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ABSTRACT
Modeling tools typically provide no information about timing
properties and costly parts of the system under development.
In this paper we propose a generic approach to integrate
timing analysis and modeling tools. This approach includes
visual highlighting to guide the user to worst-case execution
time hotspots, detailed timing information for specific model
elements, and the separation of different types of timing val-
ues. Our solution includes both a way to keep track of model
elements subject to timing analysis during the compilation
process, and a flexible and formally defined timing analysis
interface for communicating timing information between a
high-level modeling tool and a lower-level timing analysis
tool. We present a complete open-source, Eclipse-based pro-
totype tool chain that is evaluated both using a systematic
benchmark suite and a user study.

1. INTRODUCTION
Cyber-physical systems (CPS) [18], such as automobiles and
aircraft, include a large number of embedded reactive systems.
Such systems typically interact with the physical environ-
ment by sensing, performing computations, and actuating
output data. Reactive systems are increasingly designed
with the help of high-level modeling tools, where real-time
is not part of the model abstraction. Such separation of
concerns on the one hand is valuable as it facilitates formal
reasoning and determinism, as leveraged for example by the
synchronous languages [2]. On the other hand, it limits the
modeler’s control and ability to reason about execution time
of the modeled system. This is often problematic as embed-
ded reactive systems are typically real time systems, where
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correctness not only depends on functional behavior, but also
on the timeliness of computations. The typical lack of timing
abstractions makes it hard for the modeler to locate the
time consuming parts of the model. These “hot spots” often
contribute significantly to the execution time, but account
only for small sections of a model [3].

In this paper, we introduce an interactive timing analysis
method together with a complete tool chain. This approach
makes it possible for the modeler to get direct feedback
concerning the execution time of the model. As high-level
reactive system models are typically compiled to sequential
host code, like C, this means that the feedback concerns the
execution time of the corresponding generated tick function,
which reads sensor input, performs computations, and actu-
ates output. A single such execution cycle is called a tick.
The interactive timing analysis problem concerns computing
the worst-case execution time (WCET) [28] of parts of such a
tick function and propagating the timing information back to
the user at the level of abstraction of the modeling language.

Although there exists a large body of work in the area of
WCET analysis [8,11,14,19,28], relatively little has been done
with interactive timing analysis. Previous work addresses fast
WCET analysis [12], interactive C code analysis [17], analysis
of Java code [23] and timing analysis of Matlab/Simulink
models [15]. Also, as a proprietary solution, the timing
analysis tool aiT is integrated into SCADE [7]. In contrast
to previous work, we present the following contributions:

• We propose an interactive timing analysis method that
includes hotspot highlighting of the worst-case path,
and the separation of deep, flat, local and fractional
timing values (Sec. 2).
• We present a complete Eclipse-based open source tool

chain where we augment an open source modeling tool
with interactive timing analysis feedback. This includes
a method for tracing model elements within the compila-
tion process and the corresponding backwards mapping
of the retrieved time values to the model editor (Sec. 3).
• We formally define a generic timing analysis interface

that establishes a contract between modeling and tim-
ing analysis tools. To support good response time of
the analysis, the interface separates the concerns of
timing analysis for external function calls and for the
tick function (Sec. 4).
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In Section 5, we present our evaluation, in Section 6, we
position our paper with regard to related work and we give
a conclusion and an outlook in Section 7.

2. INTERACTIVE TIMING ANALYSIS
In this section, we demonstrate our approach to interactive
timing analysis by showing how a concrete model example can
be analyzed and improved. This is followed by an overview
of the analysis phase and the proposed interface.

2.1 User Modeling Level
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Figure 1: The interactive
design flow.

The design flow for
our approach to in-
teractive timing anal-
ysis is shown in Fig. 1.
On the top level there
is the modeling tool,
based on a graphi-
cal modeling language,
with a compiler that
yields a low level lan-
guage representation,
for example in C. The
modeling tool requests
detailed timing infor-
mation of the inter-
active timing analysis
tool, specifying code
parts with the help
of Timing Program

Points (TPPs) and adding optional assumptions. The timing
analysis provides individual analysis results for these code
parts, which the modeling tool then aggregates and maps
back to the model. The safety and tightness of the timing
information conveyed to the user of course depends on the
safety and tightness of the underlying timing analysis tool
and the complexity of the target architecture. Furthermore,
we are conservative during aggregation and e. g. with respect
to the calling context of functions. In addition to interactive
timing analysis, one can still use a traditional WCET tool
(e.g., aiT or OTAWA) for overall analysis of the generated
code before final deployment. As a consequence, the interac-
tive timing analysis tool can use a simpler timing model of
the hardware, compared to the tool that is used to compute
the final safe and tight bound of the tick function.

To explain these terms further and to motivate our ap-
proach, we turn to a concrete modeling situation. Fig. 2(a)
shows a simple robot control model expressed in SCCha-
rts [26]. The robot drives, takes images, stops upon hitting
an obstacle, and writes log files on halt. The SCChart con-
tains three regions. Regions are depicted as rectangles, with
the region name in the upper left corner. The outermost
Main region tests whether the input bumper is true, indicating
a collision, and chooses to enter one of its two child regions,
HandleEmergency in collision case or HandleMotor. The region
HandleEmergency calls the errorlog write and turns off the
motor signal. In the HandleMotor region, the robot drives if
the accelerator signal is present, otherwise it halts and writes
to a logfile. Then it acquires an image.

