
INSTITUT FÜR INFORMATIK

A Sequentially Constructive
Circuit Semantics for Esterel

Alexander Schulz-Rosengarten, Steven Smyth,
Reinhard von Hanxleden, Michael Mendler

Bericht Nr. 1801
February 2018

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Department of Computer Science
Kiel University

Olshausenstr. 40
24098 Kiel, Germany

A Sequentially Constructive
Circuit Semantics for Esterel

Alexander Schulz-Rosengarten, Steven Smyth,
Reinhard von Hanxleden, Michael Mendler

Report No. 1801
February 2018

ISSN 2192-6247

E-mail: {als,ssm,rvh}@informatik.uni-kiel.de
michael.mendler@uni-bamberg.de

Abstract

Static Single Assignment (SSA) is an established concept that facilitates various program
optimizations. However, it is typically restricted to sequential programming. We present
an approach that extends SSA for concurrent, reactive programming, specifically for the
synchronous language Esterel. This extended SSA transformation expands the class of
programs that can be compiled by existing Esterel compilers without causality problems.
It also offers a new, efficient solution for the well-studied signal reincarnation problem.
Finally, our approach rules out speculation/backtracking, unlike the recently proposed
sequentially constructive model of computation.

Keywords: Static single assignment, concurrency, reactive systems, determinacy, syn-
chronous programming, sequential constructiveness, Esterel

i

Contents

1 Introduction 1

2 The Sequentially Constructive Circuit (SCC) Semantics 5
2.1 Brief Review of Esterel . 5
2.2 Constructive Coherence Laws (CCLs) and SC-Visibility 6
2.3 The ST Example . 9
2.4 The SCC Circuit Rules . 10

3 The SCC2BC Transformation 16
3.1 Control Flow Representation . 18
3.2 Extending SSA to SCSSA . 19
3.3 SCC2BC at the Esterel level . 22
3.4 Schizophrenia . 23
3.5 Implementation and Validation . 24

4 Formal Semantics and Conservativeness 27
4.1 Proofs for Conservativeness . 33

5 SCC vs. the SC MoC 41

6 Related Work 44

7 Conclusion and Future Work 47

Bibliography 49

ii

1 Introduction

A classic challenge in programming reactive systems is to reconcile concurrency with
determinate behavior. Synchronous programming languages [3], such as Esterel [30],
achieve this with a semantics that abstracts from execution time. The execution of a
program is divided into (logical) ticks, or instants/reactions. In each tick, (sensor) inputs
are read from an environment and (actuator) outputs are written to the environment.
The synchrony hypothesis states that for each tick, outputs are synchronous with inputs.
This is traditionally reflected in the requirement that shared variable values are unique
throughout a tick. This is a natural requirement for hardware design, where each wire
must assume a unique value for each clock tick. However, this seems unduly restrictive
from the perspective of imperative programming, where it is quite natural to read a vari-
able and subsequently write a different value to it. The idea of this report is to provide
this imperative programming convenience, without leaving Esterel’s solid grounding in
constructive logic.

To illustrate, consider the WriteAfterRead Java code fragment in Lst. 1.1. If the flag
done is false, some code (replaced by ellipsis) is performed and subsequently done is set
to true. This programming pattern is quite common for example in programmable logic
controller code for embedded devices. We call this a sequential update of done, since there
is a read of done followed sequentially by a write of done. This might lead to a situation
where done is both false and true within a reaction, but in imperative programming this
is still a perfectly legal programming pattern. There is no possible non-determinacy,
as there is not even any concurrency that might lead to a race condition. In contrast,
the “morally equivalent” Esterel code fragment in Lst. 1.2 is not accepted by an Esterel
compiler, since done might be absent and present within the same tick. This is forbidden
because of the aforementioned requirement of unique values throughout a tick. From
the hardware/circuit point of view, where done would be represented by a single wire

1 boolean done;
2 ...
3 if (! done) {
4 ...
5 done = true;
6 }

Listing 1.1: WriteAfterRead
code fragment in Java, a
sequential update

1 signal done;
2 ...
3 present (done) else
4 ...
5 emit done;
6 end

Listing 1.2: WriteAfterRead
in Esterel, not accepted by
Esterel compilers

1 signal done0, done1;
2 ...
3 present (done0) else
4 ...
5 emit done1;
6 end

Listing 1.3: WriteAfterRead
in Esterel, after SSA
transformation, accepted
by Esterel compilers

1

1 module SignalReinc:
2 output O;
3 loop
4 signal S in
5 present S then
6 emit O end;
7 pause;
8 emit S
9 end

10 end

Listing 1.4: Sig-
nalReinc, with the
S scope left and
reentered (from [37]).

1 module SignalReincTdS:
2 output O;
3 loop
4 signal S in
5 present S then
6 emit O end;
7 gotopause P1;
8 emit S
9 end

10 signal S in
11 present S then
12 emit O end;
13 P1: pause;
14 emit S
15 end
16 end

Listing 1.5: SignalReinc with
cured schizophrenia using the
approach of Tardieu and de Si-
mone [37].

1 module SignalReincSSA:
2 output O;
3 loop
4 signal S0, S1 in
5 present S0 then
6 emit O end;
7 pause;
8 emit S1
9 end

10 end

Listing 1.6: SignalReinc
with cured schizophrenia,
in SSA form, after apply-
ing SCC2BC.

with “low” encoding signal absence and “high” encoding signal presence, having done
both absent and present within a tick would indeed be problematic. However, this can
be resolved by splitting done into multiple versions done0 and done1. Lst. 1.3 shows a
variant of Lst. 1.2, where done0 represents the value of done at the point of testing the
conditional in line 3, and done1 is a new version of done that holds the value of done
after the emission in line 5 for downstream readers. This makes the program acceptable
for Esterel, also from the hardware view, as the possible value clash is resolved by having
separate wires for the different values.

Splitting variables into different versions is just what the Static Single Assignment
(SSA) form provides [13]. In sequential, non-reactive programming, SSA is a well-
established compilation concept to facilitate various program optimizations, such as
code motion, partial redundancy elimination, or constant propagation.

As another motivation for using SSA in Esterel, consider the Esterel program Signal-
Reinc in Lst. 1.4. The pause instruction in line 7 separates reactions (logical ticks). From
the second tick onwards, the signal S will be emitted in line 8, thus it will be present.
However, when instantaneously looping around to the presence test of S in line 5, S will
be considered absent, because a fresh signal scope for S has been just entered in line
4. In contrast to the WriteAfterRead example from Lst. 1.2, SignalReinc is a legal Esterel
program, and Esterel compilers have to accept it. However, from the hardware view,
this is again problematic, as we cannot dynamically create new wires in hardware the
way we can re-use memory locations in software. Furthermore, a common, efficient ap-
proach to compile Esterel into software uses a data-flow style approach that again relies
on the assumption of having a unique signal status for each reaction [30]. As it turns

2

out, this signal reincarnation issue illustrated in SignalReinc is an instance of the well-
studied schizophrenia problem for Esterel compilation [35, 5, 37, 39]. The most efficient
technique developed so far, proposed by Tardieu and de Simone [37], is to duplicate loop
bodies into a surface and depth copies, and to replace pause instructions in the surface
copy into gotopause statements that transfer control to the depth copy. Transforming
SignalReinc this way results in SignalReincTdS shown in Lst. 1.5. This resolves statement
reincarnation by separating the multiple signal instances into statically disjoint signal
scopes. Again there are multiple copies of S, one corresponding to the scope opened in
line 4, the other corresponding to a scope opened in line 10. In this particular example,
the transformation result SignalReincTdS could be optimized by eliminating unreachable
code. Still, this approach has potentially quadratic code size increase, and it requires a
new gotopause instruction that is not part of standard Esterel. However, it turns out
that in the signal reincarnation problem, there is no need to duplicate whole program
parts, it is enough to duplicate just the signal instances. This is again exactly what
SSA does. Applying SSA to SignalReinc results in the SignalReincSSA version shown in
Lst. 1.6, which is more compact than SignalReincTdS and makes do without a gotopause
instruction.

In light of these examples, it may seem surprising that SSA is not provided by existing
Esterel compilers. So far, it is still left to the programmer to manually write SSA-style
Esterel programs to emulate, for example, the sequential update of WriteAfterRead. Or,
perhaps even worse, programmers resort to inserting additional pause instructions to
split variable versions into different ticks, which quickly leads to delicate timing issues.
However, applying SSA to Esterel is less trivial than the purely sequential examples
discussed so far suggest. One challenge is the proper handling of concurrency, another
difficulty is the division of the computation into different ticks and the implicit signal
initialization.

The SSA transformation should also have a formal grounding. Esterel offers a choice
of different, equivalent semantics [5]; we here choose the so-called circuit semantics
as a reference, as it is conceptually relatively straightforward. The “circuit” part in
the name can be somewhat misleading in that this semantics is not necessarily about
hardware synthesis, but more about the usage of constructive logic. Very briefly, ternary
constructive logic differs from standard Boolean logic in that variables/wires may not
only be 0 (low) or 1 (high) but also ⊥, and there is no “law of excluded middle.” Thus,
under constructive logic the equation S = S ∨ ¬S yields S = ⊥, not S = 1. This
nicely corresponds to the fact that a circuit for S = S ∨ ¬S is (perhaps surprisingly)
not guaranteed to stabilize at S = 1 but, for some gate and wire delays, may oscillate
forever. Constructive logic can be used to reason about hardware circuitry, but it is
primarily a mathematical formalism that is agnostic to a particular implementation
target. Nevertheless, conceptually reducing an Esterel program to a well-behaved netlist
has the advantage that such a netlist can be rather trivially be mapped to data-flow
style software, which implements the Esterel semantics by simulating the corresponding
netlist. Another nice aspect of the circuit semantics is that it is grounded in physics: an
Esterel program is considered valid if and only if it directly corresponds to a well-behaved
circuit. “Well behaved” here means that for all ticks, for all possible input sequences,

3

all wires stabilize to uniquely defined values after finite time. (This requirement may
be relaxed to requiring that just the output wires have a unique stabilization, but we
here employ the stricter requirement that all wires must stabilize.) In this report, we
will refer to the circuit semantics proposed by Berry [5] as Berry Circuit Semantics
(BCC). Similarly, we will say that an Esterel program is Berry Constructive (BC) if it
is constructive in the sense of BCC and thus should be accepted by an Esterel compiler.

Contributions/Outline. We augment classic, sequential SSA with concurrency and logi-
cal ticks, and practically explore this in the context of Esterel:

• We propose a new, broader semantic foundation for Esterel, called SCC (SC Circuits),
which is still grounded in constructive logic, and which is practically implementable
with a purely structural translation of the program (Sec. 2). SCC conservatively
extends the Berry circuit semantics (BCC) with sequential updates of variables. Again,
the reference to “circuits” does not mean that SCC is applicable solely for hardware
synthesis, it applies just as well to Esterel program synthesized into software, in which
case the circuit netlists merely serve as “low level specifications” for the tick function
to be generated.

• We present a source-to-source transformation, SCC2BC, that transforms an SCC Es-
terel program p into an equivalent Berry constructive (BC) Esterel program pB, by a
new variant of SSA, SCSSA, that handles concurrency and tick boundaries (Sec. 3).
Then pB can be compiled with existing Esterel compilation technology, such as the
causality analysis of the Esterel v5 compiler [36]. As illustrated with SignalReinc,
the SCC2BC also constitutes a novel source-level transformation approach towards
handling signal reincarnation that compares favorably with previous work [5, 37]
(Sec. 3.4). We have implemented the SCC2BC transformation in the KIELER frame-
work1 (Sec. 3.5).

• We provide a formal argument that SCC is conservative with respect to BCC just as
SCEst is conservative with respect to Esterel: if some Esterel program p corresponds
to a constructive BCC circuit (“p is BC”), p also corresponds to a constructive SCC
circuit (“p is SCC”), with the same input/output behavior (Sec. 4).

• We compare SCC with the recently proposed sequentially constructive (SC) model
of computation [18] and argue that Esterel programs that are SCC are also sequen-
tially constructive, but not the other way around (Sec. 5). More specifically, SCC
programs are SC programs that are not “speculative.” SCC presents a way to prac-
tically implement an interesting class of SC programs, including programs with cyclic
signal dependencies that could not be compiled with the SC compilation approaches
proposed so far [17].

We discuss related work in Sec. 6 and conclude in Sec. 7.

1http://rtsys.informatik.uni-kiel.de/kieler

4

http://rtsys.informatik.uni-kiel.de/kieler

2 The Sequentially Constructive Circuit
(SCC) Semantics

We now provide a brief summary of the Esterel language as far as is required for this
report. Readers familiar with the language may advance to Sec. 2.2, which details how
the SCC semantics builds on the notion of SC-visibility and a refinement of the original
coherence law underlying Esterel.

2.1 Brief Review of Esterel

Esterel has been originally developed to program embedded systems such as robots.
Since then it has evolved into a language for arbitrary reactive system software and for
hardware design. As it allows the target-independent, abstract specification of system
behavior, it also has been employed for hardware-software codesign [2]. Esterel is an
imperative, control-oriented synchronous language, which provides determinate concur-
rency and various forms of preemption. It has evolved through several versions, the most
widely propagated being “v5.” The versions up to v5 typically are used in combination
with a host language such as C, for example to define non-primitive types or low-level
interactions with the environment. The more recent Esterel “v7” provides a richer type
system and other extensions such as multi-clocking.

The most interesting part of Esterel, namely the way it provides determinate reac-
tive control flow, can be reduced to the Esterel kernel language. Like most semantical
treatments of Esterel, we thus concentrate the presentation of our work on that kernel
language, as the extension to full Esterel is straightforward (our implementation of the
SCC2BC transformation presented later is not restricted to the kernel language). The
kernel language includes only pure signals, which are characterized solely through the
already mentioned presence status: per default, a signal is absent, unless it is emitted
in the current tick, in which case it is present. Full Esterel v5 also includes variables,
which—unlike signals—cannot be accessed concurrently, and valued signals, which not
only carry a presence status but also a value of some (primitive) type.

The kernel language contains a small set of kernel statements, which are summarized
in Table 2.1. All kernel statements are instantaneous, meaning that they do not consume
time, except for the pause statement, which effectively separates one tick from the next.

Like with most synchronous languages, Esterel programs are static in that there are
no function calls, only a static module expansion mechanism, and there is no dynamic
memory allocation. This is one reason why Esterel can be compiled not only into software
but also into hardware. This restriction is the basis for being able to decide interesting

5

nothing Terminates immediately.

pause Pauses execution of the current thread until the next tick.

p ; q Execute p; when p terminates, instantaneously start q

p ‖ q Run “threads” p and q in parallel. The parallel terminates instantaneously
when both threads have terminated.

loop p end Restart p as soon as it terminates. Loops are not allowed to be instan-
taneous, that is, each path through p must contain at least one pause
statement.

signal S in p end Declares a local signal S.

emit S Make signal S present in the current tick.

present S then p else q end If signal S is present in the current tick, immediately run p, otherwise run
q. Both branches are optional.

suspend p when S Suspends the execution of p when signal S is present. However, this is
not immediate, but only applies from the next tick after suspend has been
entered.

trap T in p end Declares a trap scope with label T .

exit T Exit the trap scope labeled with T . Concurrent threads are weakly aborted,
meaning that they can still execute until they terminate or reach a pause
statement. If multiple nested traps are exited concurrently in the same
tick, the outermost trap scope takes precedence.

Table 2.1: Overview of Esterel kernel statements. p, q are program fragments, S is a
pure signal, T is a trap label.

questions at compile time, such as whether there may be conflicting accesses to shared
variables. If this is the case, an Esterel program is “not causal” and the compiler rejects
it. As explained before, one aim of the work presented here is to enlarge the class of
programs that are considered “causal” and can be compiled into determinate code or
hardware.

