
A Synchronous View on
Behavior Trees

Reinhard von Hanxleden, Kiel University
Joint Work with Alexander Schulz-Rosengarten (U Kiel),

Benjamin Asch, Soroush Bateni, Marten Lohstroh, Edward Lee (UC Berkeley)

SYNCHRON 2022, Nov. 29, Fréjus, France

[Clemens.Ratte-Polle]

Praise for Behavior Trees

“[...]. Sure you could build the very same behaviors with a finite state
machine (FSM). But anyone who has worked with this kind of technology in
industry knows how fragile such logic gets as it grows. A finely tuned
hierarchical FSM before a game ships is often a temperamental work of art
not to be messed with!”

Alex J. Champandard
Editor in Chief & Founder AiGameDev.com,

Senior AI Programmer Rockstar Games

This quote and parts of the following material taken from
[Colledanchise Ogren ’20]
Michele Colledanchise and Petter Ogren,
Behavior Trees in Robotics and AI - An Introduction, 2020
https://arxiv.org/pdf/1709.00084.pdf

2

3
Figs from [Colledanchise Ogren ’20]

if ghost is close
then if ghost is scared

then chase ghost
else avoid ghost

else eat pills
Fallback

Sequence

Condition

Action

Key Point:
At every tick,

start at root of BT

Behavior Tree Building Blocks

Control Flow nodes: Sequence, Fallback/Selector, Parallel, Decorator
Execution nodes: Action/Task, Condition
Possible return values: Success, Running, Failure

4
Table from [Colledanchise Ogren ’20]

Behavior Trees in Lingua Franca

Preliminary work …

5

Modes in BTs – The “Select Mode Pattern”

Observations:
• System has three modes

(always return Running)
• Current mode determined by

two conditions
(return Success or Failure)
• Nested use of “select mode

pattern” (our term), where one
condition switches between two
(inner) modes

6

Fig from [Colledanchise Ogren ’20]

Select Mode Pattern in LF

7

Inner modes collapsed:

[Colledanchise Ogren ’20]

Select Mode Pattern in LF

8

Inner modes expanded:

[Colledanchise Ogren ’20]

Select Mode Pattern in LF

9

With reactions:

[Colledanchise Ogren ’20]

Select Mode Pattern in LF

10

With conditions:

[Colledanchise Ogren ’20]

Select Mode Pattern in LF

11

With Boolean outputs:

This works …
But is specific for this pattern

[Colledanchise Ogren ’20]

FSM Construction by Colledanchise and Ogren

12

2.2 Hierarchical Finite State Machines 29

2.2.2 Creating a FSM that works like a BTs

As described in Chapter 1, each BT returns Success, Running or Failure. Imagine
we have a state in a FSM that has 3 transitions, corresponding to these 3 return
statements. Adding a Tick source that collect the return transitions and transfer the
execution back into the state, as depicted in Figure 2.5, we have a structure that
resembles a BT.

Generic BT
S

F

RIn
Atomic action

or
Composition

Tick
Source

Fig. 2.5: An FSM behaving like a BT, made up of a single normal state, three out transitions
Success (S), Running (R) and Failure (F), and a Tick source.

We can now compose such FSM states using both Fallback and Sequence con-
structs. The FSM corresponding to the Fallback example in Figure 2.6 would then
look like the one shown in Figure 2.7.

Fig. 2.6: A Fallback is used to create an Enter Building BT. The back door option is only tried if
the front door option fails.

Similarly, the FSM corresponding to the sequence example in Figure 2.8 would
then look like the one shown in Figure 2.9, and a two level BT, such as the one in
Figure 2.10 would look like Figure 2.11.

A few observations can be made from the above examples. First, it is perfectly
possible to design FSMs with a structure taken from BTs. Second, considering that
a BT with 2 levels corresponds to the FSM in Figure 2.11, a BT with 5 levels, such
as the one in Figure 2.12 would correspond to a somewhat complex FSM.

Third, and more importantly, the modularity of the BT construct is illustrated in
Figures 2.5-2.11. Figure 2.11 might be complex, but that complexity is encapsu-

[Colledanchise Ogren ’20]

13

30 2 How Behavior Trees Generalize and Relate to Earlier Ideas

Fallback(Use Front Door, Use Back Door)
S

F

RIn

Use Front Door S

F

RIn

Use Back Door S

F

RIn

Fig. 2.7: A FSM corresponding to the Fallback BT in Figure 2.6. Note how the second state is only
executed if the first fails.

Fig. 2.8: A Sequence is used to to create an Enter Through Front Door BT. Passing the door is
only tried if the opening action succeeds.

