
the railway, are transformed into state-based data. Changes received from a Graphical
User Interface (GUI) client are only applied between two ticks. Additionally, the Main
Controller component creates information about the current state for the State Monitor
component.

In addition, the tick loop can be paused. The complete state of the railway and the
controller is saved and restored on continuing. This facilitates debugging.

To allow some evaluation of the efficiency of the system, the time consumption inside
and outside the tick function is measured. Furthermore, the controller checks internal
permissions of the SCChart Controller against detected trains on the railway to increase
robustness of the system.

GUI Server The server component allows multiple GUI clients to connect to the con-
troller. Each client connection is handled in its own thread, while disconnecting and
establishing new connections is always enabled during the controller execution. The
detailed communication is explained in Section 3.3.2.

Most commands and requests are performed delayed and thread-safe via the State
Monitor. Some uncritical commands are directly performed via the Hostcode component.
Different clients sending the same commands at the same time are processed with mu-
tually excluded first-come-first-serve-principle, which may cause lost update writes but
does not affect the integrity of the Main Controller component. Broadcasting log messages
is handled independently from client requests.

State Monitor The State Monitor component allows a thread-safe data exchange between
GUIs connected to the GUI Server and the running Main Controller. It provides the state
information of the last completed tick and buffers changes ordered by GUI clients. Conse-
quently this communication is tick-safe because changes are only applied at tick-borders.
In addition to that, the data access is mutually excluded without blocking the controller
thread and thus the controller remains a reactive system.

3.3.2. TCP Communication

Early versions of the controller provided only a restricted set of controls via keyboard
interrupts (namely pause, cleanup and shutdown). It quickly turned out that further con-
trol features would enhance the usability. To keep the C controller small, understandable
and maintainable, the user interface has been swapped out to a separate program. The
first version of a GUI communicated with the controller via pipes. The next step was
to further generalize the communication between them. Network-based communication
provided the extra feature of separating controller and GUI onto different computers.

To control the railway system and its trains, clients can connect to the controller
via TCP. The communication is line-based and uses JSON-formatted strings to send

27

commands and status messages. Possible commands are ones like status, which calls
for the current status, or schedule, which sets a new schedule for a specific train. A list of
available commands can be found in the listing below. All commands are asynchronous
calls, meaning there is no response to a command. By using TCP as the underlying
protocol, no responses are needed as one can rely on the successful transmission of TCP.

The only (implicit) response is possible via polling updated status information and
comparing the previously set property with the one from the status message. The status
message sent by the controller contains general information about the railway system
such as debug and pause state, number of traveling trains and statistics about tick times
as well as train specific information such as if the train is currently traveling, it’s next
station, set speeds for different situations (i. e., entering stations, waiting for free track
segments) and the current schedule. Other messages are error and log messages which
are quite self-explanatory.

Messages sent by the controller

log Contains the log messages as an array of strings.

error Contains a single string describing the error.

status Contains debug, cleanup and pause state, the number of traveling trains,
locked track segments, tick time, overall loop time and for each train the state
of traveling, the remaining waiting time in stations, several speed settings,
waiting times for different stations, the schedule and current destination.

Messages sent by clients

status Poll for the current status, should trigger a status reply message.

shutdown Terminate the controller and close all sockets.

logout Close the connection, leaves the controller running.

pause Payload: state. Suspend or resume the controller according to state.

cleanup Start the cleanup procedure which sends the trains back to their home tacks.

debug Payload: state. Enable or disable verbose output according to state.

echo Payload: message. Print message as log message on the controller and broad-
cast it to all connected clients.

light Payload: state. Activate or deactivate the lights on the railway according
to state.

wait Payload: train. Force train to wait in the next station.

start Payload: train. Force train to immediately abort the waiting timer.

28

schedule Payload: train, currentIndex, tracks. Set the new schedule for train

where currentIndex is the current integer position in the schedule and
tracks is an array of integer values, representing the station tracks.

speed Payload: train, speeds. Change the speed settings of train where speeds

contains the new speeds for slow, caution and normal.

time Payload: train, times. Change the waiting times for train where times

contains minimum waiting time and maximum random offset for each station.

3.3.3. GUIs

The use of TCP and JavaScript Object Notation (JSON) based communication makes it
possible to connect to the controller from different platforms. To control the railway
in a convenient way, there is a GUI running on the common (desktop) Java Virtual
Machine (JVM). Another GUI runs on Android devices which allows monitoring and
controlling the railway from all around the room. This turned out helpful while testing
the modeled controllers as one can easily pause the controller while supervising the trains
on the tracks.

Both GUIs have a similar structure. There are different panels for monitoring the
status, editing train preferences and viewing the log. The information viewable and
editable are described in detail in the previous Section 3.3.2. Figure 3.9 shows the
status view from both applications. Here, one can see the state of each train, its current
destination, if it’s waiting and the remaining waiting time. The different panels for
editing the trains or viewing the log are accessible via tabs and on android via tap on
each train.

3.4. Project Workflow

The creation of the controller was carried out in several phases as depicted in Section 3.2
and Section 3.3. The different phases of the implementation and the resulting increase
in Lines of Code (LoC) are shown in Figure 3.10a.

As described before the complete controller includes the Station-2-Station and the
Dynamic Controllers. These result in approximately 14.000 LoC. Additional features
such as network communication added another 11.000 Lines of Code, hence, the overall
model comprises roughly 25.000 LoC. A detailed evaluation of the code composition of
automatic generated and manually written code will follow in Chapter 4.

As this academic project was part of the educational training of the participating
students, a close communication loop with the SCCharts developers was possible. The
feedback of the students and the prompt handling of issues were valuable for both sides.
Figure 3.10b shows the generated tickets in the group’s issue tracker in red and the
resolved tickets in green.

29

(a) Desktop status view (b) Android status view

Figure 3.9.: Example views from the GUIs

14.04.14 04.05.14 24.05.14 13.06.14 03.07.14 23.07.14 12.08.14
0

5000

10000

15000

20000

25000

30000

Tutorials

Station-2-Station
Controller

Tests

Dynamic Controller

Java GUI

C Redesign

Android App

(a) Controller lines of code (b) Project tickets

Figure 3.10.: Project workflow

30

4. Validation and Experimental Results

The final version of the controller presented in Chapter 3 successfully managed the
schedule and controlling of all 11 trains on all tracks. A recorded video of the controller
in action can be found on the homepage of the group1.

A big bonus of this success results in the immediate availability of large-scale and
practically tested SCCharts models. Section 4.1 depicts statistics about the scale of pro-
duced models and code in the project. Furthermore it will give a detailed analysis about
the increase of the code size during compilation. Subsequently, Section 4.2 presents the
results of the improvements on the SCCharts compiler and finally, the actual execution
time performance of the generated code is examined in Section 4.3.

4.1. Source-Code Size

SCC Dynamic Controller (1.5%)

SCC Station-2-Station (58.7%)

SCC Mutex (17.2%)

C Controller (7.2%)

C Hostcode (5.3%)

C Communication (10.1%)

1170

611

829

1988 6783

Figure 4.1.: Distribution of self-written code in LoC

Regarding the modeling approach illustrated in Section 3.2 and the architecture men-
tioned in Section 3.3.1, the controller consists of independent components written in
different languages. To evaluate the distribution between textual modeling and coding
in C, the amount of self-written code is compared. Figure 4.1 shows the code size of
the different components in the final controller. The amount is measured in LoC but
without a standardized formating and indention style for both languages. Nevertheless,
the results are comparable since the team had general formating rules, producing similar
structured code. Another issue is the SCChart Mutex component which is not entirely

1http://www.rtsys.informatik.uni-kiel.de

31

http://www.rtsys.informatik.uni-kiel.de

self-written because some parts are generated by a script to save monotonic repetitive
work. The ability to use scripting was a benefit of having a textual input format.

Considering these results, the modeling part took three quarters of the work, which is
appropriate for a project focusing on modeling. Furthermore, the slices highlighted in
the pie chart of Figure 4.1 represent the written C code. Regarding the purpose of the
components, some components are not strictly necessary to run the modeled controller.
It turned out that the amount of C code needed to correctly run a SCChart in a real
world environment is relatively small.

4.1.1. Compilation

Generated Code (98.2%)

Libraries (1.2%)

Self-written Code (0.6%)

Figure 4.2.: Distribution of the complete C code before compilation

In the previous section, only self-written code was compared and also textual model
code and C code was mixed. Figure 4.2 shows the size of C code source files used in
the final compilation with the GNU Compiler Collection (GCC). The amount is again
measured in LoC.