2.2 Constructive Coherence Laws (CCLs) and SC-Visibility

BCC is based on Berry’s constructive coherence law (BCCL), which states that a signal
is present (absent) in a tick if it must (cannot) be emitted in that tick.
Consequently, if a signal is both emitted and tested in a tick, the emit (at least the
first one) has to be scheduled before the presence test, because otherwise the presence
test would consider a signal absent even though it will become present in the current
tick. We call this scheduling requirement the emit-before-test rule. Berry’s constructive
coherence law does not mention control flow and the ordering of program statements.
Thus, concerning signals, there is no concept of order. The key idea behind SCC is to
introduce sequentiality here. We exploit the sequential control flow in the source program
to disambiguate multiple writes to a signal. In a program like present X else emit F end;
emit X; present X then emit T end the write (emit X) is strictly after the first read (present X)
and strictly before the second read. As all signals are initialised to be absent, the program
emits both F and T, the former because X is initially absent and the latter because X is

6

P

Q

R1GO
E

R2 Done

E'
(a) BC Circuit (BCC)

P

Q

R1GO

Es E's

R2 Done

E'c

Ec

(b) SC Circuit (SCC)

Figure 2.1: Control and signal wiring overview for P ; (Q‖(R1;R2)).

later emitted. There is no read/write race condition because the signal tests and the emit
are strictly ordered by the control flow. In Berry’s semantics of Esterel, the sequential
operator “ ;” does not work in this imperative way. In Esterel, the semicolon corresponds
to a parallel composition, in our example corresponding to present X else emit F end || emit
X || present X then emit T end, with the extra restriction that the behaviour remains the
same if the statements are evaluated from left to right. Evidently, this is not the case
for this example. In the parallel version, the first present test present X else emit F end
will see the emission of X and thus skip the emission of F. In the BCC translation this is
detected by a causal cycle between statement activation, which follows the (left-to-right)
order of “ ;”, and the data dependence from the emission emit X (right-to-left) across the
parallel || to the first read present X. Thus, in BCC, all signal emissions are visible to
all signal readers, and this code fragment will not be considered BC.

Fig. 2.1a presents an abstracted wiring in Berry’s BCC circuit for a sequential-parallel
program structure of the form P ; (Q‖(R1;R2)). The sequential control flow is explicitly
represented through the GO activation signals directed horizontally from left to right.
For signals, however, this control flow is ignored. All signal emissions, drawn vertically,
are collected in a global output environment E’, which is a bus of all visible signals that is
fed back and combined with the global input environment E. Thus all emitters combine
in a global OR, irrespective of the control flow relationship between the components
emitting them. A present test in P therefore needs to wait for stabilisation of any
downstream emitter in, e. g., R2. But since the downstream emitter depends on the GO
to reach it from P , we may have a causality loop.

The key idea behind SCC is to exploit sequentiality for breaking the loop. For (ob-
servation) points p1, p2, which conceptually correspond to circuit gates/registers (see
Sec. 4), we say that p1 is SC-visible for p2 iff p1 is concurrent to or sequentially before
p2. Based on SC-visibility, we propose to refine BCCL to the sequentially constructive
coherence law (SCCL): A signal is present (absent) in a tick at point p2 iff it
must (cannot) be emitted in that tick at a point p1 that is SC-visible for p2.
Thus the difference between SCCL and BCCL is that SCCL does not consider emitters

7

1 module PingPong:
2 output Ping, Pong, Done;
3 [
4 emit Ping;
5 present Pong then
6 emit Done end
7 ||
8 present Ping then
9 emit Pong end

10]

Listing 2.1: PingPong
motivates separate se-
quential and concurrent
environments.

1 module ST:
2 output S, T;
3 [
4 present S then
5 emit S end
6 ||
7 present T else
8 emit S end
9];

10 present S then emit T end

Listing 2.2: ST, which is
SCC but not BC, illus-
trates sequential and par-
allel signal visibility.

1 module ST B:
2 output S, T;
3 signal S0, S1 in
4 [
5 present S1 then emit S0 end
6 ||
7 emit S1
8];
9 present S0 or S1 then

10 emit S end;
11 present S then emit T end

Listing 2.3: ST B, which is
SCC and also BC, results
from applying the SCC2BC
transformation to ST.

that are sequentially later.
As illustrated in Fig. 2.1b, we split the signal interface of each component into se-

quential and concurrent inputs and outputs (Es, Ec, E′s, E′c). We use Es, E′s to propagate
signal emissions sequentially downstream and Ec, E′c to wire up concurrent regions lo-
cally, preserving their sequential control flow relationships. Then, as seen in Fig. 2.1b,
the upstream process P no longer depends on any emission from downstream statements.
Any local node like R1 sees signals from two “directions:” Emission upstream from it,
in this case the sequential output of P , and concurrent to it, in this case Q and any
concurrent environment Ec of the composite program.

SC-visibility is not necessarily static. E′s must be blocked according to actual control
flow to avoid unstable loops in case of static control flow cycles. The propagation of the
sequential environment must be guarded by actual control flow at run time, as discussed
further in Sec. 2.4.

Note that the separation between E′c and E′s allows to receive the effect of an emit even
if sequentially succeeding components have not yet a stable E′s output, as illustrated in
Fig. 2.1b. Thus E′c is never blocked by inactive control flow, in contrast to E′s. PingPong
(Lst. 2.1) requires this separation. After the emit of Ping, it must reach the other thread
to allow the evaluation at the condition. However this thread cannot yet terminate since
its execution depends on the emission of Pong. Hence E′s cannot pass the emitted Ping to
the second thread, but E′c can. Note that in PingPong there is a mutual dependence of the
concurrent threads, which would, e. g., make modular compilation difficult. However, it
is still acyclic at the signal level, and thus would be accepted also by a standard BC
Esterel compiler.

8

1

GO k0
nothing

GO

S

k0
emit S

GO

S

S

k0

present S then emit S end

GO

S

k0
emit S

GO k0
nothing

GO

T

S

k0

present T else emit S end

GO

T

S

S

S

k0

present S then emit S end || present T else emit S end

GO k0
nothing

GO

T

k0
emit T

GO

S

T

k0

present S then emit T end

GO

T

S

S

S

T

k0

[present S then emit S end || present T else emit S end]; present S then emit T end

T

S

Done

G1

G2

G3 G4

G5

G6

G7 G8

G9

G10

G11

G12
1 1

1

⊥

⊥

⊥

⊥

⊥

⊥⊥

⊥

⊥

⊥
⊥

⊥

⊥

⊥ ⊥

⊥

⊥

⊥

⊥
⊥

⊥

⊥

⊥

(a) BCC. The global environment E, with signals S and T, is explicitly routed around.

1 GO

Ec'[S1]

Es'[S1]

k0

emit S1

GO k0
nothing

GO

Ec'[S0]

Es'[S0]

k0

emit S0

GO

Ec[S1]

Ec'[S0]

Es'[S0]

k0

present S1 then emit S0 end

GO

Ec'[S0orS1]

Es'[S0orS1]

k0

present S1 then emit S0 end || emit S1

GO k0
nothing

GO

Ec'[T]

k0
emit T

GO

Es[S0orS1]

Ec'[T]

k0

present S0 or S1 then emit T end

GO

Ec'[S0orS1]

Ec'[T]

k0

[present S1 then emit S0 end || emit S1]; present S0 or S1 then emit T end

S

T

Done

G1

G2

G3 G4

G5

G6

G7 G8

G13

G14

1 1
1
1

1

1 1

0

1
1

1

1

1

1

1

1

1
1

0

1

1

(b) SCC. Register/gates G1–G8 correspond to BCC. G9–G12 have been removed, G13–G14
were added.

Figure 2.2: Alternative circuit translations for ST with constructively allocated wires.
Wires that are not used in the circuit, such as SUS for suspension, are omitted. Likewise
gates with constant inputs are omitted or replaced by wires.

2.3 The ST Example

ST (Lst. 2.2) will serve as running example for the remainder of this report. S is
(re-)emitted if S is present (line 4) in parallel to an emission of S if T is absent (line
6). Then T is emitted if S is present (line 8). This example illustrates concurrent and
sequential communication in a program similar to Fig. 2.1. The reason is the global en-
vironment which has a feedback from E′ to E. The corresponding BCC circuit, depicted
in Fig. 2.2a, is not constructive. Since the test of T depends on the sequentially following
emission, there is a static cycle through gates G6, G9/G10, G11, G5 (as well as another
cycle involving S). None of the gates involved in the cycle has a stable input outside of
the cycle that would provide a defined result under constructive (non-strict) evaluation.
Thus the connecting wires remain at ⊥, and the status of T remains undefined. This in
turn forbids to conclude a status for S. Thus ST is not BC and rejected by Esterel.

9

However, with the SCC semantics the causality loop due to T is eliminated, because
the emission of T is not SC-visible to the upstream presence test of T. As illustrated in
Fig. 2.2b, the test of T (G9–G11) can be fully eliminated since there are no more visible
emitters of T. The SCC circuit is considered constructive and yields the output S and
T present. Thus ST is SCC, and hence SC. This corresponds to the fact that there exist
SC-admissible runs (see Sec. 5) for ST (line 6, then line 4, then line 8) which all lead to
the same result.

Even though ST is only SCC and not BC, we can translate the SCC circuit for ST
back into an Esterel program that is BC. Such a program is ST B in Lst. 2.3. The BCC
circuit for ST B corresponds to the SCC circuit for ST. Even better, we can transform
SCC programs directly into their BC equivalent, without going down to circuits, by the
SCC2BC transformation presented in Sec. 3.

2.4 The SCC Circuit Rules

The circuit semantics of Esterel is defined by its translation rules and the property
of a constructive circuit. The rules cover the Esterel kernel language and structurally
translate a program. In the same manner we propose translation rules for the SCC
semantics based on these BCC rules. Concerning the wiring of the control flow, the
rules are identical to the Berry rules [5]. The main difference is in the handling of the
environment containing the signal wires.

Fig. 2.3 and 2.4 present the general SCC construction rules for all Esterel kernel
statements. Environments are signal buses represented by bold lines. Single signal wires
can be added or extracted from these buses, illustrated by vertical bars. Gates connected
to a bus denote multiple gates, one for each wire in the bus. All unconnected inputs of
any component are implicitly fed by 0.

We assume that the input programs fulfill the same structural requirements as in
BCC [5]. Specifically, we assume that loops are not instantaneous and that there is no
statement reincarnation.

Since SCC differs from BCC only with respect to the environments, the remaining
control logic concerning the input pins for activation (GO), resumption (RES), suspension
(SUS), preemption (KILL) and the outputs for register selection (SEL) and completion
codes k0 (termination), k1 (pausing), k2 (innermost trap), k3, . . . (further traps) is exactly
the same in SCC and BCC.

The following descriptions of the SCC rules focus on the extensions that SCC provides
over BCC. For readers not familiar with the BCC Esterel circuit semantics, we briefly
explain the BCC control logic as well. However, for a more detailed description we refer
the interested reader to Berry [5].

Global (Fig. 2.3a)

At the top level for a program P, inputs I feed into Es when P is initially started. The
inverted output of a register, which like all registers is initially 0, activates P via GO

10

1
I

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

1

O

Done

(a) Global
(module: P end)

GO

Es Es'
k0

(b) Nothing (nothing)

Es
s GO

s
Ec'

Es'

k0

(c) Emit (emit s)

Es
 s s

GO
Es'
k0

(d) Weak Unemit
(weak unemit s)

I Es'
k0

GO k1

RES
KILL

SELSUS

(e) Pause (pause)

Es
PEc'

Es'
SEL

k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Ec

GO

RES
SUS
KILL

QEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Es'

Ec'

SEL

k0

k1

k2

(f) Sequence (P; Q)

Es

Ec

 s

GO

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

RES
SUS
KILL

QEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Ec'

Es'

SEL

k0

k1

k2

(g) Conditional
(present s then P else Q end)

Ec

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

QEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Es

GO

RES
SUS

KILL

S
y
n
c
h
r
o
n
i
z
e
r

Es'

Ec'

SEL

k0

k1

k2

(h) Parallel (P || Q)

LSEL

GO

RSEL

L0

R0
k0
L1

R1
k1
L2

R2
k2

(i) The synchronizer used by Parallel

Figure 2.3: SCC construction rules

and enables the inputs with an AND gate. Ec is initialized to 0 since no signals can be
emitted concurrently on this level. The outputs of P are taken from E′c.

According to the Esterel rules, RES is constantly 1 and SUS and KILL are 0. The
outputs of the program are taken from E′c since this bus represents all emitted signals.
Here the environment is considered a concurrent reader on all output signals. Program

11

termination corresponds to completion code 0, indicated by the k0/Done wire.

Nothing (Fig. 2.3b)

In the Esterel circuit rules, a nothing statement is translated into a wire connecting the
GO input to the k0 output. As discussed in Sec. 2.2, nothing must actively forward (i. e.,
potentially block) Es. Thus, in the SCC rules, the Es environment is additionally blocked
by an AND gate such the information in the sequential environment is only propagated
downstream by this component if it terminates.

Emit (Fig. 2.3c)

This drives the emitted signal on E′s and E′c. As discussed in Sec. 2.2, E′s must be
potentially blocked, but not E′c. This way the emit only affects downstream readers but
not sequentially preceding readers. This encodes the essential difference between SCC
and BCC. The signal is also added to the E′c bus such that the emit is also visible to
concurrent readers. Additionally E′s is again guarded by the GO wire because Es must
not be connected to E′s if the component is not active. The circuit ignores Ec since it is
not affected by concurrent emits.

Weak unemit (Fig. 2.3d)

The SC MoC allows to change variable values throughout a tick. In SCEst, this has
motivated the unemit statement, which is not included in Esterel [31].

An unemit reverts the effect of an emit and resets the signal to absent. However, even
if the sequential signal environment is able to set a signal to absent for its sequential
successors, it is much more complicated to do this in a concurrent context. This would
require a refined version of the concurrent environment, which passes the correct signal
value to concurrent readers when it is no longer modified. It also has to handle concurrent
conflicts between emits and unemits.

Hence, we only introduce a weak unemit. This removes s from Es, but does not affect
Ec to avoid conflicts with emits. The weak unemit has only a very local effect. The
signal set to absent by a weak unemit is only visible to sequential successors in the same
thread. The weak unemit has no effect on readers in other threads, when performing
exits in traps, or on the outputs of the program, since all the related circuits use the
concurrent environment.

Pause (Fig. 2.3e)

The pausing logic is identical to the Berry circuit. If the pause is activated by the
corresponding combination of inputs, a register is set. This register may start the further
execution of the program in the next tick if it is allowed to resume. If a tick starts in a
pause, indicated by k0, the E′s environment is initialized with the inputs I. For conciseness
of the circuit rules, we do not hand I down through all component layers but take I directly
from the global environment.

12

GO

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

Es
Ec

RES
SUS
KILL

Ec'

SEL

k1
k2

(a) Loop
(loop P end)

KILL

PEc'
Es'

SEL
k0
k1
k2
k3KILL

SUS
RES
GO
Es
Ec

Ec

Es

GO
RES
SUS

Ec'
Es'
SEL

k0
k1

k2

(b) Trap (trap t in P end)

GO k2

(c) Exit
(exit t)

Es
Ec

 s

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

GO

KILL
SUS

RES

k2
k1

k0
SEL
Es'
Ec'

(d) Suspend (suspend P when s)

PEc'
Es'

SEL
k0
k1
k2KILL

SUS
RES
GO
Es
Ec

 s

 sEs
s

Ec
s

 s

s
GO

RES
SUS
KILL

k2
k1
k0
SEL
Es'

Ec'

(e) Local Signal
(signal s in P end)

Figure 2.4: Remaining SCC construction rules

Sequence (Fig. 2.3f)

Not surprisingly, this is the central rule to encode sequentiality, by forwarding E′s of P to
Es of Q but not the other way around, as already illustrated in Fig. 2.1b. In a sequence,
Q is started when P terminates. Q also receives the sequential environment E′s of P.
The active emits represented by E′c in P and Q are made visible to concurrent readers
independent from the termination. The incoming concurrent environment Ec and the
remaining wires are passed to both components. The outgoing wires of P and Q are
combined by OR gates and then passed out.