Fig. 2.9: An FSM corresponding to the Sequence BT in Figure 2.8. Note how the second state is
only executed if the first succeeds.

lated in a box with a single in-transition and three out-transitions, just as the box in
Figure 2.5.

Fig. 2.10: The two BTs in Figures 2.6 and 2.8 are combined to larger BT. If e.g. the robot opens
the front door, but does not manage to pass through it, it will try the back door.

2.2 Hierarchical Finite State Machines 29

2.2.2 Creating a FSM that works like a BTs

As described in Chapter 1, each BT returns Success, Running or Failure. Imagine
we have a state in a FSM that has 3 transitions, corresponding to these 3 return
statements. Adding a Tick source that collect the return transitions and transfer the
execution back into the state, as depicted in Figure 2.5, we have a structure that
resembles a BT.

Fig. 2.5: An FSM behaving like a BT, made up of a single normal state, three out transitions
Success (S), Running (R) and Failure (F), and a Tick source.

We can now compose such FSM states using both Fallback and Sequence con-
structs. The FSM corresponding to the Fallback example in Figure 2.6 would then
look like the one shown in Figure 2.7.

?

Enter
through

Front Door

Enter
through

Back Door

Fig. 2.6: A Fallback is used to create an Enter Building BT. The back door option is only tried if
the front door option fails.

Similarly, the FSM corresponding to the sequence example in Figure 2.8 would
then look like the one shown in Figure 2.9, and a two level BT, such as the one in
Figure 2.10 would look like Figure 2.11.

A few observations can be made from the above examples. First, it is perfectly
possible to design FSMs with a structure taken from BTs. Second, considering that
a BT with 2 levels corresponds to the FSM in Figure 2.11, a BT with 5 levels, such
as the one in Figure 2.12 would correspond to a somewhat complex FSM.

Third, and more importantly, the modularity of the BT construct is illustrated in
Figures 2.5-2.11. Figure 2.11 might be complex, but that complexity is encapsu-

[Colledanchise Ogren ’20]

14

30 2 How Behavior Trees Generalize and Relate to Earlier Ideas

Fig. 2.7: A FSM corresponding to the Fallback BT in Figure 2.6. Note how the second state is only
executed if the first fails.

!

Open
Front
Door

Pass
through
Door

Fig. 2.8: A Sequence is used to to create an Enter Through Front Door BT. Passing the door is
only tried if the opening action succeeds.

Sequence(Open Door, Pass Through Door)
S

F

RIn

Open Door S

F

RIn

Pass Through Door S

F

RIn

Fig. 2.9: An FSM corresponding to the Sequence BT in Figure 2.8. Note how the second state is
only executed if the first succeeds.

lated in a box with a single in-transition and three out-transitions, just as the box in
Figure 2.5.

Fig. 2.10: The two BTs in Figures 2.6 and 2.8 are combined to larger BT. If e.g. the robot opens
the front door, but does not manage to pass through it, it will try the back door.

[Colledanchise Ogren ’20]

15

2.2 Hierarchical Finite State Machines 31

Fallback(Sequence(Open Front Door,Pass Front Door), Sequence(Open Back Door,Pass Back Door))
S

F

RIn

Sequence(Open Front Door,Pass Front Door) S

F

RIn

Open Front Door S

F

RIn

Pass Front Door S

F

RIn

Sequence(Open Back Door,Pass Back Door) S

F

RIn

Open Back Door S

F

RIn

Pass Back Door S

F

RIn

Fig. 2.11: An FSM corresponding to the BT in Figure 2.10.

Fig. 2.12: Combining the BTs above and some additional Actions, we get a flexible BT for entering
a building and performing some task.

Fourth, as was mentioned in Section 1.2, the decision of what to do after a given
sub-BT returns is always decided on the parent level of that BT. The sub-BT is
ticked, and returns Success, Running or Failure and the parent level decides whether
to tick the next child, or return something to its own parent. Thus, the BT ticking
and returning of a sub-BT is similar to a function call in a piece of source code, just
as described in Section 1.2. A function call in Java, C++, or Python moves execution
to another piece of the source code, but then returns the execution to the line right
below the function call. What to do next is decided by the piece of code that made
the function call, not the function itself. As discussed, this is quite different from
standard FSMs where the decision of what to do next is decided by the state being
transitioned to, in a way that resembles the Goto statement.

30 2 How Behavior Trees Generalize and Relate to Earlier Ideas

Fig. 2.7: A FSM corresponding to the Fallback BT in Figure 2.6. Note how the second state is only
executed if the first fails.