The files are combined to groups presented in this chart. The Self-written Code refers
to the self-written C code files which are highlighted in Figure 4.1. In addition to the
standard libraries the Libraries slice represents the railway API and a JSON parser. The
most significant group is the Generated SCChart Code. This group consists of a single
file generated by the KIELER Compiler when compiling the source models into C code.
Since this code is generated, the indent style does not follow the style used in self-written
code and libraries. The LoC in this file are measured with standard GNU indent style.
Any differences in the amount of line resulted by this style are insignificant due to its
relative size to the other files.

Considering the results presented in Figure 4.2, an enormous increase of the SCCharts
code can be observed. The nearly 12,000 lines of textual model code resulted in about
450,000 lines of C code. The reason for this significant increase of code can be found in
the SCCharts compilation.

32

4.1.2. SCCharts Compilation

The compilation of SCCharts is a process of stepwise model-transformations [MSvH14].
Each step changes the model according to the purpose of the transformation [vHDM+14].
Since most transformations replace extended features by simpler features with a more
complex structure or add information to the model, the model size grows.

Experiment

To acquire detailed information about the growth of the model and the distribution
of model elements, the KIELER Compiler was extended by an analyzer module. The
KIELER version2 chosen in this experiment was the state used to compile the final railway
projects. The added module analyzed every intermediate result of the compile chain
applied on the complete railway controller.

In each intermediate model the number of model elements relevant for its structure was
measured. For SCCharts these elements are states, transitions, regions and variables.
Consequently, in the Sequentially Constructive Graphs (SCGs) the nodes, control-flow-
edges, threads represented by entry and exit node pairs and variables were counted.

In the previous sections, code size is measured in LoC which could not be acquired in
this experiment. The models could either be saved in a XML Metadata Interchange (XMI)
format which is not comparable to human written code or serialized into a proper text
representation. Due to the size of the railway models and the resulting intermediate
models, the synthesis was not able to terminate in finite time. In addition to that, the
analysis of the model elements allows a more detailed view on the inner structure of the
SCCharts than LoC.

Results

Figure 4.3 shows the combined and processed results of the experiment. The complete
raw data can be found in Appendix B.

The chart lists the transformation and presents the number of corresponding model
elements after the given transformation is performed. The lines represent the combined
model element categories for both SCCharts and SCGs. The Initial transformation refers
to the modeled source files before any transformation is performed. Transformations
without any effect on the model are omitted in the diagram. In case of the SCCharts
part, this implies that the corresponding extended features were explicitly not used in
the modeling process or not produced by other transformations.

The first applied transformation is the Reference transformation, performing a macro
expansion. This transformation has great importance for modeling in the railway project,
since it allows modularization and re-using of components. As a consequence, resolving
the re-usage by creating copies of the referenced modules causes the increase of states,
transitions and regions noticeable in the diagram. The number of variables is slightly
affected because most variables in the railway model are globally shared variables.

2Version: 0.10 ; Commit: c577524c72d9a94362e5ed165a1645ceab365ce3

33

States / Nodes Transitions / Controlflow Regions / Threads Variables

Source
Reference

Complex Final States
Abort

Const
Entry

Trigger Effect
Surface Depth

SCG
Sequentialized SCG

0

15.000

30.000

45.000

60.000

75.000

90.000

105.000

120.000

135.000

150.000

165.000

180.000

195.000

210.000

Transformation

N
u

m
b

er
 o

f
m

o
d

el
 e

le
m

en
ts

Figure 4.3.: Number of model elements during compilation

The succeeding transformations have insignificant effect on the model size because
the corresponding extended features are rarely present in the model. In contrast, the
entry action feature is heavily used in the controller model. It proved to be the easiest
and visually most compact way to store textual hostcode calls in SCCharts. Since the
hostcode contains all interaction with the railway, the controller contains many entry
actions. The Entry Transformation translates these entry actions into sequences of states
and immediate transitions holding the same effect as the entry actions. Consequently
this transformation produces the huge amount of new structural model elements visible
in Figure 4.3.

The Trigger Effect and Surface Depth transformation restructure the model into a more
simple and compiler friendly but also larger structure. The translation of SCCharts into
SCG benefits from this structure. Additionally the number of nodes in the SCG is smaller
than the number of states and transitions analogously. The reason for this decrease is
the elimination of hierarchy. This effect is also noticeable in the number of threads.

After a static scheduling, the SCG is sequentialized into a single-threaded sequence
of actions. Again a significant increase of nodes, control-flow and especially variables is
noticeable. This is caused by introducing synchronous guards to control the concurrency.

34

Analysis

In the end, the sequentialized SCG has about 180,000 nodes and 90,000 variables. An-
alyzing the translation of the SCG into C code explains the resulting number of LoC of
the C file.

At first each variable requires a declaration, producing about 90,000 lines. Addition-
ally a proper initialization of most of the variables is needed. Each node represents
an assignment or conditional branch. A conditional is translated into an if-statements
with the corresponding if-block consuming 3 lines of code. The difference between
control-flow and nodes leads to the conclusion that there are about 30,000 conditional
nodes, producing about 90,000 lines. Consequently, the remaining 150,000 nodes are
assignments which can be translated into a single statement. Following the given indent
style most of these statements are split in to multiple lines regarding the complexity of
the expression and the length of the statement.

Summing up the estimated number of lines justifies the 450,000 LoC mentioned in
Section 4.1.1. In addition to that, the increase of code size during the SCCharts compi-
lation can be explained and traced to the different transformations and used modeling
features.

4.2. Compiler Performance

We tested the performance of the SCCharts compiler w.r.t. three different versions of
its development

1. June 2014,

2. August 2014, and

3. January 2015.

The June and August compiler versions were influenced directly from the running railway
project. A lot of improvements could be made and incorporated into the August version.
The January version shows that these improvements are still retained in the most current
version of the SCCharts compiler.

We measured the compile time in seconds, the beautified target code size in lines of
code and a normalized compile time per line of generated target code. We performed
our experiments on an Intel Core 2 Duo T9800 @ 2.93GHz system with 8GB RAM.
For presentation purposes we ordered the models in ascending order of their (model
and target) size measured in lines of code where the smaller models are on the left and
the larger models are on the right side of each diagram. For our experiments we used
valid test models from the railway project, which served as regression tests during the
project. Namely, these are Test4.sct, TestKHKH.sct, Test2.sct, Test3.sct, Test2b.sct, TestO-
COC.sct, TestAll.sct, TestICIC.sct, Test1.sct, TestOCKH.sct, TestICKH.sct, and TestICOC.sct.
Additionally, as an example of really large models, we also measured our compiler us-
ing two running versions from the final project presentation of the full dynamic railway

35

0

20

40

60

80

100

120

140

160

Jun '14

Aug '14

Jan '15

Compile Time [s]

Figure 4.4.: Compile time for rail regression test models

0

10000

20000

30000

40000

50000

60000

Jun '14

Aug '14

Jan '15

Code Size [loc]

Figure 4.5.: Code size for rail regression test models

36

0

5

10

15

20

25

30

35

Te
st

4
.s

ct

Te
st

K
H

K
H

.s
ct

Te
st

2
.s

ct

Te
st

3
.s

ct

Te
st

2
b

.s
ct

Te
st

O
C

O
C

.s
ct

Te
st

A
ll.

sc
t

Te
st

IC
IC

.s
ct

Te
st

1
.s

ct

Te
st

O
C

K
H

.s
ct

Te
st

IC
K

H
.s

ct

Te
st

IC
O

C
.s

ct

Jun '14

Aug '14

Jan '15

Normalized Compile Time [10*ms/loc]

Figure 4.6.: Normalized compile time for rail regression test models

0

5000

10000

15000

20000

25000

Jun '14

Aug '14

Jan '15

Compile Time [s]

Figure 4.7.: Compile time for rail regression test models and final dynamic SCCharts
controller

37

controller models, one for 8 trains, DynamicCtrl8FP.sct, and the other for 11 trains, Dynam-
icCtrl11FP.sct. The full dynamic controller for 11 trains is the final outcome of this project
which is also discussed earlier. The 8 train variant is a nearly equivalent controller that
just runs 8 trains and hence is a lot smaller in model size.

Figure 4.4 shows the compile times for only the regression test models for all compiler
versions. It can be seen that the June compiler version has major problems when in
comes to larger models. Figure 4.7 also attests this where the large dynamic controller
models for 8 or even 11 trains take an enormous amount of compile time in the June
compiler version. Figure 4.4 also shows that the January version of the compiler is still
slightly faster in most cases than the August compiler version.