Conditional (Fig. 2.3g)

According to the SCCL and SC-visibility, the input signal that selects the branch is
taken from Ec and Es. In the conditional, the GO signal is given to one of the branch
components based on the value of signal s or a boolean expression based on signals.
The value is determined by a combination of Ec and Es. This directly encodes the SC-
visibility since a read is only affected by sequentially preceding or concurrent writers.
The incoming environments Ec and Es are passed to the two branch components together
with the remaining incoming control wires. The outgoing wires of P and Q are combined
by OR gates and then passed out.

13

Parallel (Fig. 2.3h)

Parallel components communicate via E′c/Ec, see again Fig. 2.1b.
The parallel composition activates both components and feeds all the control wires

and environments into them. The only connection between P and Q is via Ec and E′c.
P receives the incoming Ec, in case this component is also embedded in one or more
parallel statements, combined with the E′c environment of Q. Analogously for Q. The
output environments of P and Q are combined by OR gates. The completion codes of
both parallel components is calculated by a synchronizer logic, displayed in Fig. 2.3i.
This logic computes the maximum of both completion codes.

As an aside for readers not familiar with Esterel’s completion codes, the desire to
compute the combined completion code k simply as the maximum of the completion
codes ki of the parallel components (where i is an index indicating the components)
has motivated the encoding of the completion codes: if any component exits a trap
(ki ≥ 2 for some i), the resulting completion code is the maximum ki that indicates the
outermost trap exited; otherwise, the parallel pauses (k = 1) if any parallel component
pauses; only when all components terminate in the current tick (ki = 0) or are have
terminated before, then the whole circuit terminates (k = 0).

Loop (Fig. 2.4a)

In a loop structure, the loop body P is restarted when it terminates. Hence, the GO
wire starts P if the loop is initially entered or P terminates, indicated by k0. In the same
manner Es of P is either the incoming Es or E′s of P. The restriction to non-instantaneous
loop bodies, in combination with the blocking of E′s, prevents cyclic dependencies between
GO and k0, and Es and E′s. Since a loop cannot terminate normally, k0 and E′s are never
set. Note that a loop can only be left using a trap. The remaining incoming wires are
directly connected to P as well as the outgoing.

Trap (Fig. 2.4b)

A trap provides a jump structure triggered by exits. If an exit is executed, the program’s
execution immediately continues at the end of the corresponding trap. If the exit is in
a parallel thread, the other threads are weakly aborted, meaning that they run until a
pause, exit or the end of thread and then continue at the end of trap. If multiple exits
are triggered, the outermost trap has precedence. In the circuit this is assured by the
synchronizer in the Parallel component. When the trap is triggered in P, indicated by
k2, P receives a KILL signal to prevent pause registers from being set if they are activated
in this tick. P can also be killed by an surrounding trap, encoded by the OR gate. The
outgoing sequential environment E′s is either E′s of P, if the trap terminated normally, or
E′c of P, if the trap is triggered, because then the control flow jumps over the remaining
statements in the trap body and P does not produce an E′s.

This logic is important to properly distinguish surface and depth outputs. We here
follow the established Esterel terminology where the surface of a statement or program

14

fragment p refers to the behavior of p in the tick when p started executing, and the
depth of p is its behavior in subsequent ticks.

The trap terminates, indicated by k0, if P terminates with k0, or k2, if the trap is
triggered. To retain the trap nesting hierarchy, all the completion codes of P are down-
shifted such that the outgoing k2 is the k3 of P and surrounding traps can react to their
correct completion code. The remaining wires are directly connected to P.

Exit (Fig. 2.4c)

The exit does not produce any E′s, since in case of an exit the corresponding trap se-
quentially forwards E′c, not E′s.

The exit component sets the corresponding completion code if it receives a GO. In
this example it triggers the innermost trap via k2. All remaining incoming wires end in
this component and it does not produce any outgoing information aside the termination
code.

Suspend (Fig. 2.4d)

When suspending P based on a signal s, the state of s is determined considering both
Es and Ec, just as for the conditional.

If s is present, P is suspended by setting the SUS input. It may also be suspended
by a surrounding suspend statement. However, P is only suspended by this suspend if
some pause is active inside P, indicated by the SEL wire, and the suspend is allowed
to resume, indicated by RES. Hence P cannot be suspended in the first tick when the
suspend scope is entered. If s is absent and no surrounding suspend is active P can
resume by setting RES. The suspend statement will indicate pausing via k1 if P pauses
or P is suspended. The remaining wires are directly connected to P.

Local Signal (Fig. 2.4e)

This creates a new scope for a wire s. P receives the environments Es and Ec with s
initialized to 0. s is removed from both outgoing environments. If another s exists
outside the local declaration, its wire is forwarded to E′s.

15

3 The SCC2BC Transformation

One option to compile SCC Esterel programs is to synthesize them into netlists, ac-
cording to the rules presented in Sec. 2.4, and to either simulate these in software or
create actual hardware from that. This, however, would require to re-do much of the
engineering work of existing Esterel compilers. This concerns in particular the rather
sophisticated constructiveness analysis present in the Esterel v5 compiler [36] for han-
dling statically cyclic programs. The SCC2BC transformation presented now avoids this
by translating SCC Esterel programs into equivalent BC Esterel programs. SCC2BC
is minimally disruptive in that Esterel programs that are already BC undergo minimal
changes, if any, even if they are statically cyclic. The key concept is to express the
concept of SC-visibility at the Esterel level. We do so by (1) splitting signals into dif-
ferent versions, one for each signal emission (circuit in Fig. 2.3c), and (2) disjuncting
signal versions according to their SC-visibility scopes whenever they are tested (see cir-
cuits in Fig. 2.3f/2.4d). This is akin to the well-known static single assignment (SSA)
paradigm [13]; however, we have to extend SSA to properly handle tick boundaries and
Esterel’s concurrency and pre-emption operators.

The concept of SSA is to split up and rename variables, such that each assignment
to the same variable assigns different versions of this variable in the SSA form. To
provide a single reaching definition for each referenced variable, φ-functions select the
value from the different variable versions, based on the last executed assignment in the
active incoming control flow path. The concept of SSA allows to bypass the limitation
of a single globally consistent state for each signal in each tick present in Esterel. Since
SSA is developed for sequential control flow graphs, it provides the correct visibility of
signals depending on the sequential location of a read to its writers.

The SCC2BC transformation is separated into three steps:

1. Creating a control flow representation of the source Esterel program.

2. Performing an SSA transformation specially adjusted for this use case.

3. Translating the SCC Esterel program into BC Esterel using the SSA information.

These steps are described in detail in the following sections. To illustrate the effect the
ST program from Lst. 2.2 is translated.

16

entry

fork

join

S

T = true

exit

entry

S

S = true

exit

true

entry

T

S = true

exit

true

true

(a) SC graph (SCG) of ST

entry

fork

S = Ψ(S3, S4)

join

S

T = true

T1 = Φ(T0, T)

exit

S2 = false

T0 = false

entry

S2 | S1

S0 = true

S3 = Φ(S2, S0)

exit

true

entry

T0

S4 = Φ(S1, S2)

S1 = true

exit

true

true

(b) With φ- and ψ-functions

entry

fork

S = S3 | S4

join

S

T = true

exit

S2 = false

T0 = false

T1 = T

T1 = T0

entry

S2 | S1

S0 = trueS3 = S2

S3 = S0

exit

true

entry

T0

S4 = S2S1 = true

S4 = S1

exit

true

true

(c) Transformed φ- and ψ-functions

entry

fork

join

entry

S1

S0 = true

exit

true

S = S0 | S1

exit

S

T = true

true

entry

S1 = true

exit

(d) Optimized SCC2BC result

Figure 3.1: Stepwise SCC2BC transformation of the ST example represented by a control
flow graph with dependencies.

17

3.1 Control Flow Representation

The SCC2BC transformation is based on a static analysis of the control flow of a pro-
gram. Consequently, the first step is an intermediate representation of the source Esterel
program as a control flow graph. Since Esterel is a synchronous language and includes
explicit concurrency, it requires an extended controlfow graph notation representing
pauses and threads. The SCC2BC transformation uses the SC Graph (SCG) [18] nota-
tion to analyze sequential and concurrent control flow. We also allow the SCG to leave
a thread without an exit to correctly represent Esterel traps, which is not allowed in its
original definition. Specifically, to capture the concept of trap exits, we do not require
jumps to be thread-local anymore as the original SCG does. We also do not capture
all semantic information of the original Esterel program, such as suspension scopes, but
that is acceptable since we use the SCG only for the purpose of the SCC2BC transfor-
mation, we do not generate code from the SCG directly. Fig. 3.1a shows the SCG for
ST (Fig. 2.2). The program start and end is represented by entry and exit nodes. The
parallel statement is represented by a fork and a join node which spawn and join the
two concurrent threads. The entry and exit nodes indicate the regular sequential start
and end point of these threads.

Present tests are transformed into conditional nodes and emits result in assignment
nodes. The signals are represented as boolean variables, with a true value indicating
presence. Hence, emits assign true and unemits would result in assignments to false.
Since these booleans represent signals they are implicitly set to false at the start of each
tick.

In addition to the constructs illustrated in Fig. 3.1a, an SCG may also contain sur-
face/depth nodes that correspond to Esterel’s pause. Loops are simply represented by
cyclic control flow in the graph. The SCG has no direct representation for suspension.
However, for SCC2BC it suffices to add an assignment node to the SCG that computes
the suspend expression to a temporary variable, at the beginning of the suspension scope.

Similarly, we emulate trap/exit with jumps from the exit to the end of the trap. In a
completely sequential context, an exit is a simple jump, but if the exit is located in a
concurrent thread and the end trap is located after the join of this thread, an exit causes
the concurrent threads to be weakly aborted. This means they execute until the end of
thread, an exit, or the next pause statement. However, the control flow does not end
there, but it is joined with the thread(s) executing the exit and continues at the end of
the trap. Lst. 3.1 illustrates such a trap in a concurrent context. If I is present, the first
thread will emit B and then trigger the trap. If I is absent, the thread pauses. The other
thread always emits A. After the parallel section, C is emitted if A and B are present. In
the SCG representation in Fig. 3.2 the control flow of the trap is explicitly modeled. This
is important for correctly analyzing the visibility of emissions to downstream statements.
Algorithm 1 shows the pseudocode procedure to translate a trap and the corresponding
exits into its SCG representation. Before all pause and exit nodes concurrent to an exit,
there is a conditional node jumping to the exit. The exit itself results in an assignment
triggering these conditionals. Then the control flow of the exiting and aborted thread
is joined and continues at the first node after the end trap. Furthermore, there are

18

1 module TrapExample:
2 input I ;
3 output A, B, C;
4 trap t in [
5 present I then
6 emit B;
7 exit t
8 else
9 pause end

10 ||
11 emit A
12]; end trap;
13 present A and B then
14 emit C end

Listing 3.1: The TrapExample
with a trap and an exit in con-
current threads.

entry

fork

join join

A & B

C = true

exit

entry

I

B = truesurface

depth exit_t = true

exit

true

entry

A = true

exit_t

exit

true

true

Figure 3.2: The SCG representation of TrapExample

precedences between traps according to their nesting hierarchy. Hence, an executed exit
also has to pass its control flow to an exit of a surrounding trap if both are executed,
resulting in corresponding conditional nodes before these subordinate exits.

3.2 Extending SSA to SCSSA

The SCG representation is transformed into SSA form using a standard dominator anal-
ysis [13]. However, to handle SCGs that represent Esterel programs, the SSA form
must be extended. There are two aspects which are not considered by a classical dom-
inator analysis and SSA transformation. First, the synchronous paradigm uses pauses
that have an implicit effect on signals. To emulate signal initialization to absence in
SCC2BC, all boolean variables representing signals are assigned to false at the start of
the program and after each pause. This corresponds to the initialization of Es , see
Fig. 2.3a and Fig. 2.3e. In Fig. 3.1b this occurs directly after the entry node, where T0
(version 0 of signal T) and S2 are set to false. Note that the version numbering in this
example differs form the textual order to provide consistent version numbers throughout
the transformation.

The second aspect is concurrency. Algorithm 2 presents a pseudocode sketch of the
adapted SSA algorithm handling this aspect. The SSA transformation introduces φ-
assignment nodes when two or more control flow paths join with different definitions of
the same variable to set a new dominant version of the variable. The SCG in Fig. 3.1b
contains such φ-assignments when conditional branches merge. The φ-function is defined
such that it selects the incoming definition based on the active incoming control flow.
This requires that only one incoming control flow is taken. However, in case of joining

19

Algorithm 1 Translation of Esterel traps into SCG representation

1: procedure TranslateTrap(trap ts trap <body> end trap)
2: Create new variable exit ts
3: Translate body . This includes further translation rules
4: for exit assignment node e in body do
5: if fork(thread(e)) is in nodes of body then
6: Create join node j
7: Set outgoing control-flow of j to node after end trap

8: Set outgoing control-flow of e to j
9: for node n in nodes of sibling threads of thread(e) do
10: if n is surface node or exit node or
11: assignment exit tk = true with tk != ts then
12: Create conditional node c and insert before n
13: Set condition of c to exit ts == true
14: Set then-branch control-flow of c to j
15: Set else-branch control-flow of c to n
16: end if
17: end for
18: else
19: Set outgoing control-flow of e to node after end trap

20: end if
21: end for
22: end procedure
23: procedure TranslateExit(exit ts)
24: Create assignment node with exit ts = true
25: end procedure

threads, due to termination or the exit of traps, more than one control flow may be active
and must be considered. This problem corresponds to the concurrent SSA form by Lee et
al. [21]. Accordingly, we introduce a ψ-function node after the join node. Corresponding
to the definition of the parallel, already seen in Fig. 2.3h, our ψ-function disjunctively
combines all incoming versions. Represented in lines 3 to 8 of algorithm 2. According
to the SC-visibility, all concurrent reads of a signal are replaced by a disjunction of
the reaching definition and all concurrent definitions, illustrated in Fig. 3.1b by the
conditional node testing S in the left-hand thread. The algorithm handles this in lines 9
to 17. A dependency analysis provides the necessary information for this transformation,
the sequential and concurrent dependencies are visualized as dashed arrows in the SCG.

Handling implicit initializations and concurrency results in a new, SC-specific SSA
variant that we refer to as SCSSA. The φ- and ψ-nodes introduced by SCSSA must
be translated further into executable Esterel code. Each φ-function is transformed into
multiple assignments, one in each of the incoming control flow paths it combines. Each
assignment assigns the incoming definition of this path to the new version. Fig. 3.1c
illustrates the result of this φ-assignment transformation and lines 18 to 24 represent

20

Algorithm 2 SCSSA transformation

1: procedure SCSSA(SCG g)
2: ConvertToSSA(g) . Regular SSA transformation
3: for φ-node n with si = φ(sj0 , . . . , sjk) in g do . Convert to ψ-nodes
4: if n is direct predecessor of a join-node j then
5: Set si = sj0 | . . . | sjk
6: Move n behind j
7: end if
8: end for
9: for assignments a in g do . Handle concurrent emits
10: for incoming concurrent data dependency d of a do
11: for signal reference si in a do
12: if source of d assigns sj then
13: Replace si with expression (si | sj)
14: end if
15: end for
16: end for
17: end for
18: for φ-node n with si = φ(sj0 , . . . , sjk) in g do . Transform φ-nodes
19: for l in 0 to k do
20: Create assignment node a with si = sjl
21: Insert a in incoming control-flow branch for sjl of n
22: end for
23: Remove n
24: end for
25: ConstantPropagation(g) . Reduce # of new assignments
26: MergeRedundantSignalVersions(g) . Reduce # of signal versions
27: end procedure

this procedure in the algorithm. This transformation violates the SSA property in that
it assigns the same variable multiple times. However, based on the assumption of non-
instantaneous loops and the exclusion of schizophrenia, only one of the control flows
will be active in a tick and only one assignment is effectively executed. Thus a single
assignment of the signal is still preserved by this form. The ψ-functions are transformed
into OR expressions based on their definition, see Fig. 3.1c.

