
Programming Deterministic Reactive Systems
with Synchronous Java

Christian Motika and Reinhard von Hanxleden and Mirko Heinold
Dept. of Computer Science

Christian-Albrechts-Unversität zu Kiel
24098 Kiel, Germany

Email: {cmot, rvh, mhei}@informatik.uni-kiel.de

Abstract—A key issue in the development of reliable embedded
software is the proper handling of reactive control-flow, which
typically involves concurrency. Java and its thread concept have
only limited provisions for implementing deterministic concur-
rency. Thus, as has been observed in the past, it is challenging
to develop concurrent Java programs without any deadlocks or
race conditions.

To alleviate this situation, the Synchronous Java (SJ) approach
presented here adopts the key concepts that have been established
in the world of synchronous programming for handling reactive
control-flow. Thus SJ not only provides deterministic concurrency,
but also different variants of deterministic preemption. Further-
more SJ allows concurrent threads to communicate with Esterel-
style signals. As a case study for an embedded system usage,
we also report on how the SJ concepts have been ported to the
ARM-based Lego Mindstorms NXT system.

I. INTRODUCTION

Embedded systems typically react to inputs with internal,
state-based computations, followed by some output, as shown
in Fig. 1. These computations often exploit concurrency,
which can be implemented with Java threads. To prevent race
conditions and deadlocks, Java provides synchronization prim-
itives like semaphores and also higher level mechanisms like
monitors. The synchronize keyword in a Java class introduces
this concept implicitly. However, using these techniques, it is
difficult to specify deterministic concurrent behavior without
introducing non-determinism, as further discussed by Lee [13].

Contributions: We here present Synchronous Java (SJ),
an approach that allows to directly embed deterministic reac-
tive control-flow in Java, which encompasses concurrency and
preemption. We side-step the traditional Java thread concept
and its dependence on a—from an application point of view—
unpredictable scheduler. Instead, SJ implements a light-weight
application-level thread concept that combines coroutines with
the synchronous model of computation (MoC). A case study
shows how SJ can be used for solving common concurrent
problems on reactive embedded targets.

Outline: In the next section, we discuss related work.
Section III follows with a presentation of deterministic concur-
rency in SJ. Section IV illustrates the usage of SJ signals and
preemption. Section V discusses some implementation aspects,
including deployment on an embedded example platform.
Section VI evaluates experimental results comparing SJ with
traditional Java threads. We conclude in Section VII and give
some outlook on future work.

An Instant / Tick (zero duration)

Read Input
Compute
Reaction Write Output

Reactive System

Environment

Input Event Output Event

Fig. 1. Cyclic, discretized execution of a reactive embedded system.

II. RELATED WORK

Nilsen [17] presented early ideas to use Java in embedded
real time systems. The proposed extensions allow to analyze
and measure timing and memory requirements of system
activities and to specify a protocol how to add activities to
a real time executive that is managing resource budgets. As
a Real Time Java environment, Miyoshi [15] implemented
prototype threads with special synchronization mechanisms as
an extension package with minimal changes to the original
Java Virtual Machine (JVM). Plsek et al. [18] also modified the
JVM. These approaches cannot utilize the advantage of platform
independence of the Java language, unlike SJ, which is itself
implemented in Java and hence platform independent.

To gain predictable Java applications there is another
category of solutions, e. g., by Schoeberl [21], which do not
modify or specialize the JVM but supply specialized hardware
that is able to execute Java Byte Code (JBC) natively. The
Java Optimized Processor (JOP) [19] and the Reactive Java
Optimized Processor (RJOP) [16] are both such hardware-based
approaches. These could perfectly be combined with SJ, which
addresses programming and scheduling issues.

The Real-Time Specification for Java [5] tightens Java
w.r.t thread scheduling and synchronization allowing programs
to run without interference from garbage collection so that
timing constraints are provable. Safety Critical Java [11] is
a standard facilitating programs capable of certification under
standards such as DO-178B. It introduces missions as bounded
sets of periodic reactive jobs. Schoeberl [20] extends this by
mission modes as coarse application building blocks. These
cover different modes of operation during runtime of real-time

Thread1 Thread2 Thread3

concurrent
execution
finished

concurrent
execution
started

resume 2

resume 1

resume 3

...time

(a) Classic coroutine style: threads
resume each other directly

Thread1 (4) Thread2 (3) Thread3 (1)

tick() returns

T2 pauses

T1 pauses
T3 pauses

tick() is called
 prioB(2)

pauseB()

pauseB()

transB()

tick() is called

...

transB()

time

(b) SJ coroutines: application-
controlled priorities (shown in
parentheses) determine thread
scheduling

Fig. 2. Comparison of coroutine concepts.

applications. SJ could be utilized for implementing missions, in
particular SJ makes most sense for single mission applications
with a fixed number of threads.