The target C code produced by each compiler version is shown in Figure 4.5. It re-
veals that the June version produced the most compact code but the compactness is
not incommensurate with the longer compile time (cf. Figure 4.4). In fact the January
compiler version behaves a bit worse w.r.t. compactness than the August compiler ver-
sion. The main reason for slightly more C code are additional guards and variables for
conditionals that were introduced to aid the debugging process. These extra variables
do not alter the semantics of the generated code. Further versions of the compiler should
clean up redundant artifacts using standard compiler techniques, i. e., copy propagation.

Figure 4.6 shows the normalized compile time for all compiler versions. It reveals an
interesting point. That is, the relative compile time per line of code of the August and
January compiler versions are effectively (bounded by a) constant where for the June
compiler version it still increases. It may be inferred that the compile time of the June
compiler version increases more than linearly with the model size.

This hypothesis was confirmed by code inspection where code parts in the June com-
piler version which had exponential complexity where discovered and could be removed
during the project.

Figure 4.8 compares the code size of all models, the regression test models and the
railway controller models. It can be deduced from that figure that the railway controller
models are quite a lot larger than the regression test models, nearly larger by one power.
The figure also reveals that both controller models are of comparable size although the
11 train controller is larger in the end.

Still Figure 4.9 shows that for the 11 train controller the June version of the compiler
took almost the double time per line of code compared to the 8 train controller. Again
this is due to exponential complexity of the compilation algorithm of the June compiler
version.

Figure 4.10 and Figure 4.11 exclude the June compiler version and just show the
results for the latest August and January compiler versions to emphasize and compare
the latest compiler improvements. It can be seen as a zoomed-in variant of Figure 4.7
and Figure 4.9. These figures reveal that the January compiler version takes a little
longer for the large models but the normalized performance values are still quite dense
and comparable.

38

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Jun '14

Aug '14

Jan '15

Code Size
[loc]

Figure 4.8.: Code size for rail regression test models and final dynamic SCCharts
controller

0

100

200

300

400

500

600

700

Jun '14

Aug '14

Jan '15

Normalized Compile Time
[10*ms/loc]

Figure 4.9.: Normalized compile time for rail regression test models and final dynamic
SCCharts controller

39

0

20

40

60

80

100

120

140

160

180

200

Aug '14

Jan '15

Compile Time [s]

Figure 4.10.: Compile time for rail regression test models and final dynamic SCCharts
controller (except June compiler version)

0

1

2

3

4

5

6

Aug '14

Jan '15

Normalized Compile Time [10*ms/loc]

Figure 4.11.: Normalized compile time for rail regression test models and final dynamic
SCCharts controller (except June compiler version)

40

4.2.1. Remarks on Compiler Performance

It is understood in computer science that execution times of linear complexity are de-
sirable. Nevertheless, while working on the compiler part of the rather large academic
project KIELER [vHFS11], it became apparent that worse complexity might not always
be as obvious as one might suppose. Moreover, the main focus of several implementa-
tions was on correctness and not particularly on execution time efficiency. However, this
oversight became a serious disadvantage when working with models of larger sizes, i. e.,
the railway model. Therefore, we recommend to be wary of the following circumstances
in large, team-driven, and eclipse-based projects.

Obfuscated Bad Code

KIELER comprises many components and plugins which were written by a whole team
of students and assistants. Many have left the university since the beginning of the
project and typically program code gets old or obsolete over time. However, even with
rather large code changes one wants to reuse as much code as possible. One way of
doing this in a neat way are Xtend3 extensions. An extension enhances the functionality
of a given object and looks like a simple method call. As a consequence the code stays
readable and other programmers can easily understand the meaning of a particular
extension providing a meaningful naming scheme is present. For example Listing 4.1
shows an old code snippet from the abort transformation rule in the SCCharts compiler.
Most programmer will understand this line instantly. The extension createRegion will
create a new region with the name GENERATED PREFIX + ”Ctrl” in the state state. Then
second extension uniqueName makes sure that the name is unique and does not create
a name collision. As the XTend framework is already used in almost every SCCharts
transformation, exploiting the extension feature came naturally.

Listing 4.1: XTend Extension Example
1 val ctrlRegion = state.createRegion(GENERATED_PREFIX + "Ctrl"). uniqueName

Although this facilitates the readability in large projects immensely it involves the
danger to worsen the performance unexpectedly because the used code is actually hid-
den and may be more complex than thought or even badly written. In addition to
that the program code may be obfuscated even more as the extensions themselves may
also use other extensions. Thus, even though the intention of the programmer is well
understandable, the comprehension of the actual implementation gets worse.

Furthermore, Xtend comprises another in most cases useful feature dispatch, which
allows the definition of methods for specific parameter lists. This introduces another
danger: Although the depicted code in Listing 4.1 is without problems in this example,
the uniqueName functions comes in three dispatch variants for regions, states, and VOs

each. In two out of three cases the method performs well. However, in the VO version
the complexity rises extremely because a search over the whole model takes place. This

3http://www.eclipse.org/xtend/

41

http://www.eclipse.org/xtend/

made the compilation of large models unbearable and even though only fairly simple
techniques were used, the obfuscation of the code made the debugging rather hard.

Combined, we do not condemn the usage of those extensions as they provide a more
than useful way to retain readability in such large project with a fluctuating team, but
we strongly advise to use them with care and perform code reviews on extensions that
are widely used even more thoughtfully than usual.

Use of Ecore Implementations

As KIELER depends heavily on the Eclipse Modeling Framework (EMF)4 and its model
structure, it naturally uses the data structures of EMF. Hence, one might conclude that
an EList is just a specialized version of a standard Java List and that it will perform
similarly with respect to execution time. This is not always the case. Depending on
the actual ecore settings of involved classes, different implementations of EList are used.
Thus, although similar by name, the performance of the data structures may differ a lot.
Of course the usage of EMF data structures is mandatory in the models but should be
avoided in large list operations. Accumulating large amounts of data in standard lists
and copying them in one step to the EList structures increases the performance a lot in
our transformations. Furthermore generic ecore object calls such as -empheAllContent
are a great aid to navigate through models. However, one should evaluate carefully
when to use generic content calls that traverse through the whole model instead of
implementing a specialized version that only processes the parts of the model that are
of particular interested. As mentioned in the uniqueName example in the section before,
unnecessary traversal through a model of large size is not desirable. To shorten such
model searches even more, we implemented a lot of caches inside the transformations to
save execution time. If possible we advise to do as few searches on the model as possible
without compromising the SLIC approach.

Visualization of Intermediate Results

While modeling with KIELER we generally follow a textual modeling approach with tran-
sient graphical automatic diagram synthesis as proposed elsewhere [SSvH13]. Usually
this gives the modeler an overview of the actual model as well as the result of interme-
diate compilation steps if desired. However, in case of large models such as the railway
controller this way of working seems to be unproductive as the automatic layout and
redrawing of the model cost vast amounts of time. Thus, the visualization of the model
was deactivated completely most of the time and only the final generated C code was
processed further. It should be discussed further how to improve the textual modeling
approach for large models.

4http://www.eclipse.org/modeling/emf/

42

http://www.eclipse.org/modeling/emf/

4.3. Tick Function Performance

Despite the 450,000 lines of synthesized C code, the tick function performs quite well.
The tick function alone takes about 2.3 ms to execute the compiler logic on an Intel i5
with 2.4 GHz (also visible in Figure 3.9b in Section 3.3.3). The overall loop—executing
commands issued by the SCCharts controller, polling the new railway state and persist-
ing the updated information—is done in less than 20 ms.

As described by Höhrmann the railway hardware polls new information on reed contact
states only every 10 ms [Höh06, p. 45]. Due to hardware error tolerance handling this
results in a minimum time difference between any two events on the same contact of at
least 660 ms. The tolerance handling in form of a hysteresis function needs 20 ms (two
cycles of 10 ms) to detect a closed contact and afterwards 640 ms to detect an open
contact again (64 cycles). Thus the loop time of 12 ms average is more than sufficient to
ensure that every railway event (regarding a single contact) is consumed in a separate
SCChart tick.

43

5. Survey Results

As final task the participants of the railway project were asked to fill out a survey
(Appendix A). The survey is divided into three parts:

1. Language General Aspects: In this part the survey asks general questions about SC-
Charts and asks to compare SCCharts to other languages. The results are pre-
sented and discussed in Section 5.2.

