A Synchronous View on
Behavior Trees

Reinhard von Hanxleden, Kiel University

Joint Work with Alexander Schulz-Rosengarten (U Kiel),
Benjamin Asch, Soroush Bateni, Marten Lohstroh, Edward Lee (UC Berkeley)

SYNCHRON 2022, Nov. 29, Fréjus, France

[Clemens.Ratte-Polle]

Praise for Behavior Trees

“[...]. Sure you could build the very same behaviors with a finite state
machine (FSM). But anyone who has worked with this kind of technology in
industry knows how fragile such logic gets as it grows. A finely tuned
hierarchical FSM before a game ships is often a temperamental work of art
not to be messed with!”

Alex J. Champandard
Editor in Chief & Founder AiGameDev.com,
Senior Al Programmer Rockstar Games

This quote and parts of the following material taken from
[Colledanchise Ogren '20]

Michele Colledanchise and Petter Ogren,
Behavior Trees in Robotics and Al - An Introduction, 2020

https://arxiv.org/pdf/1709.00084.pdf

if ghost is close
then if ghost is scared

then chase ghost

else avoid ghost
else eat pills

Fallback

Fig. 1.3: Graphical representation of a Fallback node with N children.

Child 1

Child 2

Child N

Algorithm 2: Pseudocode of a Fallback node with N children

1 fori<1toN do
childStatus < Tick (child(i))
if childStatus = Running then

else if childStatus = Success then

2

3

4] return Running
5

6

L return Success

7 return Failure

Sequence A Action

Eat Pills

Condition

Key Point:
At every tick,

start at root of BT

Avoid
Ghost

Chase
Ghost

Figs from [Colledanchise Ogren '20]

Child 1

Child 2

Child N

Fig. 1.2: Graphical representation of a Sequence node with N children.

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori+ 1toN do

= LY T P

7 return Success

childStatus < Tick (child(i))
if childStatus = Running then
return Running
else if childStatus = Failure then
[_ return Failure

(p

Behavior Tree Building Blocks

Control Flow nodes: Sequence, Fallback/Selector, Parallel, Decorator
Execution nodes: Action/Task, Condition

Possible return values: Success, Running, Failure

Node type

Symbol

Succeeds

Fails Running
Fallback ? If one child succeeds If all children fail If one child returns Running
Sequence — If all children succeed If one child fails If one child returns Running
Parallel — | |If > M children succeed| If > N — M children fail else
Action text Upon completion If impossible to complete During completion
Condition| | text | If true If false Never
Decorator \ O) Custom Custom Custom

Table from [Colledanchise Ogren "20]

Behavior Trees in Lingua Franca

Modes in BTs — The “Select Mode Pattern”

Fig from [Colledanchise Ogren "20]

Observations:

e System has three modes
(always return Running)

* Current mode determined by
two conditions
(return Success or Failure)

* Nested use of “select mode
pattern” (our term), where one
condition switches between two
(inner) modes

(p

']@

Select Mode Pattern in LF

A

%

.

_>

Eat Pills

Chase
Ghost

[Colledanchise Ogren "20]

Inner modes collapsed.:

PacMan _BehaviorTree Mockup HFSM

HandleGhostClose

(EatPills)

Select Mode Pattern in LF

N

?

=S

— Eat Pills

Avoid
Ghost

Ghost
Scared

Chase
Ghost

[Colledanchise Ogren "20]

Inner modes expanded:

PacMan_BehaviorTree_Mockup HFSM

é HandleGhostClose A

Condition: !GhostClose

)

GhostCloseBehavior

@haseGhosD

vy 1

@voidGhosD

N/

EatPills

(R

Select Mode Pattern in LF

e

T

?