We apply constant propagation to further reduce the number of new assignment nodes
that simulate the φ-functions. All assignments to false are removed since the effect of
setting a signal to absent is achieved by not emitting it. A weak unemit is realized by sim-
ply introducing a new variable version for which there is no emit. References to variable
versions that are known to be false, i. e. absent, are removed and the corresponding ex-
pressions are partially reduced. This also allows to eliminate dead conditional branches,
similar to a sparse conditional constant propagation [38].

As an optimization, we merge signals that have the same set of readers and are always

21

disjuncted. To detect such signals, a table is created for each original signal, where each
version of the signals results in a column and the rows represent reading statements
in the program. Identical columns indicate redundant signal versions. Each cell gets
marked with a 1 if the version occurs in the read and 0 otherwise. Sorting the columns
will group the versions for merging, since all versions which share the same vector can
be reduced to one version. Algorithm 3 presents the pseudocode procedure performing
this optimization.

Finally, the last assigned versions are renamed to their original signal names to match
the interface. In programs with pauses, especially in parallel threads, this may require
additional assignments. The final SCG for ST is seen in Fig. 3.1d.

Algorithm 3 Merging redundant signal versions

1: procedure MergeRedundantSignalVersions(SCG g)
2: for signal s with versions s0 to si in g do
3: Create table t with i columns
4: for node n in g do
5: Add new row j to t
6: for k in range 0 to i do
7: if n references signal sk then
8: Set t[sk][j] = 1
9: end if

10: end for
11: end for
12: Sort t by rows
13: k = 0
14: while t has column k do
15: if t[k] == t[k + 1] then
16: for node n in g do
17: Replace all references to sk by sk+1

18: end for
19: Remove column k + 1
20: else
21: k = k + 1
22: end if
23: end while
24: end for
25: end procedure

3.3 SCC2BC at the Esterel level

Based on the control flow graph representation in SCSSA form, we can translate the SCC
Esterel program into BC Esterel. This requires the correct association of nodes in the

22

SCG with the statements in the source Esterel program. Our KIELER tool (Sec. 3.5)
provides compiler infrastructure with integrated tracing capabilities to produce these
associations.

We so far discussed SCC2BC at the SCG level. To apply the transformation at the
Esterel source program, we first add the additional signal versions to the program. Only
effectively used versions are added, with ascending indices. Next, all emits are renamed
according to the affected version. The expressions of the present tests are changed to
the reaching signal versions. The expressions of suspend statements are replaced by the
expressions in the corresponding suspend assignment nodes. Constant assignments to
true are translated into emits. Assignments to false are removed, since signal absence
is implied in Esterel. All assignment nodes that are introduced by SCC2BC are added.
Other assignments, for example resulting from ψ-nodes, are translated into present tests
with the assigned expression and a guarded emit of the assigned signal.

Lst. 2.3 presents the final Esterel transformation result for ST. The result of this
SCC2BC transformation is a syntactically valid Esterel program with the behavior de-
fined by the SCC semantics of the source Esterel program. It provides the desired
sequential write and read behavior of Esterel using multiple signals versions. The Es-
terel compiler can be used to translate this program into software or a circuit and check
its constructiveness or deploy to a target platform.

Corresponding to the conservativeness of the SCC semantics, an emitted variable
version is only removed from a referencing expression if the emit does not sequentially
reach the present statement. Furthermore, all added emits only re-emit signals that
were already emitted in some other version. Hence, if all version are again collapsed into
one signal, then the original Esterel semantics is restored, apart from the optimization
mentioned in the last step of SCC2BC.

In contrast to the dataflow based compilation for SC programs [18] or other compi-
lation approaches for circuits [30], this approach does not require a statically acyclic
programs structure. Hence, also programs which are only dynamically acyclic, such as
the token ring arbiter, are supported [29].

3.4 Schizophrenia

Schizophrenic behavior of a program occurs when statements are executed multiple times
during a tick. Even in the absence of instantaneous loops, this may happen when a loop
body terminates and is instantaneously reentered. As detailed by Berry [5], we distin-
guish signal reincarnation, where a signal scope is left and re-entered instantaneously
due to a surrounding loop, and statement reincarnation, where a statement such as a
signal emission is executed multiple times within a tick. The SCC implementation of
parallel provided here is sensitive to the latter form of schizophrenia because it cannot
distinguish emits in sequential thread incarnations.

Consider ThreadReinc (Lst. 3.2), which is not BC, because in the second tick when
the pauses resume, the test for S (line 9) in the current loop iteration blocks on the
sequentially later emission of S (line 5) in the next loop iteration. ThreadReinc is SC (S is

23

1 module ThreadReinc:
2 output O, S;
3 loop
4 [
5 emit S;
6 pause
7 ||
8 pause;
9 present S then

10 emit O end
11]
12 end

Listing 3.2: ThreadReinc, with
S accessed across sequentially
ordered thread instances.

entry

fork

join

exit

entry

S = true

surface

depth

exit

entry

surface

depth

S

O = true

exit

true

Figure 3.3: The SCG representation of ThreadReinc

considered absent) and does not require speculation. However, in the corresponding SCC
circuit, loop body incarnations cannot be distinguished. The reason is the concurrent
environment Ec which passes the signal S between the threads disregarding sequentially
ordered incarnation of the the threads. Hence, the presence test of S would again block
on the concurrently emitted S, thus ThreadReinc is not SCC. As a consequence, we
require to cure schizophrenic parallels before the SCC translation is applied, just as in
BCC.

However, as illustrated with the SignalReinc (Lst. 1.4) example in the introduction,
the SCC2BC transformation does cure signal reincarnation by separating signal wires,
without duplicating program logic.

3.5 Implementation and Validation

The compilation concepts presented in this section are fully implemented in the Eclipse-
based open source KIELER tool. Fig. 3.4 shows a screenshot of the tool in use. In the
editor on the left, the ST program is open. The Compiler Selection view on the bottom
left controls the compiler and shows the compile chain for SCC2BC. In this case it is
configured to transform the program into an SCG in optimized SSA form. The result is
generated on the fly and an automatically layouted diagram of the SCG is displayed in
the Diagram View on the right. The SCG corresponds to Fig. 3.1d but the side-bar on
the right is used to configure the displayed diagram such that it does not contain the
data-dependencies.

The tool is also used to create the circuits shown in Fig. 2.2, 2.3, and 2.4. This includes
the diagram synthesis and an automatic layout.

Since a major objective of the SCC2BC transformation is to make Esterel programs

24

Figure 3.4: Screenshot of the KIELER implementation of the SCC2BC transformation,
showing ST and its intermediate SCG representation.

compilable that are not accepted by existing Esterel compilers, it is a bit difficult to per-
form a meaningful quantitative evaluation based on existing Esterel programs. However,
as experimental validation, we subjected a set of 134 Esterel programs to the SCC2BC
tranformation. The programs consisted mainly of synthetic test programs. The individ-
ual programs were rather small, with an average size of 7 logical statements and about 3
signals, where we count for example signal A in ... end signal as one statement (excluding
the body) and one signal. The programs were designed to cover a broad range of control
flow scenarios.

We follow standard practice of defining the SCC2BC transformation for the Esterel
kernel statements, which constitutes the semantic basis of the whole language. However,
we also extended the tranformation to handle some common derived statements directly,
such as await, to avoid excessive statement expansions. The experimental results yield
that 28 of the 134 inspected programs were affected by the transformation. All other

Program Original SCC2BC SCC2BC Opt. Tardieu [37] Note

ST 5 (2) 7 (4) 6 (4) 5 (2) Original not BC

SignalReinc 6 (2) 6 (3) 4 (2) 11 (3) Schizophrenic

TrapExample 11 (4) 11 (4) 11 (4) 11 (4) Exception

ABRO 8 (4) 8 (4) 8 (4) 8 (4) Non-kernel statements

Table 3.1: Selected results of the SCC2BC experiment. Values are given as number of
logical statements (signals) in program.

25

programs did not change after the transformation, which is in line with our objective
to be minimally invasive. Most of the programs affected by the transformation contain
schizophrenic signals. For these, SCC2BC added on average 1.3 statements and 1.8
signals. Table 3.1 shows the detailed results for some programs of interest. The columns
list the program name, the original size as number of logical statements (signals) in the
program, and the size after the SCC2BC transformation. Since some signal versions can
be removed when eliminating dead code, the optimized results are also listed. To give
a rough quantitative comparison, the resulting code size when applying the approach of
Tardieu et al. [37] is presented.

26

4 Formal Semantics and
Conservativeness

We now formalize the notion of SCC with the goal of showing conservativeness relative
to BC. Our formal semantics follows Berry [5] in representing circuits as networks of
wire definitions in constructive boolean logic. For sequential constructiveness the wire
definitions are stratified according to their SC-visibility capturing sequential control flow.
The formal semantics relies on the same assumptions as the SCC circuit definition, i. e. a
program does not contain any instantaneous loops and is free of statement reincarnation,
specifically that statements from concurrent threads can never appear in sequential
program order. We further assume that the sequential order in which two statements can
appear is statically fixed. Under this assumption, which does not restrict expressiveness,
a static order, SC-visibility, can be defined on the statements corresponding to the flow
dependency analysis used in the SCSSA transformation (Sec. 3.2).

A circuit C = (W ,D,F ,�) consists of wires W , wire definitions D, and the SC-
visibility ordering (F ,�), which attaches visibility indices l ∈ F to the gates in the
circuit. Without loss of generality assume the indices F are identical with the gates.
The wires are partitioned into registers R and combinational wires S, i.e.,W = R∪S and
R∩S = ∅. The combinational wires split into inputs I ⊆ S and outputs O ⊆ S such that
I ∩O = ∅. A wire definition is either a register definition of the form w := e for w ∈ R
or an implication w ⇐l e for a combinational wire w ∈ S and visibility index l ∈ F . In
both cases e is a boolean value expression. There is exactly one definition w := e for
each register. We use the notation C(w) to refer to the unique expression e of a register
w ∈ R. A combinational wire w ∈ S can have several definitions w ⇐l e. Observe that
register definitions are used at the end of a tick to compute the next sequential state.
Therefore, they do not need visibility indices because they are implicitly the last during
a tick. The combinational wires are typically further partitioned asW = I ∪L∪O with
(primary) inputs I, local wires L and (primary) outputs O.

The ordering � on visibility indices captures the sequential control flow in the source
program. A wire definition w1 ⇐l1 e1 is visible from another w2 ⇐l2 e2 iff l1 is not
sequentially downstream from l2, i.e., if l2 6� l1. For instance, consider the BCC circuit
in Fig. 2.2a implementing ST from Fig. 2.2.

27

∃w ⇐l e ∈ C. π 6� l ∧ e ↪→π⊕l 1 PRES (π, l)
w ↪→π 1

∀w ⇐l e ∈ C. π 6� l⇒ e ↪→π⊕l 0 ABS(π,w)
w ↪→π 0

w ∈ I
IN

w ↪→π I(w)

w ∈ R
REG

w ↪→π R(w)

e ↪→π b OP¬
¬e ↪→π ¬b

b ∈ B
OP c

b ↪→π b

e1 ↪→π 0 e2 ↪→π 0
OP¬∨

e1 ∨ e2 ↪→π 0

e1 ↪→π 1
OP l∨

e1 ∨ e2 ↪→π 1

e2 ↪→π 1
OPr∨

e1 ∨ e2 ↪→π 1

e1 ↪→π 1 e2 ↪→π 1
OP∧

e1 ∧ e2 ↪→π 1

e1 ↪→π 0
OP l∧

e1 ∧ e2 ↪→π 0

e2 ↪→π 0
OPr∧

e1 ∧ e2 ↪→π 0

Figure 4.1: Visibility-Restricted Constructive Evaluation Rules. The evaluation context
C, I, R is implicit.

The gates G2, G6, G10, G12 arise from wire definitions

S[G2] ⇐G2 GO[G] ∧ S[G] (4.1)

T [G6] ⇐G6 S[G12] ∧ k0[G5] (4.2)

S[G10] ⇐G10 GO[G] ∧ ¬T [G] (4.3)

S[G12] ⇐G12 S[G10] ∨ S[G2]. (4.4)

where the notation X[G] identifies the gate G from which the wire is driven and the
name X of the control signal in the circuit translation (Fig. 2.3 and 2.4) represented
by the wire. The visibility ordering � is obtained from the control flow of the source
program in Lst. 2.2. Since G10 comes from line 6 and G6 comes from line 8, G6 is
sequentially downstream from G10, so that G10 � G6. In contrast, we have X 6≺ Y for
all X, Y ∈ {G2, G10, G12}. G2 and G10 are incomparable because they are instantiated
from the concurrent tests in lines 4 and 6 of Lst. 2.2. G12 is the global disjunction
collecting and feeding back all emissions on S from these two parallel threads. Therefore,
G12 is not sequentially ordered relative to either G2 or G10, but G6 is downstream from
G12, i.e., G12 � G6.

The semantics of a circuit is based on constructive value propagation

C, I, R ` e ↪→ b (4.5)

which evaluates a boolean expression e over W using the evaluation rules of Kleene
ternary algebra (see e.g. [34]), in the context of a circuit C and under input event I and
register state R. Input events are assignments of boolean values to all input wires. A
register state is an assignment of boolean values to all register wires. The constructive
macro step reaction then is a relation

C ` I, R ↪→ O,R′ (4.6)

28

expressing that in register state R for the input event I the circuit constructively eval-
uates to output event O and new register state R′. The macro step reaction then
states that (i) for all w ∈ O, we have C, I, R ` w ↪→ O(w) and (ii) for all w ∈ R,
C, I, R ` C(w) ↪→ R(w). Note that we evaluate the expression C(w) rather than w,
because we are interested in the next state value of the register, not its current value.

To exploit visibility we introduce a labelled version

C, I, R ` e ↪→π b (4.7)

of the standard constructive semantics which obtains the constructive value b of an
expression e visible relative to a set π ⊂ F of visibility indices. These represent a set of
observation points from concurrent threads that are active in an evaluation. Each one
is sequentially first in its thread. Hence, the indices in π are sequentially incomparable
visibility indices (π is an antichain), so that for all l1, l2 ∈ π if l1 � l2 then l1 = l2. The
evaluation rules are shown in Fig. 4.1. For notational compactness we write e ↪→π b
instead of (4.7) when the evaluation context C, I, R is clear.

The standard ternary evaluation of boolean expressions is implemented by the OP
rules, which do not depend on the observation points π. Rules IN and REG are the
evaluation of inputs and register wires. The visibility information π becomes relevant
in the evaluation of standard wires described by the rules PRES and ABS . The former
stabilises a wire w ∈ S to 1 if there is some visible wire definition w ⇐l e in the circuit
whose expression e evaluates to 1. We say a wire definition with index l is π-visible,
written π 6� l, if l does not lie downstream from any observation point in π, i.e., there is
no m ∈ π with m � l. If this condition is met, PRES evaluates the expression e under
the observation points π ⊕ l, which adds l to the anti-chain if it is concurrent to π or
shifts to l otherwise. More precisely, π ⊕ l = π \ {m ∈ π | l ≺ m} ∪ {l}. Note that if
we would drop π and simply use l to evaluate e, we might eventually jump back to a
wire (gate) that is downstream from some observation point in π. This is what we avoid
if we preserve π in the premise of the PRES rule. The ABS rule is dual to PRES . It
stabilises a standard wire w to 0 if the expressions e in all wire definitions for w that
are π-visible evaluate to 0. We add the relevant parameters π, l, w to the rule names
for ease of reference.