One problem of Java threads is their performance depend-
ing on the actual implementation [23]. Another problem of
Java threads is that the scheduler may interleave threads at
arbitrary points during execution. The idea of coroutines [8] is
to let threads cooperate, with themselves in charge of passing
on control, instead of using a scheduler. Fig. 2a shows an
example schedule of an execution with three coroutine threads.
Thread1 resumes Thread2 at some specific and well-defined
point during its execution. After Thread2 has finished its work
completely, it resumes Thread1 again. After finishing its work,
Thread1 gives control to Thread3. For implementing a coroutine
scheduling in Java, there exist various possibilities. Using Java
threads for doing this is cumbersome because it is not light-
weight. JBC manipulation is a very low level addressing of
this problem. Such solutions are restricted to fully-compliant
JVM stacks, e. g., this will not work on Android. There are
solutions to build a patched JVM for supporting coroutines
more natively, e. g., the Da Vinci Machine [22]. There are other
attempts to implement coroutines using Java Native Interface
(JNI), loosing Java’s platform independence. SJ tackles the
coroutines-like scheduling problem in true Java by exploiting
the switch-case statement combined with Java reflection. We
also implemented an embedded variant of SJ that does not
even use Java reflection. The advantage is a light-weight and
platform-independent implementation. In addition, unlike the
aforementioned approaches, SJ offers deterministic preemption.

Synchronous languages like Esterel [4] or Lustre [7] ad-
dress concurrency and preemption in a precisely predictable
and semantically well-founded way. The execution scheme
follows the reactive model illustrated in Fig. 1. Physical
time is divided into multiple discrete ticks. The reaction is
conceptually considered to be atomic and to take no time, i. e.,
practically to be fast enough according to timing requirements
that stem from the physics of the environment. The semantics
prescribes the execution order of concurrent threads, which not
only entails determinism, but also timing predictability [3].
Reactive C [9] is an extension of C. Inspired by Esterel, it
employs the concepts of ticks and preemptions, but does not
provide true concurrency. FairThreads [6] are an extension
introducing concurrency via native threads. SJ does not use Java
threads, but does its own, light-weight thread book keeping.

1 public class MySJProg extends SJProgram<StateLabel> {
2 enum StateLabel {STATE0, STATE1}
3

4 public MySJProg() {
5 super(STATE0, 1); // Start at STATE0 with priority 1
6

7 public final void tick () {
8 while (! isTickDone()) {
9 switch (state()) {

10 case STATE0:
11 // ... some code ...
12 break;
13 case STATE1:
14 // ... some code ...
15 break;
16 }
17 }
18 }
19 }

Fig. 3. Structure of an SJ program.

SJ has been largely inspired by Synchronous C (SC), also
known as SyncCharts in C [25], which introduces deterministic
and light-weight threads for the C language. Sec. IV later
compares an SJ example with its SC counterpart. Köser [12]
investigates the SC approach for modern multi-core computer
architectures. SC, like SJ, can be used to implement the recently
proposed sequentially constructive MoC, which loosens some
restrictions the classical synchronous MoC by taking advantage
of the sequential nature of C/Java-like languages [26]. The
sequentially constructive MoC also provides an approach to
automatically compute the priorities employed by SC and SJ.
Precision Timed C (PRET-C) [1] similarly to SC enriches the
C programming language inspired by synchronous languages,
but is restricted to static execution orders among threads.

III. DETERMINISTIC CONCURRENCY IN SJ

We now discuss the overall structure of SJ programs and
how it provides deterministic, synchronous-style concurrency.
Sec. IV then describes preemption and signal handling in SJ.

A. SJ program structure

SJ is an extension to Java that is written in pure Java itself.
Fig. 3 illustrates the basic structure of an SJ program. An SJ
program extends the abstract class SJProgram which provides
the SJ operators, of which Table I lists the most relevant ones
discussed in the remainder of this paper.

The enumeration StateLabel (line 2) defines a finite set of
states that this program or system can be in. These states
correspond to locations in the program, which in SJ are
expressed as different cases in a switch statement; if Java
had a goto statement, these states could simply be statement
labels. Each SJ thread maintains a coarse program counter
that corresponds to a particular state, or continuation. The
constructor specifies the initial state of the main thread (see
line 5), together with its priority. The main thread can create
additional threads with the fork() operator.

The tick() method (lines 7–18) defines the behavior of
the program for one tick. The while loop ensures that the
computation of the complete reaction (tick), which may consist
of several computational steps, is run until isTickDone() returns
true, which indicates that all threads have finished the current

SJ Operator Explanation
Thread management
fork(l, p) Fork a new descendant thread at label l with

priority p. A sequence of fork() operators must be
terminated with a forkEndB().

forkEndB(l)∗ Continue the current thread at label l with the same
priority.

joinDoneCB()∗ Return true iff all descendant threads have termi-
nated.

prioB(l, p)∗ Change the priority of the running thread to p,
continue at label l.

Pausing/terminating
pauseB(l)∗ Suspend execution for the current tick, continue in

the next tick at label l.
termB()∗ Terminate thread.
Further control flow
gotoB(l) Jump to label l.
abort() Recursively abort all descendants created by the

current thread.
suspend() Recursively suspend all descendants created by the

current thread for the current tick.
transB(l) Shorthand for abort() and gotoB(l).

Signals
Signal s Initialize a pure signal s.
s.emit() Emit a pure signal s.
s.isPresent() Return true iff signal s is present.
awaitDoneCB(s) First return false and pause, then return true iff

signal s has become present.
s.pre() Returns the instance of signal s at previous tick.
Valued signals
ValuedSignal v=new
ValuedSignal(”v”,
MULTIPLY)

Initialize a valued integer signal v combined with
multiplication.

v.emit(val) Emit a valued integer signal v with value val.
v.getValue() Returns the value of valued signal v.