Our interactive timing analysis augments regions with tim-
ing annotations, shown in the upper right corner. The format
is 〈Flat WCET 〉/〈Deep WCET 〉, with the following meanings:

• Flat timing values denote the WCET of a region, but
the execution time of enclosed regions is not included
in this value. In the robot example this means that the
flat timing value for Main will not include the execution
time for the regions HandleEmergency and HandleMotor.
• Deep timing values for a region on the contrary take

the included regions into account.1

Here the values are given as milliseconds. In the following, we
explain the time values for the robot model and an example
work flow from the user perspective.

The WCET of the robot model, meaning the maximal time
between reading sensor values (such as bumper) and writing
the actuator motor, is shown in the top-level SCChart, again
in the upper right corner.

For reactive systems, the maximal permitted WCET is
typically part of the design specification. In the following,
let’s assume for example that the WCET must not exceed
250 ms. The actual WCET of the model version 1 in Fig. 2(a)
exceeds this constraint by 132 ms. However, this value alone
does not help in locating the most costly parts of the model,
the “hot spots” where the revision of the model should start.

Here the modeler is guided by the more detailed values
for individual regions. Also, the hotspots of the model are
highlighted automatically with a background color shade
corresponding to their relative timing criticality. The modeler
is thus quickly pointed to the region HandleMotor, whose
WCET of 382 ms alone exceeds the timing specification. The
modeler can now turn to this region to reconsider this part
of the design and revise it, either by semantical changes or
by using different function calls or different constructs with
identical meaning, but different timing characteristics. For
example the modeler may find that it is not necessary for
the robot to take a new image when it is not moving, so that
the call to getImage() can be skipped in case the accelerator
button is not pressed. Now the modeler may revise the
model to version 2 shown in Fig. 2(b), where getImage() and
writeLog() will not be executed in the same tick anymore. The
automatically updated timing annotations confirm success;
the WCET is now 201 ms. Note that all time values are
rounded to full milliseconds, as for timing related revisions
the user will not be interested in smaller time values. In the
case of the Main region, this leads to a timing value of 0 ms.
If we would switch to a display with processor cycles instead,
we would see that the execution takes actually 10 processor
cycles, a value that is irrelevant to our use case.

In this feedback example, we focus on fractional WCET
values as opposed to local WCET, a distinction that we
propose as follows (also for best-case exection time (BCET)):
• Fractional WCET or BCET of a model element

denotes its share of the overall or global WCET of the
model. For a region, this is the execution time cost of
the part of the critical path that lies in the region.
• Local WCET or BCET of a model element is the

cost of the most costly execution time path that lies in
this element regardless of whether it contributes to the
global WCET.

For a more formal definition of what response we expect if
we poll the analysis tool for a fractional or local time value
we refer to Section 4.4.

1In the SCADE/aiT integration, this corresponds to the
CWCET [7].



(a) Version 1, with WCET of 382 ms (b) Version 2, with WCET of 201 ms

Figure 2: An example of a small robot model, in which the timing values (right upper edge of region, flat
WCET / deep WCET) change with the model revision.

1 void tick (){
2 //Main
3 // implicit TPP
4 g0 = GO;
5 //HandleEmergency
6 TPP(1);
7 g1 =( GO && bumper);
8 g2 =(PRE g1);
9 if (g2){

10 errorLog ();
11 motor = 0;}
12 //HandleMotor
13 TPP(2);
14 g5 =(PRE g4);
15 g6 =(g5 && accelerator);
16 if (g6){
17 getImage();
18 motor = 1;}

19 g7 =(g5 && (!(accelerator )));
20 if (g7){
21 writeLog ();
22 motor = 0;}
23 //Main
24 TPP(3);
25 g3 =(g2 || (g6 || g7));
26 //HandleMotor
27 TPP(4);
28 g4 =( GO && (!(bumper)));
29 //Main
30 TPP(5);
31 PRE g1 = g1;
32 PRE g4 = g4;
33 GO = 0;
34 return ;}
35 // implicit TPP}

Figure 3: The tick function for the improved robot
example (Fig. 2(b)) with timing program points.

For a better practical understanding of the terms we look
at the HandleEmergency region in Fig. 2(a). A call to errorLog()
and a write to the output motor together have a cost of 80
ms. Hence the local WCET of the region HandleEmergency is
80 ms. In contrast, the fractional WCET value as shown in
the figure is zero, as the overall WCET path is given when
HandleMotor is active and HandleEmergency is not. We focus
on the fractional WCET, because it is suited best for hot spot
highlighting in relation to overall WCET and can also be
used to display time values as a ratio of the overall WCET.

The timing information feedback view shown in Fig. 2 is
an example implementation. We can think of several further
methods to display the timing information. This includes:
collapsing regions that are no timing hotspots, providing
timing values for function calls or model elements on mouse
hover, highlighting transitions that are on the critical path,
and showing different views for different zoom levels. These
possiblities are especially helpful for big models, but require
automatic layout (as for example provided by KIELER) and
the consideration of mental map preservation [21].

