
A SystemC/TLM semantics in Promela and its
possible applications

Claus Traulsen2,1, Jérôme Cornet1, Matthieu Moy1, and Florence Maraninchi1

1 Verimag, Centre Équation - 2, avenue de Vignate, 38610 GIÈRES — France
2 Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel,

Olshausenstr. 40, 24098 KIEL — Germany

Abstract. SystemC has become a de facto standard for the modeling of
systems-on-a-chip, at various levels of abstraction, including the so-called
transaction level (TL). Verifying properties of a TL model requires that
SystemC be translated into some formally defined language for which
there exist verification back-ends. Since SystemC has no formal seman-
tics, this includes a careful encoding of the SystemC scheduler, which has
both synchronous and asynchronous features, and a notion of time. In a
previous work, we presented a complete chain from SystemC to a syn-
chronous formalism and its associated verification tools. In this paper,
we describe the encoding of the SystemC scheduler into an asynchronous
formalism, namely Promela (the input language for Spin). We comment
on the possible uses for this new encoding.

1 Introduction

SystemC [17] is a C++ library/language used for the description of Systems-
on-Chip (SoCs) at different levels of abstraction, from cycle-accurate to purely
functional models. It comes with a simulation environment, and is becoming
a de facto standard in the SoCs industry. SystemC is being increasingly used
for writing Transaction Level Models (TLM) [7] that allow embedded software
development on a virtual prototype of the final chip.

A TL model written in SystemC is based on an architecture, i.e., a set of com-
ponents and connections between them. Components behave concurrently. Each
component has typed connection ports. Its behavior is given by a set of commu-
nicating processes programmed in full C++ and managed by a non-preemptive
scheduler. Synchronization mechanisms include events, which can be waited for
or notified. A process yields control back to the scheduler either by waiting for
an event or by waiting for a given period of time to elapse.

Communications between modules proceed by function calls traversing com-
ponents or communication channels (for instance bus models). At the transac-
tion level, such function calls are used to model two types of communication:
transactions (atomic exchange of data between modules) and interrupts.

Since the TL models are considered as reference models in the SoC design
flow, it is necessary to validate properties at this level of abstraction. This is
currently done by intensive testing, but formal verification is being investigated

for some years now, in both industry and academia. However, the definition of
SystemC, while being an IEEE norm, lacks formal semantics.

Some work on verifying properties of SoC assume that they are described in
some parallel formalism inspired by SystemC. Often, this formalism only reflects
the subset of the language used for Register Transfer Level (RTL) models and is
useless to express the specificities of a TL model (see for instance [9], [5] ; more
references in Section 5). Formal verification for RTL designs has been studied a
lot, and providing such analysis for designs written in SystemC does not bring
new results. Moreover, even if the formalism reflects in some way the transaction
level of abstraction, it is often quite far from real SystemC designs.

We are interested in verifying properties of real SystemC designs, at the trans-
action level. This requires that SystemC and TLM-specific features be translated
into some formally defined language for which there exists verification back-ends.
This includes a careful encoding of the SystemC scheduler, which has both syn-
chronous and asynchronous features, and a notion of time.

Choosing the formal language in which to translate SystemC is important
because it often restricts the set of verification back-ends that can be applied.
If we translate SystemC into a symbolic synchronous formalism, we have access
to tools like the Lustre [8], SMV [13] or Esterel [2] tool-chains; if we translate it
into an asynchronous formalism, we have access to Spin [10], IF [4], etc. Since
the semantics of SystemC processes is neither entirely synchronous, nor entirely
asynchronous, any choice implies some encoding. The encoding itself may be
responsible for a significant part of the model size.

Another important point is the way time is interpreted. Since SystemC con-
tains explicit constructs to wait for time, the translation into the input language
of a timed-model checker like IF [4] or UPPAAL [12] could seem to be an ap-
propriate choice. However, we do not need the full expressive power of timed
automata to encode SystemC, and using timed automata would imply to pay
the price of the symbolic analysis needed for clocks in the verification back-ends.
Consequently, we will choose a discrete interpretation of time in SystemC, and
encode timers into some ordinary variables.

In a previous work [16, 14], we described a complete chain from SystemC to
a synchronous formalism. It is based upon a systematic encoding of SystemC
processes into a flavor of synchronous automata. In such a case, SystemC pro-
cesses are encoded one by one into automata, communicating with an additional
automaton that encodes the scheduler specification. The automata correspond-
ing to the user processes are produced specifically to communicate with this
scheduler automaton, using additional synchronous signals and the instanta-
neous dialogue mechanism available in a pure synchronous semantics. The set of
automata can then be translated into several synchronous formalisms (SMV [13]
input, Lustre), without computing the intrinsic products between them, hence
delegating the potential state explosion to the verification back-ends that are
better equipped to tackle the problem. Another good property of the translation
into Lustre is that we get something executable. It means that we can, at least,

compare the Lustre encoding with the official SystemC semantics, on benchmark
programs.

However, the encoding into a synchronous formalism renders manual reading
difficult, and the amount of additional synchronizations needed to reflect the
semantics of SystemC can be put in question again.

