
INSTITUT FÜR INFORMATIK

Edge Label Placement

in Layered Graph Drawing

Christoph Daniel Schulze, Nis Boerge Wechselberg,
and Reinhard von Hanxleden

Bericht Nr. 1802

February 2018

ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

Institut für Informatik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

Edge Label Placement

in Layered Graph Drawing

Christoph Daniel Schulze, Nis Boerge Wechselberg,
and Reinhard von Hanxleden

Bericht Nr. 1802

February 2018

ISSN 2192-6247

e-mail: E-mail: {cds,nbw,rvh}@informatik.uni-kiel.de

An abridged version of this work is published at the
10th International Conference on the Theory and Application of Diagrams,

Edinburgh, Scotland, June 2018.

This work has been supported in part by the German Science Foundation,
as part of the Compact Graph Drawing with Port Constraints project

(ComDraPor,DFG HA 4407/8-1).

Abstract

Many visual languages based on node-link diagrams use edge labels. We describe dif-
ferent strategies of placing edge labels in the context of the layered approach to graph
drawing and investigate ways of encoding edge direction in labels.

We evaluate the label placement strategies based on both common aesthetic criteria
and a controlled experiment. We find that placing labels on their edge can lead to more
compact diagrams. Also, placing labels with additional arrows indicating edge direction
can help users navigate in large diagrams and is generally preferred by participants of
our experiment, outperforming other ways of indicating edge direction.

i

1 Introduction

Visual programming languages based on node-link diagrams, such as Sequentially Con-
structive Charts (SCCharts) [21] (a synchronous state charts dialect, see Figure 1.1),
have become mainstream in several industries. Languages such as ASCET (ETAS
Group) or Simulink (MathWorks) are popular choices in the automotive industry, and
even 3D designers without any background in programming have been using visual lan-
guages for quite some time now. Autodesk’s 3ds Max, for instance, allows its users to
manipulate geometry through its Max Creation Graph language. Many of these lan-
guages share a number of similarities: first, being based on a notion of either data flow
(data is produced, processed, and consumed by nodes and transmitted between them
through links or edges) or control flow (nodes represent states that can be active or
not, with transitions transferring control between them); second, deriving some of their
semantics through textual labels, be it node labels that specify the types of nodes or
edge labels that define when control transfers from one node to the next; and third,
requiring users to spend a considerable amount of time on laying out their diagrams [12]
for them to properly readable [14], giving rise to automatic layout algorithms [20].

A popular layout approach for flow-based diagrams is the layered approach introduced
by Sugiyama et al. [19], which tends to emphasize data or control flow by making the
majority of edges point in the same direction. The original description of the layered
approach did not mention edge labels. Not taking them into account, however, will
lead to layouts with too little space available for their placement, resulting in overlaps
with other diagram elements—something that may well cause users to refrain from using
automatic layout in the first place. This paper is about making labels first-class citizens
during automatic layout.

Contributions. We show different ways of placing labels within the layered approach,
including the selection of layers to place labels in and the side of their edge to place them
on. We also investigate ways of encoding an edge’s direction through label placement or
additional decorations, intended to be of particular help in use cases where only parts of
a diagram can be displayed on screen. We evaluate the introduced techniques both with
an evaluation based purely on aesthetic criteria as well as with a controlled experiment.

Related Work. Label placement in general has a long history in cartography. In a
classic paper [8], Imhof lays down six principles for good map labeling, which Kakoulis
and Tollis [10] apply to edge labeling as the following three rules:

1. No overlaps between labels and other diagram elements.

1

TrafficLight

input signal Error, Ok, Sec
signal Pgo, Pstop
output int Pgrn, Pred, Cgrn, Cred, Cyel

init

Pred

Pgreen

 / Pred = 1; Pgrn = 0

Pgo / Pred = 0; Pgrn = 1

Pstop / Pred = 1; Pgrn = 0

[-] PedestrianLight

Cinit Cred

Credyel Cgrn

Cyel/ Cred = 1; Cyel = 0; Cgrn = 0

3 Sec / Pstop; Cyel = 1 Sec / Cred = 0; Cyel = 0; Cgrn = 1 5 Sec / Cyel = 1; Cgrn = 0

Sec / Pgo; Cred = 1; Cyel = 0

[-] CarLight

Figure 1.1: An SCChart laid out with the methods we propose in this paper. This drawing
uses a horizontal layout with edges routed as splines.

2. It should be clear which diagram element a label belongs to. Imhof calls this “clear
graphic association”.

3. Among all acceptable positions, a label should be placed in the best possible.

Kakoulis and Tollis also provide a definition of the edge label placement problem, which is
about placing edge labels in diagrams whose elements have already been placed. Existing
algorithms, of which Kakoulis and Tollis provide an overview [20, Chapter 15], usually
either run the risk of violating rules 1 or 2 or may resort to hiding or at least scaling
down labels to avoid violations—both undesirable for visual programming languages.

In this paper we consider label placement a part of automatic layout, thereby ensuring
that there will always be enough space available to satisfy rules 1 and 2. There are algo-
rithms that follow the same approach. Klau and Mutzel [11] for instance integrate node
label placement into the topology-shape-metrics approach to graph drawing, although
the results they show do not always seem to satisfy rule 2. The Graphviz dot1 algorithm,
an implementation of the layered approach, handles edge labels by introducing dummy
nodes [4], an approach we follow as well. However, they do not describe any strategies
regarding where edge labels end up with regard to their edge. Castelló et al. [1] place
labels on edges, which is also one of our label placement strategies. However, they do
not discuss graphical design considerations and do not evaluate whether doing so may
have a negative impact on the ability of users to read the resulting drawing.

There have been more radical proposals, most notably by Wong et al. [23] who replace
an edge by its label. That approach would not work with long edges or orthogonal edge
routing, but our on-edge label placement strategy to be introduced in chapter 4 can be
seen as a less extreme version of this technique.

There have been investigations into how edge direction can be communicated. Xu et
al. [24] found that indicating edge direction through curvature is inferior to using straight
arrows. Holten and van Wijk [7] additionally investigate methods such as changing edge
thickness or color from tail to head. While methods like these can be successful in small
graph drawings, our use cases include diagrams that are too large to fit on a single
screen. Since edges can grow rather long in such diagrams, it would be hard for users

1http://www.graphviz.org/

2

http://www.graphviz.org/

to spot continuous changes in color or thickness since they are distributed over a larger
area. In a subsequent paper, Holten et al. [6] also investigate animating edges to indicate
direction and rendering them as a sequence of arrows. While both can be valid solutions,
they have two drawbacks. First, they arguably increase visual clutter more than our
methods do. And second, they require the rendering of edges to be changed, which may
not always be possible. For example, LabVIEW (National Instruments) distinguishes
different types of edges through their rendering.

Outline. We start with a closer look at the layered approach in chapter 2 before describ-
ing ways to choose which layer and which side of an edge a label ends up in in chapter 3
and chapter 4, respectively, before introducing directional decorators in chapter 5. We
evaluate the techniques in chapters 6 and 7 and conclude in chapter 8.

3

2 The Layered Approach

The layered approach to graph drawing was first introduced by Sugiyama, Tagawa, and
Toda in 1981 [19]. Given an acyclic directed graph, its goal is to produce drawings in
which all of the graph’s edges point in the same direction. In the authors’ terms, this is
achieved by establishing what they call a hierarchy between the nodes, partitioning them
into distinct levels, or layers, such that edges always point from lower to higher levels
in the hierarchy (see Figure 2.1). Note that this usage of the term “hierarchy” differs
from how we use it in this thesis, namely to refer to the concept of establishing parent-
child relationships between nodes. We thus refrain from calling the layered approach
“hierarchical layout”, otherwise used as a synonym in graph drawing literature.

The layered approach consists of five phases, of which the first and last were somewhat
neglected in the original paper:

1. Cycle breaking

2. Layer assignment

3. Crossing minimization

4. Node placement

5. Edge routing

We will look briefly at each phase in the following section before turning to an im-
portant addition to the approach as implemented in the ELK Layered algorithm that
ships with the Eclipse Layout Kernel (ELK) project [17]. For a more comprehensive
introduction to the topic, we refer to Healey and Nikolov [20, chapter 13].