2.2 Analysis and Interface
In the proposed design flow, the modeling tool translates

the reactive model into a low level intermediate language,
such as C (see lower part of Fig. 1). Between the modeling
tool and the interactive timing analysis tool, we propose
to have a formally defined timing analysis interface. The
key concept of this interface is the notion of timing program
points (TPPs), that is, markers in the intermediate language
where the modeling tool can request timing information. In
particular those markers can be inserted to mark code parts
representing a certain model element.

To be concrete, Fig. 3 lists the tick() function that is gener-
ated from the robot example in Fig 2(b) using a data-flow
based code generation approach [26]. The timing program
points are marked with macro calls, such as TPP(1) on line 6.
In this example, the regions in the model are compiled into
sequential C code; the code for HandleEmergency is followed
by the code for HandleMotor, where guarding if-statements are
used to select if external functions are called or not.

Traditional WCET tools would analyze the tick() function
in isolation for a single traversal, which can inherently result
in too pessimistic values. For example in the SCChart of
Fig. 2(b), the Functions errorLog() and getImage() are mutu-
ally exclusive and should not be able to be called in the
same tick. However, guard g2 for errorLog() (lines 9-11) and
guard g6 for getImage() (lines 16-18) cannot be derived to be
mutually exclusive by only observing one execution of tick():
g2 depends on PRE_g1 and g6 depends on PRE_g4 which are
independent and not defined earlier in the function. Thus, in
a traditional analysis, both PRE_g1 and PRE_g4 have to be
assumed to have arbitrary input. As a consequence, a tradi-
tional WCET tool cannot find any infeasible paths for these
two if-conditions. This is a special infeasible path problem
that is not necessarily handeled by tools that are otherwise
able to detect infeasible program paths, as the notion of
state is part of the required information, as we explain in
the following.

A reactive tick() function is basically a Mealy machine
where the state update function and the output function are
combined into one tick function. If the tool can have as
assumptions that PRE_g1 and PRE_g4 are state variables,
which have initial values and are always updated in the
tick before it is used, we can see that PRE_g1 and PRE_g4
are mutually exclusive, presupposed that not both of them
were initiated to 1; note that they are updated on lines



31-32, and that g1 an g4 are mutually exclusive because
of the bumper variable. We call such an infeasible path
a reactive infeasible path to differenciate from the general
infeasible path problem [11]. A timing analysis tool that takes
reactive infeasible paths into account computes the worst-case
reaction time (WCRT ). WCRT differs from standard WCET
in that it takes state-based behavior into account, including
multiple, concurrently active states [4]. (Note that this is
not the same as worst case response time, which denotes the
maximal duration from activating a job to its completion.)
WCRT analysis can be performed if the tool can get as input
the set of state variables (in this case PRE_g1 and PRE_g4).

A practical challenge in interactive timing analysis is to
keep the round trip time from model change to updated
timing results sufficiently short for an interactive design flow.
We therefore distinguish between a tool that is doing the
interactive timing analysis of the reactive tick function, and
“traditional” WCET analysis tools that perform WCET anal-
ysis of called C functions (for instance errorLog() on line 10
or getImage() on line 17). The former takes a timing analysis
request as input, which is based on the formalized timing
analysis inference (Sec. 4). This request asks about timing
information (WCET or BCET) between timing points. The
key point is that the interactive timing analysis tool does not
need to do traditional WCET analysis of complex external
functions, it only computes the timing between timing pro-
gram points. The WCET numbers for the called functions
are instead computed offline by a traditional WCET tool,
and are then used as assumptions in the interactive timing
analysis. By separating these two concerns, the interactive
timing analysis performance can be significantly accelerated.
However, it should also be noted that the calling context of
the analyzed external functions will not be part of the offline
analysis, which can lead to pessimistic but still sound WCET
estimates.

3. TOOL CHAIN
Our approach is not limited to a specific modeling tool or
architecture. However, in this section we present a concrete,
complete example tool chain for a specific architecture. This
toolchain is also used to test the soundness of our concepts
and the timing interface, as detailed in Section 5. As model-
ing tool (recall Fig. 1), we used the SCCharts modeling tool
of KIELER2. We chose KIELER as it is open software, has
integrated automatic layout, comes with a growing bench-
mark collection and supports SCCharts [26] as a graphical
modeling language that can model state-based systems. For
low-level timing analysis, we have developed a simple ex-
perimental WCET analysis tool3, specifically designed to
experiment with timing analyses between timing points. We
describe the implementation on the modeling tool side fur-
ther in Section 3.1 and give details on the handling of TPP
on the analysis side in Section 3.2.

3.1 Modeling Tool
The KIELER SCCharts modeling tool is a textual modeling
tool that offers automatically generated graphical views of the
model under construction. Previously to this work, KIELER
did not offer any timing analysis feedback. We augmented

2http://rtsys.informatik.uni-kiel.de/kieler
3https://github.com/timed-c/kta

the KIELER SCCharts modeling tool with the feedback of
the overall WCET value and also with detailed flat and
deep fractional time values for each region. We implemented
a display of the time values directly in the graphical view.
Additionally, we added hotspot highlighting by automatically
coloring the regions with different shades of red in relation
to their respective share of the overall WCET. This kind of
time value feedback can be seen in Figure 2, which has been
created automatically with the augmented tool. Note that
detailed time values could have been retrieved for arbitrary
model elements, to implement this for regions is just an
exemplary choice.