TABLE I. SJ OPERATOR OVERVIEW. YIELDING OPERATORS ARE
MARKED WITH AN ASTERISK (*).

tick. During each iteration of the while loop, the state() method
call invokes a priority-based scheduler that returns the current
state of the thread to be executed next, which is then used in
the switch statement. The coroutine-like cooperative scheduling
is realized by reaching a break that terminates the current
case of the switch statement and leads to the next scheduler
call. Therefore, the SJ operators that upon their completion
require a scheduler call must always be followed by a break
statement, hence we call these also breaking operators. An
example is gotoB(), where a thread changes its state. There are
also conditionally breaking predicates that must be followed
by a break statement when they return false. An example is
joinDoneCB(), which returns true iff all descendent threads have
terminated; otherwise, the calling thread blocks and hence
must break. As an aid to the programmer, (conditionally)
breaking operators are appended with a (C)B. Some of the
breaking operators are also yielding, marked with an asterisk in
Tab. I. After completion of a yielding operator, another thread
may become eligible for execution, for example, because a
thread has finished its current tick and therefore calls the
pauseB() operator. An example of a non-yielding operator
that nonetheless calls the scheduler is gotoB(), which merely
changes the coarse program counter of a thread that then
immediately continues at the new state.

sj-thread

dead

alive

running

suspended

transB()

doTick()

fork()

termB(), abort()

pauseB(), suspend()

(a) Life cycle of an individual SJ thread

sj-program

running

reschedule threads run thread
dead

2

! isTickDone()

select first thread isTerminated()

11

2

isTickDone() and doTick()

(b) Life cycle of a complete SJ program

Fig. 4. State diagrams for the reactive life cycle of an SJ program and its
individual threads. Initial states have a bold outline.

An SJ program also contains a main() method, not shown
in Fig. 3, which calls the tick() method whenever a reaction
should take place. More precisely, it calls the doTick() wrapper
that resets outputs and samples inputs before calling tick(). This
is illustrated later in the example shown in Fig. 5b.

B. SJ Cooperative Threads

Fig. 4a illustrates the life cycle of a thread. It can either
be dead or alive. The main thread is alive by default, while
other concurrent or child threads are initially dead. When being
forked, a thread becomes alive. Alive threads can act as normal
Java programs and execute code that has been specified for
this thread within the aforementioned tick() method. This can
be Java code mixed with SJ operators. Alive threads that still
have work to do in the current tick are running, threads that
are still alive but done for the current tick are suspended.
Some SJ operators leave a thread running, such as transB().
Other operators, notably pauseB() and suspend(), leave the
thread alive, but suspend it for the remainder of the tick.
At the end of their work, threads usually terminate (termB())
or are aborted by a (transitive) parent thread with abort(). SJ
allows for building trees of threads for specifying hierarchical
relations and make preemptions possible. SJ keeps track of
these relations and maintains the book keeping.

A running program repeatedly calls the doTick() method to
perform the program reactions, see also Fig. 4b. Within a tick,
the scheduler keeps selecting a thread from a queue of running
threads. When this thread breaks (yields) and isTickDone() is
false, the next thread is selected for continuing execution. If
isTickDone() is true, the doTick() method returns and the SJ
program is waiting for the next call of the doTick() method.
This continues until the isTerminated() method call in the main
method indicates that the program becomes dead.

1) Thread Priorities: Threads are always associated with a
unique priority. As already mentioned, the initial priority of the
main thread is defined in the constructor of the SJ program. For
other threads, their initial priority is specified as an argument

when creating them with the fork() operator. Threads can
change their priority with prioB(). The aforementioned state()
method (Sec. III-A) keeps track of all threads and their current
priorities, and schedules from the currently running threads the
one with the highest priority.

2) Thread Scheduling: SJ threads run concurrently and
hand over control from one thread to another, in contrast
to normal Java programs where control-flow is characterized
by method invocations and method returns. This cooperative
thread scheduling is inspired by coroutines [8], but in contrast
to typical coroutines, in SJ it is not the yielding thread that has
to specify which thread should resume. The yielding thread
merely relinquishes control, by reaching a break statement.
Then, the scheduler choses the thread to resume, via the state()
method. As this choice is driven by the thread priorities, these
application-controlled, typically static priorities are crucial for
ordering accesses to shared data within a tick. E. g., we can
enforce a writers-before-readers discipline, which is commonly
part of the synchronous MoC, by giving threads that write
to a particular variable a higher priority than threads that
read from that variable. Note, however, that even if we do
not require strict writers-before-readers, the SJ program is
still deterministic, as determinism is already implied by the
underlying sequential nature of the tick() function that does
not use the Java scheduler. This is exploited, e. g., in the
sequentially constructive MoC [26].

