
A Concurrent Reactive Esterel Processor
Based on Multi-Threading

Xin Li, Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Dept. of Computer Science and Applied Mathematics
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40, D-24098 Kiel, Germany

{xli,rvh}@informatik.uni-kiel.de

ABSTRACT
Esterel is a concurrent synchronous language for developing
reactive systems. As an alternative to the classical software
and hardware synthesis paths, the reactive processing ap-
proach uses a specialized processor with an instruction set
tailored to Esterel. A principal difficulty when compiling
onto a reactive processor is the faithful, efficient implemen-
tation of concurrency. This paper presents a novel reactive
processor architecture based on multi-threading, which al-
lows the arbitrary nesting of preemption and concurrency,
and is scalable to very high degrees of concurrency.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Other Architecture Styles—
High-level language architectures

General Terms
Languages, Performance

Keywords
Synchronous languages, Esterel, processor architecture, multi-
threading

1. INTRODUCTION
The synchronous language Esterel has been developed for

modeling reactive systems [6, 2], which typically are em-
bedded systems that continuously react to their environ-
ment. To adequately express reactive behavior, Esterel of-
fers control flow primitives that are much richer than that of
traditional, sequential programming languages. An Esterel
program typically consists of a collection of nested, concur-
rent threads, which may include preemption blocks and may
themselves be included in preemption blocks, and whose ex-
ecution is synchronized to a single, global clock.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06 April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

An Esterel program is classically either synthesized into
hardware, using for example VHDL as an intermediate rep-
resentation [3], or into software [6, 12]. The typical software
synthesis approach is to first translate the (concurrent) Es-
terel program into a sequential language, such as C, and
then to compile this further for a standard common-off-the-
shelf (COTS) microprocessor. However, common processor
architectures cannot handle concurrency and preemption di-
rectly; therefore, handling these control constructs correctly
turns out to be not trivial and generally fairly expensive for
classical software implementations.

Hence, an alternative approach proposed recently to im-
prove the performance of a software implementation is to
implement an Esterel program on a special-purpose reactive
processor whose instruction set has been tailored to Esterel.
The general appeal of reactive processors is that they offer
the flexibility of software at a performance close to hardware
implementations; another advantage is their predictability
due to the direct mapping from Esterel specification to ex-
ecution. This not not only makes timing predictions feasi-
ble [17], but also simplifies formal verification. Hence we en-
vision a practical potential of reactive processors in embed-
ded, reactive applications where short design turn-arounds
or low volumes do not warrant a custom hardware design,
but a classical software solution would be inappropriate as
well due to requirements on predictability, price per unit, or
also power consumption.

We distinguish patched reactive processors and custom re-
active processors. The patched reactive processor approach
combines a COTS processor core with an external hard-
ware block, which implements additional Esterel-style in-
structions. This approach has been pioneered by the RE-
FLIX and REPIC [19, 9, 20] designs. The EMPEROR archi-
tecture [11] is a multiprocessor variant, which also supports
Esterel’s concurrency operator “||”; however, it is not obvi-
ous how this design would support the arbitrary nesting of
concurrency and preemption, and this solution is relatively
hardware intensive.

The custom reactive processor approach involves a full-
custom reactive core, whose instruction set and data path
have been tailored exclusively for the processing of Esterel
code. An example is the Kiel Esterel Processor family, with
the KEP1 [16] and KEP2 [17] models. The major limitation
of the KEP so far was that it did not support the || operator.

Hence, we still see limitations in the existing proposals,
especially regarding their handling of concurrency. In par-
ticular, it appears that none of the architectures proposed so

Figure 1: The architecture overview.

far allows the arbitrary nesting of preemption and concur-
rency operators, which is one of the key features of Esterel.