2.1 Phases of the Layered Approach

Phase 1: Cycle Breaking. It is trivial to see that in order to produce a drawing whose
edges all point in the same direction, the input graph must be acyclic. The first phase
is thus in charge of turning a graph with cycles into an acyclic graph for the duration of
the algorithm by reversing the direction of some of its edges. In the final drawing, these
edges will end up as feedback edges, opposing the prevalent layout direction. Formally,
the main problem to be solved during cycle breaking is to find a feedback arc set, to
adopt the terminology used by Eades et al. [2].

Healy and Nokolov note that the original direction of reversed edges can be restored
after the second phase [20, chapter 13]. Only that phase solves a problem that strictly

4

TimedPlotter

Grandma Simulator

NetworkModel

Car Model

CurrentTime

RecordAssembler

DiscreteClock

PeriodicSampler FollowingCar

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

Figure 2.1: A diagram as laid out with ELK Layered, a layer-based algorithm. The different
layers are highlighted.

requires the graph to be acyclic. While this is certainly true, the implementation of
subsequent phases can be simplified if they, too, can operate under the premise of an
acyclic graph.

Phase 2: Layer Assignment. The layered approach would hardly deserve its name if
it did not compute a layering at some point. Doing so is the responsibility of its second
phase. A layering is a partition of a graph’s nodes into distinct layers L1, . . . , Ln such
that for all edges that run from a node in layer Li to a node in layer Lj it holds that
i < j. A proper layering requires i = j−1. We can turn a layering into a proper layering
by inserting dummy nodes to break long edges and thereby turn them into a sequence
of short ones. The dummy nodes are removed again once the algorithm has finished,
thereby restoring the original long edges.

The layers can be thought of as columns, placed from left to right in the final drawing
according to their position in the layering, while the nodes in each layer are placed below
one another.

Phase 3: Crossing Minimization. With nodes assigned to layers, the third phase
computes the order of nodes inside each layer in an attempt to reduce edge crossings
in the final drawing. Finding a node order that minimizes the amount of crossings is
NP-complete [5], and remains so even if the graph consists of only two layers and the
order of one of them is fixed [3]. While there are methods to compute optimal solutions,
for example by Jünger et al. [9], people usually resort to heuristics.

Phase 4: Node Placement. The fourth step of the layered approach assigns y coordi-
nates to all nodes. As a side-effect, this also determines the height of the final drawing.
There are different goals one can strive for in the process.

One such goal is to minimize the height of the drawing. A trivial method which does
so places all nodes inside each layer as close together as spacing constraints allow, and
then centers these groups of nodes vertically. While this method is interesting in that

5

it defines a lower bound on the drawing’s height, it does not fare well in the legibility
department—something users usually do care about.

Other goals include producing a balanced placement (centering nodes with respect to
their neighbors in other layers), minimizing the length of edges, and straightening as
many edges as possible. Node placement methods differ not only in performance or in
whether they solve the problem approximately or optimally, but also in the goals they
try to achieve in the first place.

Phase 5: Edge Routing. The final phase of the layered approach routes edges between
each pair of consecutive layers. The routing determines the amount of space that needs
to be left between the layers. A byproduct of this phase thus is that it computes the x
coordinates of all nodes and thus the width of the whole graph.

There are different styles of edge routing. Orthogonal edge routing inserts bend points
such that edges are routed as a sequence alternating between horizontal and vertical
edge segments. Spline edge routing abolishes sharp bend points by smoothly routing
edges through the diagram as splines.

2.2 Ports

At its inception the layered approach did not have any concept of restricting where edges
could connect to nodes—the important thing was that they did connect. This is not
enough, however, to lay out data flow diagrams such as the one shown in Figure 2.1
which assign semantics to where an edge connects to a node.

Over time, ports crept up in some of the research. Gansner et al. [4] have ports
with fixed positions built into their node placement algorithm. The port side cannot
be influenced, however: incoming and outgoing edges will always connect to the node’s
left and right side, respectively. Sander alleviated this restriction by proposing different
levels of port constraints that define where ports can be placed [15]. Spönemann et al. [18]
added yet more levels of constraints to meet the requirements of data flow diagrams.

For the remainder of this report, it is enough to assume that ports have a fixed
position.

6

3 Layer Selection

The aim of integrating edge label placement into the layout algorithm is to reserve
enough space for the edge labels to be placed without overlaps and with clear graphic
association. Similar to Graphviz dot, we break each edge that has labels by introducing
a label dummy node to represent them. We compute the size of the dummy node such
that all edge labels fit into it, stacked upon each other with a configurable amount of
space between them, plus spacing to be left between the labels and their edge. Once
edge routing has finished, label dummies are replaced by the labels they represent.

Label dummies need to be inserted before the layer assignment step to ensure that
each dummy is assigned to a layer (which might end up existing only because of the label
dummy). It does place a burden on the layer assignment algorithm, though: if there
is any qualitative difference in where exactly along an edge a label dummy is placed,
it seems to be the layer assignment algorithm’s responsibility to place it in the optimal
spot. Since layer assignment is hard enough as it is, we make no assumptions as to
which layer it assigns a label dummy node to (apart from that it will appear somewhere
between the layers of its edge’s end points, of course). Instead, we can move each label
dummy to a layer of our choice after the layer assignment step, if necessary.

That choice is obvious if the edge is so short that there is only one layer to choose from.
If the edge is longer, however—such as the edge from cyel to cred in Figure 1.1—we
need a strategy that defines what constitutes the best choice. We define two basic groups
strategies can belong to: simple strategies and size-aware strategies. Simple strategies
base their decisions only on structural information, while size-aware strategies also take
information about node sizes into account. For the remainder of this chapter, we will
look at examples of each group in turn, all of which are illustrated in Figure 3.1.

3.1 Simple Strategies

Possibly the simplest strategy one could imagine (apart from not doing anything at all,
of course) is the median strategy, which places a label dummy in the median of all the
layers its edge spans. If the width of these layers is approximately uniform, the median
strategy will end up placing labels near the center of their edge. It can be argued,
however, that this may not be the optimal place for all visual languages.

Let us turn to SCCharts to investigate this claim. As mentioned before, edges rep-
resent transitions from a source to a target state that are eligible to be taken based on
some condition. That condition is part of the edge label, as is a hint regarding the order
in which the conditions are tested if multiple transitions leave a state. If edge labels are
placed near the edge center, a user might have to search a large area of an SCChart to

7

L1 L2 L3 L4 L5

Si
m
p
le Median

End

Widest

Edge

CenterSi
ze
-A
w
ar
e

Figure 3.1: Different layer selection strategies would place a label dummy node in different
layers spanned by a long edge, in this case layers L1 through L5 (with L2 located
at the edge’s physical center). What should be considered the best result depends
on the design and the requirements of the visual language.

assemble the labels of all outgoing transitions in order to understand how the SCChart
works.

A second strategy, the end layer strategy, targets exactly this kind of situation. It
places a label dummy in the layer closest to either the source or the target node of an
edge.

Note that both of these simple strategies may end up placing a very wide label dummy
in a layer that contains only comparatively narrow nodes, thereby enlarging that layer
even if another one already provided enough space.

3.2 Size-Aware Strategies

Such considerations lead us to strategies that consider the size of nodes and label dum-
mies. First up is the widest layer strategy, which places a label dummy in the widest of
all layers that its edge spans. For the purposes of this strategy, the width of a layer is
defined as the width of its widest non-dummy node. Label dummy nodes in particular
do not contribute to a layer’s width here since it is not clear whether they are already in
their final layer—if they are not, moving them to another layer may change layer sizes
and thereby invalidate decisions made earlier. Among all strategies, the widest layer
strategy ideally leads to the least amount of wasted white space. To that goal though it
sacrifices any obvious rule regarding where along an edge to start looking for its label,
which may or may not be acceptable.

The latter point may be an advantage of the simple strategies, but a closer look reveals
that the median strategy may in fact suffer from a similar problem. Recall that the first
layer in Figure 3.1 is a lot wider than the others. While it is true that the median
strategy places the label dummy in the median layer, in this case that layer is not the

8

one closest to the edge’s center. This problem is due to the fact that the median strategy
does not take layer sizes into account. The edge center strategy tries to improve upon
the median strategy by doing exactly that: place the label dummy in the layer likely to
be closest to the edge’s center in the final drawing. For this to work one needs a way of
determining the length of the edge. To do so, we simply sum up the width of all layers
it spans. This can of course only be a heuristic, because of two reasons. First, switching
label dummy nodes around may influence the size of layers, in turn influencing both
the length of the edge and the layer closest to its center. And second, the edge length
thusly calculated does not take the amount of space into account that is required for
edge routing between layers since that only becomes known during edge routing. This
is not problematic if that space is approximately uniform, but can adversely affect the
strategy’s decisions otherwise.