A main technical problem to solve on the modeling tool
side is to keep track of the information which parts of the
generated code belong to which regions of the original model.
The modeling tool has to trace this information down the
compilation chain. This allows for the automatic marking
of the correct code parts with TPPs for the timing analysis
request. Our approach is not restricted to any particular
way of solving this problem, but as an example we explain
now in more detail how we do this in KIELER.

The compilation of SCCharts in KIELER follows the Single
-Pass Language-Driven Incremental Compilation (SLIC) ap-
proach presented by Motika et al. [22]. Thus, the compilation
consists of a chain of modular transformation steps between
model representations, of which each transformation is dedi-
cated to handling specific features of the modeling language.
During the SCCharts compilation up to 27 transformations
may be performed, depending on the number of used SCCha-
rts language features, until the Sequentialized Sequentially
Constructive Graph (Sequentialized SCG) is reached, from
which the code will be generated. The compilation of the
robot example has seven intermediate model representations.
The transformation chain will be passed exactly once during
the compilation. Thus, the SLIC approach facilitates model
element tracing, which can be performed modularly on each
transformation. The resulting tracing mappings between
model elements can be combined by a transitive closure to
yield the overall mapping between model elements of the
original model and the parts of the Sequentialized SCG. From
this overall mapping, we can derive an allocation of parts of
the Sequential SCG (and thus of generated code parts) to
model elements, for example to regions.

Based on this concept we developed a tracing framework
that also provides a view for traced models to inspect and
debug the tracing, illustrated in Fig. 4. The view displays
the graphical model representation of the SCChart and the
generated Sequentialized SCG. The arrows visualize the trac-
ing relations of the selected elements. The sidebar on the
right side provides options for customizing the view, such as
activating tracing visualization of selected elements.

As an example we illustrate a part of the tracing informa-
tion for the improved robot example in Fig. 4. The screenshot
shows the tracing of the transitions in regions HandleEmer-
gency and HandleMotor. The presented SCG is zoomed to
represent the lines 8 to 24 of the code in Fig. 3. For our
example in Fig. 4, we can easily identify that all nodes down
to motor = false are associated with region HandleEmergency
and all nodes shown from g5 = pre(g4) on are associated with
HandleMotor. Consequently the tool inserts TPP(2) between
these nodes. TPP(3) is added at the end of the block of nodes
traced to region HandleMotor. The newly created TPPs are
preserved in the final code generation step. We now also

https://github.com/timed-c/kta


Figure 4: Screenshot of the view generated by the tool for visualizing the tracing between the Robot SCChart
and the corresponding SCG. The arrows visualize the connection between the model and the control flow
graph. All parts of the visualization are automatically generated by the tool chain.

know which region relates to which TPP or TPPs. Thus
we can request the according timing information from the
timing analysis tool, aggregate the retrieved timing values
for each region and display them in its graphical view in the
model, thus closing the interactive feedback cycle.

3.2 Timing Analysis
The modeling tool described in the previous section generates
C code as output, where timing program points are directly
inserted as part of the C code. The next task of the tool
chain is to compile these C code files into machine code and
then to perform WCET and BCET analyses.

In contrast to conventional WCET analysis tools, such
as aiT, SWEET, OTAWA, or Chronos, a timing analysis
tool for interactive timing analysis needs to perform timing
analysis between pairs of timing program points, not just on
a specific function.

To the best of our knowledge, no existing tool can perform
such timing analysis between timing points. To enable the
evaluation of our approach of interactive timing analysis,
we have developed an exhaustive simulation-based timing
analysis tool. We will leave it as future work to design a com-
plete WCET analysis tool that can handle the combination
of interactive timing analysis, timing points, and analysis of
complex hardware that includes pipelines and caches. The
main steps performed by the timing analysis tool that is used
for evaluation are as follows.

First, it uses a GCC-based cross-compiler targeting a
MIPS32 architecture to compile the C program into an ELF-
binary. Our TA tool then parses the binary, extracts MIPS
instructions, and generates an internal data structure that
is later used for cycle-accurate simulation. In this process,

one key challenge is to make the TPPs in the C code pass
through the C compiler in a way that the timing analysis
tool can read out the correct locations of the timing program
points from the binary. We have solved this problem by
representing timing program points as assembly labels. In
contrast to C labels, these labels are preserved throughout
the compiler phases of the C compiler and are available in
the symbol table of the ELF-binary file. We then use the
addresses in the binary that define the exact positions of the
timing points. Note that this approach implements a barrier
semantics, where the barriers in this case are the timing
points. This means that the C compiler cannot perform
optimizations over these barriers. Hence, inserting timing
points may affect the optimization of the C compiler, but
they do not otherwise result in any other performance cost
since they are represented as pure addresses in the binary.
In the current experiments, we have disabled optimization
of the C code.