This paper presents a novel custom reactive processor ar-
chitecture, the Kiel Esterel Processor 3 (KEP3), that over-
comes this limitation. A key concept realized in this ar-
chitecture is that it offers concurrency orthogonally to the
other reactive control flow behaviors, rather than providing
concurrency on top of reactive behavior as is done in the
multiprocessing approach. This is achieved by combining
a single, sequential processing engine with separate control
flow units for concurrency, preemption, signal testing, etc.,
which tightly interact with each other according to the Es-
terel semantics.

The rest of this paper is organized as follows. The next
section gives an overview of the KEP3 architecture and its
instruction set. Section 3 discusses KEP3’s thread manage-
ment in more detail, and Section 4 elaborates an example
that illustrates the interaction of preemption and concur-
rency. Experimental results are given in Section 5. Finally,
we conclude and outline future work in Section 6.

2. THE PROCESSOR ARCHITECTURE
The architecture of the KEP3, shown in Figure 1, is in-

spired by the three layers that constitute a reactive pro-
gram [6], i. e., the interface layer, the reactive kernel, and the
data handling layer. The implementation of Esterel’s reac-
tive statements relies on the cooperation of the KEP3’s De-
coder & Controller, Reactive Block and Thread Block, which
together form the Reactive Core. An interface block han-
dles input reception and output production. The classical
computations are performed by the Data Handling Block.

To illustrate the intricacies of the reactive control flow
constructs and to illustrate the translation into the KEP3
assembler, we are considering the EXAMPLE Esterel module
in Figure 2(a), introduced by Edwards [12] and also used by
Closse et al. [10]. The most common Esterel statements,
including all of the primitive reactive kernel statements, can
be represented directly by single KEP3 assembler instruc-
tions. Other statements require statement expansion; the
expansion rules applied here are shown in Figure 2(b). Note
that the KEP3 also offers an instruction that directly corre-
sponds to the sustain statement (see also the example pre-
sented later in Figure ??); however, to properly synchronize
threads, we must in this case expand the sustain into kernel
statements. The resulting KEP3 assembler, shown in Fig-

ure 2(c), is still quite compact, with an instruction count
that is comparable to the line count of the Esterel source
code, despite the intermediate statement expansion.

2.1 Handling Preemption
In the KEP3 architecture, the Reactive Block contains a

(configurable) number of Watcher modules that are respon-
sible for implementing the various types of preemption of-
fered by Esterel. Each Watcher module can be configured to
a certain type of preemption, a certain trigger signal, and
an address range that delineates the preemption block.

If during execution of the program the PC falls in the
watched range and the trigger signal is present, the Watcher
is responsible for triggering the corresponding changes in the
control flow. The Reactive Block is responsible for coordi-
nating the Watcher blocks in a way that reflects the Esterel
semantics. Each Watcher in the Reactive Block is assigned
an index number, which also defines its priority. A Watcher
can be overridden by another Watcher with higher prior-
ity. Considering the preemption nest structure, it becomes
clear that the higher priority preemption has a wider ad-
dress range which covers the lower priority one. Therefore,
the earlier preemption instruction in a preemption nest will
be assigned to the higher priority Watcher. Since it is not
necessary to continuously execute special instructions that
check on the status of each watcher, the program does not
slow down when entering a (nested) abortion block [16, 17].
The Watcher modules operate autonomously, thus also of-
fering a certain type of concurrency, beyond the ||-operator.

2.2 Handling Concurrency
A hurdle when implementing concurrency is the need to

interleave thread execution to allow communication among
threads within the same logical tick. To handle this, the
KEP3 employs a multi-threaded architecture. Each thread
has an independent program counter (PC) and threads are
scheduled according to their activation status and a dynam-
ically changing priority. The priority of a thread is assigned
when the thread is created (with the PAR instruction, as in
“parallel,” see below), and can be changed subsequently by
executing a priority setting instruction (PRIO). Communica-
tion dependencies, which can be statically derived from the
program, impose certain scheduling constraints, which de-
termine how priorities must be assigned such that the inter-
leaved thread execution obeys the semantics of the original
program.