Another approach would be to define a direct semantics by using an ad hoc
product to represent the effect of the scheduler, that is creating a dedicated par-
allel composition which would include the main characteristics of the SystemC
scheduling specification. While this approach produces more readable results,
the fact is that it also requires to create a dedicated model-checker and prevents
from using existing verification tools, that deal only with well-known formalisms.

In this paper, we explore the encoding of the SystemC scheduler into an asyn-
chronous formalism, namely Promela, the input language for the tool Spin [10].
The translation into Promela is another way to give a formal semantics to
SystemC/TLM. Thanks to the simulator provided with Spin, the semantics is
executable, and it will be possible to test the faithfulness of our encoding w.r.t.
the official scheduler.

So far, we experimented our translations for model-checking and intensive
testing of properties like deadlocks and assertions.

The alternative encoding of SystemC into an asynchronous formalism will
also allow the comparison of the two verification chains, with respect to the
size of the models, the power of the verification tools, etc. In other words, we
try to answer the following questions: for a given SystemC model, and a given
property of it, is it more efficient to use a synchronous verification chain, or an
asynchronous one? This may depend on the type of property, and is still being
investigated.

The rest of the paper is structured as follows: Section 2 gives an short intro-
duction to TL modeling with SystemC. Section 3 describes the translation and
Section 4 how to use it for verification. We consider related work in Section 5
and conclude in Section 6.

2 Transaction Level Modeling with SystemC

2.1 Subset of SystemC

We briefly describe the main characteristics of SystemC, when used for Trans-
action Level Models.

Globally, a TLM component, or module, is an encapsulated piece of code
that contains active code (processes to be scheduled by the global scheduler)
and passive code (functions offered to the external world, that will be called
from a process of another component, by a control flow transfer). Inside such a
component, the processes and the functions may share variables and events in
order to synchronize with each other. Note that a function code and an active
process are conceptually in parallel, since the function will be called by another
flow of control.

In SystemC, the architecture of the platform is built by a piece of code (the
so-called elaboration phase that runs first), but this is conceptually equivalent
to a quite traditional architecture-description-language (ADL) (see for instance
[6]) that connects the ports exposed by the components.

Communications between modules proceed by function calls traversing com-
ponents or communications channels (for instance bus models). SystemC pro-
vides built-in primitive communication channels such as sc_signal to model
hardware signals at the Register Transfer Level of abstraction. Synchronization
associated with the communications is performed by events and shared variables
inside modules and/or channels.

In the sequel, we only consider SystemC models at Transaction Level. By
such restriction we mean that neither the built-in primitive channels nor the
so-called request update mechanism (intended for RTL modeling) are used. We
will also assume that there is no dynamic creation of processes (see section 3.1
for justification). Otherwise, we fully support other SystemC features.

2.2 A Simple Example

Consider the simple example in Figure 1, consisting of two modules. The first
module contains a process that waits for an event e1. After receiving the event,
it waits an additional 7 ns, before performing some action α. Here α is the
abstraction of some real, local computation.When α is finished, the first process
will trigger an interrupt in the second module, by calling the function g. The
first module also offers an interrupt port by the function f , which will notify the
local event e1. Similarly, the second module contains a process that waits 5 ns
before performing β. Thereafter it will trigger the interrupt in the first module,
and wait for the event e2, i.e. for an interrupt that triggers the function g.

Module 1

// Process 1

wh i l e (t rue)
{

wait(e1);

wait(7, SC_NS);

cout << "alpha";

interrupt_out.g();

}

// Function f

vo id f()

{

e1.notify ();

}

Module 2

// Process 2

wh i l e (t rue)
{

wait(5, SC_NS);

cout << "beta";

interrupt_out.f();

wait(e2);

}

// Function g

vo id g()

{

e2.notify ();

}

Fig. 1. A simple example of a TL model with two modules.

While this example is trivial, it contains the relevant parts of a TL model:
waiting for event notification, waiting for time and function calls to other mod-
ules, which are used to model transactions and interrupts.

There exist three difficulties when defining the semantics of SystemC:

1. The non-preemptive scheduler: we have to ensure that a running process
is not interrupted by any other process unless it explicitly relinquishes the
control back to the scheduler, by performing a wait either on time or on an
event.

2. The SystemC scheduler ensures that time can only elapse when no process
is eligible (while SystemC has no control on real time, the simulation time
is merely a counter that the scheduler can decide to increment or not). So
all statements are executed instantaneously, except when waiting either for
time or for an event that is not notified immediately.

3. Function call communications: they are used for both interrupts and transac-
tions. A process P performing a function call communication lets its control
flow go outside its component to finally reach the destination component
where a function is executed. The execution of P may continue only after
the function call is finished. This means that if the receiver’s function per-
forms a wait() statement, P will yield the control back to the scheduler,
and when elected again will resume its execution in the receiver’s function.

3 Expressing SystemC semantics in Promela

3.1 General Ideas

The Architecture First, we will abstract from the architecture description
part. In a real SystemC design, the function that is actually called when a
process P in a module M executes an instruction p.f() is determined by the
link between the port p of M and a port p’ on another module M ′ containing
a function f ′ associated with p′.