The visibility information enters the evaluation rules named PRES (π, l) and ABS (π,
w) in line with the sequentially constructive coherence law (Sec. 2.2). Let PRES (l)
and ABS (w) refer to the same rules but without the side-conditions “π 6� l.” Let us
write C, I, R ` e ↪→ b for an evaluation in the system of Fig. 4.1 with the unconstrained
rules PRES (l) and ABS (w) instead of PRES (π, l) and ABS (π,w). This is precisely the
standard constructive value propagation of Berry [5].

Equivalently, we obtain Berry’s evaluation semantics if we assume each wire definition
is labelled with a different visibility index and the flow ordering � makes any two wire
definitions incomparable, e.g., if � is the identity relation on F . This is the same as say-
ing every wire is concurrent to every other. Then, the side conditions in PRES (π, l) and

29

ABS (w) become redundant. In other words, constructiveness of Berry circuits has “max-
imal visibility.” For a non-trivial flow ordering, Berry circuits will evaluate in a different
way, depending on whether the PRES (l)/ABS (w) or the PRES (π, l)/ABS (π,w) rules
are used. However, the effect is conservative in the sense that the visibility constraints
only make more wires stabilise but never change their value. This is a consequence of
the following property of Berry circuits: If a wire evaluation with PRES (k) depends on
the evaluation of another with PRES (m), then m cannot be sequentially downstream
from k, i.e., k 6≺ m. The reason is that all emissions must be activated by GO wires
and these are chained up in program order. Hence, the GO activation wires hold up
downstream emitters until all control flow has been resolved upstream.

Adding visibility is non-trivial, because the side-conditions act both co- and contra-
variantly. E.g., changing π1 to π2 with π1 � π2 preserves every application of PRES (π, l)
but may invalidate some application of ABS (π, l). Since an evaluation ` e1 ↪→π1 1
may depend on another ` e2 ↪→π2 0, it is not immediately obvious how the semantics
generated by the two systems are related. In particular, evaluating a circuit under
visibility constraints does not warrant the conclusion, in general, that we get more
signals being decided absent than without visibility.

Proposition 1. Let BCC (P) be the Berry circuit of P . Then, BCC (P), I, R ` e ↪→
b implies BCC (P), I, R ` e ↪→π b for all antichains π ⊂ F from which every wire
implication w ⇐l d in BCC (P) is visible, i.e., such that π 6� l.

Prop. 1 shows that restricting visibility is conservative for the BC circuits. Wires that
have a decided value under BC will also stabilise to the same values under visibility
restrictions. This highlights the key feature of Esterel circuits: If a signal stabilises
then all sequentially downstream circuitry can be removed without changing the value.
Suppose in a sequential composition P ;Q a wire w instantiated from P stabilises, i.e.,
BCC (P ;Q), I, R ` w ↪→{m} b where m is a visibility index in P . Then by Prop. 1 we
also have BCC (P ;Q), I, R ` w ↪→{∞(P)} b, where ∞(P) is the final index of P in the
sense that m � ∞(P) and all wire labels l of Q have ∞(P) � l. This in turn means
BCC (P), I, R ` w ↪→{∞(P)} b and thus BCC (P), I, R ` w ↪→ b.

An asymmetry of Esterel circuits, however, lies in the fact that Prop. 1 is not invertible.
Although a stabilising value does not depend on downstream statements, stabilisation
itself does. Visibility restrictions can assign values to wires that have no value under
BC. For instance, consider the gates G2, G6, G10, G12 from Fig. 2.2a with defini-
tions (4.1)–(4.4). These definitions form a feed-back cycle in which no signal stabilises
under ternary simulation. This is indicated by the ⊥ values on the wires in Fig. 2.2a.
However, if we apply our visibility-restricted evaluation rules of Fig. 4.1, we find that T
stabilises, assuming GO[G] ↪→ . In fact, T stabilises in different ways, depending on
the observation point, viz. T [G6] ↪→{G9} 0 and T [G6] ↪→{G8} 1. This corresponds to the
two readings of the value of T in ST (Lst. 2.2) under SC semantics: The present test
in line 6 (visibility G9) sees T = 0 while in line 8 (visibility G8) the signal is emitted
and thus T = 1. Formally, there is only one wire equation (4.2) with visibility index
G6. Hence for any observation points π with π � G6 the definition is switched off from

30

...

...

GO[G] ↪→{G}

...

S[G12] ↪→{G2} 1 OP∧
GO[G] ∧ S[G] ↪→{G} PRES ({G2}, G2)

S[G2] ↪→{G4} 1 OPr∨...
OP∧k0[G11] ∧ k0[G4] ↪→{G5} 1 PRES ({G6}, G5)

k0[G5] ↪→{G6} 1
... (2)

ABS ({G10, G12}, T [G6])
T [G6] ↪→{G10,G12} 0 OP¬¬T [G6] ↪→{G10,G12} 1

...

GO[G] ↪→{G,G} OP∧
GO[G] ∧ ¬T [G] ↪→{G,G} PRES ({G12}, G10)

S[G10] ↪→{G12} 1 OP l∨S[G10] ∨ S[G2] ↪→{G12} 1 PRES ({G6}, G12)
S[G12] ↪→{G6} 1

... (1)

... see above (1)

S[G12] ↪→{G6} 1

... see above (2)

k0[G5] ↪→{G6} 1 OP∧
S[G12] ∧ k0[G5] ↪→{G6} 1 PRES ({G8}, G6)

T [G6] ↪→{G8} 1

Figure 4.2: Visibility-restricted constructive evaluation of BCC (fragment)

the view of ABS (π, T [G6]) which happily (having no proof obligations in the premises)
derives T [G6] ↪→π 0. From there, T [G6] ↪→{G8} 1 follows as seen in Fig. 4.2.

The difference in the evaluations e ↪→ b and e ↪→π b arises from wire definitions forcing
evaluation against the visibility order. Let →C and �C denote the direct and transitive
(instantaneous) dependency relations, respectively, between wires in circuit C. A circuit
C is called flow-oriented if for any two wire definitions w1 ⇐l1 e1 and w2 ⇐l2 e2 with
w1 �C w2, i.e., w2 depends on w1, we have l2 6� l1. Evaluation dependencies in flow-
oriented circuits do not make forward references in the � ordering. This has the effect
that evaluating C under visibility constraints gives the same result as evaluating it under
the standard BC rules.

Proposition 2. Let C be a flow-oriented circuit and π ⊂ F such that π 6� l for all wire
definitions w ⇐l d in C. Then, C, I, R ` e ↪→ b iff C, I, R ` e ↪→π b.

31

BCC (P) is not flow-oriented because of the feedback loops which make downstream
emissions propagate backwards against the program order. In Fig. 2.2a such a violation
occurs in the wire definitions (4.2) and (4.3) with wires T [G6] � S[G10] whileG10 � G6.
In contrast, the SCC (P) in Fig. 2.2b is flow-oriented. Specifically, the T [G6] output of
G6 is not wired back to the gates that implement sequentially upstream program blocks.

As a corollary of Prop. 2, thus, adding visibility restrictions in the evaluation of
SCC (P) does not have any effect. It turns out that under the visibility-restricted con-
structive evaluation SCC (P) and BCC (P) circuits are equivalent. To relate them we
need to wire them up so their interfaces have a common form. We must form a global
feed-back loop for the local signals of BCC (P) to make concurrent threads communi-
cate. Specifically, we take BCC (P), E ⇐ Ec ∨ E ′, E ′c ⇐ E

′, where 0 is a flow index
concurrent to all indices in BCC (P). The feedback E ⇐ Ec ∨ E ′, E ′c ⇐ E

′ added
around BCC (P) can be traversed by the constructive evaluation under visibility con-
straints, because l 6≺ 0 for any index l used inside BCC (P). The final Theorem 1 states
that if BCC (P) stabilises an output signal E′c.s then SCC (P) must also stabilise this
signal on E′c with the same value. This implies conservativeness of SCC over BCC . It
also shows how the standard constructive semantics of the new SCC circuits can be ob-
tained from the existing BCC circuits by the visibility-restricted constructive evaluation
relation defined in Fig. 4.1.

Theorem 1. Let SCC (P) and BCC (P) be the circuits of a program P under the new
sequentially constructive and standard Berry translation, respectively. Assume

BCC (P),E⇐0 I ∨ Ec ∨ E′,E′c ⇐0 E′, I, R ` E′c.s ↪→π b

for some signal s ∈ Sig and observation points π ⊂ F . Then,

SCC (P),Es ⇐0 I, I, R ` E′c.s ↪→π b.

Thm. 1 together with Prop. 2 shows how the standard constructive semantics of
the new circuit translation SSC(P) can be obtained for the standard Berry circuit
BCC(P) by the visibility-restricted constructive evaluation relation defined in Fig. 4.1.
The SCSSA translation of Secs. 3.2 and 3.3 implements the visibility restriction at the
source program level by the φ and ψ-functions.

Compare the BCC circuit (Fig. 2.2a) and the SCC circuit (Fig. 2.2b) generated for the
ST example program regarding signal S. There are two emitters, wire definitions (4.1)
and (4.3) from lines 4 and 6, respectively, of Lst. 2.2. The readers are the evaluations at
gate G2, GO[G]⇐G GO[G] ∧ S[G] from the test in line 4 of Lst. 2.2, and at gate
G6, GO[G] ⇐G S[G] ∧ k0[G] from line 8. Where BCC(ST) feeds all readers of
signals S with a global OR (4.4), SCC(ST) feeds gate G2 with a different emitter (“S1”)
than gate G6 (“S0 or S1”). This separation is a result of taking visibility into account.
The signals S, S0 and S1 correspond to S[G12], S[G2] and S[G10], respectively. One
finds that for the observation point π1 = {G2} of G2, the evaluation of S[G12] reduces

32

to the evaluation of S[G10]∨ S[G2] with π′1 = π1⊕G2 = {G2, G12}. Under π′1 the wire
definition (4.1) for S[G2] = S0 is blocked and the disjunction reduces to S[G10] = S1.
In contrast, with π2 = {G6} the evaluation of S[G12] reduces to the evaluation of
S[G10] ∨ S[G2] with π′2 = π2 ⊕ G12 = {G12}. Since G12 is ≺-incomparable with both
G10 and G2, both terms S[G10] = S1 and S[G2] = S0 remain in the disjunction.

Note that the conservativity result is a consequence of all three results, Prop. 1, Prop. 2
and Thm. 1: For every Berry constructive program P , evaluating the SCC(P) circuit
of Sec. 2.4 under the standard BC semantics give the same behaviour as evaluating its
Berry circuit BCC(P).

4.1 Proofs for Conservativeness

Visibility indices are induced by sequential program order so that an implication w2 ⇐l2

e2 is sequentially downstream from another w1 ⇐l1 e1 in program order iff l1 ≺ l2. These
labels are generated in the circuit translation C(P) as the source program P is traversed
recursively by the construction rules in Fig. 2.3 and 2.4. For instance, consider Fig. 2.3f
defining the translation of a sequential composition C(P;Q): The indices attached to
all (combinational) wire definitions in C(P) are ≺-ordered before all indices of wire
definitions in C(Q). The index of the OR gates collecting the E′c, SEL, k1 and k2 wires
are added with visibility index 0 that is strictly smaller than larger than any other
index so that they can be traversed at least once in any evaluation without blocking.
In contrast, for a parallel composition C(P ||Q) (Fig. 2.3h) all wire definitions in C(P)
are made ≺-incomparable with all wire definitions in C(Q). The two OR gates creating
the cross-coupled feedback for Ec, E′c likewise are indexed incomparably with any other
index, as are the synchronizer and collecting OR-gates for E′c, E′s, SEL, k0, k1 and k2

on the output side. The tricky part is the loop which creates static cycles. However,
we assume cyclic programs P∗ are loop-safe, free of schizophrenia and each statement
in P is either in the depth or in the surface1. Therefore, it is possible to arrange the
flow indices in a loop C(P∗) in such a way that all depth statements of P receive a flow
index which is ≺-before the surface statements of P . This is achieved, e.g., if the flow
indices are restarted with a minimal index with every pause in P and the start index
for translating C(P∗) is chosen to be greater than the largest termination index of any
instantaneous depth path out of P .

The following statements and proofs are stated for a minor variation of the constructive
evaluation rules of Fig. 4.1 where the side conditions in rules PRES (π, l) and ABS(π,w)
are changed as π 6≺ l instead of π 6� l. This is a minor shift of position that helps keep
the notation somewhat simpler. As done in the main text, we wish to identify gates
G with visibility indices and name the output signal S of the gate as S[G]. Then, the
side condition π 6≺ l has the effect that an evaluation of signal S[G] at index G behaves
like an evaluation of S[G] at the input side of the gate G. Since the wire definition for

1A statement is in the depth if the termination point of P can be reached from it instantaneously. A
statement is in the surface if it is instantaneously reachable from the start point of P .

33

S[G] drives the output side of the gate, it is sequentially downstream and cannot be
seen in the evaluation of the inputs. Accordingly, the falsity of G 6� G blocks the wire
definition from being used. However, this has the disadvantage that in order to evaluate
S[G] from the gate we need to pick an arbitrary index m 6� G. Such always exists but is
cumbersome to refer to, notationally. If we use the side condition π 6≺ l instead then we
can evaluate S[G] at index G, since G 6≺ G, which is more convenient. This modification
makes it theoretically possible that a gate reads its own output. This pathological case
does not occur, however, in our BCC and SCC circuit structures. Hence, the two versions
of the evaluation system can be considered equivalent.

Proposition 1. Let BCC (P) be the Berry circuit of P . Then, BCC (P), I, R ` e ↪→ b
implies BCC (P), I, R ` e ↪→π b for all observation points π ⊂ F from which every wire
implication w ⇐l d in BCC (P) is visible, i.e., such that π 6≺ l.

Proof. For efficiency of notation let us drop the circuit evaluation context and write
e ↪→ b and e ↪→π b instead of BCC (P), I, R ` e ↪→ b and BCC (P), I, R ` e ↪→ b,
respectively.

We exploit the fact that if an evaluation of a wire w ↪→ 1 with PRES (k) depends on
the evaluation of another wire z ↪→ 1 with PRES (m), then m cannot be sequentially
downstream from k, i.e., k 6≺ m. This is a result of the strictly sequential activation of
execution via GO wires. Let us call this property of BCC circuits 1-sequentiality. Now
consider an arbitrary evaluation tree for e ↪→ b. Let π ⊂ F be an antichain such that
for each rule application PRES (k) occurring in this derivation tree we have π 6≺ k. We
call π a 1-covering of the derivation e ↪→ b. Observe that if for every wire implication
w ⇐k d in BCC (P) the index k is visible from an antichain π, then π is a 1-covering.
The statement of Prop. 1 is proven by induction on the structure of the derivation for
arbitrary 1-coverings π.

Suppose π is a 1-covering for a derivation e ↪→ b. Clearly, if the last rule applied
is any one of the expression evaluations OP the induction hypothesis directly gives
e ↪→π b. The same holds for the input and state axioms IN and REG , which have no
side conditions on π. The critical rules are PRES (k) and ABS (w).

Suppose e = w ∈ S, b = 1 and e ↪→ b is the same as w ↪→ 1, obtained by an
application of PRES (k) using a wire definition w ⇐k d and a sub-evaluation d ↪→ 1. By
assumption, π is a 1-covering of and thus π 6≺ k. We claim that π ⊕ k is a 1-covering of
the sub-derivation d ↪→ 1. This follows by 1-sequentiality and the fact π⊕ k ⊆ π ∪ {k}.
For if there were a wire evaluation z ↪→ 1 with PRES (m) appearing in the tree for d ↪→ 1
with π⊕ k ≺ m, then either π ≺ m or k ≺ m. The former is contradicting 1-coverage of
π and the latter contradicts 1-sequentiality. Now, given that π⊕ k is a 1-covering of the
sub-derivation d ↪→ 1 we can apply the induction hypothesis to obtain d ↪→π⊕k 1. From
this an application of PRES (π, k) with the wire definition w ⇐k d is possible to derive
w ↪→π 1. This complete the induction step where the last rule is PRES (k).