Figure 3 shows the architecture of the Thread Block, which
is responsible for managing the threads. For each instruction
cycle, it decides which thread to execute next, based on
the current status of each thread. A context switch does
not cost any extra clock cycles, and the lean design of the
Thread Block still permits a comparatively high instruction
frequency, see also the experimental results (Section 5).

A concurrent Esterel statement with n concurrent threads
joined by the ||-operator is translated into KEP3 assembler
as follows. First, threads are forked in addition to the pre-
viously existing thread(s). The fork is performed by a se-
ries of instructions that consist of n PAR instructions and
one PARE instruction, which together initialize the Thread
Block. Each PAR instruction creates one thread, by assign-
ing a start address, which initializes the ThreadCurAddr that
is associated with this thread in the Thread Block, and a
non-negative priority. The end address is either given by

1 % Esterel
2 module EXAMPLE:
3 input S, I ;
4 output O;
5 signal A,R in
6 every S do
7 [await I ;
8 weak abort
9 sustain R;

10 when immediate A;
11 emit O;
12 ||
13 loop
14 pause;
15 pause;
16 present R then
17 emit A;
18 end
19 end loop]
20 end every
21 end signal
22 end module

(a)

every S do
p

end
≡

await S ;
loop

abort
p ;
halt

when S
end loop

sustain S ≡

loop
emit S ;
pause;

end loop

loop
p

end loop
≡

A :
p ;
goto A

(b)

1 % KEP3 ASM
2 % module EXAMPLE
3 INPUT S,I
4 OUTPUT O
5 SIGNAL A,R
6 AWAIT S
7 A0: ABORT S,A1
8 PAR 3,P1 % Fork
9 PAR 2,P2

10 PARE P3 % Priorities :
11 P1: AWAIT I % 3
12 WABORTI A,P1B % 3
13 P1A: EMIT R % 3
14 PRIO 1 % 1
15 PRIO 3 % 3
16 PAUSE % 3
17 GOTO P1A % 3
18 P1B: EMIT O % 3
19 P2: PAUSE % 2
20 PAUSE % 2
21 PRESENT R,P2A % 2
22 EMIT A % 2
23 P2A: GOTO P2 % 2
24 P3: JOIN % Join
25 HALT
26 A1: GOTO A0

(c)

Figure 2: EXAMPLE: an Esterel module illustrating the parallel and preemption statements (a), the translation
rules for every, sustain and loop (b), and the resulting KEP3 assembler program (c).

Figure 3: Architecture of the Thread Block.

the start address specified in a subsequent PAR instruction,
or, if there is no more thread to be created, it is specified
in a PARE instruction. The code block for the last thread
is followed by a JOIN instruction, which waits for the ter-
mination of all forked threads and concludes the concurrent
statement.

The Thread Block uses two status flags to keep track of
each thread’s status. The ThreadEnable flag indicates whether
the thread is still running (enabled) or already terminated
(disabled), and the ThreadActive flag indicates whether the
thread should still be scheduled within the current logical
tick (is active) or not (inactive). After a thread is created,
those two flags are both set to ’1’, which means the thread
is ready to be scheduled. However, the Scheduler will not
become active until all of the thread configurations are fin-
ished. After the PARE instruction is executed, the activated
threads can be invoked by the priority-based preemptive

scheduling mechanism.
At the beginning of each instruction cycle, the Scheduler

inspects all active threads and executes the thread with the
highest priority; if there are several active threads with the
same highest priority, the Scheduler executes the thread that
has been created first (which precedes the other threads).
Once a non-instantaneous instruction is executed, the Thread-
Active flag will be set to ’0’, meaning that this thread will
not be scheduled any more in the current tick. If all threads
are inactive, the current tick is finished. At the start of the
next tick, the ThreadActive flags of all enabled threads will
again be set to ’1’.