Fig. 2b shows an example schedule of three threads.
Thread1 starts the control because it has the highest priority
of 4 when tick() is called. Thread1 executes some code. It
then lowers its priority to 2 by calling prioB(2). After this
priority change, Thread2 has the next highest priority of 3
and is selected by the state() method for continuation. In
the same synchronous tick, Thread2 then executes some code
including two transition changes with the transB() operator.
This means that the coarse program counter maintained by SJ
for Thread2 is changed for continuation to some other label,
but this does not involve a thread re-scheduling, i. e., transB() is
not yielding. After this, Thread2 calls pauseB() to indicate that
it finished execution for this tick. state() now selects Thread1
again because it has the highest priority of 2 of all running
threads. When Thread1 also calls pauseB() to indicate it has
finished execution for this tick, finally, Thread3 with priority 1
is selected to run its code. When Thread3 calls pauseB(), no
other thread needs to be scheduled for execution in this tick.
Hence, the tick() method returns. The first thread to run in the
next tick is again the one with the highest priority.

C. The Producer-Consumer Example

The Producer-Consumer (PC) example in Fig. 5, inspired by
the Producer-Consumer-Observer (PCO) example of Lickly et
al. [14], is a small-scale application with two concurrent
threads, a data producer and a data consumer. The threads
jointly access some shared variable BUF, which is effectively
a one-place buffer. This must be accessed in the usual fashion,
where first the producer must write to BUF, then the consumer
reads BUF, after which the producer may write again, and so
forth.

1) Classical Java implementation: In the program shown in
Fig. 5a, the class PC creates the concurrent Producer and Con-
sumer threads in its constructor. Both threads share a common

1 public class PC {
2 static final int TICKS = 100;
3 static Monitor monitor;
4

5 PC() {
6 PC.monitor = new Monitor();
7 new Thread(new Producer()).start();
8 new Thread(new Consumer()).start();
9 }

10

11 class Monitor {
12 boolean empty = true
13 int BUF;
14

15 synchronized void setBUF(int i) {
16 while (!empty) {
17 wait () ;
18 }
19 empty = false;
20 BUF = i;
21 notifyAll () ;
22 }
23

24 synchronized int getBUF() {
25 while (empty) {
26 wait () ;
27 }
28 empty = true;
29 int returnValue = BUF;
30 notifyAll () ;
31 return returnValue;
32 }
33 }
34

35 class Producer implements
36 Runnable {
37 void run() {
38 for (int i = 0;
39 i < TICKS;
40 i++) {
41 monitor.setBUF(i);
42 }
43 }
44 }
45

46 class Consumer implements
47 Runnable {
48 private int tmp;
49 private int [] arr = new int[8];
50

51 void run() {
52 for (int j = 0;
53 j < TICKS;
54 j++) {
55 tmp = monitor.getBUF();
56 arr [j % 8] = tmp;
57 }
58 }
59 }
60 }

(a) Implementation with standard
Java threads

1 import sj.SJProgram;
2 import examples.PC.StateLabel;
3 import static examples.PC.StateLabel.∗;
4

5 public class PC extends
6 SJProgram<StateLabel> {
7 enum StateLabel {
8 InitPC, Producer, Consumer }
9

10 static final int TICKS = 100;
11 private int BUF, i = 0, j = 0, tmp;
12 private int [] arr = new int[8];
13

14 public PC() {
15 super(InitPC, 2);
16 }
17

18 @Override
19 public void tick () {
20 while (! isTickDone()) {
21 switch (state()) {
22 case InitPC: // Prio 2
23 fork (Consumer, 1);
24 forkEndB(Producer);
25 break;
26

27 case Producer: // Prio 2
28 BUF = i;
29 i++;
30 pauseB(Producer);
31 break;
32

33 case Consumer: // Prio 1
34 tmp = BUF;
35 arr [j % 8] = tmp;
36 j++;
37 pauseB(Consumer);
38 break;
39 }
40 }
41 }
42

43 public static void main() {
44 PC pc = new PC();
45 for (int t = 0;
46 t < PC.TICKS;
47 t++) {
48 pc.doTick();
49 if (pc.isTerminated())
50 break;
51 }
52 }
53 }

(b) Implementation with SJ threads

-

BUF=0
i=1

arr[0]=0
j=1

BUF=1
i=2

arr[1]=1
j=2

BUF=2
i=3

arr[2]=2
j=3

(c) A logical tick time line, illus-
trating some assignments of the first
three ticks.

Fig. 5. The Producer-Consumer (PC) example.

Monitor buffer object. The Producer thread produces data in its
run() method (lines 37ff), consumed by the Consumer thread
in its run() method. There is no synchronization constraint
explicitly specified, neither in the producer nor in the consumer
thread, although the producer has to run before the consumer.
All synchronization is expressed in the shared Monitor. It
suspends threads trying to consume (getBUF()) data from an
empty buffer and the ones trying to produce (setBUF()) data
on a full (!empty) buffer. The constraint that the producer thread
has to run before the consumer is realized only implicitly. With

notifyAll() all producer and consumer threads possibly waiting
are awoken. These may wait() again afterwards immediately
without doing anything (lines 17 and 26).

With this realization, scheduling has large influences on
possible interleavings and the actual execution order that is
totally unpredictable. Hence, execution time is also hard to
predict. The situation becomes worse if one wants to add an
additional observer thread like in the original example [14]. If
the observer does not consume data but needs to run after the
producer and before the consumer, this also has to be expressed
in the Monitor class specifying the shared buffer. Overhead of
poorly scheduled executions with unnecessary awoken threads
will consequently grow. A related problem is the creation and
killing of threads for simple tasks, which is also inefficient.
An alternative is to re-use threads of a thread pool, which is
more efficient but uses more system resources.