2. Language Feature Aspects: In this part the survey asks questions about SCCharts
features and there relevance. The results are presented and discussed in Section 5.3.

3. Tooling Aspects: In this part the survey asks about feedback for the SCCharts imple-
mentation in the KIELER framework. The results are presented and discussed in
Section 5.4.

5.1. Survey Setup

The survey was given to the participants at the end of the project. All seven participants
filled out the survey anonymously and independently. All seven participants of the
project returned their survey.

In general in all questions that compare different languages the synchronous and model
languages taught at the department were chosen, namely SCADE, Esterel, SyncCharts,
SCCharts, and Ptolemy. Additionally, two mainstream imperative languages, C and
Java, and one functional language, Haskell, were selected.

5.1.1. Future Work

It is noteworthy that seven is not yet a significant survey sample size. However, we plan
to improve and use SCCharts further in upcoming projects and are going to perform
similar surveys which will be compared to the results of this project’s surveys.

5.1.2. Participants

All participants were first or second year master students and had advanced knowledge
of modeling, classical, and synchronous languages. In particular Ptolemy, SyncCharts,
Esterel, and SCCharts as well as C, Java and Haskell were well understood. However,
SCADE was mostly unknown to the audience and hence not listed in this evaluation.

44

5.2. Language Aspects

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Language Preferences

harldy usable

good

ok

perfect

Figure 5.1.: Language preferences

As a general question the team was
asked to specify which language they
deem well suited to build a railway
controller for the model railway instal-
lation. Figure 5.1 depicts the results.

SCCharts were rated better than
the other synchronous languages and
is comparable with C, which is rated
higher than Java and Haskell. Obvi-
ously, C is a natural pick as the railway
API of the third version of the railway
installation is also written in C. Hence,
it is a good sign that SCCharts was
chosen by the students to be compara-
ble with C.

5.2.1. Deterministic Behavior

Figure 5.2 shows the survey results of the question about how easy or hard it is to archive
deterministic behavior with each of the given languages. More specifically, Figure 5.2a
depicts results for the question about the overall capability of each language to gain
deterministic programs. The question is, how much effort do modeler or programmer
need to invest to reach strict determinism in his or her program and are these ways
well understood. Therefore, systems that react as black box or heavily depend on I/O
interaction may compromise the understanding of the semantics and ultimately the
determinism. Figure 5.2b narrows the broader determinism question specifically w.r.t.

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

General determinism

worst

good

bad

excellent

(a) General determinism

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Deterministic concurrency

worst

good

bad

excellent

(b) Deterministic concurrency

Figure 5.2.: Deterministic behavior

45

concurrency parts of the system. The subsequent question here is how much effort is
necessary to avoid race conditions.

Naturally, the results of the answers show that achieving determinism was voted to
be easier implemented using synchronous languages. The reason is that synchronous
programs behave deterministically by design. Especially at avoiding race conditions in
concurrent threads they were rated a lot better than classical imperative languages.
On the one hand, archiving deterministic behavior is the main benefit of synchronous
programs. The rules imposed by the MoCs are easy to comprehend and help the modeler
to create constructive programs. However, on the other hand, as a direct result the set
of valid programs in synchronous languages is more restricted compared to traditional
languages which is the main drawback of synchronous programs. But for safety-critical
systems it is reasonable to vote against an unrestricted set of programs because it is
essential to be able to rely on deterministic behavior.

Note that Figure 5.2a is quite comparable to Figure 5.2b which reveals that achieving
deterministic concurrency is the key enabler for achieving deterministic programs in the
end.

5.2.2. Programming Paradigms

In the question about sequentiality (see Figure 5.3a) the participants were asked to rate
how easy it is in each language to express sequential behavior in a program. Naturally
this is a strength of sequential programming languages. Its also a common drawback for
synchronous programs where programmers often tend to run into causality issues when
trying to express sequential variable value changes within one reaction computation.
To close this gap, one advantage of SCCharts over classical synchronous languages is
the combination of the synchronous MoC with the imperative sequential programming
paradigm to overcome this common drawback.

The results of the survey show that the participants also rated SCCharts en pair

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Sequentiality

worst

good

bad

excellent

(a) Sequentiality

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Separate Timing & Functionality

worst

good

bad

excellent

(b) Separate timing & functionality

Figure 5.3.: Programming paradigms

46

with traditional sequential programming languages and distinctively better than Esterel
and SyncCharts which represent other synchronous languages. It is noteworthy that
at the time of the project Sequentially Constructive Model of Computation (SC MoC)
capabilities such as instantaneous loops in the priority-based compiler and joins for
schizophrenic behavior were not fully implemented in the KIELER SCCharts compiler
and that the rating is above good nevertheless. A more complete implementation of the
proposed SC MoC [vHMA+13] should improve this aspect even more.

As already mentioned in Section 1 real-time embedded systems are often safety-critical.
In such a system it is mandatory that the correct function of a needed task is independent
of the actual timing of the system. It is only necessary to prove that the hardware in
the end can compute a reaction (tick) timely which can be asserted using worst case
reaction time analysis [BTvH08]. As synchronous languages are also designed to separate
timing and functionality, they handle this task naturally well. On the contrary, classical
programming languages often heavily depend on the implementation with respect to
timing and are restricted to specific systems.

This is also reflected in the answers of the students (cf. Figure 5.3b) which also had
to choose for several parts if they want to implement these on the SCCharts or the C
code level.

Overall it is worth to mention that SCCharts is the only language from the set of
given languages that is voted to be well usable for expressing sequentiality and at the
same time still to separate timing and functionality. This combination can be seen as a
main benefit for SCCharts.

5.2.3. Problem Solving

Figure 5.4 shows the results of the question which languages perform better in solving
abstract (Figure 5.4a) and low-level (Figure 5.4b) problems.

In the case of abstract problems SCCharts and Ptolemy were voted to perform best

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving abstract problems

worst

good

bad

excellent

(a) Solving abstract problems

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Solving low-level problems

worst

good

bad

excellent

(b) Solving low-level problems

Figure 5.4.: Problem solving

47

(cf. Figure 5.4a). By design these languages emphasize the modeling aspect of a problem
without the need of the modeler to get deeply involved in technical details. Although
this is also true for other languages, handling this aspect seems to be easier in SCCharts
and Ptolemy.

Contrarily, solving low-level problems was voted to be more difficult in the languages
that performed well with abstract problems (cf. Figure 5.4b). Naturally, classical pro-
gramming languages are better suitable for low-level tasks. Nevertheless, as explained
in Section 2.4.1 SCCharts is capable to handle low-level tasks with the implemented
hostcode and function call methods. As described in Section 3.3 the SCCharts hostcode
system is sophisticated enough to control the model railway installation and should suf-
fice for smaller problems. However, we advise a revision of host code tasks are considered
in SCCharts in order to ease solving low-level problems tightly integrated in SCCharts
for the future.

5.2.4. Language Difficulty

Figure 5.5 depicts the student’s ratings for difficulty to comprehend and work with SC-
Charts models. More specifically Understandability questions how easy it is to read and
understand a program written in a certain language where the program may be written
by the reader itself or by some other person. Simplicity asks how easy it is to learn
a certain language in order to be able to fully utilize its features to build comprehen-
sive programs or models. Understanding models and the simplicity of a language play
crucial rules when working in teams, discussing processes with non-technical staff, and
certification authorities. It is mandatory to keep models comprehensible and the func-
tionality explainable to others. It is also preferable to maintain good understandability
with growing models.

Figure 5.5a shows the results to the question how easy it is to, e. g., get an overview of
large statecharts or projects. Here, SCCharts performs better than classical synchronous

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Understandability

worst

good

bad

excellent

(a) Understandability

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Simplicity

worst

good

bad

excellent

(b) Simplicity

Figure 5.5.: Language difficulty

48

and classical imperative languages. Only Ptolemy got a better rating than SCCharts.
Ptolemy has a very clear and lean graphical syntax which is very intuitive because of
its data-flow nature. Also interfaces are mostly visible in Ptolemy which emphasizes the
communication between model components. It is a quite good indication that SCCharts
was rated comparable to Ptolemy w.r.t. the understandability aspect.
Simplicity again, determines how easy it is, e. g., to learn a language and understand

the semantics of new constructs. Figure 5.5b tells that in this field, SCCharts was
rated better than the other synchronous languages and distinctively better than classical
languages. Even though SCCharts comprises a lot of extended features, each feature is
based on a very small set of core constructs. It follows that its quite easy to first learn
only about these small set of core constructs and then widen the view and subsequently
learn about extended features that build upon each other. Additionally the stepwise
compilation tool chain of the KIELER compiler aids the modeler to reconstruct complex
features and also inspect language features in detail for certain usage of these features
in models. This is even more supported by being able to simulate intermediate models
in order to inspect also their dynamic behavior w.r.t. certain language features.