Fig. 2.8: A Sequence is used to to create an Enter Through Front Door BT. Passing the door is
only tried if the opening action succeeds.

Fig. 2.9: An FSM corresponding to the Sequence BT in Figure 2.8. Note how the second state is
only executed if the first succeeds.

lated in a box with a single in-transition and three out-transitions, just as the box in
Figure 2.5.

?

!

Open
Front
Door

Pass
through
Door

!

Open
Back
Door

Pass
through
Door

Fig. 2.10: The two BTs in Figures 2.6 and 2.8 are combined to larger BT. If e.g. the robot opens
the front door, but does not manage to pass through it, it will try the back door.

[Colledanchise Ogren ’20]

Observations/Claims:
• The nodes are not really “states,” but

actors that fire when receiving an input
• The edges are not really “transitions,”

but denote data (token) flow
• “Running” just denotes completion of

reaction in absence of Success/Failure
16

2.2 Hierarchical Finite State Machines 31

Fallback(Sequence(Open Front Door,Pass Front Door), Sequence(Open Back Door,Pass Back Door))
S

F

RIn

Sequence(Open Front Door,Pass Front Door) S

F

RIn

Open Front Door S

F

RIn

Pass Front Door S

F

RIn

Sequence(Open Back Door,Pass Back Door) S

F

RIn

Open Back Door S

F

RIn

Pass Back Door S

F

RIn

Fig. 2.11: An FSM corresponding to the BT in Figure 2.10.

Fig. 2.12: Combining the BTs above and some additional Actions, we get a flexible BT for entering
a building and performing some task.

Fourth, as was mentioned in Section 1.2, the decision of what to do after a given
sub-BT returns is always decided on the parent level of that BT. The sub-BT is
ticked, and returns Success, Running or Failure and the parent level decides whether
to tick the next child, or return something to its own parent. Thus, the BT ticking
and returning of a sub-BT is similar to a function call in a piece of source code, just
as described in Section 1.2. A function call in Java, C++, or Python moves execution
to another piece of the source code, but then returns the execution to the line right
below the function call. What to do next is decided by the piece of code that made
the function call, not the function itself. As discussed, this is quite different from
standard FSMs where the decision of what to do next is decided by the state being
transitioned to, in a way that resembles the Goto statement.

Conclusion:
• Can map this directly to LF

reactors!

[Colledanchise Ogren ’20]

Top-Level:

17

[Colledanchise Ogren ’20]

All Reactors:

18

[Colledanchise Ogren ’20]

With “Behavior Tree View”:

19

[Colledanchise Ogren ’20]

20

Behavior Trees/Lingua Franca in VS Code

Ongoing Work: DSL for Behavior Trees in Lingua Franca

21

Wrap-Up – BTs in Lingua Franca
• Truly modal BTs can be expressed with modal reactors
• Suitable for “select mode pattern”
• Must consider that modal transitions are by default “deferred”
• May also apply for BT nodes “with memory”

(asterisk decorators)

• For general, “reactive” BTs,
an actor model may be more suitable
• Modular construction
• Success + Failure communicated to neighbor/parent
• Can use existing LF language
• Can synthesize pictorial BTs within LF diagrams,

resulting in hybrid data flow/BT views
22

Behavior Trees in Esterel

Preliminary work, barely …

23

Recall (Some) Basic Esterel Operators
s1 ; s2 Run s1, s2 sequentially
s1 || s2 Run s1, s2 in parallel
pause Finish tick (terminate with completion code 1)
trap T in s end Declare trap scope
exit T Exit trap (terminate with completion code 2 or higher)

Example:
trap T in

present I then exit T end; // If I holds in first tick: terminate whole program
pause;
emit O // Otherwise: emit O in second tick

end

24

Mapping BTs to Esterel
Observation: return values correspond nicely to completion codes in Esterel.
Esterel in turn can be mapped to hierarchical FSMs,
which should also work for LF modal models
0 – (normal) termination – “Succeeds”
2 (and higher) – throw exception – “Fails”
1 – pause operation – “Running”

25[Colledanchise Ogren ’20]

26

// Children signal failure with “exit Failure”
Parallel(child1, child2, …, childN):
int SuccessCnt = 0, FailureCnt = 0;
trap SuccessPar in
[

trap Success in
trap Failure in

child1;
SuccessCnt++; // Increment SuccessCnt if child succeeds
exit Success;

end trap;
FailureCnt++; // Increment FailureCnt if child fails

end trap
||
…
||

loop
if (SuccessCnt >= M)

exit SuccessPar;
if (FailureCnt > N-M)

exit Failure;
pause;

end loop
]
end trap

“Parallel” in Esterel

[Colledanchise Ogren ’20]