In the rest of the paper, we will consider that the architecture is hard coded
in the function names. In other words, we will consider a process P calling a
function f , and another module containing f .

Processes and Functions The modeling of a SystemC program into Promela
transforms each process and each function into a Promela process. SystemC
distinguishes several types of processes (SC_THREAD, SC_METHOD, etc.). We con-
sider here the use of SC_THREAD, which is the most general, since the encoding
will not benefit from the restrictions enforced on the other types of processes.

We decided to encode the functions as Promela processes in order to keep
them well separated from the processes. Thus, the transformation stays modular
and is easier to code. Another possibility would have been to do the inlining of the
functions inside the processes calling them, and transforming the resulting code
into a Promela process. Our choice implies to handle the problem of functions

1

2

/e1:=1

3

 {e1=0}

4

 X:=0

5

 [X=7]

6

 alpha

7

call(g)

 ret(g) 1

2

 begin(f)

3

/e1:=0

 end(f)

Fig. 2. Automata for Module 1. The left automaton corresponds to Process 1, the right
one to function f . The variable X is used to model time. We distinguish between clock
guards (square brackets) and guards on variables (curly brackets).

that can be called by multiple different processes. We perform a preprocessing on
the SystemC program that consist in duplicating and renaming such functions
in order to ensure that each function is called by only one process. This is
possible because the function calls we consider are used for communications and
therefore do not exhibit recursion (this argument also applies when choosing
to inline the functions). The number of copies to do for a given function is
bounded statically by the number of instantiated processes: while SystemC has
recently added a feature to create processes dynamically, this feature is not used
(to our knowledge) for Transaction Level models because the number of needed
processes is linked to the number of master ports to drive, and ports cannot be
created dynamically. In this article’s examples, function parameters and return
values are not represented but they could be taken into account by using global
variables for both.

All time values appearing in the SystemC model must be integer multiples of
some basic time granularity. We also assume that all variables can be declared
globally, without any naming conflicts. All these restrictions can be ensured by
simple preprocessing of the SystemC program without loss of generality.

3.2 Intuitive Idea: Representation with Automata

Our translation to Promela can also be seen as a translation into a set of
automata. Each process and each function is translated into one interpreted au-
tomaton, i.e. manipulating some variables. The variables are used 1) to represent
shared variables in the SystemC code 2) to encode SystemC events and 3) to
count time. In the latter case, we will talk about clocks, which will be integers
(see later). The transitions hold classically guards on variables as well as assign-
ments. Clocks can either be tested for equality with a constant or a variable,
or they can be set to 0. The automata derived from Module 1 of the simple
example can be found in Figure 2. They simply reflect the control structure of
the SystemC code.

The various automata then have to be asynchronously interleaved, respecting
the non-preemptive specification of the scheduler. To obtain this, the automata
have two different kinds of states, which we represent as black and white states.
Black states represent local control flow: when an automaton is in a black state,
it cannot not be preempted by the scheduler. White states basically represent
wait statements: when an automaton is in a white state, it can be preempted,
hence interleaved with any other process. A special case is the one of function
calls, which directly transfer the control to the automaton that implements the
function. This means we have to synchronize the transitions labeled by call
(resp. ret) with the corresponding transition labeled by begin (resp. end).

Since we are mainly interested in the synchronization between different mod-
ules, we will not describe all the possible data processing inside the modules. This
abstracted code could also be represented by encoding its control flow using only
black states. The key elements of SystemC are translated in the following way:

wait(e) 1

 /e:=1

 {e=0}
e.notify() /e:=0

wait(k ns) 1

 X:=0

2

 [X=k]
wait(e, k ns)

1

 X:=0

2

 /e:=1

3

 [X=k] {e=0}

f()

1

...

 begin(f)

2

 end(f)

port.f() 1

 call(f)

 ret(f)

3.3 Detailed Encoding

In the following we will show how our encoding in Promela deals with the
three problematic parts of SystemC: non-preemptive scheduling, time-elapse and
function calls.

Non-Preemptive Scheduling We distinguish between control points where
the scheduler may transfer the control to another process (white states), and

internal control points (black states) of one process. The non-preemptive execu-
tion of one automaton is realized with an additional shared variable M of type
int. This variable can take the value 0, to mean that any process can perform a
step, or N , to mean that the process number N is the only one to be activated.
A graphical representation and the actual Spin encoding are shown in Figure 3.

1

2
 {x=0}
alpha

3

 {x!=0}
 beta

myturn && State ==1 && x==0

-> alpha; State =2; M= t h i s ;
myturn && State ==1 && x==1

-> beta; State =3; M=0;

Fig. 3. Representation of non-preemption in Promela. The next value of M depends
on the color of the next state.

This variable is set to 0 by each process that performs a wait. Otherwise,
a process sets M to its own identifier, to indicate that it will take an additional
step. For function calls, M is used to transfer the control to another process
explicitly without the possibility of any other interleaving. We also considered
a different encoding that only relied on atomic sections in Promela to model
non-preemption. We sketch the problems with that approach in Section 3.5.