Understanding the SC MoC is sufficient to work with SCCharts. However, as shown
in Section 3 only a limited subset of the extended features of SCCharts were used by
the team which also may contribute to the simplicity rating. This also shows that it
is possible to limit the set of learned and used features. Hence, the learning curve for
SCCharts can be claimed not to be steep.

5.2.5. Modularity

Figure 5.6a shows the answers for the question of composability. Composability asks if a
sub system implementation in this language that has certain meaning in one context will
keep its meaning in any other contexts (e.g. when referenced). This a major drawback
of Esterel, SyncCharts and also SCCharts compared to other programming languages

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Composability

worst

good

bad

excellent

(a) Composability

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Team development

worst

good

bad

excellent

(b) Team Development

Figure 5.6.: Modularity

49

because it is easier to run into causality problems when composing sub systems. More
specifically a sub system cannot be seen as a black box for these languages because it
may introduce dependencies between its inputs and outputs which in the worst case may
lead to dependency cycles for the overall system. Of course for all languages including
the general purpose languages one needs to take special attention to global signals or
global variables as these often destroy composability.

The answers support these general observations. And because composability is one
key enabler for team development, these results also correlate with each other.

As explained in Section 2.3 we extended SCCharts during the railway project to
incorporate its own module concept. That is, within one SCChart a state can be of type
reference and during SLIC compilation this state is expanded to the referenced SCChart
considering a valid signature mapping. This improvement enables team development
especially for large projects that can now be split into separate parts where parts of the
team can work on different SCCharts and referenced SCCharts at the same time.

Although the ratings of Figure 5.6b testify a good team development capability of
SCCharts, compared to other languages the module concept still seems to lack behind.
A sophisticated browseable library might help the team modeler organizing sub com-
ponents of a large project. Additionally we advise to enhance the interface bindings
which today must be edited manually. A third enhancement could be an instantia-
tion concept instead of static expansion. Also, the bad rating of SyncCharts results in
the incomplete realization of the KIELER SyncCharts implementation which did only
include an experimental reference expansion option in its implementation. However,
the enhanced standard for SyncCharts includes referenced charts that are quite similar
to Esterel’s module concept. Another explanation for the worse rating for SyncCharts
might be that the XMI persistence representation hampers the usage of version control
management. As SCCharts uses the textual description format SCT it overcomes these
difficulties. Ptolemy did also get only bad ratings for team development although it
has a library concept and it allows for a static referencing and instantiation modular-
ization. A main disadvantage of Ptolemy that may have influenced the ratings in this
category may have been a more tooling aspect of browsing limitations for larger team
models. Another disadvantage of Ptolemy is also an XMI persistence representation and
the above described resulting problems with a version control management.

5.2.6. Project Revisions

Figure 5.7a shows the results for the maintainability rating. The maintainability aspect
determines how easy it is to make changes to an existing program. This correlates with
readability but focuses on older programs that have to be maintained for a longer period.
This is a crucial aspect especially for embedded systems which have a quite long life-cycle
of often 10-20 years. Subsequently, software for these systems have to be maintained
also for a long time period.

Overall SCCharts were voted nearly as good as other languages. The direct compari-
son with SyncCharts indicates that is easier to maintain the textual editing language of
SCC̃harts than the graphical syntax of SyncCharts. The comparison with Esterel indi-

50

cates that the graphical visualization of SCC̃harts helps w.r.t. to the readability aspect
in order to get an overview and improve navigation of/in an existing model.

With respect to debugging possibilities the survey showed (Figure 5.7b) that all syn-
chronous languages perform worse than their classical relatives. The participants of
the survey explained the bad rating of SCCharts in the free text answers of the survey
with cyclic dependency and mutual exclusion problems, broken extended features, and
missing overview in large SCCharts if programs were not schedulable.

To address these issues several improvements are planned. Besides new pragmatics
features such as lazy loading of SCCharts references and adaptive zooming depending
on the hierarchy level, backward information propagation of (intermediate) compilation
results should provide the modeler with important information about dependencies on
modeling level.

5.3. SCCharts features

Figure 5.8 shows the importance of specific extended SCCharts features w.r.t. the rail-
way project rated by participants. Figure 5.8a shows essential core SCCharts elements
such as different transitions, triggers and effects. Especially the huge gap between ter-
minations and strong and weak aborts is interesting. Termination transitions belong to
the core SCCharts language and are easy to transform. A join is executed when the
corresponding superstate terminates. Contrary to terminations aborts are extended fea-
tures and need to be transformed using terminations. The generic abort transformation
rules increase the complexity of the statechart. At the time of the project the abort
transformation introduced some errors in conjunction with other features. Therefore,
only a few aborts were used in the final controller when this feature transformation was
fixed.

Figure 5.8b lists additional transition features and actions. The railway team made
intensive use of entry actions because they result in more compact diagrams. The large

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Maintainability

worse

good

bad

excellent

(a) Maintainability

Esterel SyncCharts SCCharts Ptolemy C Java Haskell

Debugging

worst

good

bad

excellent

(b) Debugging

Figure 5.7.: Project revisions

51

amount of hostcode and train combination effects create very large transitions if used in
transition effects. Placing them in entry actions is semantically identical but improves
the readability of the SCChart. Providing the same compactness in transitions might be
a future improvement. History transitions were not used in this project and claimed to be
irrelevant by the participants. The same holds for deferred transitions and suspensions.

Concurrency and declaration features are combined in Figure 5.8c with concurrent
regions rated very important. Hence, local declarations are also used frequently. Natu-
rally, boolean and integer data types scored higher than their relatives because they are
used by the railway API.

Figure 5.8d shows complex state, signal and the new features introduced in Chapter 2.
According to the team complex final states would have been important for convenience
but resulted in bad compile times. However, semantically they were not mandatory.
Here, further improvements are strongly advised.

As already stated in Chapter 2 the two new main features, namely references SCCharts
and arrays, were mandatory and hence naturally were rated very important.

Transition properties

irrelevant

important

not important

very important

(a) Basic core and extended features

Actions

irrelevant

important

not important

very important

(b) History and local action features

Declarations

irrelevant

important

not important

very important

(c) Concurrency, declaration and data types

Miscellaneous

irrelevant

important

not important

very important

(d) Additional extended features

Figure 5.8.: SCCharts feature importance poll

52

5.4. Modeling Aspects

beginning end

SCCharts tools quality

hardly usable

advanced

ok

professional

Figure 5.9.: Tools quality

In the next set of questions in the
survey (Appendix A) the participants
should rate the overall quality of the
SCCharts tool chain in the actual
KIELER implementation.

Figure 5.9 depicts the score of the
modeling tools at the beginning and
in the end of the project. Accord-
ing to the participants the tools were
hardly sufficient to build a sophisti-
cated railway controller at the start of
the project. However, we were able to
improve the performance of the overall
tool chain drastically which resulted in the big improvement in the final rating. This
corresponds to the tight team feedback mentioned in Section 3.4 and problem solving
depicted in Figure 3.10b.

Figure 5.10a illustrates that the participants rated the possibility to create models
positively with smaller models almost professional and larger models average. Neverthe-
less, debugging these models seems to be a bigger challenge. While debugging smaller
models is still possible with the actual tool chain, the figure implies that this is not the
case for larger ones.

One of the main reasons for this were hard to find concurrent dependency cycles but
also extended layer compiler problems. These may still be relatively easy to find and
fixed in small programs. However, without sophisticated tools to help the modeler to
identify these low-level compiler issues on modeling level, finding these errors becomes
educated guess work. This was also confirmed in the free text answers of the survey.

Small models
creation

Large model creation Small model
debugging

Large model
debugging

Model creation

hardly usable

advanced

ok

professional

(a) Model creation & debugging

Code generation Understanding
semantics

User interface Documentation Support

Model processing

advanced

professional

hardly usable

ok

(b) Tooling aspects

Figure 5.10.: Modeling aspects

53

Additionally, as described in Section 4.2 working with large models such as the railway
controller (compare sizes in Section 3.3) introduces a new level of statechart complex-
ity for the KIELER tool chain. Both the transformation rules as well as the transient
visualization and automatic layout mechanisms reached their limits during the project.
Further profiling, evaluation of potentials problems, and improvements of the tool chain
is advised.