9

4 Label Side Selection

The subject of our discussions in the previous chapter was where to place center edge
labels along the horizontal axis. In this chapter, we will be concerned with placement
along the vertical axis. An edge label can be placed above, below, or even on the edge
it belongs to. Implementation-wise, this decision influences where we place the ports
of the label’s dummy node, as Figure 4.1 shows—but how do we make this decision?
Let us work our way through different strategies and examine their advantages and
disadvantages.

4.1 Same-Side Strategy

An obvious strategy is the same-side strategy, which places all labels either above or
below their edge. The simplest strategy to implement, it may also be the easiest for
users to understand due to its consistency, which can make it work even when other
layout properties do their best to sabotage it.

Consider the example in Figure 4.2a. It is clear which edge each label belongs to due
to the fact that it is placed nearer to its edge than to any other edge, in accordance
with the Gestalt principle of perceptual grouping [22]. Donald Norman would call this
“knowledge in the world” [13] in that the diagram can stand on its own and does not
require further information to be deciphered (note that this is not a statement about
how easy this kind of placement is for users, only about whether it is possible for them
to use it at all). Now consider Figure 4.2b. Here, the associations between labels and
edges are ambiguous due to unfortunate spacings. Knowing that labels are always placed
below their edge resolves any ambiguity and makes the same-side strategy work even in
unfortunate circumstances. Norman, however, claims that such additional information
required to understand the world—what he calls “knowledge in the head”—should be
avoided when possible. Although the same-side strategy works even with unfortunate
spacings, the preferred way is to support it with properly chosen spacings to make
graphic association as clear as possible. Still, a convention regarding the side labels are
always placed on may be part of a visual language.

It might strike one as odd that only some of the edges in the example are labeled.
However, this is a common situation since edges usually span different sets of layers and
thus have their labels placed in different ones. Note that the different layer spans imply
that this situations would occur even with a layer selection strategy that tried to prevent
them.

10

Label below

Label above

Label on

Figure 4.1: Whether an edge label will end up above, below, or on its edge is a function of
where its dummy node connects to the edge. Note that the size of the dummy
nodes includes the space to be left between the label and its edge, except in the
on-edge case.

e1

Label 1

Label 2

Label 3

e2

e3e4

e5

e6

a: With clear spacings.

e1e2

e3e4

e5

e6

Label 1

Label 3

Label 2

b: With ambiguous spac-
ings.

Figure 4.2: Placing all labels above or below their edge yields maximum consistency. (a) With
proper spacings between labels and related or unrelated edges, a label placement is
unambiguous regardless of the label side selection strategy. (b) With unfortunate
spacings, the same-side strategy still yields unambiguous results if users are aware
of the used strategy.

4.2 Directional Strategy

While the same-side strategy works well in terms of clear graphic association, it does
not encode additional information, such as the direction an edge is heading towards.
Since a label may be far removed from the end points of its edge, any clue as to the edge
direction may help a user navigate the diagram. The directional strategy aims to do just
that by always placing a label to the left or to the right of an edge (looking towards its
head).

Figure 4.3 shows an example of this strategy in action. Knowing that labels are always
placed to the left of an edge lets us deduce that e2 is headed rightwards while e4 and e5
are going off to the left. If spacings are chosen well, this additional piece of knowledge is
not required for clear graphic association, but offers additional information to advanced
users of a visual language who know about the convention.

If spacings are chosen badly, the directional strategy ceases to work. Referring back
to Figure 4.2b, it would for example not be clear whether “Label 1” belongs to e2 (which
would then be headed leftwards) or to e3 (which would then go to the right).

Of course, this strategy requires knowledge in the head to be able to derive edge
directions, which we will improve upon in chapter 5.

11

e1

Label 1

Label 2

Label 3

e2e3e4

e5

e6

Figure 4.3: Directional label side selection lets users deduce where a labeled edge is heading
without having to look for its end points.

4.3 Augmented Same-Side Strategy

Arguably one of the things most frustrating to users is hitting the layout button and
being served a result with deficiencies that they immediately see how to resolve. Schel-
ten calls graphs that contain such abominations Obviously Non-Optimal (O-No) [16], an
abbreviation which seems particularly appropriate. Here, we use the term not for com-
plete graphs, but for the deficiencies themselves. While the same-side and directional
strategies already seem like decent methods for selecting label sides (particularly with
sensible spacings), in practice they can produce O-Nos. Based on observing examples
of this, we will derive a set of rules with which to augment the same-side strategy to
arrive at what we unimaginatively call the augmented same-side strategy. All labels not
matched by one of the rules will be assigned a default label side. Our goals are both
good graphic association and improving drawings with regard to aesthetic criteria, but
when in doubt we will choose to be conservative in that good graphic association will
never be sacrificed to improved aesthetics.

Before we start examining examples, however, we should take a look at the general
algorithm that implements the augmented same-side strategy. Algorithm 4.1 is executed
for every layer in the graph. It iterates over the layer’s nodes and looks for consecutive
runs of long-edge and label dummy nodes (called dummyGroup in the code). Once one
such run ends because another type of node is found or because the layer does not have
any more nodes, it is processed by calling process() in lines 1 and 1. The definition of
that function is deviously missing in the pseudo code because it is this function which
implements the set of rules which we will be discussing in a moment. The algorithm also
does a bit of bookkeeping to keep track of the number of actual label dummy nodes in
the current run as well as of whether the current run contains nodes at the top or at the
bottom of the layer. These information will be used in our rules, so let us start looking
at the examples from which we will derive them.

The first example concerns the length of edges. Consider the example in Figure 4.4a.
What we have here is a label of a layer’s topmost edge and a label side selection algorithm
which thought it a good idea to place the label below the edge. This of course causes the
edge to have to make its way around the label, causing its length and in this case also
the number of its bend points to increase. Simply placing the label above the edge, as in
Figure 4.4b, improves edge routing while perfectly well retaining graphic associations,
thus leading to our first rule.

12

Input: layer, a list of nodes in the layer to be processed
Output: Assignment of label side to each label dummy in layer

dummyGroup ← empty list
labelCount ← 0
topInLayer ← true
bottomInLayer ← false

foreach node in layer do
if isLabelDummy(node) then

Add node to dummyGroup
labelCount += 1

else if isLongEdgeDummy(node) then
Add node to dummyGroup

else
if | dummyGroup| > 0 then

process(dummyGroup)
dummyGroup ← empty list
labelCount ← 0

end
topInLayer ← false

end

end

if | dummyGroup| > 0 then
bottomInLayer ← true
process(dummyGroup)

end

Algorithm 4.1: The augmented same-side strategy is run for every layer of a graph. It basically
looks for consecutive runs of long-edge and label dummy nodes and processes
them.

13

A label

a: Without rule 1.

A label

b: With rule 1.

Figure 4.4: Simple label side selection methods can easily produce edges that are longer and
have more bend points than necessary. (a) The label causes its edge to be routed
around it. (b) Changing the label sides reduces edge length and the number of
bend points.

A longer edge label

a: Without rule 1.

A longer edge label

b: With rule 1.

Figure 4.5: A graph similar to the one in Figure 4.4, but with a vertical layout direction.
(a) Without applying rule 1, the problem becomes even worse since the label’s
width has more of an impact. (b) Applying rule 1 again improves the result.

Rule 1
If labelCount = 1 and either topGroup is true and the first node in
dummyGroup is a label dummy or bottomGroup is true and the last node
in dummyGroup is a label dummy, configure the corresponding label to be
above or below its edge, respectively.

Note that we are being conservative here: if more than the topmost edge has a label
in the layer, we do not apply this rule in order to avoid any confusion on the user’s side
(although one of the subsequent rules may apply).

The usefulness of rule 1 becomes more apparent for vertical layouts, as in Figure 4.5.
Here, the width of the label has much more of an impact on the layout than its height
did in the horizontal case.