For simple examples, the use of an extra variable for ensuring atomicity is
surely not efficient. We could use the atomic or d_step statement in Promela
to ensure that no process can interleave a black state. In the trivial example in
Figure 2, where each black state has exactly one incoming and one outgoing tran-
sition, we could also merge these and remove the black states all-together. But
since the atomic behavior represented by the black states may be any complex
control-flow, connected to white states by multiple in- and outgoing transitions,
this simplification is not possible in the general case.

Clocks For every process that waits for time, we declare a clock (see Fig-
ure 4). We consider discrete time, that is every clock is an integer. A dedicated
clock_update process increments the clocks synchronously as soon as no other
process can run, which is tested using Promela’s timeout statement. Hence
time will never elapse if there is an instantaneous loop, i.e., when there exists a
cycle in the automaton which never performs a wait. Before a wait occurs, the
process resets the corresponding clock to zero. We flag for each clock X whether
the corresponding process is currently waiting on it, with a Boolean variable
X_used. A clock is reset to zero when no process waits for it, and it is never
increased in this time (it is a dead variable). Hence, the values of the clock are
in the range between 0 and the value of the corresponding wait. This handling
of clocks is similar to the one in discrete time Spin [3].

Function Calls For each function f , a global Boolean variable F is introduced.
The effects of f are transformed into:

2

 X:=0

 [X=10]

a c t i v e proctype update_clock (){

end:

do
:: atomic{timeout && M==0 && X_used

-> X=X+X_used ;}

od
}

. . .
a c t i v e proctype A(){

do
:: atomic{myturn && state ==1

-> X=0; X_used =1;M=0; state =2}

:: atomic{myturn && state ==2 && X=10

-> X=0; X_used =0;. . .}
. . .

Fig. 4. Representation of clocks, which are needed to wait for time, as an automaton
and in Promela. The process update_clock lets time elapse synchronously for all
processes. Time is incremented whenever at least one clock is used, and only the time
for clocks which are actually used is incremented.

– calling f : F := 1
– returning from the call: {F == 0}
– begin of the declaration of f : {F == 1}
– end of the declaration: F := 0

This is illustrated by Figure 5.

1

 call(f)

 ret(f)

...

:: myturn && State ==1

-> f=1; State =2; M=2

:: myturn && State ==2 && f==0

-> State =1;M=this;

...

1

...

 begin(f)

2

 end(f)

...

:: myturn && State ==1 && f==1

-> State =2; M=this;

:: myturn && State ==2

-> alpha; State =3; M=this;

:: myturn && State =3

-> f=0; State =1; M=1;

...

Fig. 5. Representation of function calls in Promela. Assume that the caller has the
identifier 1 and the function has identifier 2.

Additionally, a call sets M to the id of the automaton that implements f .
Similarly, end sets M back to the value of the caller. Since each function is called
by at most one process, this value is unique. Simply setting M without using F is
not sufficient, because we have to make sure that the caller is blocked until the

function is completed. Since the function might perform a wait, the scheduler
could otherwise decide to execute the caller again too early. Similarly, we have
to prevent the function from being executed without being called.

If a function is never called, we could simply remove it. On the other hand, it
might be the case that our model is only partially defined, that is: one or several
modules of the system are not known, and considered as black-boxes (possibly
with Byzantine behavior). In this case, we can give an over approximation of
the possible behavior of unknown modules, by assuming that a called function
can take an arbitrary time, and that each process may call any function at any
time. This is reflected by the macro state between call and ret.

Functions are used both to model interrupts and transactions in TLM. The
call representing an interrupt is directly done to another module. On the other
hand, transactions are handled by a bus that performs a routing depending on
the transaction’s address. In the examples, we forget about the bus, and for each
transaction directly call the recipient component’s function. This simplification
assumes we have determined manually to which component each transaction is
addressed. In the general case, the code responsible for routing, as well as specific
bus behavior can be taken into account by modeling the functions and processes
inside the bus, as automata, like any other component. We would then need at
least an address parameter for each transaction function calls.

SystemC Events Each SystemC event (sc_event) is encoded using a Boolean
variable. The encoding has to reflect the fact that these events are not persistent:
if the event is notified before a process waits for it, the notification is lost. This is
done by setting the variable to 1 before yielding, which overwrites any previous
notifications, the latters done by setting the variable to 0. This encoding assumes
that only one process is waiting for the event. When multiple processes wait
for the same event, each process taken individually can either miss or get the
notifications of the event, depending on its order of execution. This situation
can be handled simply by duplicating the event in order to get has many events
as waiting processes, with only one waiting process per event. Other notification
and wait constructs can be encoded following the same principle, as showed on
some additional examples in the array of Section 3.2.