The second step is to read the timing analysis (.ta) file,
which the modeling tool has generated. This file includes
all the relevant pairs of TPPs that the tool is interested in,
as well as assumptions on WCET time for functions. The
interactive timing analysis tool then performs cycle-accurate
exhaustive simulation of all possible input combinations.
Again, we note that this approach is not intended as a com-
plete scalable solution, but it is a good way to experiment
with the approach presented in this paper. To improve
scalability, possible research directions could be to base the
analysis on implicit path enumeration [19], abstract interpre-
tation, explicit path analysis [16], or a combination of these
techniques.

The modeled processor is a 32-bit single-cycle MIPS pro-



cessor where all the program code is assumed to fit into a fast
local scratchpad memory. This is similar to a processor that
is specifically designed for timing predictability [29]. Dur-
ing the search, the tool keeps track of the WCET path and
visited timing points in such a way that the timing requests
from the tool can be answered, see the next section for a
formal definition of the actual timing interface and timing
requests. To enable reactive timing analysis, the tool first
uses a specific initialization function to initialize the defined
function states. When all input values are explored, the tool
computes the set of all possible output states of the analyzed
function. This set of possible states is then used again as
possible inputs to the function, and another simulation round
is performed. The procedure then performs a fixed-point
iteration and terminates when there are no more state/input
combinations left to explore. Finally, the timing analysis
tool reports back local and fractional timing information to
the modeling tool, which in turn reports back and visualizes
the results to the end user.

4. TIMING ANALYSIS INTERFACE
In this section, we formally define an interface for communi-
cating timing information between a high-level modeling tool
and a timing analysis tool. Note that this interface should
only be seen as a specification; a tool can be implemented in
different ways, as long as the specification is followed.

4.1 Interface Formalization
The problem can be defined as follows.

Definition 1 (Interactive Timing Analysis).
Given a program consisting of a set of functions F , a set of
global variables G, and a timing analysis request treq , return
a timing response tres .

By function we mean a function in the sense of the C language,
although the problem formulation itself is not limited to C.
Global variables may be of any primitive type and be given
initial values. A timing analysis request is a 7-tuple

treq = (f, a, g , S, e, P,R). (1)

The first element f ∈ F is the function to be analyzed; a, g ,
S, and e state assumptions for the analyzer; P is the set of
timing program points in f ; R is the set of requested analyses.
We now detail the assumptions (a, g , S, e), followed by the
program points (P ) and analyses requests (R).

4.2 Assumptions
The assumptions of treq may be used by the interactive timing
analyzer to compute tight execution bounds. For instance, if
only a specific set of values can be supplied as arguments to
function f , the analyzer may exclude infeasible paths, thus
providing tighter WCET or BCET. These assumptions are
optional; by not providing assumptions, the analysis may
have to be more conservative.

Assumption a : N→ A is a function that specifies assump-
tions for the arguments that may be applied to function
f . That is, expression a(n) returns, for argument n ∈ N,
an abstract value v ∈ Va. In this formalization, we do not
specify which abstract domain value v should be in, but for
an integer type, a typical value could be represented as an
integer interval. Similarly, function g : G→ Va specifies the
assumption for a value g(x) of a global variable x ∈ G. S is

the set of state variables, the variables that can be used by
the interactive timing analysis tool to compute reactive infea-
sible paths. The interface offers an option to customize the
representation for state based systems without limiting its
application area to them. Finally, function e : F → N⊥×N⊥
specifies assumptions on execution time for functions that
may be called by f . More specifically, for a function f1 ∈ F ,
e(f1) denotes a tuple (tb, tw), where tb and tw specify the
assumptions of safe lower and upper bounds of the execution
time for f1, respectively. We represent execution time as
N⊥ = N ∪ {⊥}, where ⊥ indicates that the function is non-
terminating or that a safe bound has not been determined.
For instance, if e(f1) = (200,⊥), we can assume that 200 is
a safe lower bound, but that we cannot prove any safe upper
bound because at least one path in the function cannot be
proven to terminate. Time values are given in clock cycles.

4.3 Analyses Requests
The objective of treq is to specify precisely what timing
information the high-level modeling tool is interested in. To
enable more precise specification than at a function level,
the modeling tool can insert timing program points within a
function. Using pairs of these program points, the tool can
then request timing analysis information about parts of the
function.

Element P of the timing request tuple treq specifies a set
of timing program points. A tool may specify any finite
number of timing points, including program points pe and
px that represent the function entry point and exit point,
respectively. Set R specifies the requested analyses. Each
element of R is a triple (y, pa, pb), where y ∈ Y is the type of
requested analysis value, pa ∈ P the starting program point
for the analysis, and pb ∈ P the ending point. We define six
types of requests:

Y = {WCP, BCP, LWCET, LBCET, FWCET, FBCET} . (2)

WCP and BCP stand for worst-case path and best-case path,
respectively. These are the execution paths between timing
program points that result either in the longest or shortest
timing bound. The other four types request the worst-case
execution time (LWCET and FWCET) and best-case execution
time (LBCET and FBCET). The prefixes L and F stands for
local and fractional, respectively. The precise meanings of
the different timing requests are defined next.

4.4 Timing Response
The timing response tres is a function

tres : R→ N⊥ ∪ P(p̄) (3)

where r ∈ R is an analysis request and the resulting value
is either an execution time value t ∈ N⊥ for r ∈ {LWCET,
LBCET, FWCET, FBCET}, a finite path p̄ = 〈p1, p2, . . . , pn〉 for
r ∈ {WCP, BCP}, or ⊥ for a undefined response. By P(p̄) we
mean the set of all possible finite paths.