To summarize, the classical Java approach to concurrency
suffers from the inability to explicitly specify scheduling
constraints that are required for determinism. Such constraints
are expressed only implicitly using coordination data structures
like monitors. The scheduling constraints cannot be expressed
in the producer or the consumer activities directly. Moreover
the solution with Java threads has the overhead of potentially
many additional but superfluous context switches between
threads.

2) The PC Example with SJ: SJ allows for light-weight
threads and more explicit control over scheduling. Consider
Fig. 5b where the PC example is listed in Java using SJ
constructs, according to the structure already discussed in
Sec. III-A. Following the synchronous approach, the program
behavior is broken up into discrete reactions, or ticks, which
in this case correspond to one production/consumption cycle.
The tick() method (lines 19ff), repeatedly invoked via doTick()
in main() (lines 43ff), computes one tick.

Within the tick() method, the concurrent behavior of the
program is specified by the switch statement and its different
states (cases). The main thread starts at state InitPC with
priority 2, as specified by the PC constructor (line 14ff). The
fork() operator in line 23 creates a consumer thread with initial
state Consumer and priority 1. The main thread subsequently
assumes the role of the producer thread, and forkEndB() defines
the next state of this thread to be Producer. The priority of that
thread remains 2. Whenever threads are forked, one should
give the scheduler again a chance to run, as one might possibly
have created new threads with higher priorities than the already
existing threads. Thus forkEndB() is a yielding operator that
should be followed by a break statement (line 25), although
here, this is not strictly necessary as the currently running
thread could just fall through to the next case.

In the next iteration of the enclosing while loop, the
scheduler run by the state() method selects the running thread
with the highest priority, which in this case is 2, corresponding
to the producer thread that resumes at Producer. This thread
writes to BUF, increments i, and declares that it is done for the
tick with pauseB(), specifying Producer as continuation point
when starting this thread in the next tick. Next, the scheduler
selects the consumer thread with priority 1, which does its
computations until it pauses as well. Now isTickDone() returns
true and tick()/doTick() returns to the main() method. However,

both threads are still alive; in fact, they never terminate in this
example. Therefore, pc.isTerminated() returns false, and doTick()
is invoked again, until PC.TICKS ticks have been executed.

The behavior of the SJ program is also illustrated in the
logical tick time line in Fig. 5c, which highlights some variable
assignments taking place within the first three ticks.

To summarize, the SJ program expresses deterministic con-
current control flow directly at the application level, without
any need to invoke the Java scheduler. In every tick, the
producer and the consumer run in lock-step and the producer
always runs before the consumer. Threads are coordinated with
explicit, user-controlled priorities, which provide the basis for
a deterministic scheduling regime. Threads require minimal
bookkeeping, they just have to keep track of a priority and
execution state, and hence context switches are very light-
weight.

IV. PREEMPTION AND SIGNALS

After discussing the core SJ concepts for handling concur-
rency in the previous section, we now cover further control-
flow constructs, notably a set of preemption-related opera-
tors, and the capability to communicate among threads with
synchronous-style signals.

In synchronous languages, a signal is defined by its pres-
ence status (present or absent) within a tick. Within a tick,
a signal is absent by default, unless it gets emitted and is
hence present. There are also valued signals which may be
associated with a unique value, which is set during signal
emission. The present status of interface signals are set by
the environment before each tick. A signal can for example be
used to trigger a preemption, which is illustrated in the ABSWO
example shown in Fig. 6. To familiarize ourselves with ABSWO,
we first have a look at the SyncChart version shown in Fig. 6a,
which is a graphical means to precisely describe concurrent
and preemptive behavior. We here describe SyncCharts to
the extent needed to explain ABSWO, a full description of
SyncCharts is given by André [2]. In SyncCharts, transitions
are triggered by the presence of a specified signal, and in turn
taking a transition can make a signal present. E. g., initially
the reactive system is in states wA and wB, as well as in the
enclosing states AB and ABO. However, when signal A becomes
present in some tick, a transition wA to dA takes place in the
same tick and emits B.

To illustrate preemption, ABSWO has two different preemp-
tive self transitions from state ABO to ABO. The transition
triggered by presence of S is a strong preemption (indicated by
a red circle at the transition source), meaning that in each tick
the transition’s trigger (signal S) is tested before the behavior
of the source state (ABO) gets executed. This implies that
if S becomes present in a tick, then O cannot be emitted
anymore in that tick. Conversely, the transition triggered by
W is a weak transition, meaning that this transition is tested
after ABO has been executed. If a state has multiple outgoing
transitions, as is the case for ABO, then these transitions are
statically ordered by a transition priority, indicated by numeric
tail labels. Strong preemptions must be tested before weak
transitions, therefore the transition triggered by S has priority 1
and the other transition has priority 2. Another transition type
is the normal termination (indicated by a green triangle at