The second example concerns cases where a run of dummy nodes consists of exactly
two nodes, as in Figure 4.6. The same-side strategy will place one of the labels between
the edges, while the directional strategy may even end up doing that to both labels.
While this may already be clear enough, especially if the label-side selection strategy
is known and spacings are chosen sensibly, we can still improve graphic association
by placing none of the labels between the edges. To repeat a point made during our

14

Label 2

Label 1

a: Without rule 2.

Label 1

Label 2

b: With rule 2.

Figure 4.6: Example of a diagram where only two edges run between two regular nodes. (a) The
same-side strategy will put one of the two labels between the edges. The directional
strategy may even end up putting both labels there. (b) Placing the labels around
the edges improves graphic association.

discussion of port labels in ??, placing the labels around the edges does not introduce
even the possibility of mistaking the association of one of the labels. This leads us to
our second rule.

Rule 2
If |dummyGroup| = 2, configure the group’s first dummy for above and the
second for below placement (if it is a label dummy node).

The final example highlights a construct that frequently appears in SCCharts: two
states connected by two transitions, one in each direction, as shown in Figure 4.7. We
call this a tight loop, although being a loop is not really a requirement—one can easily
imagine situations in data-flow languages where one actor sends two signals to the next
actor instead of just one, effectively producing the same situation. This of course causes
the same problems we already discussed for the previous rule, but worse. If two nodes
are connected by two edges, those edges will usually be spaced rather tightly if they are
not labeled. Introducing a label into the space between them may not only introduce
the possibility of ambiguity, but also requires them to be moved apart, introducing bend
points and elongating them (Figure 4.7a). Placing the labels around the edges improves
the situation (Figure 4.7b), leading us to the final rule.

Rule 3
When encountering exactly two dummy nodes that belong to edges that
connect the same two nodes, configure the upper one’s label to be placed
above and the lower one’s label to be placed below the edge.

This rule seems contradict our basic goal of being conservative in our label side de-
cisions. After all, there may be more label dummy nodes in the current run, which
would so far cause us to fall back to the default label side for all of them. However, in
our experience such tight loops are often placed at a bit of a distance from surrounding

15

Label 1

Label 2

A label

Another label

a: Without rule 3.

Label 1

Label 2

A label

Another label

b: With rule 3.

Figure 4.7: Edges of a “tight loop” tend to be close to one another, which causes longer edges
and bend points if labels are placed between them. This is a generalization of what
Figure 4.6 was about to tight loops possibly surrounded by other edges.

elements, thus preserving graphic association.

4.4 On-Edge Strategy

We have thus far focused on placing labels next to their edge, which is the standard edge
labeling strategy in the vast majority of graphical modeling tools. This makes perfect
sense in that the principles of legibility and minimization of disturbances seem to call
for labels to not overlap their edges. There is a case to be made, however, for placing
them on their edge.

When placing labels next to their edge, one of our main concerns has to be clear
graphic association. The perception of their association improves as they get closer to
each other and further away from unrelated elements, an example of the principle of
proximity in what Gestalt psychology calls perceptual grouping [22] (graphic designers
will use the same principle to group elements or distinguish them from other elements).
Given properly configured spacings, this is not too hard to achieve, but will cause a
drawing to grow in size. As spacings shrink, drawings do get smaller, but the possibility
for ambiguous graphic association grows.

Wong et al. [23] eliminate the need for perceptual grouping by going so far as to replace
the edge itself with its label, gradually changing the font size from tail to head to indicate
edge direction. We will not follow their proposal, due to several reasons. First, for the
approach to work without introducing distortion or very different font sizes, the length
of an edge would have to be a function of the text it is labeled with—a prerequisite
quite obviously not compatible with the layered approach. Second, we allow edges that
share a common end point to be drawn as hyperedges, which essentially lets them share
parts of the routes they take through the diagram. This would have a decidedly negative
impact on the legibility of labels. And finally, the orthogonal edge routing style (or any
routing style that employs bend points, for that matter) would degrade label legibility
even further.

On-edge label placement achieves optimal graphic association without completely re-
placing edges by their label. If the layout direction is horizontal, we may also reduce

16

Simple

Rectangle

Lined

Bracketed

Solid

Label

Label

Label

Label

Translucent

Label

Label

Label

Label

Figure 4.8: Four examples on-edge label designs.

the diagram’s height slightly because there is no edge-label spacing anymore, and since
each label sits on its edge the space between the label and unrelated edges can be much
smaller than it could otherwise.

For on-edge label placement to work, the graphical representation of edge labels has to
be designed accordingly. Labels must have either a solid background or at least cause the
background to be sufficiently faded for the edge not to interfere with the text’s legibility.
This requirement is easy to meet, and many designs for on-edge labels are possible, which
may even reflect different edge semantics. Figure 4.8 shows four simple examples of on-
edge label representations. Castelló et al. [1] use a simple solid design when drawing
statecharts, but do not discuss their motivation for doing so. Interrupting the edge,
however, may cause users to have a harder time following it through the diagram. We
will investigate this in chapter 7.

17

5 Directional Decorators

The directional label side selection strategy had the advantage of encoding information
about the direction of an edge, but suffered from both potential graphic association
problems as well as knowledge in the head for its proper interpretation. If the label side
is unavailable or unwanted as a means to communicate additional information, what
remains is the possibility to communicate through the label’s design. Figure 5.1 shows
examples of on-edge labels decorated with an arrow which points towards the edge’s
head.

Compared to the directional strategy, this way of indicating edge direction has the
advantage of representing knowledge in the world, not in the head, thus not requiring
user to know about any label side conventions that would otherwise have to be learned.
Such decorations consequently work with any label side selection strategy, thus allowing
the same-side strategy to communicate the same amount of information as the directional
strategy does while being slightly clearer in terms of graphic association (Figure 5.2).

An interesting problem concerns the implementation of directional decorators. Whether
the arrow should point leftwards or rightwards is subject to the diagram’s layout, which
implies that the viewing framework needs to support changes to the visualization after
automatic layout has run. How this can be done depends on the viewing framework and
is outside the scope of this paper.

Label

Label

Label

Label

Figure 5.1: Labels can be decorated with arrows to point at where the edge is heading. While
this example only shows on-edge labels, such decorations can of course also be
added to labels placed next to their edge.

18

e1

Label 1

Label 2

Label 3

e2

e3e4

e5

e6

a: With clear spacings.

e1e2

e3e4

e5

e6

Label 1

Label 3

Label 2

b: With ambiguous spac-
ings.

Figure 5.2: The same edge label placement as in Figure 4.2, but with directional decorators
added to the labels. (a) With arrows, the same-side label selection strategy can
clearly communicate edge direction. (b) With badly chosen spacings, the direc-
tional label side selection strategy would cease to work due to ambiguous graphic
association. The same-side strategy still works and can communicate the same
amount of information when augmented with directional decorators.

19

6 Aesthetic-Based Evaluation

We have explained how to place edge labels regarding two main problems: which layer
to place a label in and which side of its edge to place it on. In this chapter we will
compare our solutions by comparing their influence on common aesthetic criteria.

6.1 Layout Impact of Side Selection Strategies

The choice of a side selection strategy will influence different aesthetics of the drawing.
The aim of the first evaluation is to get an idea of the extent of that influence. The
following questions seem of particular need to be answered:

1. Does the on-edge strategy result in smaller drawings? It requires less edge-edge
spacing due to the obvious graphic association between labels and the edges they
belong to. This would seem to cause horizontal drawings to vary in height and
vertical drawings to vary in width, but the question is by how much. We did not
expect the differences to be very large.

2. Does the augmented side selection strategy yield shorter edges? It does attempt
to reduce obvious O-Nos where a label’s placement causes its edge to take a longer
detour, leading us to hypothesize that it would indeed produce shorter edges than
its simple counterparts, although again only slightly. However, since labels are
wider than they are high the effect would be more pronounced in vertical layouts.

3. Does the augmented side selection strategy increase the number of straight edges?
The way the augmented strategies choose label sides leads us to believe that it
does, but again the increase must be expected to be small.

To help us in our quest for answers, we obtained 315 SCCharts produced by students.
Some were created as part of their homework assignments in courses on synchronous
languages and real-time systems that used SCCharts as an example of a graphical syn-
chronous language. Others were derived from a large SCChart that controls an elaborate
model railway, produced by students during a recent practical. In all cases the students
used a textual language to describe the SCChart which was then rendered as a diagram.
Since SCCharts usually consist of several levels of hierarchy that are laid out by differ-
ent layout algorithms, we extracted simple graphs (only a single level of hierarchy) and
removed diagrams that had no edge labels or less than three nodes. We thus ended up
with 641 diagrams averaging 6.47 nodes, 9.37 edges, and 8.93 edge labels.