We now formalize the meaning of the different types of
timing requests. Let G = (V,E) be a directed graph, repre-
senting a control-flow graph (CFG) for a function f that is
being analyzed. The set of vertices V = B ∪P ∪F ∪ J is the
union of basic blocks B, timing program points P , and fork
F and join J nodes that express parallel execution paths.
We write v̄ to denote a path within G. From G, we can
derive a timing program points graph Gp = (P,Ep), where all
vertices are program points, and edges Ep = {(v, w) | v, w ∈



P and w is reachable from v in G}. We require that Gp ⊆ G
is a directed acyclic graph (DAG). Note, however, that G
does not have to be acyclic; loops may still exist between
timing program points. A path in G of length n is a sequence
of vertices 〈v1, v2, . . . , vn〉.

Definition 2 (Timing Program Point Path). For a
path v̄ in G, the corresponding timing program point path,
denoted p̄ = tpath(v̄), is derived by removing all vertices
v /∈ P from v̄.

From the specification point of view, suppose there exist
functions cw : E → N and cb : E → N stating the worst-case
and best-case execution times for executing block v ∈ V
and transition to block w ∈ V , where (v,w) is an edge in
E. If v is a basic block and contains function calls, the
timing analysis tool should use function e (assumptions of
execution time for function calls) as defined in (1). The
execution time is always zero for an edge that leaves from
a timing program point vertex. We also assume that there
exist functions for computing the worst-case execution time
path v̄wp1,p2 = 〈v1, v2, . . . , vn〉, and a best-case execution time

path v̄bp1,p2 = 〈v1, v2, . . . , vn〉, between two timing program
points p1 and p2, respectively. The empty path is returned if
p2 is not reachable from p1, ⊥ is returned if the path between
p1 and p2 cannot be proven as finite (the execution may be
non-terminating). Note that the worst-case execution time
path v̄wp1,p2 contains both basic block and timing program
point vertices, but the path returned by requesting WCP only
contains timing program points.

Definition 3 (Subpath). Let spathp1,p2
(v̄) be a sub-

path of v̄, which contains the contiguous sequence of vertices
between and including p1 and p2. That is, for a sequence
v̄ = 〈v1, v2, . . . , p1, vn, . . . , vn+m, p2, vn+m+1, . . . , vn+m+k〉,
spathp1,p2

(v̄) = 〈p1, vn, . . . , vn+m, p2〉. If v̄ does not con-
tain p1 or p2, the empty path is returned, even though a path
between p1 and p2 may still contain elements of v̄. If v̄ is
equal to ⊥, then ⊥ is returned.

Definition 4 (Execution Time). The worst-case ex-
ecution time is defined as etime(v̄) = cw(v1, v2) + . . . +
cw(vn−1, vn), where v̄ = 〈v1, v2, . . . , vn〉 is a path in G.
The best-case execution time is defined in the same way
using cb. If v̄ is the empty path, etime(v̄) = 0. Moreover,
etime(⊥) = ⊥.

Note that this path-related definition together with v̄wp1,p2
and v̄bp1,p2 covers also fork and join nodes. There is no
restriction in the interface on how the timing analysis tool
implements those functions, for example this could involve a
max-plus algebra calculation, see [1] for a survey, for parallel
execution of concurrent code parts.
The timing response time function is then defined as follows:

tres(r)=



tpath(spathp1,p2
(v̄wpe,px)) if r = (WCP, p1, p2)

tpath(spathp1,p2
(v̄bpe,px)) if r = (BCP, p1, p2)

etime(v̄wp1,p2) if r = (LWCET, p1, p2)
etime(v̄bp1,p2) if r = (LBCET, p1, p2)
etime(spathp1,p2

(v̄wpe,px)) if r = (FWCET, p1, p2)

etime(spathp1,p2
(v̄bpe,px)) if r = (FBCET, p1, p2)

4.5 Example
The different requested execution times are best illustrated
using an example. Fig. 5 shows a CFG for a function f .

if x == y
b1 b3

pe p1 px

b2

b4 b7

b5

if x != y

10

p310

05
0

20

10 5
15

200
0

b6 20100

p2

0p4

Figure 5: A CFG that includes basic blocks (b1
to b7) and timing program points (pe, p1, p2, p3,
p4, and px). White arrows represent true-branches
and black arrows false-branches and unconditional
branches. The graph is cyclic (nodes b5 and b6), but
a derived graph between timing program points is
acyclic. Time values are given in clock cycles.