Figure 5.10b depicts additional main aspects of the current KIELER tooling w.r.t. SC-
Charts. The code generation, understandability of the semantics, and the user interface
were all rated sufficient for the given task. The results presented in Chapter 3 and Chap-
ter 4 showed that all set goals, especially controlling up to eleven trains concurrently,
are met and furthermore are remotely controllable. However, the documentation part of
the tooling still needs to be improved. Finally, the figure shows the high support rating
which also underlines the remarks of Section 3.4 that the close feedback loop between
the project participants and the supervisors was appreciated and frequently of use.

As the evaluation of the language aspects in Section 5.2.4 showed, understandabil-
ity of SCCharts scored already quite well. However, since overview of a model does
not solely depend of the understandability of the language itself, we believe that we
can also improve the understandability of particular models further through tooling as-
pects. Therefore we plan to implement pragmatics features such as different semantic
zoom levels and lazy loading for referenced SCCharts in the KIELER SCCharts editor1

version 0.11. Further consulting with the pragmatics team of the group is advised.

1http://rtsys.informatik.uni-kiel.de/KIELER

54

http://rtsys.informatik.uni-kiel.de/KIELER

6. Related Work

6.1. Model Railway Installation

The current version of the model railway installation, which was used in the projcet
and described in Section 1.2, was built by Stephan Höhrmann in 2005. The design
and implementation of the power electronics as well as details of the communication
protocols are documented in his diploma thesis [Höh06]. He also briefly describes the
evolution of the model railway installation and the problems with previous generations.

Modeling the interaction of trains on the tracks was previously mostly done using
petri net models. Jürgen Koberstein and Oliver Schmitz designed petri net models for
several parts of the installation [Kob01].

Figure 6.1 shows the petri net model of the Kicking Horse Pass with the turnout track
in the middle part. In combination with several other models for switching points and
straight lanes a complete controller was constructed.

The initial version of the model railway installation featured a slightly different track
layout. In particular it was missing the turnout track in the middle of the Kicking
Horse Pass. This first generation was also modeled with petri net models by Wolfgang
Hielscher et. al. [HURK98]. The model shown in Figure 6.2 controls the original Kicking

STcw Block 4 cwBlock 3cw

STccwBlock 3 ccw Block 4 ccwBlock 1 Block 5 Block 6Block 2

Vcw

Vccw

S1ccw

S1cw S cw2

S ccw2

2

2

2

2

2

2

2

2

6

6

4

2

4

4

4

2

Figure 6.1.: Deadlock-free model of pass lane with turnout track [Kob01]

55

KickingHorsePassStation

KHIC_LN

block_descr

P Gen

KH_ST_20

block_descr

ICKH_LN

block_descr

KH_ST_10

block_descr

KH_LN_1

block_descr

no_train

KH_LN_2

block_descr

no_train

KH_LN_3

block_descr

no_train

KH_LN_4

block_descr

no_train

KH_LN_5

block_descr

no_train

KH_LN_6

block_descr

no_train

Ctr_KH_LN_1

Ctr_KH_LN_2

Ctr_KH_LN_3 Ctr_KH_LN_4

Ctr_KH_LN_5

Ctr_KH_LN_6

Res_KH_ST_10

T

t

Res_KH_ST_20

T

OC

IC

OC

IC

P Gen

P Gen

P Gen

P Gen

Figure 6.2.: Net model of the kicking horse pass track [HURK98]

Horse Pass without the turnout track. The model was developed using Design/CPN1

and was used to generate a working controller for the first hardware generation

6.2. Model Railway Project 2007

In this railway project2 the task given was to control the trains using a distributed
controller that runs on TTP nodes. These TTP nodes where connected to each other using
the synchronous TTP network. Each TTP node was connected to a power electronics
which was responsible for a certain amount of low level peripherals like track segments,
switch points or contacts. This is illustrated in Figure 6.3.

Figure 6.4 gives an overview of the software tool chain. In this project the tar-
get code running on the TTP nodes was also generated. As a high-level specification
and implementation language the visual synchronous data-flow language Safety Critical
Application Development Environment (SCADE) was chosen. For properly getting the
generated C code onto to the TTP nodes, a special additional TTP tool chain was used
(SCADElink). As a Human-Machine-Interface a general purpose LCD display was used.

1http://daimi.au.dk/designCPN/
2http://www.informatik.uni-kiel.de/rtsys/teaching/ss07/p-railway/

56

http://daimi.au.dk/designCPN/
http://www.informatik.uni-kiel.de/rtsys/teaching/ss07/p-railway/

Figure 6.3.: Railway project 2007 hardware schematics [from project website]

Figure 6.4.: Railway project 2007 tool chain [from project website]

Figure 6.5 and Figure 6.6 show some parts of the SCADE model from this project. The
SCADE language allows to combine data-flow and control-flow (statemachines) as can be
seen in these figures where data-flow is defined for each state. The statemachine control-
flow parts of the railway controller in this project turned out to be quite essential to

57

reflect the sophisticated control logic. The data-flow parts mostly where used to collect,
distribute or convert command or sensor data.

Compared to the SCCharts project the project from 2007 also validated that using
a synchronous language is a good choice for modeling and implementing safety-critical
systems. As the tight data-flow integration of SCADE turned out to be quite usable,
SCCharts could also benefit from such a concept. Actually this is already work in
progress and might be available for further SCCharts projects in the near future.

Another point learned from SCADE in this project was about the documentation.
Comments could be attached to the model itself and the documentation could be auto-
generated later. This helped a lot in maintaining consistency between the implementa-
tion and its documentation. At the moment SCCharts does not have such features so
the current railway project didn’t have any tool support for documentation. This may
be a reasonable extension in the future.

Figure 6.5.: Railway project 2007 SCADE model part [from project website]

58

Figure 6.6.: Railway project 2007 SCADE model part [from project website]

The SCADE version that was used 2007 was first an alpha (SCADE 6.0 P3) and later a
beta (SCADE 6.0 Beta1) release. According to former students that participated in this
project the team had to struggle with the tool quality a lot. This was quite comparable
to the SCCharts tool stability mentioned in Section 5.4.

6.3. Model Railway Project 2012

In the 2012 remake of the railway project the task was given to create a railway controller
in SCADE running on a central system that was capable to control all trains over the
power nodes of the railway installation. Therefore, for each railway element, e. g., switch
point or signals, a SCADE node was created that hid the low-level API of the railway
system and was accessible at modeling level.

For example, a node setTrack that sets the mode and the speed of a track was wrapped
as shown in Listing 6.1. The node has four input ports. The first port expects a dataflow
link to the railway system denoted with RS in the listing. The second to fourth ports
must be connected to links that specify track, track mode and speed of the track. As a
remark, all these values must be integer. However, there was also a node that translated
track IDs to track numbers which could be used before the setTrack node. As seen in
the listing the first four parameter of the function correspond to the expected inputs.
The fifth parameter is a pointer to the output structure of this actor node. If this
function gets called, it checks if the railway system got initialized and if true the call

59

gets redirected to the underlying railway api. Since setTrack does not have any additional
output ports, only the address of railway system is copied to the outputs.

Analogously, getTrack (see Listing 6.2)reads out the mode and the speed of a specific
track segment and writes them to the outputs of the node.

Listing 6.1: Wrapper code for setTrack
1 void setTrack_RailIntf(

2 kcg_int RS,

3 kcg_int track,

4 kcg_int mode,

5 kcg_int speed,

6 outC_setTrack_RailIntf *outC)

7 {

8 if (RS) {

9 settrack((struct railway_system*)RS, track, (unsigned)mode, (unsigned)speed);

10 }

11

12 outC->outRS = (int) RS;

13 }

Listing 6.2: Wrapper code for getTrack
1 void getTrack_RailIntf(

2 kcg_int RS,

3 kcg_int track,

4 outC_gettrack_RailIntf *outC)

5 {

6 unsigned int mode = 0;

7 unsigned int speed = 0;

8

9 if (RS) {

10 gettrack((struct railway_system*)RS, track, &mode, &speed);

11 }

12

13 outC->outRS = RS;

14 outC->mode = (int) mode;

15 outC->speed = (int) speed;

16 }

Equipped with tools to model the complete railway installation directly in SCADE, the
participants of the project in 2012 decided to build smaller controller units for different
tasks, namely one Top Level Controller (TLC) and several Second Level Controllers
(SLCs). The TLC manages all trains with their train schedules and communicates planned
train routes with the SLCs. A SLC is responsible for a specific track segments and grants
(or denies) permissions of enter or leave request of the TLC to avoid collisions. The
organization of the controller types and the communication routes between them is
depicted in Figure 6.7.