Simple Example The global definitions and the clock update for the example
can be found in Figure 6. First the scheduling variable is declared. The macro
myturn is an abbreviation to indicate that an automaton is enabled, i.e. it is
either itself in a black state, or all automata are in white states. Since we do
not have variables in the example, we only need to declare the variables for the
events. Additionally, we have an integer value and a Boolean flag for each clock,
indicating whether we are currently waiting for the clock. Time may elapse, i.e.
the update_clock process is enabled when no other process can perform a step,
all processes are in a white state and at least one process waits on time. Using
X=X+X_used to update time ensures that time will only elapse for a clock that is
used.

i n t M=0;
#define myturn (M==0 || M==this)

// Variables
boo l e1=0;
boo l e2=0;

// Functions
boo l f=0;
boo l g=0;

// Clocks
#define time_enabled timeout && M==0 && (X_used || Y_used)

i n t X=0;
boo l X_used =0
i n t Y=0;
boo l Y_used =0

a c t i v e proctype update_clock (){
end:

do
:: atomic{time_enabled -> X=X+X_used; Y=Y+Y_used; }
od

}

Fig. 6. Global definitions and the process for synchronous time elapse.

The Spin code for Module 1 can be found in Figure 7. Each process has a
variable to store its active state and its id. We could also use the process id that is
automatically assigned by Spin, but using a new value makes it easier to compute
the id for function calls, without increasing the number of reachable states.
The translation of the automata is straightforward. Each transition becomes an
atomic action, that first tests whether the automata can run, i.e. is in the right
state with the guard evaluating to true. Thereafter the effect of the transition
is performed and the new state is set. At last, the scheduling variable is set
according to whether the new state is black or white and whether a function call
or termination is performed. Since a clock is explicitly set to 0 before each wait,
and only at such a point, we also set the clock to “used” when leaving state
3. Similarly, when state 4 is left, we declare the clock as “not used anymore”.
Labels that abstract real, local computations like alpha are printed. The code
for Module 2 can be found in Figure 8.

3.4 Validation of the Semantics

Our semantics for SystemC as an encoding in Promela is done in order to get
the same effect when composing the automata with the asynchronous product
of Spin as when executing the corresponding SystemC code with a valid Sys-
temC scheduler. To check that our semantics was corresponding to SystemC, we
instrumented the SystemC models in order to produce test traces. We included
in the Promela automata the same elements as produced in the SystemC text
traces. Each observable action becomes a possible message in a global channel.
When an action is performed, the corresponding message is sent to the channel.
In order to reduce the size of the channel, the message is read from the channel
again directly after. The SystemC trace we want to check is transformed into a
notrace declaration; now we can use the build-in Spin test to check whether the

a c t i v e proctype module1 (){
byte state =1;
byte this =1;

do
:: atomic{myturn && state ==1 -> e1=1; state =2;M=0}
:: atomic{myturn && state ==2 && e1==0 -> state =3;M=this}
:: atomic{myturn && state ==3 -> X=0; X_used =1; state =4;M=0}
:: atomic{myturn && state ==4 && X==7 -> X=0; X_used =0; state =5;M=0}
:: atomic{myturn && state ==5 -> printf ("MSC: alpha\n"); state =6;M=this}
:: atomic{myturn && state ==6 -> g=1; state =7;M=4}
:: atomic{myturn && state ==7 && g==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_f (){
byte state =1;
byte this =2;

do
:: atomic{myturn && state ==1 && f==1 -> state =2;M=this}
:: atomic{myturn && state ==2 -> e1=0; state =3;M=this}
:: atomic{myturn && state ==3 -> f=0; state =1;M=3}
od

}

Fig. 7. Promela code for Module 1 with the function f

a c t i v e proctype module2 (){
byte state =1;
byte this =3;

do
:: atomic{myturn && state ==1 -> Y=0; Y_used =1; state =2;M=0}
:: atomic{myturn && state ==2 && Y==5 -> Y=0; Y_used =0; state =3;M=0}
:: atomic{myturn && state ==3 -> printf ("MSC: beta\n"); state =4;M=this}
:: atomic{myturn && state ==4 -> f=1; state =5;M=2}
:: atomic{myturn && state ==5 && f==0 -> state =6;M=this}
:: atomic{myturn && state ==6 -> e2=1; state =7;M=0}
:: atomic{myturn && state ==7 && e2==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_g (){
byte state =1;
byte this =4;

do
:: atomic{myturn && state ==1 && g==1 -> state =2;M=this}
:: atomic{myturn && state ==2 -> e2=0; state =3;M=this}
:: atomic{myturn && state ==3 -> g=0; state =1;M=1}
od

}

Fig. 8. Promela code for Module 2 with the function g

behavior of the trace is a valid behavior of the Spin model. The only problem
was to produce all the text traces allowed by the SystemC specification given a
SystemC program. While the specification allows any order of execution when
multiple processes can be executed, the official SystemC simulator (as well as
third party tools) takes only one order, deterministically. A modification of the
official simulator existed in the lab, allowing to execute every possible scheduling.
We used it to produce every possible traces, and checked that all these traces
were included in our semantics.