20

Relative Height Relative Width

AVG SD AVG SD

Down 0.907 0.091 0.883 0.093

Up 0.897 0.093 0.887 0.093

Dir. Down 0.891 0.099 0.915 0.113

Dir. Up 0.892 0.097 0.880 0.096

Aug. Down 0.894 0.089 0.876 0.096

Aug. Up 0.896 0.090 0.880 0.104

Table 6.1: Height of horizontal drawings and width of vertical drawings (in pixels) obtained
using the on-edge side selection strategy expressed as a fraction of the size produced
by the other strategies.

Before being analyzed the diagrams were laid out by ELK Layered. Each diagram was
laid out twice for each side selection strategy, once with a horizontal layout direction
(left-to-right) and once with a vertical layout direction (top-to-bottom). We used the
same settings throughout, except for the on-edge strategy where we reduced the edge-
edge spacing from 10 to 5 due to clearer graphic association.

Let us start with the first question: the impact of the on-edge side selection strategy
on a horizontal drawing’s height and a vertical drawing’s width. Table 6.1 shows the size
of each drawing made using the on-edge strategy expressed in terms of the size produced
by the other strategies and is, on average, consistently smaller. A look at a plot of the
relative data in Figure 6.1 however reveals that this is not always the case. In fact, the
different strategies will yield slightly different node placements, which in turn can lead
to bigger diagrams. Due to the fact that labels are wider than they are high this effect is
more pronounced in vertical layouts. As Table 6.2 shows, however, the number of cases
where this happened in our set of diagrams is very small.

In summary we can conclude that using the on-edge label side selection strategy will
yield smaller diagrams than the other strategies in the vast majority of cases.

The second question was concerned with whether the augmented side selection strate-
gies resulted in shorter edges compared to their simple counterparts. Table 6.3 shows the
differences in edge length when switching from the always down and always up strategies
to the augmented down and augmented up strategies, respectively. While the differences
are negligible in horizontal layouts, they are indeed much more pronounced in vertical
layouts due to the fact that labels can be rather long, forcing considerable detours onto
their edges. However, the standard deviations are rather large as well.

Table 6.4 shows the percentages of drawings where switching to an augmented strat-
egy made edges shorter, left them unchanged, or made them longer (both the average
length of edges in a drawing as well as its longest edge). Here the pattern becomes
clearer: switching to an augmented strategy improves average edge length in about 60%

21

● ●

0

20

40

60

80

100

120

140

SD SU DD DU

Height with on−edge labels [%]

a: Horizontal drawings.

●

●

● ●●
●
●●
●●

●

●
●

●●●

●

●

●●

0

20

40

60

80

100

120

140

SD SU DD DU

Width with on−edge labels [%]

b: Vertical drawings.

Figure 6.1: Box plots of the data underlying Table 6.1.

Strategy Height Width

Smaller Unchanged Larger Smaller Unchanged Larger

Down 73.5 25.0 1.6 92.5 2.3 5.1

Up 75.8 23.4 0.8 92.4 2.5 5.1

Dir. Down 74.4 24.8 0.8 80.7 2.3 17.0

Dir. Up 76.3 23.4 0.3 92.4 2.3 5.3

Aug. Down 77.7 21.5 0.8 92.5 2.2 5.3

Aug. Up 76.3 22.8 0.9 92.4 2.3 5.3

Table 6.2: The number of cases where switching from a given side selection strategy to the
on-edge strategy led to smaller, unchanged, or larger drawings (regarding height in
horizontal and width in vertical layouts). All values are given in percent of all 641
analyzed drawings.

Direction Strategy Average Length Maximum Length

AVG SD AVG SD

Horizontal Down −4.73 13.47 −14.31 82.64

Up −5.06 12.05 −9.51 52.56

Vertical Down −75.05 157.74 −221.89 549.19

Up −76.30 124.14 −228.32 461.88

Table 6.3: Change in edge lengths (in pixels) when switching from a simple side selection
strategy to its augmented counterpart. Negative change means shorter edges in the
augmented case. Our data points for the average length column are the average
length of all edges in a diagram.

22

Direction Strategy Average Length Maximum Length

Shorter Unchanged Longer Shorter Unchanged Longer

Horizontal Down 47.3 37.1 15.6 45.9 43.4 10.8

Up 54.4 38.4 7.2 41.0 48.5 10.5

Vertical Down 61.0 31.7 7.3 53.4 35.7 10.9

Up 59.3 34.9 5.8 53.2 37.6 9.2

Table 6.4: The number of cases where switching from a simple side selection strategy to its
corresponding side selection strategy led to shorter, unchanged, or longer average
and maximum edge lengths in a drawing. All values are given in percent of all 641
analyzed drawings.

Strategy Bend Points

Horizontal Vertical

Down 2014 1,900

Up 1967 2,065

Dir. Down 1989 2,031

Dir. Up 2060 2,060

Aug. Down 2055 2,013

Aug. Up 2041 2,076

On Edge 2064 1,989

Table 6.5: The number of bend points generated across all analyzed drawings by label side
selection algorithm

of vertical drawings. More importantly, it turns out to be a bad idea only in less than
about 10% of our examples.

We thus feel it is safe to say that the augmented strategies will indeed often lead to
shorter edges, although the impact is much larger for vertical than for horizontal layouts.

The final question is whether the augmented strategies reduce the number of bend
points as well. As it turns out we can answer this question rather easily if we look at
the sum of bend points across all drawings by label side selection algorithm, as shown in
Table 6.5 The different strategies produce very similar numbers of bend points, including
the augmented strategies, which do not even fall at the lower end of the spectrum.
Investigating the data further confirms that we must answer this final question with no.

23

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0

3000

6000

9000

12000

15000

18000

Median Center Widest

Width

Figure 6.2: The diagram width resulting from the application of different layer selection strate-
gies.

6.2 Layout Impact of Layer Selection Strategies

The impact of choosing a layer selection strategy on the aesthetics of the resulting
layouts may not be the first criterion to base that choice on. Picking the head or tail
layer strategies, for example, can simply be based on the visual language’s usability
requirements. SCCharts are an obvious case in point: it is probably more helpful to
display transition conditions near the source state than to worry about what that may
do to the aspect ratio of the resulting drawing. What the aesthetic impact is more
helpful for is to judge the effectiveness of the size-aware layer selection strategies. It is
with this in mind that we want to answer the following questions:

1. Does the widest layer strategy succeed at reducing the width of diagrams compared
to the other strategies?

2. Which strategy is best at placing edge labels closest to the edge’s physical center
(excluding the head and tail layer strategies, of course)?

We based this evaluation on the same diagrams as the previous one, but removed
diagrams where there was no choice regarding which layer to place labels in since the
layer selection strategies would not make a difference there. We thus ended up with 366
diagrams totaling 2758 nodes (with an average of 7.54), 4525 edges (12.36), and 4357
edge labels (11.9).

Figure 6.2 shows the width of diagrams depending on the chosen layer selection strat-
egy. The widest layer strategy does not succeed to reduce the width of diagrams. This
is likely due to the fact that the way it estimates the width of layers—not taking label
dummies into account—is an insufficient approximation. More research is required to
develop a method that chooses layers for all labels at once.

24

AVG SD

Median 0.493 0.085

Center 0.510 0.098

Widest 0.494 0.122

Table 6.6: Relative positions of the center point of labels along the horizontal span of the edge
they label. A value of 0.5 would indicate a label being placed at the center of its
edge. The performance of each algorithm is described in terms of the Average (AVG)
and the Standard Deviation (SD).

●
●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●
●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

Median Center Widest

Relative position

Figure 6.3: Relative positions of the center point of labels along the horizontal span of the edge
they label. A value of 0.5 would indicate a label being placed at the center of its
edge.

To answer the second question (which layer selection strategy is best at placing labels
at the center of their edge), we looked at the horizontal coordinate span of each edge
and measured where along that span the center points of its labels ended up. Values of
0.0 and 1.0 would indicate that a label’s center point lies on the edge’s left and right
end points, respectively. Since the head and tail layer selection strategies are of little
interest for this question, we performed the measurements for the median, center, and
widest layer algorithms.