It is not necessary that there is a SLC for each single track. Hence, several tracks were
combined to a larger logical unit called segment. Each segment is handled by its own
SLC. The different track segments are shown in Figure 6.8. When planing a rout for a
train instead of 48 single tracks only the 12 listed segments must be considered. However,
segments with stations are handled differently because they have parallel tracks. The
controller decides automatically which station track gets assigned.

The project showed that it is essential for a modeling language to allow for decomposi-
tion of the complete complex model into straightforward sub components. Additionally

60

the model developed in the project used a lot of data flow but also combined with con-
trol flow parts. This showed the need for a modeling language that allows to express
both, control and data flow. The project participants heavily made use of the integrated
simulation possibility SCADE comes equipped with. It was a key to success to be able
to excessively validate single components before composing them together. The project
was delayed several times when SCADE was unable to generate code because of forbidden
immediate cycles. More tool support for resolving these cycles in a more or less optimal
way would have been helpful here.

Figure 6.7.: Controller communication from the railway project 2012

Figure 6.8.: Segment scheme from the railway project 2012

61

7. Wrap-Up

The railway project succeeded in developing a controller for the given railway installation
using SCCharts. A co-design of SCCharts and C code together with a concurrent server-
client-based user interface resulted in a safety critical and interactive system. The final
controller is capable of controlling 11 individual trains remotely scheduled by multiple
GUI-clients on different hardware platforms.

Section 4 evaluated the continuous development of KIELER during the railway project.
A detailed compilation experiment showed the process of compilation and explains and
justifies the generated results. The performance evaluation of the compiler showed that
the influences of the railway project caused significant improvements. Many implemen-
tation details which had negative effects on the performance were identified, analyzed
and fixed. In addition to that, some limitations of graphical modeling with large models
could be stated to influence future developments. Furthermore, performance measure-
ments of the final controller also showed the capability to fulfill realtime requirements.

To conclude the survey section, the project and the resulting final controller show that
SCCharts is feasible to create mid-to-large size constructive programs within adequate
creation time and efficient execution performance. In many aspects SCCharts performs
as good or even better than other synchronous languages and is often en pair with
classical programming languages. The participants perceived SCCharts as understand-
able, simplistic and maintainable. However, they underlined the need for better tooling
support for debugging, composability, and team development. Here, debugging becomes
increasingly hard with growing statecharts. The development environment must provide
the modeler with adequate tools to combat this difficulty. Also the performance issues
with respect to large model browsing should be addressed as soon as possible.

62

Bibliography

[And96] Charles André. SyncCharts: A visual representation of reactive behaviors. Tech-
nical Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France, Rev. April
1996.

[Ber00] Gérard Berry. The Esterel v5 Language Primer, Version v5 91. Centre de
Mathématiques Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis,
2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf.

[BTvH08] Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Compilation and
worst-case reaction time analysis for multithreaded Esterel processing. EURASIP
Journal on Embedded Systems, 2008:1–21, 2008.

[Höh06] Stephan Höhrmann. Entwicklung eines modularen Feldbussystems zur Steuerung
einer Modellbahnanlage. Diploma thesis, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, March 2006. http://rtsys.informatik.

uni-kiel.de/~biblio/downloads/theses/sho-dt.pdf.

[HURK98] Wolfgang Hielscher, Lars Urbszat, Claus Reinke, and Werner Kluge. On mod-
elling train traffic in a model train system. In K. Jensen, editor, Daimi PB-532:
Workshop on Practical Use of Coloured Petri Nets and Design/CPN, pages 83–
102. Department of Computer Science, University of Aarhus, Denmark, 1998.

[Kob01] Jochen Koberstein. Realisierung eines geordneten Mehrzugbetriebs auf einer Mod-
ellbahnanlage. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, 2001.

[MSvH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Compiling
sccharts—a case-study on interactive model-based compilation. In Proceedings of
the 6th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2014), volume 8802 of LNCS, pages 443–462,
Corfu, Greece, October 2014.

[MvH14] Christian Motika and Reinhard von Hanxleden. Light-weight Synchronous Java
(SJL) — an approach for programming deterministic reactive systems with java.
Journal of Computing, Special Issue on Software Technologies for Embedded and
Ubiquitous Systems, 97(3):281–307, 2014.

[SSvH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Just model!
– Putting automatic synthesis of node-link-diagrams into practice. In Proceedings
of the IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’13), pages 75–82, San Jose, CA, USA, 15–19 September 2013.

63

ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sho-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sho-dt.pdf

[vHDM+13] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaqúın Aguado, Stephen Mercer, and Owen O’Brien. SC-
Charts: Sequentially Constructive Statecharts for safety-critical applications.
Technical Report 1311, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, December 2013. ISSN 2192-6247.

[vHDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaqúın Aguado, Stephen Mercer, and Owen O’Brien. SC-
Charts: Sequentially Constructive Statecharts for safety-critical applications. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’14), Edinburgh, UK, June 2014. ACM.

[vHFS11] Reinhard von Hanxleden, Hauke Fuhrmann, and Miro Spönemann. KIELER—
The KIEL Integrated Environment for Layout Eclipse Rich Client. In Proceed-
ings of the Design, Automation and Test in Europe University Booth (DATE’11),
Grenoble, France, March 2011.

[vHMA+13] Reinhard von Hanxleden, Michael Mendler, Joaqúın Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, and Owen O’Brien. Sequen-
tially Constructive Concurrency—A conservative extension of the synchronous
model of computation. In Proc. Design, Automation and Test in Europe Confer-
ence (DATE’13), pages 581–586, Grenoble, France, March 2013. IEEE.

64

A. SCCharts Survey

Appendix A contains the survey that was handed out to the participants of the project.
To compare the results while working on the SCCharts compiler and tool chain it is
recommended to also use this survey in upcoming SCCharts projects. The following list
describes the version history of the survey.

Version 1.1s Simplified version, contains only the most important questions.

Version 1.1 Added new features referenced SCCharts and arrays.

Version 1.0 Initial version

65

Christian-Albrechts-Universität zu Kiel

Real-Time and Embedded Systems Group

 SCCHARTS SURVEY FORM

Project Name: __________________________ Size: ________

Project Start/End: ________________________ Date: _____________

Start Time: __________ (current time when starting this survey)

I) About yourself

1) In which semester are you (in your current degree program)?

2) What degree do you pursue? Bachelor Master

3) Which modeling tools have you used before?

4) Which synchroneous/dataflow languages have you used before?

(# of involved

people)

Rev. 1.1s

II) Project involvement

5a) Estimate distribution of work for your part of the project

 # of SCCharts modeled

 # of SCCharts reviewed

of SCCharts documented

of SCCharts tested

of additional

SCCharts-generating scripts written

5b) Of 100% time you spent in the project, you ...

 % modeled with SCCharts

 % written in host language

 % written additional scripts

% elaborated documentation

% did testing

% discussion time

% other:

% other:

6) Estimate your SCCharts skills before this project

professional

know all features
and can argue for or
against them, could

teach others

advanced
know most features,
have some feelings
for/against usage

ok
know main features
and can implement

requested
functionality

greenhorn
know some features
and can read most
models, implement

running (small)
models

7) Estimate your SCCharts skills after this project

professional

know all features
and can argue for or
against them, could

teach others

advanced
know most features,
have some feelings
for/against usage

ok
know main features
and can implement

requested
functionality

greenhorn
know some features
and can read most
models, implement

running (small)
models

8) To what extent you think you could make use of dataflow (DF) for

this project? (If you don't know about DF, you may skip this question)

perfect

everything should
be modeled with

data flow

most parts
mostly dataflow

should be used, only
some parts need

control flow

some parts
mostly control flow

should be used, only
some parts need

data flow

nothing
data flow seems not
the right thing to be

used at all

9) To which extent would you like to use the following

modeling/programming languages for this project?