27

// SPECIAL CASE M = N
// Children signal failure with “exit Failure”
// If any child fails, the parallel fails
// If all children succeed, the parallel succeeds
Parallel(child1, child2, …, childN):
[

child1;
||
…
||

childN;
]

“Parallel” in Esterel

[Colledanchise Ogren ’20]

28

// Children signal failure with “exit Failure”
Fallback(child1, child2, …, childN):
trap Success in

trap Failure in
child1;
exit Success; // Success when child1 terminates normally

end trap;
trap Failure in

child2;
exit Success; // Success when child2 terminates normally

end trap
…
childN; // If childN fails, propagate that out
// Otherwise, terminate normally (= Success)

end trap

“Fallback” in Esterel

[Colledanchise Ogren ’20]

29

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(child1, child2, …, childN):
child1;
child2;
…
childN;

“Sequence” in Esterel

[Colledanchise Ogren ’20] 😎

😎
30

Fallback(child1, child2, …, childN):
trap Success in

trap Failure in
child1;
exit Success;

end trap; // Failure
trap Failure in

child2;
exit Success;

end trap // Failure
…
childN;

end trap

Sequence(child1, child2, …, childN):
child1;
child2;
…
childN;

Pac-Man()
trap Success in

trap Failure in
if (GhostClose) exit Failure;
trap Success in

trap Failure in
if (GhostScared) exit Failure;
ChaseGhost()
exit Success;

end trap;
AvoidGhost()

end;
exit Success;

end trap;
EatPills()

end trap

[Colledanchise Ogren ’20]

But Remember:
At every tick,

start at root of BT 😫

31

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(child1, child2, …, childN):
child1;
child2;
…
childN;

“Sequence” in Esterel

The problem: this translation implements an “un-
reactive” sequence with memory, where we resume at
running children, instead of re-starting each tick at first
child again

[Colledanchise Ogren ’20]

– Not

😎😫

32

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(child1, child2, …, childN):
weak suspend

child1;
child2;
…
childN;

when true

Note: should also consider nestings of reactive (no memory)
and non-reactive (with memory) constructs.

“Sequence” in Esterel

[Colledanchise Ogren ’20]

– With Weak Suspend?

🤔

33

// Children signal failure with “exit Failure”
Fallback(child1, child2, …, childN):
weak suspend

trap Success in
trap Failure in

child1;
exit Success; // Success when child1 terminates normally

end trap;
trap Failure in

child2;
exit Success; // Success when child2 terminates normally

end trap
…
childN; // If childN fails, propagate that out
// Otherwise, terminate normally (= Success)

end trap
when true

“Fallback” in Esterel – With Weak Suspend

[Colledanchise Ogren ’20]

34

Sequence special case:
• Only 2 children
• child1 is a condition, i.e.,

“instantaneous”, returns either
Failure or Success

// Option 1: child1 encodes
// Success/Failure as true/false:
Sequence(child1, child2):
abort
child2

when immediate !child1

// Option 2: child1 encodes
// Success/Failure with
// as termination/exit Failure:
Sequence(child1, child2):
loop
trap Success in
trap Failure in
child1;
exit Success;

end trap; // Failure
emit abortChild2;
exit Failure

end trap; // Success
pause;

end
||
abort
child2

when immediate abortChild2

Fallback special case:
• Only 2 children
• child1 returns either Failure or

Running

// child1 encodes Failure/Running
// as termination/exit Failure:
Fallback(child1, child2):
trap Success in
[
loop

trap Failure in
child1;
// Usually don’t get here
exit Success;

end trap; // Failure
emit abortChild2;

end trap; // Success
pause;

end
||
abort

child2
when immediate abortChild2
]
end trap

Esterel Sketches for
Select Mode Pattern

Wrap-Up – BTs in Esterel

35

• As in Esterel, individual BT nodes do maintain (internal) state
• However, “reactive” BT does not maintain state;

e.g., sequence always starts at first child
• BT return values resemble Esterel completion codes
• However, emulating “reactiveness” with Esterel (v5) appears non-trivial
• Possible approaches (?):

• weak suspension, to avoid changing state
• Explicit control structure, based on existing primitives such as (weak) aborts, loops,

(weak) suspend, gotopause, …
• New primitive(s) designed explicitly for reactiveness
• Dataflow approach, as in “FSM pattern” also used in Lingua Franca

Thanks!