Table 6.6 shows a summary of the measurements while Figure 6.3 plots the data as a
box plot. Interestingly, the median strategy cannot be said to perform worse than the
center strategy, which explicitly tries to take layer sizes into account. Again, this must
be attributed to the fact that layer sizes change while moving label dummies to other
layers.

In summary, it seems necessary to develop more sophisticated size-aware layer selection
methods.

25

7 Experimental Evaluation

We wanted to answer the following research questions:

1. Which strategy is better at indicating edge direction, traditional label placement
with direction-dependent label side selection or on-edge label placement with di-
rectional decorators?

2. Does on-edge label placement have a negative impact on the ability of users to
follow edges through a diagram compared to traditional label placement?

As for the first question, it seems obvious that adding directional decorators makes
edge direction more apparent than following direction-dependent label side selection
conventions, again referring back to Norman’s distinction between information in the
world as opposed to information in the head [13]. The question remains, however, how
much of a difference there really is.

It is the second question, though, that seems most important: the objective advantages
of on-edge label placement (clear graphic association and reduced space) would be of
little value if it meant that users were not able to effectively follow edges through their
diagrams anymore. We hypothesized that this might be the case due to the visual
interruptions caused by on-edge labels as opposed to the solid lines edges are rendered
as with traditional label placement.

We designed a controlled experiment that consisted of three parts: one for each ques-
tion, and a concluding interview where participants were asked to rank label placement
strategies according to personal preference. The first two parts were performed using
an application developed specifically for that purpose. Since the tasks to be solved dur-
ing the experiment were not too time-consuming, we used a within-participants design
throughout (every participant was subjected to all of the conditions).

The software used to conduct the experiment as well as all of the data necessary to
repeat the experiment can be obtained by contacting the authors. The collected data
and any scripts used to conduct the subsequent analyses are available online.1

We start by describing the experiment’s overall procedure and then describe and
analyze each part separately.

7.1 Procedure

48 participants between 18 and 33 years (averaging 23,35) were recruited for the exper-
iment, 9 of them female. All participants studied computer science either as a major

1http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1802-data.zip

26

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1802-data.zip

or as a minor (36 undergraduate students, 11 graduate students, and one PhD student)
and were recruited via e-mail to the institute’s central student mailing list. None were in
any way involved in the research that was the subject of this experiment. Participation
was completely voluntary, but we compensated participants by paying them 5 Euros.
All experiments were conducted by a single experimenter, always in the same room.
Most experiment runs took place between 1pm and 5:30pm, except for two that were
conducted at 10am and 11am. A full run would take about 30 minutes.

Participants were sat down in front of a computer screen with a resolution of 1920x1200
pixels. Except for a demographics questionnaire, the experiment was controlled purely
through the keyboard.

Participants were first asked to read a document that explained the experiment and
the data to be collected, and then signed a declaration of consent. The experimenter
then briefly explained the structure of the experiment before they were directed to follow
the instructions on the computer screen, which led them through the first two parts of
the experiment. A full run through the experiment would take a participant about 30
minutes to complete.

Thanks to five pilot runs, no severe problems arose during the experiments. One
session was slightly disturbed by someone knocking and opening the door, but the par-
ticipant did not feel that this was a significant problem, and we did not find obvious
anomalies in their data.

7.2 Effectiveness of Directional Label Placement

The first part of the experiment was meant to help answer the question of whether
on-edge label placement with directional decorators (OED) or next-to-edge label place-
ment with direction-dependent label side selection (NED) is more effective at conveying
edge direction. These, then, also served as the two conditions. Our hypothesis was
that explicit directional decorators would be significantly more effective than implicitly
encoding direction through placement side, in terms of both reaction time and error
rate.

7.2.1 Experimental Method

The experimental objects were designed to only show parts of edges to simulate a sit-
uation where users would have to rely on edge labels to infer where an edge is headed,
as shown in Figure 7.1. This was to simulate typical use cases the placement strategies
were designed for: focusing on a particular part of the diagram that does not include the
end points of an edge, or zooming into the diagram enough that they are not even on
screen. Each experimental object was generated randomly, with 5 to 10 edges placed at
a distance of 20 to 70 pixels, decorated with labels randomly generated based on labels
found in SCCharts. One of the edges was highlighted in red and drawn as a thicker line.

The task was to infer the direction of the highlighted edge and indicate the direction
by pressing the left or right control key. The control keys were chosen over the arrow keys

27

a: Condition 1: OED b: Condition 2: NED

Figure 7.1: Excerpts of experimental stimuli for the two conditions of the experiment’s first
part. Participants were asked to infer the direction of the highlighted edge as
quickly as possible. The correct answer would be “right” in both examples.

to reduce the probability of accidentally pressing a wrong key due to close proximity.
We did not impose a time limit, but instructed participants to solve the task as quickly
as possible.

The software first introduced participants to both edge label placement strategies and
included five practice trials per condition to practice the task to be laid upon them, with
visual feedback indicating whether or not a particular answer was correct. At this time
they also had the opportunity to ask the experimenter for clarification on anything they
did not understand.

Participants then performed three blocks of 30 trials each and we measured the reac-
tion time and recorded the correctness of each answer. Each block consisted of 15 trials
of each condition in randomized order.

7.2.2 Data and Analysis

Figure 7.2 shows box plots of the mean reaction time and error rate of each participant
according to condition. Since neither of the two sets of data could be considered to
follow a normal distribution as well as the facts that the experiment used a within-
participants design and exactly two conditions, we used a Wilcoxon signed rank test
with a typical significance level of 0.05 and found significant differences (p < 0.01)
between the conditions, with the OED condition taking less time and producing fewer
errors than the NED condition.

7.2.3 Conclusions

The results are clearly (and unsurprisingly) in accordance with our hypothesis: the OED
condition outperforms the NED condition in both metrics. The error rate in particular
also seems to support Norman’s preference for information in the world: the error rate
was generally higher for NED than it was for OED, and some participants seem to have
gotten confused as to which edge direction a given label placement side indicates. As
one participant put it, “This completely confused me, I always had to think about how
it worked.”

Of course, the task forced participants to focus only on edge direction, which in real-
world scenarios is only part of what users do to read and work with diagrams. We believe

28

●

●●

●●

●

●

●
●

●

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

NED OED

Reaction Time [s]

a: Reaction time

●

●

●
●

●

●

●●●●●0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NED OED

Error Rate

b: Error rate

Figure 7.2: Box plots of the mean reaction times and error rates of each participant according
to condition for the first part of the experiment.

it to be likely that focusing on this task may actually have improved results for the NED
condition in this experiment since there were no distracting tasks here that may have
removed the (arbitrarily chosen) semantics of NED from working memory. Even so, 30
participants explicitly stated that inferring edge directions with the help of NED was
confusing, hard to remember, or required more thought in the concluding interview.

7.3 Perceptual Impact of On-Edge Label Placement

The second part was designed to answer the question of whether on-edge label placement
has a negative impact on the ability of users to follow edges through a diagram. Our
hypothesis was that it might indeed have a negative impact, but hoped that it would be
small.

In addition to the two conditions already present in part one, part two added always-
down next-to-edge label placement (NE) as a third condition. Since that strategy
does not encode directional information, any significant performance difference (or lack
thereof) would allow us to draw conclusions about the extent to which participants used
those information to solve the task to be described soon.

7.3.1 Experimental Method

This time, the experimental objects were diagrams that fit completely on a single screen.
In the interest of realism, we based the diagrams on nine excerpts from SCCharts de-
veloped by students as part of their homework during lectures throughout the past
semesters, but modified them to fit onto a single screen. The diagrams averaged 16
nodes and 22.8 edges and all but one had edge crossings. We obtained nine additional
objects by reversing all edges of the original excerpts and switching node names around,

29

Node1

Node2

Node3

Node4

Node5

Node6

Node7

Node8

Node9

Node10

Node11

Node12

Node13

Node14

anydooropen

wCnt = wCnt + 1

ButtonUp && !alarm

/ count = 0

/ barcode[count] = 1

count2 > 3

d_t_set

/ count = 0

/ currentDigit = 9

readLight

/ readLight

!isDark

currentDigit = 9

count2 > 3

Move = -1

completed += 1

!isDark

seatOn == true

engineOn == true

turnCount > turnDuration

Figure 7.3: Experimental stimulus of the experiment’s second part, in this case with on-edge
labels with directional decorators. All objects were laid out using a left-to-right
layout direction and drawn using orthogonal edges.

resulting in diagrams that looked significantly different.
The task was the fairly typical one of counting how many different nodes could be

reached from a highlighted start node by traversing exactly two edges. This required
participants to follow edges through the diagram, allowing us to draw conclusions about
our research question. Again, we did not impose a time limit, but asked participants
to solve the task as quickly as possible. Each of the 18 experimental objects had two
possible start nodes defined, yielding a total of 36 different stimuli. Figure 7.3 shows an
example of what a typical stimulus would look like.