A thread termination could be caused by two reasons.
One is that the thread finishes all statements in its body, in
which case the expected fetch address will equal the Thread-
EndAddr associated with that thread. The other is that the
thread is aborted by an enclosing abortion, in which case
the expected fetch address will be greater than the Thread-
EndAddr. In the latter scenario, a ParFlag signal will be set
to ’1’ to indicate to the Reactive Block that the thread is
terminated by an abortion. The Thread Block and the Re-
active Block tightly interact with each other through several
control signals to ensure the proper handling of arbitrary
preemption and concurrency control flow.

3. THREAD MANAGEMENT
The priority assigned during the creation of a thread and

by a particular PRIO instruction is fixed. Due to the non-
linear control flow, it is still possible that a given statement
may be executed with varying priorities; in principle, the ar-
chitecture would therefore allow a fully dynamic scheduling.
However, we here assume that the given Esterel program can
be executed with a statically determined schedule, which re-

Tick -
S I

R R
A
O

S I

R

S

Figure 4: A possible execution trace of the EXAM-
PLE.

quires that there are no cyclic signal dependencies. This is
a common restriction, imposed for example by the Esterel
v7 [13] and the CEC [7] compilers. Note that there are also
Esterel programs that are causally correct (that are con-
structive [5]), yet cannot be executed with a static schedule
and hence cannot be directly translated into KEP3 assem-
bler using the approach presented here. However, these pro-
grams can be transformed into equivalent, acyclic Esterel
programs [18], which can then be translated into KEP3 as-
sembler. Hence, the actual run-time schedule of a concurrent
program running on KEP3 is static in the sense that if two
statements that depend on each other, such as the emission
of a certain signal and a test for the presence of that sig-
nal, are executed in the same logical tick, they are always
executed in the same order relative to each other, and the
priority of each statement is known in advance. However,
the run-time schedule is dynamic in the sense that due to
the non-linear control flow and the independent advance-
ment of each program counter, it in general cannot be de-
termined in advance which code fragments are executed at
each tick. This means that the thread interleaving cannot
be implemented with simple jump instructions; there has to
be a run-time scheduling mechanism, as implemented in the
Thread Block, that manages the interleaving according to
the priority and the actual program counter of each active
thread.

4. THE INTERACTION OF CONCURRENCY
AND PREEMPTION

To study how the KEP3 combines concurrency and pre-
emption, it is instructive to work through the example code
in Figure 2(c), and using a possible execution trace in Fig-
ure 4, with input signals shown above the time line and local
and output signals below the time line.

After starting the module, the initial thread (thread 0)
is enabled and active. The control stays at the AWAIT S6

1

and waits for signal S. For the example input trace, AWAIT
S6 is terminated by the presence of the signal S at the sec-
ond tick. Next, the ABORT S, A17 configures Watcher0 to
watch for signal S, followed by the PAR/PARE instructions
that create two new threads. The Scheduler now has to han-
dle all active threads, i. e., threads 0, 1, and 2. Thread 1 has
the highest priority and is scheduled first. In thread 1, the
non-instantaneous statement AWAIT I11 causes the thread
to become inactive, hence thread 2 is scheduled next. Sim-
ilarly to thread 1, the PAUSE19 delays thread 2 by one tick
and causes it to become inactive. The last active thread, the
thread 0 that forked the other threads, executes the JOIN24

instruction to check the statuses of its incoming branched

1To aid readability, we here use the convention of subscript-
ing instructions with the line number where they occur.

threads. Since two threads (threads 1 and 2) are still en-
abled, the JOIN does not terminate. Therefore, thread 0
becomes inactive as well, and the current tick is finished
because all of threads are inactive.