(a) Graphical SyncChart

(b) KIELER view of SJ program running on a Lego Mindstorms NXT

1 public final void tick () {
2 while (! isTickDone()) {
3 switch (state()) {
4 case ABO: // Prio 5
5 fork (AB, 2);
6 forkEndB(ABOMainStrongEntry);
7 break;
8 case ABOMainStrongEntry: // Prio 5
9 pauseB(ABOMainStrong);

10 break;
11 case ABOMainStrong: // Prio 5
12 if (S.isPresent()) {
13 transB(ABO);
14 } else
15 prioB(ABOMainWeak, 1);
16 break;
17 case ABOMainWeak: // Prio 1
18 if (W.isPresent()) {
19 abort() ;
20 prioB(ABO, 5);
21 } else
22 prioB(ABOMainStrongEntry, 5);
23 break;
24 case AB: // Prio 2
25 fork (wA, 4);
26 fork (wB, 3);
27 forkEndB(ABMain);
28 break;
29 case ABMain: // Prio 2
30 if (joinDoneCB()) {
31 O.emit();
32 termB();
33 };
34 break;
35 case wA: // Prio 4
36 if (awaitDoneCB(A)) {
37 B.emit() ;
38 termB();
39 };
40 break;
41 case wB: // Prio 3
42 if (awaitDoneCB(B)) {
43 termB();
44 };
45 break;
46 }
47 }
48 }

(c) SJ tick() method

1 int tick () {
2 MainThread (ABO, 5) { // Prio 5/1
3 FORK1(AB, 2);
4 while(1) {
5 PAUSE();
6 if (PRESENT(S))
7 TRANS(ABO);
8 PRIO(1);
9 if (PRESENT(W)) {

10 PRIO(5);
11 TRANS(ABO);
12 }
13 PRIO(5);
14 }
15 }
16

17 Thread (AB) { // Prio 2
18 FORK2(wA,4, wB,3);
19 JOIN();
20 EMIT(O);
21 }
22

23 Thread (wA) { // Prio 4
24 AWAIT(A);
25 EMIT(B);
26 }
27

28 Thread (wB) { // Prio 3
29 AWAIT(B);
30 }
31

32 TICKEND();
33 }

(d) SC tick() method

-
A

B,
O

S B A

B,
O

W
A,
W

B,
O

A,
S

(e) A logical tick time line that illustrates
an execution trace consisting of eight
discrete ticks. Each tick is annotated with
the input signals from the environment
(above) and corresponding output signals
(below).

Fig. 6. ABSWO example in SJ and SC, illustrating preemption and the usage of signals. ABSWO concurrently waits for the signals A and B. If both have
occurred, it emits output signal O. Note that input signal A is sufficient because signal B is emitted once signal A occurred. The behavior of ABO is reset strongly
by signal S and weakly by signal W.

the transition source), which takes place when all concurrent
regions within the transition source have terminated, i. e., have
entered a final state (indicated by double outline). In ABSWO,
state AB contains regions HandleA and HandleB, which in turn
contain final states dA and dB, respectively. When both of these
final states have been entered in a tick, the normal termination
transition from AB to done is taken in that same tick. Transition
triggers are per default non-immediate, meaning that they are
always disabled in the tick when their source state is entered.
In ABSWO, this prevents an instantaneous loop to be induced
by the self transitions on ABO. It also prevents the transitions
originating in wA and wB to be taken in a tick immediately
after just entering ABO in that tick.

A possible execution trace is shown in the tick time line in
Fig. 6e. No signals are present in the initial tick; in the second
tick, the environment makes A present, which triggers in turn

presence of B and O; in the third tick, the behavior is reset by
S; and so on.

Fig. 6c shows the SJ tick() function which precisely cor-
responds to the SyncChart of Fig. 6a. The constructor (not
shown here) starts the main thread at state ABO with priority
5. This forks off another thread at AB and continues at
ABOMainStrongEntry, which then pauses for a tick. This pause
corresponds to the non-immediate nature of the self-transitions
on ABO. From the next tick on, the main thread first, running
at priority 5, tests S and possibly takes a self-transition to
ABO; if this transition is not taken, it then, at priority 1, tests
W and possibly self-transitions; otherwise it again raises its
priority again to 5, transfers control to ABOMainStrongEntry,
and pauses. Concurrently, the thread started at AB first forks
two threads wA and wB (lines 25 and 26) and then, in state
ABMain, waits for them to terminate with joinDoneCB() and

then emits O. AB runs at priority 2, so it is executed after
strong preemption on ABO (triggered by S) is tested, but before
the weak preemption is tested. Also concurrently, the thread
starting at wA tests whether A is present, and if so, emits B
and terminates. The thread starting at wB similarly tests B and
possibly terminates. These two threads run at priorities 4 and 3,
respectively, thus when A is present, B will be emitted before
it gets tested.

To summarize, SJ provides variants of deterministic pre-
emption that allow the modeler to choose explicitly whether
the preemption should prevent a preempted component to still
execute the current tick or not. This is clearly preferable
over most other typical implementations of preemption, where
this choice is up to (unpredictable) scheduling decisions.
The ABSWO example illustrates how signals can be used to
trigger preemptions, but of course any Boolean expressions
in standard Java can be used as preemption triggers as well.
The ABSWO example also illustrates again how priorities can
be used to statically control thread scheduling, which in this
case allows to distinguish strong and weak preemptions, and
to assure that any emissions of some signal take place before
that signal gets tested. Traulsen et al. [24] further discuss
how such transition priorities to implement SyncCharts can
be synthesized automatically.