SCADE

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

 Esterel

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

SyncCharts

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

SCCharts

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

Ptolemy

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

C

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

Java

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

Haskell

perfect use for

everything
good use for most

parts
Ok

use for up to 50% of
the models

things can be hardly
modeled with this

language

don't know
this language

III) Language aspects

10) Grade the following languages regarding the handling of each
aspect. Use ++(excellent), +(good), -(bad), --(worse) as marks. You may skip a grade if
you are uncertain. Comments about your choices are appreciated:

SC
A

D
E

Es
te

re
l

Sy
n

cC
h

ar
ts

SC
C

h
ar

ts

P
to

le
m

y

C

H
as

ke
l

Problem/Aspect Ja
va

General determinism

Achieve deterministic behavior

Deterministic concurrency

Avoid race conditions

Sequentiality

Express sequential parts

Composability

Compose sub-solutions to an overall solution

Solving abstract problems

Solving low-level problems

Understandability
Overview of large projects

Simplicity
Learning curve

Separate Timing &
Functionality

11) Grade the following language regarding the overall suitability for
your project. Use ++(excellent), +(good), -(bad), --(worse) as marks. You may skip a
grade if you are uncertain. Comments about your choices are
appreciated:

SC
A

D
E

Es
te

re
l

Sy
n

cC
h

ar
ts

SC
C

h
ar

ts

P
to

le
m

y

C

H
as

ke
l

Problem/Aspect Ja
va

Maintainability
Later changing programs

Debugging

Ability to debug errors

Team development

 Divisibility of a large project in sub parts

Version control support

Merge & Diff

12) Your opinion: Rate the following features of SCCharts w.r.t. their
significance for the project:
(use the grading scheme from 9: ++(very important), +(important), -(not important),-- (irrelevant)
or blank)

SCCharts Feature Grade

Transition priority

Delayed transition
Immediate transition

Complex transition trigger (e.g., (A & B) | (C & D))

Complex transition effect (e.g., A = B&C; D = E)

Termination transition & Final States
Strong abort transition

Weak abort transition

Deep History transition

Shallow History transition
Deferred transition

Suspension

Entry action

During action
Exit action

State label

Region label

Concurrent region
Local declaration (scopes)

Initialization

Bool data type

Int data type

Float data type

String data type

Host data type

Count delay

Complex final state (e.g., with outgoing transitions)
Conditional termination

Connector

Signal

Pre-Operator
Referenced SCCharts

Arrays

13) What were the most challenging functionalities to be
implemented in the Project? Why?

14) Which extended features did you miss? Describe the features and

explain why.

IV) Tooling aspects

15) Your opinion about the overall quality of the SCCharts

development tools you worked with, compared to other

modeling/programming environments:

At the beginning of the project:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

At the end of the project:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

16) For specific use cases, rate the quality of the SCCharts

development tools you worked with, compared to other

modeling/programming environments (at the end of the project), write

down possible enhancements:

Creation/modeling of small models:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Creation/modeling of large models:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Debugging of small models:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Debugging of large models:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Code generation:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Understanding the language semantics:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

User Interface:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Documentation:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

Support:

Professional as

other mature open
source/commercial

products

Advanced as other
smaller commercial

or open source
products

Ok
As beta versions of

commercial
software or
Freeware

Hardly usable like
alpha versions or
private/obsolete

projects

Enhancements:

__

17) Were any timing-related problems relevant?

 Yes, execution time calculation for whole program
 Was an execution time analysis for the whole program (several ticks) needed? (WCET)

Describe your solution and/or how the tooling could have helped:

 Yes, execution time calculation for one tick
 Was an execution time analysis for the one tick needed? (WCRT)

Describe your solution and/or how the tooling could have helped:

Yes, synchronization between ticks
Synchronizing concurrent threads at specific tick boundaries, e.g., “Is thread x at tick c in state s?” or “Who does what in

which tick?”

Describe your solution and/or how the tooling could have helped:

Yes, namely: ______________________________________

Describe your solution and/or how the tooling could have helped:

No

18) Would the automatic display of (partial) execution time

information, e.g., for regions, in the graphical diagram have been

helpful?

Yes

No

19) Do you have any other remarks about the SCCharts tools/compiler

you would like to share?

Pro:

__

__

__

__

__

__

__

__

Contra:

__

__

__

__

__

__

__

__

20) End Time: __________ (current time when finishing this survey)

Thank you!

79

B. Raw Controller Model Analysis Results

T
ra

n
sf

or
m

at
io

n
ID

S
ta

te
s

T
ra

n
si

ti
on

s
R

eg
io

n
s

V
ar

ia
b
le

s
N

o
d
es

C
on

tr
ol

-fl
ow

T
h
re

ad
s

S
ou

rc
eF

il
es

16
28

22
19

71
3

10
06

0
0

0
R

E
F

E
R

E
N

C
E

24
41

4
27

62
3

15
19

7
12

38
0

0
0

M
A

P
24

41
4

27
62

3
15

19
7

12
38

0
0

0
F

O
R

24
41

4
27

62
3

15
19

7
12

38
0

0
0

C
O

U
N

T
D

E
L

A
Y

24
41

4
27

62
3

15
19

7
12

38
0

0
0

W
E

A
K

S
U

S
P

E
N

D
24

41
4

27
62

3
15

19
7

12
38

0
0

0
S
U

S
P

E
N

D
24

41
4

27
62

3
15

19
7

12
38

0
0

0
D

E
F

E
R

R
E

D
24

41
4

27
62

3
15

19
7

12
38

0
0

0
S
IG

N
A

L
24

41
4

27
62

3
15

19
7

12
38

0
0

0
D

U
R

IN
G

24
41

4
27

62
3

15
19

7
12

38
0

0
0

C
O

M
P

L
E

X
F

IN
A

L
S
T

A
T

E
24

42
6

27
63

1
15

20
1

12
50

0
0

0
A

B
O

R
T

A
L
T

E
R

N
A

T
IV

E
24

62
7

28
41

8
15

26
3

13
38

0
0

0
E

X
IT

24
62

7
28

41
8

15
26

3
13

38
0

0
0

H
IS

T
O

R
Y

24
62

7
28

41
8

15
26

3
13

38
0

0
0

S
T

A
T

IC
24

62
7

28
41

8
15

26
3

13
38

0
0

0
C

O
N

S
T

24
62

7
28

41
8

15
26

3
12

93
0

0
0

P
R

E
24

62
7

28
41

8
15

26
3

12
93

0
0

0
IN

IT
IA

L
IZ

A
T

IO
N

24
62

7
28

41
8

15
26

3
12

93
0

0
0

E
N

T
R

Y
99

99
4

10
67

64
16

64
4

12
93

0
0

0
C

O
N

N
E

C
T

O
R

99
99

4
10

67
64

16
64

4
12

93
0

0
0

T
R

IG
G

E
R

E
F

F
E

C
T

11
89

66
12

57
36

16
64

4
12

93
0

0
0

S
U

R
F
A

C
E

D
E

P
T

H
13

45
24

15
19

08
16

64
4

12
93

0
0

0
S
C

G
0

0
0

12
93

12
65

11
14

88
42

33
95

S
C

G
D

E
P

0
0

0
12

93
12

65
11

14
88

42
33

95
S
C

G
B

B
0

0
0

88
93

8
12

65
11

14
88

42
33

95
S
C

G
S
C

H
E

D
S
IM

P
L

E
0

0
0

88
93

8
12

65
11

14
88

42
33

95
S
C

G
S
E

Q
S
IM

P
L

E
0

0
0

93
87

5
17

98
09

21
15

21
1

80

	Introduction
	Safety-Critical Systems
	The Model Railway
	SCCharts
	SCCharts Railway Controller
	Contributions
	Outline

	SCCharts Extensions
	KIELER Compiler
	New SCCharts Features

	Declarations
	Constants
	Arrays
	Extern

	Referenced SCCharts
	Implementation Details

	Hostcode
	Function Calls

	The Railway Project
	The Model Railway Installation
	Railway Hardware
	Programming Interface

	The Overall Approach
	Station-2-Station Controllers
	Train Controller
	Mutual Exclusion Controllers
	Complete Railway Controller

	Controller Implementation
	Components
	TCP Communication
	GUIs

	Project Workflow

	Validation and Experimental Results
	Source-Code Size
	Compilation
	SCCharts Compilation

	Compiler Performance
	Remarks on Compiler Performance

	Tick Function Performance

	Survey Results
	Survey Setup
	Future Work
	Participants

	Language Aspects
	Deterministic Behavior
	Programming Paradigms
	Problem Solving
	Language Difficulty
	Modularity
	Project Revisions

	SCCharts features
	Modeling Aspects

	Related Work
	Model Railway Installation
	Model Railway Project 2007
	Model Railway Project 2012

	Wrap-Up
	Bibliography
	SCCharts Survey
	Raw Controller Model Analysis Results