When the third tick starts, all enabled threads are acti-
vated again. The Scheduler again starts with thread 1; now
I is present, which terminates AWAIT I11. Next, WABORTI
A,P1B12 makes Watcher1 immediately watch signal A, and
execution continues through EMIT R13 and the priority set-
ting instruction PRIO 114, which changes the priority of
the currently executing thread to be lower than that of
the thread 2. Therefore, the Scheduler blocks thread 1 and
switches over to thread 2, where PAUSE20 is executed and
thus deactivates thread 2. Hence, thread 1 resumes with
the PRIO 315 instruction, which ensures that thread 1 is
scheduled before thread 2 in the subsequent tick, before it
becomes deactivated by PAUSE16.

Similarly, in the fourth instant, after thread 1 has been
blocked by the PRIO 114 instruction, the thread 2 resumes
from PAUSE20 and executes PRESENT R,P2A21 to test the
presence of signal R. Since the signal R was emitted by
thread 1, the PRESENT instruction will not cause a branch,
and EMIT A22 is executed, before control moves back to
PAUSE19. Hence, the control is handed over to thread 1
again. Note that the program counter is in the watching
range of Watcher1, which is triggered by A. The Priority-
Controller maps Watcher2’s outputs to the Reactive Block’s
output, and the Decoder & Controller checks the rdAbort,
weakFlag, rdSuspend, rdAWAIT, and so on, simultaneously.
As this is a weak abort, the abort body is still executed
for the current instant; that is, the PRIO 315 is executed,
then the PAUSE16 is fetched. Since it is a non-instantaneous
statement, the Reactive Core will ignore it and instead leave
the abort block. Therefore, the EMIT O18 is executed, and
as thread 1 then reaches its end address, it is disabled and
deactivated, and thread 0 is resumed. Since the thread 2 is
still enabled, the JOIN still does not terminate.

At the next tick, the disabled thread 1 will not be sched-
uled, and control starts from the terminated PAUSE19 in-
struction. As S is present, the Watcher0 is triggered. Since
this is a strong abortion, the controller responds to it imme-
diately. The Thread Block gets the ReturnAddr 26, i. e., the
next instruction address behind the body of abortion S, as
the next fetch address. Note that the ReturnAddr is greater
than the ThreadEndAddr of the current thread, hence, thread
2 is disabled and deactivated. The ParFlag signal is set as
’1’ to denote that this thread is terminated by an outer
abortion. Now that all of the incoming branch threads are
disabled, the JOIN instruction in the thread 0 terminates.
Since the ParFlag is set, the execution of thread 0 responds
to the active abortion. The control jumps to GOTO A026.

The execution scheme can also handle several threads
within a preemption body. The seventh tick in Figure 4
illustrates how a triggered abortion overrides two enabled
threads. Similar as in the fifth tick, the triggered Watcher0
causes the ReturnAddr to be 26, which is greater than the
ThreadEndAddr of the thread 1. As a result, the thread 1
is disabled and deactivated, and thread 2 executes. At this
point, the program counter is still in the watching range of
the Watcher0. The Reactive Block’s rdAbort is still ’1’ and
the weakFlag is still ’0’ to denote a triggered strong abor-
tion. Hence, thread 2 is also disabled and deactivated by
the abortion.

Table 1: The codes size and RAM usage comparison
for EXAMPLE between the KEP3-A (see Table 3),
MCS51, and Microblaze processors.

KEP3-A MCS51 Microblaze
V5 V7 CEC V5 V7 CEC

Code size (words) 22 462 1051 839 464 1136 482
Code size (bytes) 88 724 1455 1119 1856 4544 1928

RAM Usage (bytes) 14 23 98 39 48 52 52

Table 2: Comparison of the codes sizes in words (one
word equals four bytes), and comparison of RAM
usage in bytes.