The graph has seven basic blocks (b1 to b7) and six timing
program points {pe, p1, p2, p3, p4, px} (shown in small filled
circles). In the example, we assume that the timing analysis
tool determines that the loop between b5 and b6 is executed
at most ten times and at least two times (either by using
external flow facts or by computing the loop bounds). We
may then observe the following:
• If the timing analysis tool cannot handle infeasible

paths, the true-branches at b1 and b4 are in worst-
case taken. Consequently, tres(WCP, pe, px) = 〈pe, p1, p2,
p3, px〉 and tres(LWCET, pe, px) = 10 + 200 + 5 + 15 + 10∗
(100 + 20) + 20 + 5 = 1455. Note that LWCET and FWCET

are the same when computed for the whole function.
• If the timing analysis tool can handle infeasible paths,

the tool can detect that the path containing b2 and b5
is infeasible because variables x and y cannot be equal
and not equal at the same time (assuming x and y in
the if-expressions are not modified in basic blocks b1,
b2, b3, or b4.). As a consequence, tres(LWCET, pe, px) =
10 + 5 + 15 + 10 ∗ (100 + 20) + 20 + 5 = 1255 (the
false-branch is taken at b1 and the true-branch at b4).
• If the tool handles infeasible paths, tres(LWCET, pe, p1) =

10+200+5 = 215, but tres(FWCET, pe, p1) = 10+5 = 15.
Note that fractional WCET states how much the path
between pe and p1 contributes to the global WCET
between pe and px. Because the tool is assumed to
handle infeasible paths, the longest global path contains
edge (b1, b3). Local WCET does not consider the global
analysis.
• Note that tres(FBCET, p2, p3) = 2∗ (100+20)+20 = 260,

but tres(FBCET, p2, p4) = 0; the latter because there is
no feasible path between p2 and p4 (the path returned
by v̄bpe,px does not contain p4).

5. EVALUATION
We used a test suite to validate our concepts, as detailed in
the following. Also we conducted a small user study, which
will be introduced in Section 5.2.

5.1 Test Suite
With the help of the example implementation introduced in
Section 3, we employed a test suite to check the soundness of
the concepts and interface of the interactive timing analysis.
Note that the validation does not focus on the quality of
timing analysis approximations, as we do not claim the



Table 1: Selected validation test cases

Model Nodes Regions TPP Focus
CircleWithCalls 5 1 4 State
Controller 28 7 11 State
FunParc2 150 40 49 State
MedicalAid 50 13 25 LWCET
Feeder 21 7 18 Hotspot
MultiWait 198 99 103 TPP

timing analysis tool itself as a contribution. Our benchmarks
comprise general models from the KIELER benchmark suite
as well as dedicated models that test corner cases of the
interactive timing interface. A selection of test cases is
presented in Table 1. This selection illustrates our validation
concept and shows characteristics of the models, like the
numbers of nodes, regions, and automatically inserted TPP,
and the focus of the testcases, detailed in the following.

The first three models are designed to test different aspects
of state-based analysis, that is, a timing analysis approach
where reactive infeasible paths are discovered by making
use of the assumption that some specific variables are state
variables. CircleWithCalls is a small corner case model that
tests the handling of models of systems that are conceptually
perpetually running, which means that there is a loop in the
controlflow of the diagram, but not one that can be concluded
in a single tick. Controller is a model with rather complex
structures, where worst-case behavior only occurs after a
number of ticks and involves three hotspots that only in a
particular constellation surpass a fourth potential hotspot.
This model thus tests whether the tool can determine that
these three hotspots will be executed in a common tick.
Finally we test a number of general nontrivial benchmarks
like FunParc2. Note that we are using fictional host code
call timing values, written by hand to an assumption file, to
configure constellations in which we can state an expected
test outcome and to reuse models for different constellations.

Though we concentrated on FWCET values, we also tested
the analysis of LWCET with dedicated models like Medi-
calAid, which display the difference between FWCET and
LWCET because there are a number of mutually exclusive
regions. Additionally we tested the WCET path requests
with models like Feeder where the resulting hotspot highlight-
ing is particularly involved. Finally we tested execution with
high TPP numbers with benchmarks like MultiWait.

5.2 User Study
As a second part of the evaluation we conducted a study, with
44 participants, divided into four groups of eleven participants
each, randomly distributed. The goal of the study was to
get first hints on whether the introduced timing information
feedback techniques actually benefit the user. All participants
had experience with SCCharts as the graphical modeling
language. Forty of the participants were students of an
advanced stage of their bachelor or master studies and four
were researchers that were not concerned with the design
or execution of the study and were evenly distributed over
the four groups. The students could get partial credit for an
embedded systems course by participating, but taking part
was no requirement to pass the exam with full score.

All participants were given the same model, which con-
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Figure 6: Times for the four groups with different
types of timing information.

tained 11 regions, 31 states and 17 host code calls. All
four groups had interactive feedback of the overall WCET
value. Group 2 additionally had deep and flat fractional time
values for the regions while Group 3 instead had hotspot
highlighting and Group 4 had all three kinds of feedback.

The participants had to solve the task to revise the model
in order to reduce the overall WCET below a given threshold.
To do this they were allowed to exchange host code calls for
calls to alternative functions. The participants received a list
of available functions, without timing information.

The working time of the participants was measured. In
case a participant took longer than 25 minutes, the attempt
was aborted to limit the potential strain for each participant.
The consumed working times are shown in Figure 6, with an
approximated working time of 25 minutes for the aborted
attempts. This applies to eight of the eleven members of
Group 1 and three out of eleven for Group 2. In both
of the groups with hotspot highlighting, all participants
were able to finish in time. An interesting result is that
the time values for Group 1, with least timing information,
and Group 4, with most available feedback, are completely
disjunct. That is, all participants of Group 1 took longer
time to finish compared to all participants of Group 4. This
strengthens the indication that the full interactive timing
analysis feedback was helpful in this setting. Except for
a single value this is also true for Group 3. For Group 2,
the majority of the time values are improved as well as the
number of aborted attempts. The time values for Group
4 show the lowest standard deviation, possibly pointing to
an increased degree of effective guidance. For Group 3 a
cluster of time values is observeable, although the results
deviate more overall. The two hotspot-highlighting-based
configurations are distinguished as the only ones in which no
participant broke the time limit. The results indicate that
hotspot highlighting alone might not be far inferior in effect
to hotspot highlighting with detailed region time values.