Finally, if the last rule for e ↪→ b is an application of ABS (w) then e = w ∈ S and
b = 0 and we have the immediate sub-derivations d ↪→ 0 for all wire definitions w ⇐k d
in BCC (P). We now simply prune all premises that violate the visibility constraint, i.e.,

34

for which π ≺ k. The remaining premises then come from wire definitions w ⇐k d with
π 6≺ k. As above we argue that π ⊕ k is a 1-covering of the sub-derivation for d ↪→ 0
and thus by induction hypothesis, d ↪→π⊕k 0. Hence, we can replace the application
of ABS (w) by an application of ABS (π,w) with the pruned premises and obtain an
evaluation for w ↪→π 0 as desired.

For flow-oriented circuits the visibility constraints are redundant and the constructive
evaluation collapses to the standard semantics of Berry.

Proposition 2. Let C be a flow-oriented circuit and π ⊂ F observation points such
that π 6≺ l for all wire definitions w ⇐l d in C. Then, C, I, R ` e ↪→ b iff C, I, R ` e ↪→π b.

Proof. Since the circuit evaluation context is fixed throughout we can leave it implicit
and write e ↪→ b and e ↪→π b instead of C, I, R ` e ↪→ b and C, I, R ` e ↪→π b,
respectively. We say π covers a wire w if π 6≺ k for every definition w ⇐k d of wire w
in C. We say π is a cover of the derivation e ↪→ b or e ↪→π b if π covers all variables
evaluated in the respective derivation tree. In particular, if π 6≺ l for all wire definitions
w ⇐l d in C, then π covers every possible derivation e ↪→ b and e ↪→π b. We prove the
Prop. 2 for arbitrary covers π.

Consider an evaluation tree for e ↪→ b with cover π. If e is a boolean expression we can
directly apply the induction hypothesis on the sub-derivations, because the evaluation
rules OP are all ignorant of the visibility index. Similarly, if e = w ∈ I ∪ R then we
immediately get the equivalence w ↪→π b iff w ↪→ b, for any π, as desired. So, in the
sequel we only need to consider standard wire evaluations z ↪→ b and z ↪→π b for z ∈ S.
We argue by induction on the tree structure.

Let us first observe that if an evaluation tree w ↪→ b for a wire w contains the
evaluation z ↪→ c for another wire z then li 6≺ kj for all wire definitions w ⇐li ei and
z ⇐kj dj in C. This is because the evaluation tree witnesses that z �C w from which
orientedness of C implies li 6≺ kj. It follows that if π covers w ↪→ b then π⊕ li also covers
w ↪→ b. If π ⊕ li does not cover w ↪→ b, then this can only be if w ↪→ b contains an
application of PRES (k) with π⊕ li ≺ k. Again, π⊕ li ⊆ π∪{li} implies π ≺ k or li ≺ k.
Since we cannot have π ≺ k by the coverage assumption, li ≺ k. The PRES (k) rule
application must be associated with a wire implication z ⇐k d. But now by orientedness
we infer li 6≺ k, a contradiction. The very same argument can be used to show that if π
covers w ↪→π b then π ⊕ li also covers w ↪→π⊕li b.

The translation of trees in the induction step is trivial if we have w ↪→ 0 and the
last rule is an application of a ABS (w). In this case the premises are derivations of
ei ↪→ 0 for all implications w ⇐li ei associated with wire w. As argued above π ⊕ li
covers ei ↪→ 0. By induction hypothesis this gives ei ↪→π⊕li 0 and thus w ↪→π 0 with rule
ABS (π,w). Secondly, the translation is trivial in the other direction, if the derivation is
w ↪→π 1 and the last rule is PRES(π, l), because we can transform directly: Then the
rule has a single premise proving ei ↪→π⊕li 1 for some selected wire equation w ⇐li ei
such that π 6≺ li. As before, by orientedness, π⊕ li must cover the derivation ei ↪→π⊕li 1.

35

The induction hypothesis then generates a constructive evaluation ei ↪→ 1 from which
we get w ↪→ 1 by rule PRES (li), completely ignoring the visibility information.

The more interesting cases are the addition of visibility to a derivation w ↪→ 1 and
the removal of visibility in a derivation w ↪→π 0. The reason is that in an application of
PRES (l) which ignores visibility the selected premise may be actually be down-stream
and violate π 6≺ l. So, PRES (l) cannot be replaced by PRES (π, l). Dually, in an
application of ABS (w) the visibility constraint might ignore a wire definition w ⇐l d
that is down-stream (π ≺ l) and that does not evaluate to 0. So, ABS (π,w) cannot be
replaced by ABS (w). The point is, however, that because of the covering property of π
this cannot happen.

Consider a tree for w ↪→ 1 finishing in an application of PRES (li) with a single premise
ei ↪→ 1 for one of the wire definitions w ⇐li ei in C for w. But by assumption, π covers
the derivation w ↪→ 1, whence π 6≺ li. Recalling as above that π ⊕ li covers w ↪→ 1 and
thus also the sub-derivation ei ↪→ 1 we can invoke the induction hypothesis to obtain a
derivation ei ↪→π⊕li 1 and from here, qua rule PRES (π, li), a derivation w ↪→π 1.

The same argument works in the other direction starting from an evaluation tree for
w ↪→π 0 ending in an application of the ABS (π,w) rule. The premises are of the form
ei ↪→π⊕li 0 for all definitions w ⇐li ei of wire w satisfying the visibility constraint π 6≺ li.
Now, since π covers w, we get π 6≺ li for all 0 ≤ i ≤ n. Hence the premises of ABS (π,w)
include derivations ei ↪→π⊕li 0 for all wire definitions of w. By induction these translate
into derivations ei ↪→ 0 from which an application of ABS (w) finally yields w ↪→ 0.

Since SCC circuits are flow-oriented, by Prop. 2 it does not matter if we evaluate
SCC (P) under visibility constraints or not.

Proposition 3. Let SCC (P) be the SCC circuit translation of a program P . Then,
SCC (P) is flow-oriented. Further, let π ⊂ F be observation points from which every wire
implication w ⇐l e in SCC (P) is visible, i.e., such that π 6≺ l. Then, SCC (P), I, R `
e ↪→ b iff SCC (P), I, R ` w ↪→π b.

Proof. Flow-orientation of SCC (P) is a direct consequence of the definition of the visi-
bility indices generated with the recursive translation of P following the rules in Fig. 2.3
and 2.4, as described at the beginning of this section. The second part of Prop. 3 is a
consequence of flow-orientation and Prop. 2.

The final theorem Thm. 1 not only implies conservativeness of SCC over BCC . It
also shows how the standard constructive semantics of the new SCC circuits can be
obtained from the existing BCC circuits by the new visibility-based constructive eval-
uation relation defined in Fig. 4.1. The following theorem states only one direction of
this equivalence. The proof for the converse direction, which we claim is true as well,
will be added in future version of this text.

Theorem 1. Let SCC (P) and BCC (P) be the circuits of a program P under the
new sequentially constructive and standard Berry translation, respectively. Assume

BCC (P),E⇐0 I ∨ Ec ∨ E′,E′c ⇐0 E′, I, R ` E′c.s ↪→π b

36

for some signal s ∈ Sig and observation points π ⊂ F . Then,

SCC (P),Es ⇐0 I, I, R ` E′c.s ↪→π b

where index 0 is chosen so that it is �-incomparable to all indices appearing in either
BCC (P) or SCC (P).

Sketch. Recall that the wiring of BCC (P) is the same as for SCC (P) except for the
treatment of the signal buses. This means the evaluation of instances of control wires

CTR = {GO,RES,SUS,KILL,SEL, k0, k1, k2+}

in BCC (P) and in SCC (P) exactly match up each other to the point where either
circuit reads a signal s ∈ Sig. In BCC (P) the signals are read from the global input
bus E.s and written to global output bus E′.s. In SCC (P) signals are passed around
on two types of local buses, in sequential direction read from Es.s and written to E′s.s,
in concurrent direction read from Ec.s and written to E′c.s. However, these buses are
instantiated recursively for each sub-program of P at different visibility indices. So, the
ground instances of these “signal” wires read E.s, E′.s, Es[l].s, E′s[l].s Ec[l].s and E′c[l].s
where l ∈ F and s ∈ Sig.

Let BCC (P)∗ abbreviate the context BCC (P), E ⇐ I ∨ Ec ∨ E ′, E ′c ⇐ E
′, I, R.

Similarly, SCC (P)∗ stands for

SCC (P),Es ⇐0 I ∧GO[],E′c ⇐ E′c[], I, R.

For technical convenience, we assume that 0 ∈ π, so that π ⊕ 0 = π. This is without
generality because 0 is globally ≺-incomparable. Hence, it does not impose any visibility
constraint and acts neutrally: e ↪→π b iff e ↪→π∪{0} b. Our argument proceeds by
induction on the size of derivations together with following auxiliary correlations:

(a) BCC (P)∗ ` GO[l] ↪→π b⇔ SCC (P)∗ ` GO[l] ↪→π b.

(b) BCC (P)∗ ` E′c.s ↪→π b⇒ SCC (P)∗ ` E ′c[l].s ↪→π b for some l ∈ F with π 6≺ l.

(c) SCC (P)∗ ` Ec[l].s ↪→π b⇒ SCC (P)∗ ` Ec[m].s ↪→π b for all l � m and π 6≺ m.

(d) SCC (P)∗ ` Ec[l].s ↪→π iff for all visible “concurrent” m, i.e., such that π 6≺ m
and both l 6≺ m and m 6≺ l we have SCC (P)∗ ` E ′c[m].s ↪→π .

(e) SCC (P)∗ ` Es[l].s ↪→π iff SCC (P)∗ ` Es.s ↪→π or there exists some visible
upstream index m, i.e., with π 6≺ m and m � l such that SCC (P)∗ ` E ′s[m].s ↪→π

.

(f) GO ↪→ evaluations strictly dominate all activations of downstream statements.

37

Obviously, the (⇒) direction of Thm. 1 is a consequence of (b). We only prove the
most important statements (a) and (b) here. The proofs for (c)–(f), which are properties
purely of the SCC constructions are omitted.

• (b) Suppose BCC (P)∗ ` E′c.s ↪→π b. Then, 0 � π 6≺ 0 and BCC (P)∗ ` E′.s ↪→π b
by rule ABS (π,E′.s). Then, there must exist a visible wire definition E ′.s ⇐l GO[l] in
BCC (P) with π 6≺ l and BCC (P)∗ ` GO[l] ↪→π⊕l b. By construction, the SCC (P)∗

circuit contains the very same wire definition in the form E ′c[l].s ⇐l GO[l] with the
same index l. By induction hypothesis (a) on the height of the BCC (P)∗ derivation we
conclude SCC (P)∗ ` GO[l] ↪→π⊕l b and so SCC (P)∗ ` E ′c[l].s ↪→π b as desired.

• (a) Let BCC (P)∗ ` GO[l] ↪→π b for some control wire GO[l] in BCC (P)∗. These GO
wires are connected in both circuit semantics in the same way except for conditionals,
where SCC (P) feeds GO[l] from both the concurrent and sequential rails Es[l].s, Ec[l].s,
respectively, of a signal s ∈ Sig, whereas BCC (P)∗ only uses the single input E.s.
Hence, it is enough to consider those GO wires which drive the branches P , Q of a
conditional present s then P else Q.

Without loss of generality, let us assume the GO[l] at hand is the input of a positive
conditional branch P , say given through a wire definition

GO[l]⇐l GO[k] ∧ E.s ∈ BCC (P) (4.8)

where GO[k] is the upstream go with k � l that starts the present test. Then, π 6≺ l and
BCC (P)∗ ` GO[k] ∧ E.s ↪→π⊕l b. The SCC (P)∗ circuit instead has the corresponding
wire definition

GO[l]⇐l GO[k] ∧ (Ec[l].s ∨ Es[l].s) ∈ SCC (P) (4.9)

The case where of an activation of the negative branch of a present test is treated
symmetrically. We make a case analysis on b. Note that always l 6≺ l and therefore
π 6≺ l implies π ⊕ l 6≺ l.

If b = 1 we must have BCC (P)∗ ` GO[k] ↪→π⊕l and BCC (P)∗ ` E.s ↪→π⊕l .
By induction hypothesis (a), the former evaluation directly carries over and we obtain
SCC (P)∗ ` GO[k] ↪→π⊕l . The latter, because of the feedback wiring E ⇐ I∨Ec∨E ′,
may either arise from one of the following:

(i) BCC (P)∗ ` I.s ↪→π⊕l 1,

(ii) BCC (P)∗ ` Ec.s ↪→π⊕l ,

(iii) BCC (P)∗ ` E ′.s ↪→π⊕l .

In the first case (i) we get SCC (P)∗ ` I.s ↪→π⊕l 1. By the properties of 0 we have
π ⊕ l ⊕ 0 = π ⊕ l, whence SCC (P)∗ ` I.s ↪→π⊕l⊕0 1. Then, since π ⊕ l 6≺ 0 the external
wiring Es ⇐0 I implies SCC (P)∗ ` Es.s ↪→π⊕l 1 by rule PRES (π, l). Now we exploit the
auxiliary fact (e) to obtain SCC (P)∗ ` Es[l].s ↪→π⊕l 1. From this and (4.9) it follows
that SCC (P)∗ ` GO[l] ↪→π .

38

In the second case (ii) we are done since this means SCC (P)∗ ` Ec.s ↪→π⊕l and
thus by (c), SCC (P)∗ ` Ec[l].s ↪→π⊕l . Therefore, SCC (P)∗ ` Ec[l].s ∨ Es[l].s ↪→π⊕l ,
which gives SCC (P)∗ ` GO[l] ↪→π . This deals with the situation where the signal s is
evaluated from the external environment.

What if we have (iii) where BCC (P)∗ receives the signal value from the internal circuit
feedback, i.e., BCC (P)∗ ` E ′.s ↪→π⊕l ? This evaluation must be generated from an
emit s circuitry with wire definition E ′.s ⇐m GO[m] in BCC (P)∗, so that π ⊕ l 6≺ m
and BCC (P)∗ ` GO[m] ↪→π⊕l⊕m . This implies that π 6≺ m, i.e., the emit is visible for
π. Regarding the relative visibility of l and m we claim that l 6≺ m: This is obvious
if l 6≺ π since then π ⊕ l = π ∪ {l}. What if l � π? Our circuits are constructed so
that the activation of a program statement dominates the activation of all down-stream
statements, which is our auxiliary fact (f). Specifically, here GO[l] is the activation
control of the then branch of the present test present s then P else Q at index l and GO[m]
the activation control of the emit at index m. If l ≺ m was true, i.e., the emission
downstream from the present test, the evaluation tree for BCC (P)∗ ` GO[k] ↪→π⊕l⊕m
would not be able to contain the sub-evaluation BCC (P)∗ ` GO[m] ↪→π⊕l . Hence
index m can only be either concurrent to l, i.e., l 6≺ m and m 6≺ l or upstream from it,
i.e., m � l.