Threads/ Code Size (words) RAM Usage (bytes)
Module Preempt. Microblaze

KEP3
Microblaze

KEP3
Depth V5 V7 CEC V5 V7 CEC

BELT 2/3 617 1255 483 31 84 84 52 14
ABCD 4/1 1357 1547 1396 107 112 112 504 24

RUNNER 2/5 688 1323 608 37 88 84 60 14
ARBITER12 36/1 3162 1703 3909 317 256 172 88 156

5. EXPERIMENTAL RESULTS
The EXAMPLE module in Figure 2 is used to compare

the concurrency and preemption handling abilities between
the KEP3 and other implementations. We use the Esterel
Compiler V5.92 (V5), the Esterel Compiler V7 (V7), and the
CEC compiler 0.3 (CEC) to synthesize the module to C pro-
grams, which are then compiled onto the 32-bit Microblaze
soft processor core, and the 8-bit micro-controller MCS512.
Table 1 compares the resource usages.

To evaluate the performance of the KEP3 further, we use
some standard test cases [4, 1, 8]. The modules were first
manually translated into the KEP3 assembler program and
then compiled to the KEP3 executable code. This is then
compared with software synthesis results of the V5, the V7
and the CEC compilers. We use the Microblaze as the refer-
ence point. Table 2 compares executable code size and RAM
usage between the KEP3 implementation and the Microb-
laze software implementation. The optimized data path of
the KEP3 results on average in an 88% reduction of codes
size and 33% reduction of RAM usage when compared with
the best result of the Microblaze implementation.

As mentioned in the introduction, the KEP3 has been
designed to be highly configurable. Table 3 compares five
different KEP3 variants which include different elements to
target various applications. The KEP3-E is configured to
allow a comparison with the EMPEROR2, which can han-
dle 2 threads via two-processors [9, 11]3. Note that every
RePIC can handle an abortion nest of depth 4, but due to
the architecture of EMPEROR, those abort handling ele-
ments cannot nest between the different processors directly.
Hence the EMPEROR2 contains 8 abort handling elements,
but can only deal with abortion nests of depth 4. As an ap-

2The code for the MCS51 has been compiled by the Keil C51
compiler V6.12; here, a MCS51’s instruction word represents
a complete assembler line. For the Microblaze, code was
compiled by gcc version 2.95.3-4. In each implementation,
the default optimization is used.
3The KEP3 has been synthesized onto different Xilinx
FPGAs, including the XC2S100-6TQ144, the XC2V1000-
4FG456, and the XC3S1500-4FG676. The figures reported
here are for the XC2S100-6TQ144, which should allow a fair
comparison with the EMPEROR2, which is based on an AL-
TERA EP20K200EFC484-2, as the basic units of those two
chips have similar structures, functions, and speeds [17].

Table 3: Performance comparison between the
KEP3 and EMPEROR.

KEP3-A -B -C -D -E EMP.2
I/O signals 11/11 16/16 11/11 32/32 24/24 24/24

Valued I/O signals 2/2 2/2 3/3 3/3 2/2 2/2
Thread Cnt 4 16 16 32 2 2

Preemption Nest depth 2 4 6 8 6 4+4
Counter Value Range 255 65535 65535 65535 1 1
Variable Register Cnt 16 64 32 64 128 64+64
Datapath Width (bit) 16 16 16 16 8 8

Logic Cells 1670 2474 2692 4020 2086 4761
Max Osc Freq (MHz) 52.75 45.31 39.96 39.48 42.68 35.38

Instruction Freq (MHz) 17.58 15.10 13.32 13.16 14.23 8.84

Table 4: Extending the KEP3-E to different threads.
Thread Number 2 4 8 16 32 64 102 126

Logic Cells 2086 2170 2306 2466 2946 3758 4768 5564
Max Osc Freq (MHz) 42.68 42.68 42.68 42.51 42.68 42.68 40.26 40.26

proximation, we compare this with the KEP3-E that offers
a level 6 preemption nesting depth. As a result, for the simi-
lar processor configuration as the EMPEROR2, the KEP3-E
uses 56% less resources and achieves a 1.6 times instruction
clock speedup—and the KEP3 typically takes significantly
less instructions to implement the same behavior.