It seems likely that the detailed interactive timing analysis
actually can help improve model revision productivity. An
elaborate experiment on interactive timing analysis in an
industrial setting with a larger number of benchmarks and
higher degrees of possible model changes would be a research
endeavour of its own and is left to future work.



6. RELATED WORK
During the last decades, a significant amount of work has
been done in the area of WCET analysis. A comprehen-
sive overview of the research field is given by Wilhelm et
al. [28]. Most works within the WCET analysis area focus on
techniques for computing safe and tight bounds of WCET;
less attention has been given to how such techniques fit in a
development environment and only a few attempts exist on
performing interactive timing analysis. Harmon et al. [12]
have developed a tool chain for interactive WCET analysis,
where the performance of the analysis time is favored over
tightness of the WCET bound. Their approach is imple-
mented in a Java development environment, where the user
can obtain timing values directly on functions and program
statements. Kirner et al. [15] show how interactive timing
analysis can be incorporated in the Matlab/Simulink envi-
ronment. They describe how start and stop markers are
inserted into C code, but do not give a precise formal mean-
ing. Persson and Hedin [24] present an interactive timing
environment for Java, where WCET analysis is performed at
the byte-code level. Ko et al. [17] have developed an inter-
active timing analysis environment for C programs, where
portions of the program can be selected and analyzed. The
tool aiT is integrated into SCADE for timing feedback, but
their analysis granularity is limited to function calls. This
precludes inlining, and also does not give timing feedback to
semantic elements of the original model that correspond to
multiple, unconnected regions in the generated code. In all
above described previous work on interactive timing analysis,
the focus has been to develop interactive and efficient analysis
techniques for specific environments. By contrast, our work
in this paper focuses on the interface for interactive timing
analysis between a high level tool and the timing analysis
tool. In particular, none of the related work formalizes this
interface and discusses the difference between different kinds
of WCET/BCET values, as discussed in this paper.

There have also been some investigations of WCET/WCRT
analysis for synchronous languages. Mendler et al. [20] pro-
pose an algebraic approach for the WCRT analysis for Esterel
programs. Raymond et al. [25] have been concerned with
infeasible paths in the binary code under timing analysis
that are implied by high-level functional properties given in
synchronous languages, the concrete language in their design
being the dataflow language Lustre [5]. This work is related
to our concept of reactive infeasible paths, however the au-
thors use an existing model checker to verify the feasibility
of paths according to high-level semantics and to trace the
functional properties from Lustre to C and from C to binary
code. In contrast we are working with statebased modeling
systems and identify the state representation variables in the
C code for the analysis tool to enable a statebased timing
analysis. Also, we trace the representation of model elements
for a graphical control-flow based language, whose compi-
lation involves a chain of model transformation steps down
to code generation and use the concept of timing program
points to identify the corresponding code parts. Wang et al.
propose an ILP-based approach that exploits concurrency
explicitly [27]. These techniques could be combined with our
proposal regarding WCET-feedback at the modeling level.
Perhaps closest in spirit to our work is the work by Ju et
al. [13], who back-annotate an Esterel program with infor-
mation regarding the timing-critical path. However, they do
not break down specific timing information as we propose

here. Our current usage of timing program points is related
to the control points of the Saxo-RT compiler [6] in that both
indicate possible context switches; however, control points
are finer grain since they also express scheduling properties
within a thread, not only across threads.

For textual programming languages such as C, the general
concept of quickly guiding users to timing hot spots using
visual notations has been applied in the context of profiling by
long-established tools such as IBM’s Rational Quantify. For
model-driven engineering, the user story on interactive timing
analysis advocated in this paper fits into the general idea of
modeling pragmatics that strives to enhance user productivity
by making the best possible use of visual models [9].

Parts of this work have been presented at a workshop
before, but without formal publication. An earlier version of
the work is available as technical report [10].

7. CONCLUSION AND OUTLOOK
In this paper, we have explained and demonstrated how a
complete tool chain can be augmented with interactive tim-
ing analysis capabilities. Key properties of our approach are
i) hotspot highlighting at the model level ii) clear display of
timing annotations in the form of deep, flat, and fractional
timing values, iii) a formally defined timing analysis inter-
face that clearly explains the meaning of timing requests
and timing responses, iv) the tracing of model elements for
which timing is requested during compilation and v) the in-
troduction of state variable assumptions to address a special
infeasible path problem, the reactive infeasible paths. For
future work, we want to use the detailed timing informa-
tion for optimizations in parallel code compilation. Also, we
plan to further investigate the combination of interactive
timing analysis with traditional WCET analysis tools. As
our approach is not limited to WCET analysis, it may be
transferred to the analysis of average time behavior as well.
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