Next, consider the matching wire definitions for the emit, E ′s[m].s ⇐m GO[m] and
E ′c[m].s⇐m GO[m], in the circuit SCC (P)∗. By induction hypothesis (a), the activation
of the emit carries over, whence SCC (P)∗ ` GO[m] ↪→π⊕l⊕m . This means we have both
SCC (P)∗ ` E ′c[m].s ↪→π⊕l and SCC (P)∗ ` E ′s[m].s ↪→π⊕l . Now, if m is concurrent
to l then by (d) the former propagates as SCC (P)∗ ` Ec[l].s ↪→π⊕l through the
internal feedback wiring. If m is upstream, m � l, the latter propagates as SCC (P)∗ `
Es[l].s ↪→π⊕l by sequential forwarding (e). Again, in each case, this implies SCC (P)∗ `
Ec[l].s ∨ Es[l].s ↪→π⊕l and thus SCC (P)∗ ` GO[l] ↪→π as desired.

Now we come to treat the case b = 0, which implies BCC (P)∗ ` GO[k] ↪→π⊕l or
BCC (P)∗ ` E.s ↪→π⊕l considering (4.8). If the former holds we invoke the induction
hypothesis (a) inducing SCC (P)∗ ` GO[k] ↪→π⊕l and thus by (4.9) we have SCC (P)∗ `
GO[l] ↪→π . If the latter holds, BCC (P)∗ ` E.s ↪→π⊕l , then with the outside
marshalling E ⇐ I ∨ Ec ∨ E ′, we must have

BCC (P)∗ ` I ↪→π⊕l 0 (4.10)

BCC (P)∗ ` Ec.s ↪→π⊕l (4.11)

BCC (P)∗ ` E ′.s ↪→π⊕l . (4.12)

We claim that then both

SCC (P)∗ ` Ec[l].s ↪→π⊕l and SCC (P)∗ ` Es[l].s ↪→π⊕l .

This, too, implies SCC (P)∗ ` GO[l] ↪→π by (4.9). Intuitively, in SCC (P)∗ both the
sequential and concurrent signal wires Ec[l].s and Es[l].s must be switched off because
the global input (4.10) and all emitters emit s in BCC (P)∗, which are visible for index
π ⊕ l, are switched off.

39

Let us argue this is more detail. Consider that Ec[l].s in SCC (P)∗ is a tree of disjunc-
tions fed by the global (concurrent) input Ec.s and wire definitions Ec[m].s⇐m GO[m]
for some (innermost) wires Ec[m].s where m is concurrent with l. This is the con-
tent of auxiliary fact (d). All of these wire definitions Ec[m].s ⇐m GO[m] are asso-
ciated with an emitting wire E ′.s ⇐m GO[m] in BCC (P)∗. But (4.12) then implies
BCC (P)∗ ` GO[m] ↪→π⊕l for all π 6≺ m. By induction hypothesis this also means
these activation wires are off in SCC (P)∗, i.e., SCC (P)∗ ` GO[m] ↪→π⊕l for all
π 6≺ m. This shows that the concurrent wire Ec[l].s must be off in SCC (P)∗ by (d), i.e.,
SCC (P)∗ ` Ec[l].s ↪→π⊕l .

Each sequential signal wire Es[l].s in SCC (P)∗ ultimately depends on possibly the
global input I, or a set of upstream emitter definitions E ′s[m].s⇐m GO[m], with m � l,
in such a way that if all of them evaluate to 0, wire Es[l].s must necessarily evaluate
to 0 as well. This is the content of fact (e). The global input evaluates to 0 by (4.10).
Further, since each sequential emission E′s[m].s ⇐m GO[m] in SCC (P)∗ is associated
with a wire definition E ′.s⇐m GO[m] in BCC (P)∗, by (4.12) we must have

BCC (P)∗ ` GO[m] ↪→π⊕l⊕m (4.13)

provided π ⊕ l 6≺ m. (Otherwise the evaluation to 0 at index π ⊕ l would be down to
the fact that m is downstream and thus not visible.) But since π 6≺ l and m � l it
follows that π 6≺ m. This implies π ⊕ l 6≺ m as one easily shows from the definition
of the ⊕ operator. Hence we know (4.13) is true and apply the induction hypothesis
to get SCC (P)∗ ` GO[m] ↪→π⊕l⊕m from which readily SCC (P)∗ ` E′s[m].s ↪→π⊕l 0
taking into account that there is exactly one wire definition for a sequential emission
E′s[m].s. Since this is established for all upstream sequential emitters we consequently
get SCC (P)∗ ` Es[l].s ↪→π⊕l by (e) and from this, finally using (4.9), we get the
desired result: SCC (P)∗ ` GO[l] ↪→π .

40

5 SCC vs. the SC MoC

The desire to handle sequential updates in a synchronous setting has recently motivated
the sequentially constructive model of computation (SC MoC), which allows shared vari-
ables values to change within a reaction as long as the result is still determinate and
does not depend on run-time scheduling choices [18]. More specifically, a run is consid-
ered SC-admissible if it adheres to certain restrictions concerning the access to shared
variables, in particular that writes occur before reads; a program is considered SC if it
allows SC-admissible runs for all possible input sequences, and if all such runs lead to
the same result.

However, the SC definition based on runs is somewhat unsatisfactory from Esterel’s
constructiveness point of view in that it may be considered overly generous and is not

SCC

BC

Acyclic

SC

Acyclic BC

module XY:
[

present X then emit Y end
||

present Y then emit X end
]

module XYelse:
[

present X then emit Y end
||

present Y else emit X end
]

module Dynamic:
loop

emit S;
present I then pause end;
present S then emit T end;
present I else pause end

end

module OffOn:
present S then emit T end;
emit S;
present S then emit U end

module XYpresent:
[

emit X
||

present X then emit Y end
]

module ABBA:
[

present A and I
then emit B end

||
present B and not I

then emit A end
||

present A or B
then emit O end

]

Figure 5.1: The class of programs considered valid under the Sequentially Constructive
Circuit (SCC) semantics, proposed here, in relation to other program classes. “Acyclic”
refers to programs that do not have static cycles involving concurrent data dependencies
(structurally iur-acyclic in [18]). Most Esterel compilers handle only Acyclic BC [30].
Esterel v5 handles all of BC [36]. The SCEst2SCL compiler handles Acyclic [31]. Our
work extends compilation to SCC, that is SC without “speculation.”

41

1

Done

 Y

 X

Y

nothing

present Y then emit X end || present X then emit Y end

nothing

emit Y

emit Xpresent Y...

present X...

X

⊥

1

1

⊥

⊥

⊥

1

1

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

G5G1

G2

G3 G4

G6 G7 G8

Figure 5.2: Circuit for XY, which is not constructive

founded on constructive logic. As noted in the original SC proposal [18], it accepts pro-
grams that in the traditional synchronous sense are considered “speculative.” Consider
the minimalistic XY Esterel example in the lower-left of Fig. 5.1. Its output consists
of the signals X and Y, which are present if and only if they are emitted by an emit
statement; otherwise they are absent. XY consists of two parallel threads, where the
first emits Y if X is present and the second emits X if Y is present. The software view
at XY is that a scheduler may choose between first testing X or first testing Y, but in
both schedules the end result will be the same, namely both signals absent at the end
of the tick. Thus XY is SC. However, either schedule requires a “leap of faith” when
doing the first test, of X or of Y, by assuming that the tested signal will not be emitted
by the other thread later. The hardware view of XY exposes this, as can be seen in
the circuit in Fig. 5.2 that has been constructed according to Berry’s circuit semantics
for Esterel [5] and where G2 and G5 form a cycle. Thus some wires are known to be
high (labeled 1, corresponding to “present”), but most stay unknown (⊥) according
to ternary constructive logic [36, 24]. For the XY circuit, this means that we cannot
guarantee unique stabilization, and indeed there are two possible stable states for this
circuit, one with both X and Y considered absent and one with both considered present.
Our SCC proposal rules out such cases and defines a notion of SC that has a firm
physical grounding.

Beyond this language-theoretic motivation, which — relative to the original SC pro-
posal — results in a more restricted notion of what is considered acceptable, we are on
the other hand concerned with enlarging the class of SC programs that can be handled
in practice. The current definition of SC achieves the goal of a determinate semantics,
but is not a viable basis for compile-time analysis of whether a program is SC or not.
To check whether a program is SC would require an exhaustive construction of all SC-
admissible runs, for all possible input sequences, for example using a mechanism based
on backtracking; then one would have to check that for all possible input sequences, all

42

runs lead to the same result. Thus compilers for languages based on the SC MoC, such
as SCCharts [17] or SC Esterel (SCEst) [31, 17], so far only accept a subset of the SC
MoC, namely those programs where scheduling constraints induced by control flow and
shared variables are statically acyclic. One such program is XYpresent shown on the top-
left in Fig. 5.1; the emission of Y depends on X, but not the other way around. Another
example, not BC but still acyclic, is OffOn shown on the right in Fig. 5.1, where S is ab-
sent when it is tested the first time and present the second time around. The restriction
to acyclic dependencies and the requirement of static schedulability is common for com-
pilers for synchronous languages, sometimes this is even built into the language. This is
for example the case for Lustre [10] or the modeling language employed by the SCADE
(Safety Critical Application Development Environment) tool from Esterel Technologies,
which is, for example, used by Airbus for developing flight controller software [3]. For
most programs, this seems acceptable, just as it is standard practice in hardware design
to require acyclicity. However, there is also a large body of work on statically cyclic, yet
determinate hardware circuits and synchronous programs [23, 25, 32, 11, 26]. In ABBA,
seen in the top-right of Fig. 5.1, B depends on A if input signal I is present, conversely
A depends on B if I is absent. Thus there is a static dependency cycle between A and
B, and most existing compilers for synchronous programs will reject this; however, the
program still has a well-defined, determinate semantics, for each possible status of I the
output signal O will be present. This has been formalized by Berry as the constructive
semantics of Esterel [5]. While few compilers can handle the full constructive semantics
including statically cyclic programs, the class of cyclic yet constructive programs is in-
teresting and well-studied. One attractive feature of that program class is that in some
cases, a cyclic circuit may be smaller than an equivalent, acyclic circuit [32]. A classic
example is a function that computes y = i?f(g(x)) : g(f(x)), where, depending on some
input i, f must be computed before g or the other way around. Another classic example
is the token ring arbiter, where a rotating token dynamically determines the evaluation
schedule [29]. There exist compilers that accept such programs, notably the Esterel v5
compiler, however, these are again limited to synchrony in the traditional sense that does
not take advantage of sequentiality. The SCC2BC transformation provides a practi-
cal setting for compiling SC programs even if they are statically cyclic. This
includes programs such as Dynamic, seen in the bottom-right of Fig. 5.1. This is not
Acyclic, because (as explained in Sec. 2.2) no static execution schedule exists, and it is
not BC, because S may be tested before it is emitted. Yet it is SC and does not require
“speculation” in the sense of XY, so we consider it “well-behaved” once we accept the
notion of sequentially evolving signal statuses (as exemplified already with OffOn) and
wish to be able to compile it. We want to reject programs that require speculation, such
as XY. Of course we also want to reject programs that are not SC, such as XYelse, seen
in the left of Fig. 5.1; there, Y is emitted iff X is present, X is emitted iff Y is absent,
thus there is no consistent signal evaluation.

43

6 Related Work

There is a large body of work on SSA transformations. However, relatively little appears
to have been developed for concurrent programs. Lee et al. [21] present one approach,
extended by Novillo et al. [27] to handle mutual exclusion. However, they do not address
programs divided into discrete ticks with value re-initialization at tick boundaries. Kalla
et al. [19] use SSA to translate C code into synchronous data-flow equations but without
concurrency.

The initially proposed semantics for Esterel [4, 7] did already provide synchrony and
determinacy, but were rather restrictive as to which programs were considered “causal.”
This has been subsequently resolved with the constructive semantics, for which Berry
has proposed several alternative, but equivalent formalizations [5]. (1) The constructive
behavioral semantics is a non-speculative refinement of the logical behavioral semantics.
It is in a way the simplest and most abstract formalization of what an Esterel program
means, but not a suitable basis for a compiler. (2) The constructive operational semantics
is a micro-step semantics, an earlier version of this has been used in the Esterel v4
compiler. (3) The constructive circuit semantics, which we refer to as BCC here, is the
basis of the Esterel v5 compiler.

The semantics introduced here for Esterel/SCEst deviates from the constructive se-
mantics of Berry in that sequential compositions R1;W ;R2 are executed like ordinary
imperative programs and signal emissions behave like assignments to boolean variables.
Specifically, variables read by R1 may be overwritten by assignments in W so they have
a different value when read by R2. Under the constructive semantics of Esterel [5] there
cannot be an emission to a signal in W after it has been read in R1. The reason is
that in the circuit semantics of Esterel the writer W is wired not only to sequentially
down-stream R2 but also to upstream R1 which creates a causality loop: The reading
R1 depends on the writing by W , yet the write cannot start until the read R1 has termi-
nated. By removing such back-flow dependencies against the sequential program order
our semantics eliminates such causality problems. As noted earlier, this is inspired by
the SC proposal [18]. Rathlev et al. [31] present an SC-based semantics for (kernel) Es-
terel that also covers valued signals while we only treat boolean signals here. However,
the core of our results is to show how the SC semantics of boolean Esterel can be reduced
to the constructive semantics of Esterel by SSA transformation. This is an important
advance over [18], in that the existing results on Esterel [24] now imply that the SSA
transformed program is delay-insensitive considered as a boolean control circuit. We
believe this is a strong guarantee on the robustness of the generated code, even if the
implementation is not a circuit but single-threaded imperative code facing scheduling
uncertainties arising from weak memory models [28].

44

Another way to understand our work is as an approach to relax the traditional, rather
rigid, synchronous model of concurrent programming by a more generous use of shared
communication structure. The communication structure here are the signals and the
relaxation consist in permitting sequential threads to change signal values more than
once during a synchronous tick. This permits signals to be used like variables and reduces
the gap between synchronous control flow and standard imperative programming. For
data flow synchronous programming an analogous approach has been proposed by Cohen
et al. [12] on N -synchronous Kahn networks. There, the shared communication structure
are data-flow variables. The relaxation is to decouple the writing and reading of a
variable by a bounded number of ticks, which makes it possible to program multi-
rate data-streaming very conveniently. Analogous to what we do here with the SSA
transformation of signals, the semantics of the N -synchronous programming model is
defined by an “expansion transformation” into the traditional 0-synchronous model [16].
The expansion of variables in this case are buffers, automatically synthesised by static
type-checking using a clock calculus with causality sub-typing.

The compilation of Esterel and its potentially quite intricate reactive control flow
structures has sparked the interest of a number of researchers, as discussed by Potop-
Butucaru et al. [30]. One early approach has been the automata-based compilation,
where an Esterel program is translated into a Mealy machine. The Esterel v2 compiler
was based on Brzozwski’s residual technique to translate regular expressions into au-
tomata [8]. Transitions were derived directly from Esterel’s behavioral semantics (then
still in its non-constructive variant), given as Plotkin-style Structural Operational Se-
mantics (SOS) rules [6]. States then correspond to the program derivatives. This tends
to produce fast code, as basically the programs are already partially evaluated as much
as possible at compile time. However, since concurrency is compiled away into product
automata, the state space and the resulting code may become unacceptably large. The
aforementioned circuit-based compilation, where the synthesized code simulates a netlist,
does not have that size explosion problem, since the resulting code size scales basically
linearly with the original Esterel program [30]. However, since the code simulates the
whole program irrespective of whether it is “active” in the current tick, the code tends
to become rather slow for larger programs. A good compromise between speed and size
is achieved by a more software-like approach, where concurrent threads are statically
scheduled and interleaved at compile time, which is for example implemented in the
Columbia Esterel Compiler [15]. A good overview of this and other approaches for com-
piling concurrent programs (not necessarily Esterel) is presented by Edwards [14]. As our
SCC2BC transformation is a source-to-source transformation that results in standard
Esterel code, any of these compilation approaches may potentially be used for further
downstream compilation of SCC programs, at least as far as sequential constructiveness
is concerned. Not all Esterel compilers can handle all programs, in particular if there are
static cycles in the program as in ABBA from Fig. 5.1. This, however, is an orthogonal
issue to the work presented here.