Finally, to illustrate the scalability of the KEP3 to high
degrees of concurrency, Table 4 shows the resources usage
and maximum system frequency of KEP3-E when its thread
number is increased from 2 to 126. Using resources com-
parable to the EMPEROR2, the KEP3-3E can handle 102
threads directly, and the instruction frequency is still 1.5
times higher.

6. CONCLUSIONS AND OUTLOOK
This paper presents the KEP3, a concurrent, configurable

Esterel processor. It employs a multi-threaded reactive ar-
chitecture which consists of a reactive core and an optimized
data path for the direct execution of Esterel programs. The
KEP3 supports Esterel’s concurrency operator || in a very
precise, direct and efficient way. It also supports full Es-
terel preemption statements, i. e., the delayed and immedi-
ate abort, weak abort, and suspend. One of the strengths of
Esterel is the clean orthogonalization of the different reac-
tive control flow constructs, which allows to combine them
in an arbitrary fashion; this is fully supported by the KEP3.
As the KEP2 predecessor, the KEP3 also handles valued
signals, signal counters, local signal declarations (respecting
reincarnation), and the pre operator. Further instructions
have been added or extended for concurrent execution, such
as an exit instruction that properly deals with concurrent
exceptions of different priorities irrespective of the order in
which they are executed. A more detailed description of
the processor and a discussion of its interleaved execution
model and the generation of the appropriate priority set-
tings, as well as further experimental results, can be found
in a technical report [15].

Ignoring the limitations of the multiprocessing approach
with respect to the ability to combine concurrency and pre-
emption, one might argue that the multiprocessing approach
has an efficiency advantage over a multi-threading approach,
which still relies on sequential execution. However, one
should note that threads in Esterel programs typically in-
teract rather tightly, with signals communicating back and

forth within a logical tick, imposing strong synchronization
requirements. Unlike classical parallel programming, where
an originally sequential algorithm is divided into coarse-
grained code fragments that can be executed in parallel
to achieve a speedup over a single processor implementa-
tion, the concurrent programming in Esterel mainly serves
to separate concerns, not to improve efficiency. Quoting
Girault [14]: “[T]he source program is parallel and not se-
quential like in a classical programming language [. . .]. But
this parallelism of expression is used by the programmer
to conceive his/her application in terms of parallel modules
cooperating to achieve the desired behavior. It is there-
fore not related to the parallelism of execution, which is due
to the fact that the target architecture is distributed.” In
fact, we suspect that for the type of concurrency found in
synchronous languages such as Esterel, a sequential, multi-
threaded architecture may very well lead to higher efficiency
than a multiprocessing approach, due to the tight link be-
tween independent threads that allows very efficient syn-
chronization among the threads. However, substantiating
this would require a further systematic comparison.

Regarding future improvements of the KEP3, we plan to
add a reconfigurable logic block to allow the efficient de-
tection of compound events. What we see as even more
promising at this point is to explore the efficient compila-
tion from Esterel onto the KEP3, in combination with a
static analysis of the maximal reaction time in the presence
of concurrency.

7. REFERENCES
[1] F. Balarin, P. Giusto, A. Jurecska, C. Passerone,

E. M. Sentovich, B. Tabbara, M. Chiodo, H. Hsieh,
L. Lavagno, A. Sangiovanni-Vincentelli, and
K. Suzuki. Hardware-Software Co-Design of Embedded
Systems, The POLIS Approach. Kluwer Academic
Publishers, Apr. 1997.

[2] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. L. Guernic, and R. de Simone. The
Synchronous Languages Twelve Years Later. In
Proceedings of the IEEE, Special Issue on Embedded
Systems, volume 91, pages 64–83, Jan. 2003.

[3] G. Berry. Esterel on Hardware. Philosophical
Transactions of the Royal Society of London,
339:87–104, 1992.

[4] G. Berry. The Esterel v5 Language Primer. Draft
Book, 1999.

[5] G. Berry. The foundations of Esterel. Proof, Language
and Interaction: Essays in Honour of Robin Milner,
2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

[6] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, 1992.