Eat Pills

Avoid
Ghost

Ghost
Scared

Chase
Ghost

[Colledanchise Ogren ’20]

With reactions:

PacMan_BehaviorTree_Mockup HFSM

s

HandleGhostClose

Condition: !GhostClose

)1)

‘ ChaseGhost R

Condition: !GhostScared

)1)

Action: ChaseGhost

22D
T 7

(AvoidGhost)

Condition: GhostScared

)

Action: AvoidGhost

D

“

GhostCloseBehavior

~=

EatPills

Condition: GhostClose

)2)

Action: EatPills

5

Select Mode Pattern in LF

Eat Pills

Ghost
Scared

Avoid
Ghost

Chase
Ghost

[Colledanchise Ogren "20]

With conditions:

PacMan_BehaviorTree_Mockup_Modes_Triggers

PacManBehav

ior

HandleGhostCl

Condition: !GhostClose

. GhostClose
»

GhostCl
0s ose>

GhostScared

>

2D

ose

GhostCloseBehavior

(ChaseGhost h

Condition: !GhostScared

. GhostScared
» R E 1 >
@ ------------------- Action: ChaseGhost

> GhostScared GhostScared

- €\2> J

gl reset, GhostScared GhostScared
(AvoidGhost h

Condition: GhostScared

. GhostScared
> > 3)

Action: AvoidGhost

o

_ 1

I

GhostClose GhostClose
(EatPills)

Condition: GhostClose

Action: EatPills

)

GhostClose
> > 2)

e

With Boolean outputs:

Select Mode Pattern in LF

? PacManBehavior

(HandleGhostClose)
Condition: !GhostClose
isGhostClose
IO -

Main

. GhostCloseBehavior
- Eat Pills jJoEatPils
Chase Ghost)
Condition: IGhostScared
isGhastClose isGhostScared

doChaseGhost doChaseGhost
> >

...i » >
? doChaseGhost
isGhostScared isGhostScared 2 2
» > J
N 7 doChaseGhost | -
AvoidGhost . S D
T E B ;doAvoidGhost chvcidthst=

>_isGhostScared E
Avoid | i | P

Y

—
Ghost _____ _i isGhostScared Action: AvoidGhost
fia E """"""""""" doAvoidGhost
O 4 >
_ /| doAvoidGhost
— 7 | o
EatPills
C hase Condition: GhostClose
Ghost isGhostClose
Action: EatPills

[Colledanchise Ogren "20] o— 3= >

This works ... @

But is specific for this pattern)

FSM Construction by Colledanchise and Ogren

2.2.2 Creating a FSM that works like a BTs

As described in Chapter 1, each BT returns Success, Running or Failure. Imagine
we have a state in a FSM that has 3 transitions, corresponding to these 3 return
statements. Adding a Tick source that collect the return transitions and transfer the
execution back into the state, as depicted in Figure 2.5, we have a structure that
resembles a BT.

Tick
Source

Generic BT

Atomic action
or R
Composition

\
5
v

\

Fig. 2.5: An FSM behaving like a BT, made up of a single normal state, three out transitions
Success (S), Running (R) and Failure (F), and a Tick source.
[Colledanchise Ogren "20]

(p

N

Enter
through
Front Door

Fig. 2.6: A Fallback is used to create an Enter Building BT. The back door option is only tried if

the front door option fails.

Enter
through

Back Door

Fallback(Use Front Door, Use Back Door)

Use Front Door

—» In | In P

S

|

R

Use Back Door

F

In P

[

S

N

Fig. 2.7: A FSM corresponding to the Fallback BT in Figure 2.6. Note how the second state is only

executed if the first fails.

[Colledanchise Ogren "20]

(p

N

Open Pass
Front through
Door Door

Fig. 2.8: A Sequence is used to to create an Enter Through Front Door BT. Passing the door is
only tried if the opening action succeeds.

Sequence(Open Door, Pass Through Door)

S >
Open Door S Pass Through Door] g /

—» In | In P R_|—>In> R R M

|=—| F
F

Fig. 2.9: An FSM corresponding to the Sequence BT in Figure 2.8. Note how the second state is
only executed if the first succeeds.

[Colledanchise Ogren "20]

N

N

Open
Front
Door

Pass
through
Door

Open
Back
Door

Pass
through
Door

Fig. 2.10: The two BTs in Figures 2.6 and 2.8 are combined to larger BT. If e.g. the robot opens

the front door, but does not manage to pass through it, it will try the back door.