Each trial began with drawing the experimental object. The start node was high-
lighted one second later to avoid the need for participants to spend time searching the
diagram for it. We measured reaction time (starting with highlighting the start node)
and recorded the correctness of each answer.

The software first introduced participants to the task that would be their charge and
allowed for three practice trials, with visual feedback indicating which nodes are reach-
able in exactly two steps from the highlighted node. At this time they also had the
opportunity to ask the experimenter for clarification on anything they did not under-
stand.

Participants then performed three blocks of 12 trials, one block for each condition.
To average out any learning effects, the order of blocks was assigned based on a Latin
square and each of the six possible permutations appeared the same number of times
across the 48 participants. Each of the 18 experimental objects appeared at most once
in the same block to minimize situations where participants recognized a diagram and
would be able to react more quickly than they otherwise could.

7.3.2 Data and Analysis

Figure 7.4 shows box plots of the mean reaction time and error rate of each participant
according to condition. It is obvious that there are no significant performance differences
in either of the two data sets.

A single participant was responsible for the worst error rate in each condition. It
is unclear why the error rate was this high since the participant mentioned nothing

30

●

0

5

10

15

20

25

NE NED OED

Reaction Time [s]

a: Reaction time

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

1.0

NE NED OED

Error Rate

b: Error rate

Figure 7.4: Box plots of the mean reaction times and error rates of each participant according
to condition for the second part of the experiment.

during the concluding interview that might explain their problem. However, even upon
removing this outlier, the data do not become any more significant.

7.3.3 Conclusions

The lack of significant differences in the results does not allow us to claim that either of
the three conditions is better or worse regarding a user’s ability to follow edges through
a diagram. This is still an interesting observation, however: given 48 participants, if
there was a large performance difference between the three conditions, we believe it to
be reasonable to assume that we would have had a fair chance of finding it.

A possible threat to the validity of the experiment can be seen in the fact that par-
ticipants spent quite different times on solving their task depending on the stimulus.
While we believe that the way we assigned stimuli made results of different participants
comparable, future experiments should control for this.

7.4 Concluding Interview

The concluding interview was meant to shed light on which label placement strategies
users preferred, and why. We also wanted to give participants an opportunity to give
feedback on the experiment itself. In addition to the side selection strategies they already
knew from the first two parts, the interview added on-edge label placement (OE) (without
directional decorators).

31

7.4.1 Experimental Method

Participants were presented with the graph shown in Figure 7.3, drawn with the four
side selection strategies which they were asked to order from best (1) to worst (4). We
asked them to try to assign each strategy a distinct preference rank, but accepted if they
could not settle on an order between two or more strategies.

We made an audio recording of each interview—to which no participant objected—and
asked them to explain their thought process while ranking the four strategies. The audio
recordings were later transcribed to be coded into several categories. The coding was
done separately by the experimenter and a researcher that was otherwise not involved
in the experiment. Divergent opinions on how statements should be coded were resolved
by going through the transcription together and discussing arguments for and against a
particular coding.

7.4.2 Data and Analysis

Out of 48 preference rankings we collected, only 6 had at least two strategies that shared
the same ranking. Table 7.1 shows the 42 submissions that assigned unique ranks to
each strategy, and Table 7.2 shows the remaining six.

For the purpose of this analysis, we define consistent rankings as rankings that follow
consistent preferences regarding the underlying techniques. One such consistent ranking
could be to always prefer next-to-edge placement to on-edge placement and to break ties
by preferring directional decorators; another could be to prefer directional decorators
and to break ties by preferring on-edge placement to next-to-edge placement. A first
interesting observation is that consistent rankings are the minority (18 out of 42). Among
the remaining 24 inconsistent rankings, 18 rank OED highest and 13 of these rank NED
lowest, possibly due to problems when inferring edge directions with the latter strategy.

Figure 7.5 visualizes the sums of the ranks assigned to each side selection strategy,
which already indicates that the OED condition may have an advantage over the others.
The OE condition also seems to have been ranked slightly better than both NE and
NED, but the difference is far from being as pronounced. Figure 7.6 shows histograms
of ranks assigned to each strategy. The histogram for the OED condition seems to
support the former statement. The second statement, however, is not obvious.

Since graphics do not confirm the existence of statically significant ranking differences,
we performed a Friedman test on the data and found that significant differences do in
fact exist (p < 0.01). We proceeded with a pairwise sign test and found that the only
significant differences in preference rankings involved the OED condition, which was
ranked significantly better than all other conditions (always with p < 0.01). The OE
condition did not perform significantly better than either NE and NED.

Regarding the interviews, Table 7.3 shows a summary of how often the most important
statement categories occurred for each condition. For the most part, the results are
not surprising. 24 participants mentioned clear graphic association as an advantage
of on-edge label placement, while 21 and 11 participants mentioned unclear graphic
association as a disadvantage of NED and NE, respectively. When it comes to the ease

32

Rank 1 Rank 2 Rank 3 Rank 4 Participants

NE NED OE OED 2

NE OE NED OED 0

NED NE OED OE 2

NED OED NE OE 0

OE NE OED NED 0

OE OED NE NED 4

OED NED OE NE 4

OED OE NED NE 6

NE NED OED OE 0

NE OE OED NED 1

NE OED NED OE 0

NE OED OE NED 2

NED NE OE OED 2

NED OE NE OED 0

NED OE OED NE 0

NED OED OE NE 1

OE NE NED OED 0

OE NED NE OED 0

OE NED OED NE 0

OE OED NED NE 0

OED NE NED OE 0

OED NE OE NED 3

OED NED NE OE 5

OED OE NE NED 10

Consistent 18

Inconsistent 24

Table 7.1: Preference assignments with distinct ranks submitted by participants. The top half
of the table contains consistent rankings that follow consistent preferences regarding
the underlying techniques when ranking strategies.

33

Rank 1 Rank 2 Rank 3

NE OE, OED NED

NED, OED OE NE

OE NE, NED OED

OED NE, NED OE

OED NE, NED, OE

OED OE NE, NED

Table 7.2: Preference assignments with shared ranks submitted by participants. Each assign-
ment was submitted only by a single participant.

0

20

40

60

80

100

120

140

NE NED OE OED

Sum of Ranks

Figure 7.5: Sums of the ranks assigned by participants to each label side selection strategy
from 1 (best) to 4 (worst). Lower bars indicate overall higher preference. The
dashed line indicates the best score a condition could have reached (48).

NE NED OE OED

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

1

2

3

4

Frequency of Ranks

Figure 7.6: Histograms of the occurrences of each ranking for each label side selection strategy,
from 1 (best) to 4 (worst).

34

Category NE NED OE OED NE, NED OE, OED

Graphic association is clear 3 1 24

Graphic association is unclear 11 21 0

Tracing edges is easy 13 5

Tracing edges is hard 0 16

Looks clear or consistent 11 2 3 7

Looks confusing or inconsistent 1 11 0 3

Direction easy to infer 3 33

Direction hard to infer 27 0

Additional information helpful 11 17

Additional information unhelpful 4 10

Table 7.3: Statements from interviews coded to several categories, subject to label side selection
strategy. Answers for some categories are counted towards two strategies instead of
just one.

of tracing edges through a diagram, the numbers are reversed: 13 mention traceability
as an advantage of the next-to-edge strategies, while 16 mention it as a disadvantage of
the on-edge strategies.

11 called NED confusing and inconsistent, and 27 said that it was hard to infer edge
directions with. However, 10 stated that it might just be a matter of getting used to this
strategy. 5 participants stated explicitly that this strategy requires explanation since
encoding edge direction through placement side would not be obvious to them.

33 found OED to be helpful for inferring edge directions and 17 generally found the
additional directional information to be helpful, although another 10 did not. 7 opined
that the usefulness of this strategy improves as edges get longer and graphs get larger.