For a brief comparison between Synchronous Java and
Synchronous C, Fig. 6d lists the equivalent Synchronous C
(SC) program. The principles are exactly the same. However,
as C/gcc have some capabilities that Java does not have,
notably computed gotos and a powerful preprocessor, the C
variant allows to hide most of the low-level control logic in
SC macros. E. g., the AWAIT() macro automatically generates a
continuation label, hidden to the user, based on the source
code line number. Conversely, some SC macros are just a
structuring aid without much functionality. E. g., the Thread(l)
macro simply terminates the preceding thread and generates a
label l, nothing else is done at run time.

V. IMPLEMENTATION NOTES

An interesting part of SJ behind the scenes is the method
isTickDone(). It returns true iff the current tick is done, i. e.,
when the internal queue of running threads is finally empty.
At the beginning of a tick, all running threads are added to
this queue ordered by their priority. If a thread calls prioB(),
its position in the priority queue is re-arranged. A thread is
removed from this queue when it calls pauseB().

Another central method is the state() method that imple-
ments the SJ dispatcher and does the actual scheduling. It
returns the next thread state label for the switch-case statement
to continue execution. This is the next label from the top of
the ordered priority queue. Forking and terminating threads
as well as the handling of signals requires additional internal
book keeping.

A more detailed discussion of the implementation is given
by Heinold [10]. SJ is implemented as a part of the KIELER1

modeling framework. The SJ source code and the documenta-
tion is freely available under the Eclipse Public License (EPL)
at the KIELER website.

1http://www.informatik.uni-kiel.de/rtsys/kieler

For validation, we brought an embedded variant of SJ onto
the ARM-based Lego Mindstorms Next Lego Computing Brick
(NXT) device2. A debugging facility inside the KIELER platform
offers the possibility to debug SJ programs running on the
NXT device step-by-step. Fig. 6b shows a setup where the
ABSWO example is running on the NXT and is debugged within
the KIELER RCP. In the current macro tick the input signal A
was set to be present in the upper Data Table Eclipse View,
which serves as a user input facility. Running on the embedded
device, the SJ ABRO program on the left reacted to this input
as the termB() operation near the wA label is executed because
the awaitDoneCB(A) operation finished its execution. All taken
micro steps can be observed in the SJ Instructions View. A
micro step consists of an SJ primitive, possibly with following
Java code. For a selected micro step, already executed code is
marked green in the editor and not yet executed code is marked
red. Because the input signal B was not set to be present yet
and hence the second wB thread has not yet terminated, the
joinDoneCB() predicate is not yet true and the guarded code
lines for emitting output signal O are not executed in this
current macro tick.

VI. EXPERIMENTAL RESULTS

To illustrate the predictability and the efficiency of the
SJ approach compared to Java threads, we compared the run
times of the Java threads version and the SJ version of the
PC example discussed in Section III. We ran both programs
on an Intel Core 2 Duo P8700 @ 2.53 Ghz machine with
4GB of RAM and a 64 Bit JVM with a variable number of
ticks, i. e. TICKS. Fig. 7 shows the execution time of each
implementation over the variable number of ticks. For getting
reasonable results, we made three experiments for each number
of ticks and took the worst execution time. We considered tick
numbers between 0 and 10.000 in linear steps of 1000. The
results also show the speed-up.

The SJ version is faster (average of 1.75 times faster)
compared to the Java thread version that has to struggle with
more overhead due to possibly poorly scheduled executions.
Another, perhaps more important difference is the variability
of the worst-case run time. While the Java thread version is
heavily unpredictable especially when it comes to more duty,
i. e., more ticks, the SJ variant is much closer to a linear growth
and hence more predictable. Both facts support our thesis that
the SJ implementation is more light-weight and much more
predictable.

VII. CONCLUSION AND OUTLOOK

Properly synchronizing Java threads may become complex
and problematic. We presented SJ as an adoption of the
synchronous concepts for Java, and showed that SJ can help
specifying concurrent threads in a light-weight and robust way.
We also illustrated the use of preemption and predictable syn-
chronous signal communication between concurrent threads
of an SJ program. Another benefit is that such programs can
run on platforms where a thread management may be too
much overhead, e. g., like on embedded JVMs. As a case-
study, we presented an embedded variant of SJ running on
Lego Mindstorms.

2http://mindstorms.lego.com

Fig. 7. Worst-case run times, SJ vs. standard Java threads, for the PC example.

In addition to providing deterministic reactive control flow,
our experimental results indicate that SJ programs have a more
predictable run time and are typically faster than Java threads.
SJ can be considered a programming language as well as a
target language for code generation from more abstract models,
such as SyncCharts. SJ code is close to abstract specifications,
as it directly supports concepts like states and transitions. SJ
permits to implement synchronous data-flow applications, see
the PC example, as well as control-driven applications, see
ABSWO.

We plan to exploit SJ as an automated code generation
target from SyncCharts and Esterel, possibly also Lustre, and
to integrate and evaluate this in the context of KIELER. We fur-
ther intend to enhance the development process of concurrent
and preemptive SJ code with visual and interactive debugging
possibilities. We also plan to introduce an intermediate format
for the common part of SJ and SC and to validate SJ and
SC simulators by leveraging the Ptolemy3 Project of the UC
Berkeley.