[7] CEC: The Columbia Esterel Compiler.
http://www1.cs.columbia.edu/∼sedwards/cec/.

[8] Estbench Esterel Benchmark Suite.
http://www1.cs.columbia.edu/∼sedwards/

software/estbench-1.0.tar.gz.

[9] C. Chow, J. S.Y.Tong, M. Dayaratne, P. S. Roop, and
Z. Salcic. RePIC - A New Processor Architecture
Supporting Direct Esterel Execution. School of
Engineering Report No. 612, University of Auckland,

2004.

[10] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil.
SAXO-RT: Interpreting Esterel semantic on a
sequential execution structure. In F. Maraninchi,
A. Girault, and E. Rutten, editors, Electronic Notes in
Theoretical Computer Science, volume 65. Elsevier,
July 2002.

[11] M. W. S. Dayaratne, P. S. Roop, and Z. Salcic. Direct
Execution of Esterel Using Reactive Microprocessors.
In Proceedings of Synchronous Languages,
Applications, and Programming (SLAP), Apr. 2005.

[12] S. A. Edwards. An Esterel compiler for large
control-dominated systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 21(2), Feb. 2002.

[13] Esterel web.
http://www-sop.inria.fr/esterel.org/.

[14] A. Girault. A survey of automatic distribution method
for synchronous programs. In F. Maraninchi,
M. Pouzet, and V. Roy, editors, International
Workshop on Synchronous Languages, Applications
and Programs (SLAP’05), Electronic Notes in
Theoretical Computer Science, Edinburgh, UK, Apr.
2005. Elsevier Science.

[15] X. Li and R. v. Hanxleden. A concurrent reactive
esterel processor based on multi-threading.
Technischer Bericht 0509,
Christian-Albrechts-Universität Kiel, Institut für
Informatik und Praktische Mathematik, Nov. 2005.
http://www.informatik.uni-kiel.de/reports/

2005/0509.html.

[16] X. Li and R. v. Hanxleden. The Kiel Esterel Processor
- a semi-custom, configurable reactive processor. In
S. A. Edwards, N. Halbwachs, R. v. Hanxleden, and
T. Stauner, editors, Synchronous Programming -
SYNCHRON’04, number 04491 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl,
Germany, 2005. http:
//drops.dagstuhl.de/opus/volltexte/2005/159.

[17] X. Li, J. Lukoschus, M. Boldt, M. Harder, and R. v.
Hanxleden. An Esterel Processor with Full
Preemption Support and its Worst Case Reaction
Time Analysis. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 225–236, New
York, NY, USA, Sept. 2005. ACM Press.

[18] J. Lukoschus and R. v. Hanxleden. Removing cycles in
Esterel programs. In F. Maraninchi, M. Pouzet, and
V. Roy, editors, International Workshop on
Synchronous Languages, Applications and
Programming (SLAP’05), Edinburgh, Apr. 2005.

[19] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne.
Towards Direct Execution of Esterel Programs on
Reactive Processors. In 4th ACM International
Conference on Embedded Software (EMSOFT 04),
Pisa, Italy, Sept. 2004.

[20] Z. Salcic, P. S. Roop, M. Biglari-Abhari, and
A. Bigdeli. REFLIX: A Processor Core with Native
Support for Control Dominated Embedded
Applications. Elsevier Journal of Microprocessors and
Microsystems, 28:13–25, 2004.

http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www.informatik.uni-kiel.de/reports/2005/0509.html
http://www.informatik.uni-kiel.de/reports/2005/0509.html
http://drops.dagstuhl.de/opus/volltexte/2005/159
http://drops.dagstuhl.de/opus/volltexte/2005/159

	Introduction
	The Processor Architecture
	Handling Preemption
	Handling Concurrency

	Thread Management
	The Interaction of Concurrency and Preemption
	Experimental Results
	Conclusions and Outlook
	References -9pt