13 participants stated that the best strategy to use would depend on the use case.
As for feedback regarding the experiment itself, there were very few complaints. Three

participants thought some of the graphs were too big for the screen, one found the task
in the second part to be hard, one would have appreciated more practice tasks, and one
would have liked to see their results at the end.

7.4.3 Conclusions

There is little question that, overall, participants largely preferred the OED strategy, for
different reasons. First, participants found it easy to infer an edge’s direction with OED,
something they found hard with NED (although interestingly one participant thought
he was quicker inferring directions with NED, an assessment proven wrong by the data).
Second, clear graphic association was mentioned quite often. As one participant said
about NED, “I would have problems associating labels with edges if there were too
many edges in one place. It’s a clarity thing.”. However, some complained about

35

visual clutter and redundant information in the diagram. This might well be due to
the fact that the value of additional directional markers increases as diagrams increase
in size—the diagrams in the experiment were designed to be small enough to fit on a
single screen to keep users from having to scroll through them. It might be valuable to
make the appearance of directional decorators depend on the length of an edge. As one
participant said, “For small diagrams I think I would prefer OE. If it is a large diagram
with long edges, I would prefer OED. In particular in small diagrams with many edges,
where everything is close by, it gets a little confusing.”.

While it is understandable that many participants found graphic association to be a
weakness of NED, it is interesting that 11 thought the same about NE. This might be
due to a bad impression of NED carrying over to the (superficially similar) NE strategy.
It might however also be due to the fact that NE becomes clear only once the viewer is
aware that labels are always placed below or above their edges.

A possible threat to validity is that the first part of the experiment may have somewhat
primed participants to prefer the OED condition for its obvious advantages in inferring
edge directions. However, we believe that effect to be limited. First, 50% of participants
indicated being aware of the fact that the value of a strategy may depend on the use case,
thus acknowledging that the task imposed upon them during the first part is just one of
many possible tasks. And second, 50% of participants explicitly mentioned clear graphic
association as an advantage of the OE and OED strategies, while 50% also explicitly
mentioned that NED suffered from unclear graphic association—an observation that the
first task would probably not have primed for as much.

36

8 Conclusion

We have presented different placement strategies for placing edge labels in flow-based
diagrams. On-edge label placement yields clearest graphical association, and usually
slightly smaller diagrams. With directional decorators added it was largely preferred by
participants of our experiment. Some did complain about the fact that on-edge labels
interrupt their edges, but we did not find significant performance differences in a task
that required participants to follow edges through a diagram.

Future Work. Some visual languages tend to produce rather long edge labels that
make the assignment of labels to layers a crucial influence on the width of drawings. As
we saw, the widest layer strategy did not succeed in producing smaller diagrams than
the other strategies. Finding a heuristic that does seems necessary.

Clear graphic association of on-edge labels may be impaired if labels span multiple
lines of text. It should be investigated whether this is indeed the case and, if so, how it
can be solved.

Acknowledgements. The authors would like to thank Nadine Yarar, Andreas Mühling,
and Emmanuel Manalo for helpful suggestions while designing the experiment, and Helen
Purchase for her excellent book on the subject which was a great help.

37

Bibliography

[1] R. Castelló, R. Mili, and I. G. Tollis. An algorithmic framework for visualizing
Statecharts. In GD 2000: Proceedings of the 8th International Symposium on Graph
Drawing, volume 1984 of LNCS, pages 43–44. Springer-Verlag, 2001.

[2] P. Eades, X. Lin, and W. F. Smyth. A fast and effective heuristic for the feedback
arc set problem. Information Processing Letters, 47(6):319–323, 1993.

[3] P. Eades, B. D. McKay, and N. C. Wormald. On an edge crossing problem. In 9th
Australian Computer Science Conference, pages 327–334. ACA, 1986.

[4] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing
directed graphs. Software Engineering, 19(3):214–230, 1993.

[5] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[6] D. Holten, P. Isenberg, J. J. van Wijk, and J.-D. Fekete. An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations in
node-link graphs. In 2011 IEEE Pacific Visualization Symposium, pages 195–202,
mar 2011.

[7] D. Holten and J. J. van Wijk. A user study on visualizing directed edges in graphs.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 2299–2308, New York, NY, USA, Apr. 2009. ACM.

[8] E. Imhof. Positioning names on maps. The American Cartographer, 2(2):128–144,
1975.

[9] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach to
the multi-layer crossing minimization problem. In Proceedings of the 5th Interna-
tional Symposium on Graph Drawing (GD’97), volume 1353 of LNCS, pages 13–24.
Springer, 1997.

[10] K. G. Kakoulis and I. G. Tollis. An algorithm for labelling edges of hierachical
drawings. In G. Di Battista, editor, Graph Drawing (Proceedings GD ’97), LNCS,
pages 169–180. Springer-Verlag, 1997.

[11] G. W. Klau and P. Mutzel. Combining graph labeling and compaction. In Proceed-
ings of the 7th International Symposium on Graph Drawing (GD’99), volume 1731
of LNCS, pages 27–37. Springer, 1999.

38

[12] L. K. Klauske and C. Dziobek. Improving modeling usability: Automated layout
generation for Simulink. In Proceedings of the MathWorks Automotive Conference
(MAC’10), 2010.

[13] D. A. Norman. The Design of Everyday Things. Basic Books, 1988.

[14] M. Petre. Why looking isn’t always seeing: Readership skills and graphical pro-
gramming. Communications of the ACM, 38(6):33–44, June 1995.

[15] G. Sander. Graph layout through the VCG tool. Technical Report A03/94, Uni-
versität des Saarlandes, FB 14 Informatik, 66041 Saarbrücken, Oct. 1994.

[16] A. Schelten. Hierarchy-aware layer sweep. Master’s thesis, Kiel University, Depart-
ment of Computer Science, Sept. 2016.

[17] C. D. Schulze, M. Spönemann, and R. von Hanxleden. Drawing layered graphs
with port constraints. Journal of Visual Languages and Computing, Special Issue
on Diagram Aesthetics and Layout, 25(2):89–106, 2014.

[18] M. Spönemann, H. Fuhrmann, R. von Hanxleden, and P. Mutzel. Port constraints in
hierarchical layout of data flow diagrams. In Proceedings of the 17th International
Symposium on Graph Drawing (GD ’09), volume 5849 of LNCS, pages 135–146.
Springer, 2010.

[19] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics,
11(2):109–125, Feb. 1981.

[20] R. Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC Press,
2013.

[21] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika,
S. Mercer, O. O’Brien, and P. Roop. Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation. ACM Transac-
tions on Embedded Computing Systems, Special Issue on Applications of Concur-
rency to System Design, 13(4s):144:1–144:26, July 2014.

[22] J. Wagemans, J. H. Elder, M. Kubovy, S. E. Palmer, M. A. Peterson, M. Singh, and
R. von der Heydt. A century of Gestalt psychology in visual perception: I. Percep-
tual grouping and figure–ground organization. Psychological Bulletin, 138(6):1172–
1217, Nov. 2012.

[23] P. C. Wong, P. Mackey, K. Perrine, J. Eagan, H. Foote, and J. Thomas. Dynamic
visualization of graphs with extended labels. In INFOVIS ’05: Proceedings of the
Proceedings of the 2005 IEEE Symposium on Information Visualization, page 10,
Washington, DC, USA, 2005. IEEE Computer Society.

39

[24] K. Xu, C. Rooney, P. Passmore, D.-H. Ham, and P. H. Nguyen. A user study
on curved edges in graph visualization. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2449–2456, Dec 2012.

40

	Introduction
	The Layered Approach
	Phases of the Layered Approach
	Ports

	Layer Selection
	Simple Strategies
	Size-Aware Strategies

	Label Side Selection
	Same-Side Strategy
	Directional Strategy
	Augmented Same-Side Strategy
	On-Edge Strategy

	Directional Decorators
	Aesthetic-Based Evaluation
	Layout Impact of Side Selection Strategies
	Layout Impact of Layer Selection Strategies

	Experimental Evaluation
	Procedure
	Effectiveness of Directional Label Placement
	Experimental Method
	Data and Analysis
	Conclusions

	Perceptual Impact of On-Edge Label Placement
	Experimental Method
	Data and Analysis
	Conclusions

	Concluding Interview
	Experimental Method
	Data and Analysis
	Conclusions

	Conclusion