3.5 Alternative Encoding

We also considered another encoding, which completely relied on Promela’s
atomic sections to model non-preemption. Each state was transformed into a
goto label, followed by an atomic section that contained all outgoing transitions.
Additionally, all black states where combined in one atomic section, including
the labels. The semantics of Promela ensures that a jump from inside an atomic
section to a label which is also contained in an atomic section preserves atomicity.
The first problem with this encoding is that we have to inline all functions in
order to tell to which point the function returns. But we have the benefit that
we do not need the variable M for the scheduling, or the variables to hold the
current state of each process. Furthermore, the implementation with gotos is
much more efficient than using a loop with a non-deterministic choice.

But the main problem with this encoding is that the simulator of Spin in-
terleaves jumps from atomic section to another atomic section (although the
documentation and the prover do the opposite). While Spin proves properties
that rely on the fact that such jumps are atomic, it also generates traces that
violate the property.

The combination of gotos and atomic sections also make it impossible to use
partial order reduction. Intuitively, goto m1 and atomic{goto m1} are equiva-
lent when m1 is inside an atomic section, because a single statement is always
atomic and every possible interleaving that could occur after the goto could as
well occur before it. However, for the explicit atomic, Spin will not allow any
interleaving neither after nor before the goto, when partial order reduction is
enabled.

bool X=0;

active proctype A(){

assert(X==0);

}

active proctype B(){

X=1;

atomic{goto m0};

atomic{skip;

m0: X=0

}

}

Fig. 9. A program whose verification depends on whether partial order reduction is
enabled.

Consider for example the program in Figure 9. The assertion is violated,
when B just executes X=1 before A is executed. Spin finds this error, when

the program is verified without partial order reduction, while it proves that all
assertions hold when partial order reduction is enabled.

Because of these problems, this encoding does not have the benefits of an
executable semantics. Therefore, we choose the not so efficient, but more robust
encoding as the default.

4 Verification

4.1 Generic Properties

There are a number of properties that should hold for every TL model. First, it
should never deadlock. For instance, a deadlock occurs when a process is waiting
for an event that is never notified. A deadlock in the SystemC model corresponds
directly to the fact that all Promela processes are blocked. With Spin, this can
be checked by verifying that no “invalid end states” exist, which is built in the
prover. Since we only increase time when at least one process performs a wait
on time, it can never be the case that the clock_update process runs forever,
which would make it impossible for Spin to detect a deadlock. On the other
hand, when all processes terminate, the update_clock process will be blocked.
Therefore, we explicitly declare the corresponding states as valid end states.

A deadlock might occur in the simple example in Figure 1, if we remove the
wait(5, SC_NS) statement from the second process. Then the scheduler can
choose to execute the second process first, and let it notify the event without a
process waiting for it (this is indeed a common error for SystemC programmers).
After that, both processes wait for events, but none is ever notified.

Another property we want to check is that no process runs forever with-
out yielding. This can be expressed by the formula �♦M = 0. For models
with clocks, we can also check that time will always elapse, using the formula
�♦enabled(update clock).

Of course, these last two properties are liveness formula and can only be
checked if all abstractions preserve them (over-approximations of the behaviors
preserve safety properties, but do not preserve liveness properties, in general).
For the simple example, we do not need to perform any abstractions at all. If,
however, the model becomes too large, the first abstraction that comes to mind
is to remove all clocks, and to change every clock-guard to true. This implies
that a process might halt in an arbitrary number of steps before a guard. But
the property that a thread is monopolizing the behavior is independent from the
clocks, so it can still be verified that way.

These tests work very well on the small example both with the possible
deadlock and without. The proof is almost instantaneous, and the number of
states remains small. We also checked these properties for the subset of a real-
world MPEG decoding platform, which modeled the synchronization between
the different components, with good results (see Figure 10).

This example contains many interleavings, a characteristic of real-world plat-
forms. In the bug version, a deadlock may occur. The MPEG example is a mod-

without bug with bug MPEG

time (s) states time (s) states time (s) states

deadlock < 0.1 35 < 0.1 9 < 0.1 126

no yielding < 0.1 49 < 0.1 55 < 0.1 209

time elapse < 0.1 57 < 0.1 9 < 0.1 226

Fig. 10. Benchmarks for the mpeg example.

ular version, with more parallel automata. All tests were performed on an Intel
Celeron with 2.80 GHz and 1 GB RAM.

4.2 Checking Assertions

Checking assertions in the TL model is straightforward. Assertions are simply
inserted at the corresponding transition, and directly written into the Spin code.
So far, we are mainly using assertions to check that some part of the model is
never executed. This could also be modeled using specific error states. Since
assertions are always safety properties, they are not effected by possible abstrac-
tions.

4.3 Benchmarks

Our test model consists of a chain of modules. The first module triggers an
interrupt in the next one. This interrupt notifies an event, allowing the module
to trigger an interrupt in the next module, and so on. The last module contains
an assertion which is either always false (bug) or always true (no-bug). The
latter forces Spin to compute the whole state space when checking for invalid
assertions. While this model may seem artificial, it exhibits the characteristics
found in more complex real-world models and leading to state explosion: many
processes, synchronized by SystemC events, which can thus be lost depending on
the execution order of the various statements. Such study allows to experiment on
how the state space that needs to be explored grows depending on parameters.
The results presented in Figure 11 focus on the main parameter which is the
number of modules. We also tried to experiment with adding an arbitrary number
of black states inside the processes, which for clarity is not in the table.