REFERENCES

[1] S. Andalam, P. S. Roop, and A. Girault. Deterministic, predictable
and light-weight multithreading using pret-c. In Proceedings of the
Conference on Design, Automation and Test in Europe (DATE’10),
pages 1653–1656, Dresden, Germany, 2010.

[2] C. André. SyncCharts: A visual representation of reactive behaviors.
Technical Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis,
France, Rev. April 1996.

[3] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson,
P. Marwedel, J. Reineke, C. Rochange, M. Sebastian, R. von Hanxleden,
R. Wilhelm, and W. Yi. Building timing predictable embedded systems.
ACM Transactions on Embedded Computing Systems, 2013. Accepted.

[4] G. Berry. The foundations of Esterel. Proof, Language and Interaction:
Essays in Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling
and M. Tofte.

[5] G. Bollella, J. Gosling, B. M. Brosgol, and P. Dibble. The Real-Time
Specification for Java. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[6] F. Boussinot. Fairthreads: mixing cooperative and preemptive threads in
C. Concurrency and Computation: Practice and Experience, 18(5):445–
469, Apr. 2006.

3http://www.ptolemy.org

[7] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a declarative
language for real-time programming. In Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’87), pages 178–188, Munich, Germany, 1987. ACM.

[8] M. E. Conway. Design of a separable transition-diagram compiler.
Communications of the ACM, 6(7):396–408, 1963.

[9] Frederic Boussinot. Reactive C: An extension of C to program reactive
systems. Software Practice and Experience, 21(4):401–428, 1991.

[10] M. Heinold. Synchronous Java, Sept. 2010. Bachelor thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science.

[11] T. Henties, J. J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek.
Java for safety-critical applications. In 2nd International Workshop
on the Certification of Safety-Critical Software Controlled Systems
(SafeCert 2009), Mar. 2009.

[12] N. Köser. SyncCharts in C auf Multicore, Oct. 2010. Dimploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science.

[13] E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42,
2006.

[14] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee. Predictable programming on a precision timed architecture. In
Proceedings of Compilers, Architectures, and Synthesis of Embedded
Systems (CASES’08), Atlanta, GA, USA, Oct. 2008.

[15] A. Miyoshi, T. Kitayama, and H. Tokuda. Implementation and evalua-
tion of real-time Java threads. In Proceedings of the 18th IEEE Real-
Time Systems Symposium (RTSS’97), pages 166–175, San Francisco,
CA, USA, Dec. 1997.

[16] M. Nadeem, M. Biglari-Abhari, and Z. Salcic. RJOP: a customized
Java processor for reactive embedded systems. In Proceedings of the
48th Design Automation Conference (DAC’11), pages 1038–1043, New
York, NY, USA, 2011. ACM.

[17] K. Nilsen. Adding real-time capabilities to Java. Commun. ACM,
41(6):49–56, June 1998.

[18] A. Plsek, L. Zhao, V. H. Sahin, D. Tang, T. Kalibera, and J. Vitek.
Developing safety critical Java applications with oSCJ/L0. In Proceed-
ings of the 8th International Workshop on Java Technologies for Real-
Time and Embedded Systems (JTRES’10), pages 95–101, Prague, Czech
Republic, 2010. ACM.

[19] M. Schoeberl. A time predictable Java processor. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE’06), pages
800–805, Munich, Germany, Mar. 2006.

[20] M. Schoeberl. Mission modes for safety critical java. In Proceedings of
the 5th IFIP WG 10.2 International Conference on Software Technolo-
gies for Embedded and Ubiquitous Systems (SEUS’07), pages 105–113,
Santorini Island, Greece, 2007. Springer-Verlag.

[21] M. Schoeberl. A Java processor architecture for embedded real-time
systems. Journal of Systems Architecture (JSA), 54(1–2):265–286, 2008.

[22] L. Stadler, T. Würthinger, and C. Wimmer. Efficient coroutines for the
Java platform. In Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java (PPPJ’10), pages
20–28, Vienna, Austria, 2010. ACM.

[23] M. Sung, S. Kim, S. Park, N. Chang, and H. Shin. Comparative
performance evaluation of java threads for embedded applications:
Linux thread vs. green thread. Inf. Process. Lett., 84(4):221–225, Nov.
2002.

[24] C. Traulsen, T. Amende, and R. von Hanxleden. Compiling SyncCharts
to Synchronous C. In Proceedings of the Design, Automation and Test
in Europe Conference (DATE’11), pages 563–566, Grenoble, France,
Mar. 2011. IEEE.

[25] R. von Hanxleden. SyncCharts in C—A Proposal for Light-Weight,
Deterministic Concurrency. In Proceedings of the International Confer-
ence on Embedded Software (EMSOFT’09), pages 225–234, Grenoble,
France, Oct. 2009. ACM.

[26] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, and O. O’Brien. Sequentially Constructive
Concurrency—A conservative extension of the synchronous model of
computation. In Proceedings of the Design, Automation and Test in
Europe Conference (DATE’13), Grenoble, France, Mar. 2013. IEEE.