As already pointed out, most EDA tools require acyclic circuits, as do most syn-
chronous language compilers. This has motivated numerous works on transforming

45

cyclic circuits into equivalent acyclic ones; Neiroukh et al. provide a good overview
and present a technique of their own [26]. Lukoschus et al. present an approach to
remove cycles at the Esterel level [22]. Their technique, which maps BC programs to
statically acyclic BC programs, could be combined with ours that maps SCC to BC into
a transformation that maps SCC to acyclic BC. The role of cyclic circuits in hardware
synthesis has been discussed in [23, 32] and their analysis in ternary algebra in [23, 9, 36,
25]. Schneider et al. have suggested the use of scheduling or atomicity constraints for
increasing constructiveness of cyclic circuits [33, 34]. The idea of flow indices to express
evaluation order in ternary analysis and connecting them with SSA transformation, as
explored here, seems to be new.

In this work we stress the role of sequential program order (“visibility”) in order to
permit several write accesses to Esterel signals within a tick. The sequential order re-
solves the potential non-determinacy because every read access only sees the sequentially
last (dominator analysis) write. There are other ways to resolve multiple writes, pre-
serving determinacy, namely if these writes are accessing disjoint parts of signal value.
Following this idea, a powerful technique to generate coherent shared memory structure
for functional programs has recently been proposed by Kuper et. al. [20]. They intro-
duce lattice-based data structures, called LVars, in which all write accesses produce a
monotonic value increase in the lattice and all read accesses are blocked until the mem-
ory value has passed a read-specific threshold. Each variable’s domain is organised as a
lattice of states with ⊥ and > representing an empty new location and an error, respec-
tively. A write operation of the form put lv v computes the least upper bound (join) of
the current state of lv and the value v. The read operation get lv θ blocks until the state
of lv reaches a value in the threshold set θ, and from then on any execution of get lv θ will
return the same value independently of any interleaved execution of a put. Because of
monotonicity all writes are confluent with each other. Since reads are blocked each LVar
data type can thus be viewed as a class of signals with a threshold-determined protocol.

As already mentioned in the introduction and in Sec. 3.4, several approaches have
been developed to handle schizophrenia. A simple method for Esterel is to duplicate
all loop bodies, which may lead to exponential code/circuit size increase [5]. Tardieu
et al. [37] have improved this to at worst quadratic increase. For signal reincarnation,
SCC2BC is an efficient alternative, as discussed in Sec. 3.4. Beyond the realm of Esterel-
style synchronous signals, Aguado et al. [1] demonstrated that sequential variables
can elegantly circumvent the reincarnation issue by making signal initialization explicit
(rather than implicit as in Esterel) and separating surface and depth initializations.

Not considered here are programs that are SC but contain instantaneous loops. These
are forbidden in SCC and the program classes contained in it, but can be handled by
the SCEst2SCL compiler based on priorities [17].

46

7 Conclusion and Future Work

In this report, we have explored how to extend the concept of static single assignment to
reactive, synchronous programming. Specifically, we presented the SCC2BC source-to-
source tranformation procedure for Esterel, which can be used as a pre-processing step
for standard Esterel compilers. For the Esterel programmer, SCC2BC allows the conve-
nience of sequential, imperative-style programming familiar from languages such as C or
Java, without leaving the solid foundation of determinate concurrency. Furthermore, as
illustrated in the introduction with the SignalReinc example (Lst. 1.4), SCC2BC handles
signal reincarnation naturally, without the code duplication inherent in earlier propos-
als [5, 37]. SCC2BC is a minimally invasive source-to-source transformation that splits
up signals into different versions only when needed to eliminate signal dependencies that
go against sequential control flow. To confirm the correctness and completeness of our
approach, we have implemented SCC2BC and validated it with a range of both BC and
non-BC, cyclic and acyclic programs. Modulo optimization, SCC2BC typically leaves
BC programs untouched, as desired. This includes non-trivial, statically cyclic cases
such as the token ring arbiter. Programs that are not BC but SCC are transformed into
equivalent BC programs.

This work also defines the program class SCC, which encompasses the programs for
which a circuit generated according to the SCC circuit semantics is constructive. SCC
on the one hand defines a significant subset of SC programs, namely those that can be
executed without “speculation,” and on the other hand extends compilation technology
for synchronous programs, as illustrated in Fig. 5.1. SCC programs can either be struc-
turally translated to circuits, according to the SCC rules set down in Sec. 2, and then
be compiled further into hardware or software using standard techniques. Alternatively,
SCC programs can be translated into BC programs, using the SCC2BC transformation
presented in Sec. 3.

There are numerous directions to procede from here. To begin with, while this work
is mostly about expanding the range of compilable programs, a natural question is how
the size of SCC circuits compares to BCC circuits. Our intuition is that there should be
no significant increase, and often the circuits should be even smaller due to the increased
partial evaluation done at compile time. One example is ST (Fig. 2.2), where SCC has
two fewer gates than BCC.

Conservativeness (Sec. 4) is a combination of the result that if a Berry circuit of a
program P stabilises a signal, then it stabilises it under visibility (Prop. 1); that this fur-
ther implies that the corresponding SCC of P also stabilises it under visibility (Thm. 1);
and finally that if SCC stabilises a signal with visibility restriction, then it stabilises
without them (Prop. 2). This chain gives more information than just conservativeness.
It goes some way to explain SCC as a flow-sensitive evaluation of Berry circuits. For an

47

exact characterisation it would be interesting to prove the converse of Thm. 1 in future
work. Also, we plan to extend the formalisation for dynamic visibility relations to lift
the restrictions on programs mentioned at the beginning of Sec. 4.

We have developed our results in the setting of pure Esterel. The extension to re-
maining Esterel features, such as valued signals, variables etc., should be mostly straight-
forward, but still remains to be done. An interesting statement is the (strong) unemit
provided by SCEst, which may lead to conflicts if performed concurrently with an emit.
We can augment SCC with conflicts by emitting an error signal whenever such a conflict
occurs, and feeding that error into a circuit that is constructive iff the error cannot occur.
This can be implemented for example as a concurrently running signal helper in present
error and helper then emit helper end end; if error is proven to be always absent, we can also
prove that helper is absent and everything is well-defined, otherwise we can neither prove
helper to be present nor to be absent and the whole program must be rejected, at compile
time. However, there is still the difficulty that a thread may perform both an emit and
an unemit with dynamic ordering between them, and a concurrent thread has to decide
which of these is (un)emitted last.

Finally, we would also like to apply our results to other languages building on the
SC MoC, such as SCCharts [17]. It would be interesting to explore how much could be
gained by adopting the SC MoC and SCC in other synchronous languages as well, such
as Lustre or SCADE.

48

Bibliography

[1] Joaqúın Aguado et al. “Grounding Synchronous Deterministic Concurrency in
Sequential Programming”. In: Proceedings of the 23rd European Symposium on
Programming (ESOP ’14), LNCS 8410. Grenoble, France: Springer, Apr. 2014,
pp. 229–248.

[2] Felice Balarin et al. Hardware-Software Co-Design of Embedded Systems, The PO-
LIS Approach. Kluwer Academic Publishers, Apr. 1997.

[3] Albert Benveniste et al. “The Synchronous Languages Twelve Years Later”. In:
Proc. IEEE, Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ, USA:
IEEE, Jan. 2003, pp. 64–83.

[4] Gérard Berry. “Preemption in Concurrent Systems”. In: Proceedings of the 13th
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence. London, UK: Springer-Verlag, 1993, pp. 72–93. isbn: 3-540-57529-4.

[5] Gérard Berry. The Constructive Semantics of Pure Esterel. Centre de Mathématiques
Appliqées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902
Sophia-Antipolis CDX, France: Draft Book, Version 3.0, Dec. 2002.

[6] Gérard Berry and Laurent Cosserat. “The ESTEREL Synchronous Programming
Language and its Mathematical Semantics”. In: Seminar on Concurrency, Carnegie-
Mellon University. Vol. 197. LNCS. Springer-Verlag, 1984, pp. 389–448. isbn: 3-
540-15670-4.

[7] Gérard Berry and Georges Gonthier. “The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation”. In: Science of Computer Programming
19.2 (1992), pp. 87–152.

[8] Janusz A. Brzozowski. “Derivatives of regular expressions”. In: Journal of the ACM
11.4 (Oct. 1964), pp. 481–494.

[9] Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits. New York:
Springer-Verlag, 1995.

[10] P. Caspi et al. “LUSTRE: a declarative language for programming synchronous
systems”. In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL’87). Munich, Germany: ACM, 1987,
pp. 178–188.

[11] Koen Claessen. “Safety Property Verification of Cyclic Synchronous Circuits”. In:
Electronic Notes in Theoretical Computer Science. Vol. 88. Elsevier, July 2003,
pp. 55–69.

49

[12] A. Cohen et al. “N-synchronous Kahn Networks: A Relaxed Model of Synchrony for
Real-time Systems”. In: Conference Record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’06. New York, NY,
USA: ACM, 2006, pp. 180–193.

[13] Ron Cytron et al. “Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph”. In: ACM Transactions on Programming Languages
and Systems 13.4 (Oct. 1991), pp. 451–490.

[14] Stephen A. Edwards. “Tutorial: Compiling concurrent languages for sequential
processors”. In: ACM Transactions on Design Automation of Electronic Systems
8.2 (Apr. 2003), pp. 141–187.

[15] Stephen A. Edwards and Jia Zeng. “Code Generation in the Columbia Esterel
Compiler”. In: EURASIP Journal on Embedded Systems Article ID 52651, 31
pages (2007).

[16] Nicolas Halbwachs et al. “The synchronous data-flow programming language LUS-
TRE”. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1305–1320.

[17] Reinhard von Hanxleden et al. “SCCharts: Sequentially Constructive Statecharts
for Safety-Critical Applications”. In: Proc. ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’14). Edinburgh, UK:
ACM, June 2014.

[18] Reinhard von Hanxleden et al. “Sequentially Constructive Concurrency—A Con-
servative Extension of the Synchronous Model of Computation”. In: ACM Trans-
actions on Embedded Computing Systems, Special Issue on Applications of Con-
currency to System Design 13.4s (July 2014), 144:1–144:26.

[19] Hamoudi Kalla et al. “Automated translation of C/C++ models into a syn-
chronous formalism”. In: 13th Annual IEEE International Symposium and Work-
shop on Engineering of Computer-Based Systems (ECBS’06). Mar. 2006, 9 pp.-436.

[20] Lindsey Kuper et al. “Freeze after writing: Quasi-deterministic parallel program-
ming with LVars”. In: Principles of Programming Languages (POPL ’14). Dan
Diego, USA: ACM, 2014, pp. 257–270.

[21] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. “Concurrent Static Single
Assignment Form and Constant Propagation for Explicitly Parallel Programs”.
In: Proceedings of the 10th International Workshop on Languages and Compilers
for Parallel Computing. LCPC ’97. Springer-Verlag, 1998, pp. 114–130.

[22] Jan Lukoschus and Reinhard von Hanxleden. “Removing Cycles in Esterel Pro-
grams”. In: International Workshop on Synchronous Languages, Applications and
Programming (SLAP ’05). Edinburgh, Apr. 2005.

[23] Sharad Malik. “Analysis of Cyclic Combinational Circuits”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13.7 (July 1994),
pp. 950–956.

50

[24] Michael Mendler, Thomas R. Shiple, and Gérard Berry. “Constructive Boolean
circuits and the exactness of timed ternary simulation.” In: Formal Methods in
System Design 40.3 (2012), pp. 283–329.

[25] Kedar S. Namjoshi and Robert P. Kurshan. “Efficient Analysis of Cyclic Defini-
tions”. In: Proceedings of the 11th International Conference on Computer Aided
Verification. Vol. 1633. LNCS. Springer, 1999, pp. 394–405.

[26] Osama Neiroukh, Stephen A. Edwards, and Xiaoyu Song. “Transforming Cyclic
Circuits Into Acyclic Equivalents”. In: IEEE Trans. on CAD of Integrated Circuits
and Systems 27.10 (2008), pp. 1775–1787.

[27] Diego Novillo, Ronald C. Unrau, and Jonathan Schaeffer. “Concurrent SSA Form
in the Presence of Mutual Exclusion”. In: Proc. 1998 International Conference on
Parallel Processing (ICPP’98). Minneapolis, MN, USA, Aug. 1998, pp. 356–365.

[28] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86 Memory Model: X86-
TSO”. In: Proceedings of the 22Nd International Conference on Theorem Proving
in Higher Order Logics. TPHOLs ’09. Munich, Germany: Springer-Verlag, 2009,
pp. 391–407. isbn: 978-3-642-03358-2. doi: 10.1007/978-3-642-03359-9_27.

[29] Paritosh Pandya. “The Saga of Synchronous Bus Arbiter: On Model Checking
Quantitative Timing Properties of Synchronous Programs”. In: Electronic Notes
in Theoretical Computer Science. Ed. by Florence Maraninchi, Alain Girault, and
Éric Rutten. Vol. 65. Elsevier, 2002.

[30] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling Es-
terel. Springer, May 2007.

[31] Karsten Rathlev et al. “SCEst: Sequentially Constructive Esterel”. In: Proceedings
of the 13th ACM-IEEE International Conference on Formal Methods and Models
for System Design (MEMOCODE ’15). Austin, TX, USA, Sept. 2015.

[32] Marc D. Riedel and Jehoshua Bruck. “The Synthesis of Cyclic Combinational
Circuits”. In: Proceedings of the conference on Design automation (DAC ’03).
Anaheim, California, USA, June 2003.

[33] Klaus Schneider et al. “Improving Constructiveness in Code Generators”. In: Int’l
Workshop on Synchronous Languages, Applications, and Programming (SLAP’05).
Ed. by Florence Maraninchi, Marc Pouzet, and Valérie Roy. Edinburgh, Scotland,
UK: ENTCS, Apr. 2005, pp. 1–19.

[34] Klaus Schneider et al. “Maximal Causality Analysis”. In: Conference on Applica-
tion of Concurrency to System Design (ACSD’05). St. Malo, France, June 2005,
pp. 106–115.

[35] K. Schneider and M. Wenz. “A new method for compiling schizophrenic syn-
chronous programs”. In: International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES’01). ACM. Atlanta, Georgia, USA, Nov.
2001, pp. 49–58.

51

https://doi.org/10.1007/978-3-642-03359-9_27

[36] Thomas R. Shiple, Gérard Berry, and Hervé Touati. “Constructive Analysis of
Cyclic Circuits”. In: Proc. European Design and Test Conference (ED&TC’96),
Paris, France. Paris, France: IEEE Computer Society Press, Mar. 1996, pp. 328–
333.

[37] Olivier Tardieu and Robert de Simone. “Curing schizophrenia by program rewrit-
ing in Esterel”. In: Proceedings of the Second ACM-IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE’04). San Diego, CA,
USA, 2004.

[38] Mark N. Wegman and F. Kenneth Zadeck. “Constant Propagation with Condi-
tional Branches”. In: ACM Transactions on Programming Languages and Systems
13.2 (Apr. 1991), pp. 181–210.

[39] Jeong-Han Yun et al. “Detection of Harmful Schizophrenic Statements in Esterel”.
In: ACM Trans. Embed. Comput. Syst. 12.3 (Apr. 2013), 80:1–80:23.

52

	Introduction
	The Sequentially Constructive Circuit (SCC) Semantics
	Brief Review of Esterel
	Constructive Coherence Laws (CCLs) and SC-Visibility
	The ST Example
	The SCC Circuit Rules

	The SCC2BC Transformation
	Control Flow Representation
	Extending SSA to SCSSA
	SCC2BC at the Esterel level
	Schizophrenia
	Implementation and Validation

	Formal Semantics and Conservativeness
	Proofs for Conservativeness

	SCC vs. the SC MoC
	Related Work
	Conclusion and Future Work
	Bibliography