The normal encoding uses the global variable M, to assure atomicity, while the
goto version is our alternative encoding. In order to allow all intended behavior,
we disabled partial order reduction when checking the encoding with goto.

The entry NT (not tested) indicates that the checking has aborted due to
lack of memory. Both encodings find the bug very fast.

When computing the whole state space, we see that the encoding using go-
tos is more efficient, but the number of states increases exponentially for both
encodings. This is due to the increase of white states. We can solve the bug
by waiting before the notification, in order to make sure that no event is lost.

modules 3 5 7 9

time (s) states time (s) states time (s) states time (s) states

normal: bug < 0.1 32 < 0.1 48 < 0.1 64 < 0.1 80

normal: no-bug < 0.1 3919 0.5 64831 11.8 104576 NT NT

goto: bug < 0.1 10 < 0.1 14 < 0.1 18 < 0.1 22

goto: no-bug < 0.1 287 < 0.1 1535 < 0.1 7679 0.2 36863

modules 11 13 15 17

time (s) states time (s) states time (s) states time (s) states

normal: bug < 0.1 104 < 0.1 120 < 0.1 136 < 0.1 152

normal: no-bug NT NT NT NT NT NT NT NT

goto: bug < 0.1 34 < 0.1 38 < 0.1 42 < 0.1 46

goto: no-bug 1.1 172031 7 786431 47 353894 NT NT

Fig. 11. Benchmarks for the chain call example.

While this makes the model completely deterministic, the number of states is
still growing exponentially. Adding deterministic, local computations, increases
the number of reachable states linearly for the normal encoding, and not at all
for the encoding with gotos.

4.4 Comments on Performance

There are two possible sources for state explosion, making the model too large
for automatic verification: the clocks and the interleaving between the processes.
Modeling time by integers is usually not a good idea. However, our clocks are
always bounded by the time of the corresponding wait, which is usually a rather
small value, and since the clocks are updated synchronously, the actual increase
of the state space is moderate. The size of the state space depends on the maxi-
mum time a process waits for, and the number of unrelated wait statements in
parallel processes.

One way to cope with the state explosion is to use Spin not for formal
verification, but for intensive testing. This is encouraged by the fact that in
the benchmark the existing bugs were found very fast. This also allows to use
more efficient algorithms in Spin, like hash-compact search, which only give
approximate results.

On the other hand, our benchmark shows that introducing white states lead
to state-explosion, while introducing black states has only a minor impact. Typ-
ical case-studies contain mostly control-flow, and only a few waits; therefore
we are confident that we can model check programs of interesting size with our
approach.

5 Related Work

The problem of SystemC having no official formal semantics is not new. Most
of the research work studying SystemC in a formal context starts giving it a
semantics in another well-defined formalism.

The majority of the approaches to give a semantics to SystemC are limited
to its RTL subset, that is models describing synchronous circuits in detail. For
instance, [9] expresses the semantics for the RTL subset in terms of Abstract
State Machines. In this work, the processes executes concurrently, while the
SystemC specification explicitly says the opposite (non-preemptive scheduling).
[18] does the same using denotational semantics, but without taking into account
the notion of control-flow inside the processes. These previous works have in
common the fact that the target formalism that is used does not have concrete
tools, and therefore it is impossible to check on examples that the given semantics
is faithful. Moreover, the lack of connection to verification tools questions the
possible applications for these works.

The approach followed by CheckSyC [5] goes one step further, in the sense
that it provides a complete chain from SystemC parsing to formal verification,
with relatively good experimental results. The main idea in this work is to recog-
nize and extract well-known synchronous automata from RTL SystemC models
and to reuse tools that model-check efficiently synchronous hardware. [19] fol-
lows the same idea using the GNU SSA (static single assignment) form of GCC
for parsing the code and the synchronous language Signal [1] as the target for-
malism. Additional benefits, such as compositional reasoning, are presented but
still on the RTL subset, whereas we are interested in handling models at higher
abstraction levels.

The work in [11] apparently supports any SystemC program, by separating
hardware (combinatorial functions, FSM, etc., corresponding to the RTL subset)
from software (other unconstrained SystemC processes) to use different verifi-
cation approaches. This separation is useless for us, since code for Transaction
Level Models, while modeling hardware, falls in the second category. The se-
mantics for SystemC is given by parallel automata with rendez-vous. Variables
encoding the status for each process are used in the global state space to model
the effect of the scheduler. However, nothing is said on wait(time) statements,
which is a non-trivial point of the semantics.

We already experimented with the connection of SystemC to a proof engine,
with the objective of analyzing Transaction-Level Models. The first output of this
work was the tool-chain LusSy [14]. Starting from a SystemC program, we use
a SystemC front-end to parse it, generate an intermediate representation called
HPIOM made of communicating synchronous automata. We can then generate
Lustre or SMV code to connect to a variety of proof engines. The connection
to Lustre provides both provability and executability. The work presented here
differs on several points: the first one is that LusSy uses a SystemC-independent
intermediate formalism, and models the details of the scheduler using an explicit
automaton. As opposed to this, we are using here a representation with automata
in which the notion of non-preemption is built-in. The details of the scheduler do

not need to appear in a separate automaton, but the main scheduling principles
are reflected by the automaton encoding, in such a way that the product of Spin
does the intended work. The second difference is that LusSy uses a synchronous
formalism, while we are experimenting here with Spin, which is asynchronous.
Finally, the encoding in LusSy over-approximates the possible behavior when
time elapses. Whereas the values waited for by the processes determine their
order of execution, the encoding considers any possible order. The present work
with Spin computes the actual order in which the processes will be executed.
The abstraction in LusSy is conservative for verifying safety properties, but at
the expense of larger state spaces.

6 Further Work and Conclusion

We have presented a way of translating TL models written in SystemC into
Promela. This is one way of giving a formal semantics to SystemC. We use
this encoding to perform verification of TL models, like checking for deadlocks
and assertions.

The asynchronous encoding seems to be worth further investigation, com-
pared to a synchronous one. When translating SystemC to a synchronous frame-
work, the atomicity between two white states is obtained by a quite complex
synchronisation between the automata for the processes, and the automata that
represents the scheduler. Conversely, when translating SystemC to Promela,
the atomicity is built-in. Therefore, if the number of white states is small com-
pared to the number of black states, the formal verification should be easier for
the asynchronous encoding

On the other hand, translating SystemC into Lustre or SMV has the advan-
tage of producing a symbolic description of the system that can be exploited by
symbolic model-checkers and abstract-interpretation tools.

The use of Spin is probably better for bug tracking, while the use of a sym-
bolic tool is probably better for performing aggressive abstractions and approx-
imate property verification.

Right now, the transformation from SystemC to Promela is manual. While
interesting as a first approach to the problem, it would be necessary to implement
the principles presented here in a complete tool-chain to apply the approach
on a larger case-study and compare it with the synchronous encoding. This
would mean to reuse a front-end like Pinapa [15], that we developed for LusSy,
a transformation into a structure representing the particular form of automata
used here, and a Spin code generator. We already have a prototype for the
data structure and the code generator, but the biggest part of the work is the
transformation from the actual SystemC code.

References

1. A. Benveniste, P. le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the Signal language and its semantics. Technical Report
459, IRISA, Rennes, France, 1989.

2. G. Berry. The foundations of Esterel. Proof, Language and Interaction: Essays in
Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M. Tofte.

3. D. Bosnacki and D. Dams. Discrete-time Promela and Spin. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 1486 of LNCS, pages 307–310.
Springer-Verlag, 1998.

4. M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF toolset. In 4th Interna-
tional School on Formal Methods for the Design of Computer, Communication and
Software Systems: Real Time, SFM-04:RT, Bologna, Sept. 2004, LNCS Tutorials,
Springer, 2004.

5. R. Drechsler and D. Große. CheckSyC: An Efficient Property Checker for RTL
SystemC Designs. In ISCAS, volume 4, pages 4167– 4170, May 2005.

6. Peter Feiler. Architecture Analysis & Design Language (AADL). Technical Report
AS5506, SAE International, 2004.

7. F. Ghenassia, editor. Transaction Level Modeling with SystemC, TLM Concepts
and Applications for Embedded Systems. Springer-Verlag, 2005.

8. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying critical sys-
tems by means of the synchronous data-flow programming language lustre. IEEE
Transactions on Software Engineering, Special Issue on the Specification and Anal-
ysis of Real-Time Systems, September 1992.

9. D. Hoffmann, J. Gerlach, J. Ruf, T. Kropf, W. Mueller, and W. Rosenstiehl. The
Simulation Semantics of SystemC. In DATE, pages 64–70, 2001.

10. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2004.

11. D. Kroening and N. Sharygina. Formal Verification of SystemC by Automatic
Hardware/Software Partitioning. In MEMOCODE, pages 101–110, 2005.

12. Kim G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

13. K. L. McMillan. The SMV system, November 06 1992.
14. M. Moy. Techniques and Tools for the Verification of Systems-on-a-Chip at the

Transaction Level. PhD thesis, INPG, Grenoble, France, December 2005.
15. M. Moy, F. Maraninchi, and L. Maillet-Contoz. Pinapa: An extraction tool for

systemc descriptions of systems-on-a-chip. In EMSOFT, September 2005.
16. M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: an open Tool for the

Analysis of Systems-on-a-Chip at the Transaction Level. Design Automation for
Embedded Systems, 10(2-3):73–104, September 2006.

17. Open SystemC Initiative. IEEE 1666: SystemC Language Reference Manual, 2005.
www.systemc.org.

18. A. Salem. Formal Semantics of Synchronous SystemC. In DATE, volume 1, pages
10376–10381, 2003.

19. J.-P. Talpin, P. Le Guernic, S. Shukla, and R. Gupta. Compositional behavioral
modeling of embedded systems and conformance checking. International Journal
on Parallel processing, special issue on testing of embedded systems, 2005.