Fallback(Sequence(Open Front Door,Pass Front Door), Sequence(Open Back Door,Pass Back Door))

Sequence(Open Front Door,Pass Front Door)

vl

Open Front Door] S

Pass Front Door] S

Sequence(Open Back Door,Pass Back Door)

—

"

A4

In —>In}>

Open Back Door/ S

F

Pass Back DoorJ S
LR —‘ L in [R]

el

Fig. 2.11: An FSM corresponding to the BT in Figure 2.10.

[Colledanchise Ogren "20]

Fallback(Sequence(Open Front Door,Pass Front Door), Sequence(Open Back Door,Pass Back Door))

Fig. 2.11: An FSM corresponding to the BT in Figure 2.10.

Observations/Claims: Conclusion:
* The nodes are not really “states,” but e Can map this directly to LF
actors that fire when receiving an input reactors!

* The edges are not really “transitions,”
but denote data (token) flow

* “Running” just denotes completion of
reaction in absence of Success/Failure

Sequence(Open Front Door,Pass Front Door) / Sequence(Open Back Door,Pass Back Door)
/ °) / °
Open Front Dooy] S Pass Front Door/ S Open Back Door] S Pass Back DoorJ S
—» In > In {In] R Lln}> R R > In > In] [R Lln}» RHm R
F _‘ F \i‘ F _‘ F \i‘
i F i a\y
F ————p

[Colledanchise Ogren "20]

s

A

Eat Pills

Avoid
Ghost

Chase
Ghost

[Colledanchise Ogren "20]

Top-Level:

PacMan_BehaviorTree_Mockup

(0, 5 msec)

fathre
success

17

— Eat Pills
?
Avoid
—
Ghost
Chase
Ghost
. ’
[Colledanchise Ogren "20]
All Reactors:
.
PacMan_BehaviorTree_Mockup
PacMan0
PacManl
PacMan2
PacMan3
ChaseGhost
GhostScared start 5 success 4 success left mer
» > —p ged _ success success left
start, start_ start, .. SHEEESS A - . . right * MergeOr» > »>- il merged _ success
D‘: . LWMP merged _ failure AvoidGhost EatPills right,, MergeOr
GhostClose t =fallure left=MergeOr Sta“' D Success success
. = start i
@DSMMD& L railure Jrailure o ’—’D cailure failure
= > »> L — merged _ failure 'S »
{ MergeOr! d T

o failure
(0, 5 msec) >

left
>

18

N\ V]

s

Eat Pills

A

Avoid
Ghost

Chase
Ghost

[Colledanchise Ogren "20]

With “Behavior Tree View”:

PacMan_BehaviorTree_Mockup

PacManO
?
\ failure
- EatPills >
O—X—= Grostcosd
(0, 5 msec)
>SUCCESS

AvoidGhost

GhostScared ChaseGhost

o (D

Behavior Trees/Lingua Franca in VS Code

PacMan_BehaviorTree_Mockup_Reactors.If X

PacMan_BehaviorTree_Mockup_Reactors.If > ...

98
99

116

start —> left.start
left.success —> right.start
left.failure —> merge.left
right.success —> success
right.failure —> merge.right
merge.merged —> failure

@btnode("root")
reactor PacMan extends BehaviorNode {
p = new Fallbackl()

start —> p.start
p.failure —> failure
p.success —> success

// Root
main reactor {
timer t (0, 5msec)

bt = new PacMan()

reaction(t) —> bt.start {=
1f_print("Compute");
1f_set(bt.start, true);

=}

reaction(bt.success) {=
1f_print("Success");

=}

reaction(bt.failure) {=
1f_print("Failure");

PacMan_BehaviorTree_Mockup_Reactors.If — rvh-bt

53 (00 ooc PacMan_BehaviorTree_Mockup_Reactors.If

AvoidGhost

ChaseGhost

GhostScared

Zeile 3, Spalte 13 Leerzeichen: 4 UTF-8

success

failure

LR

O & o8

Lingua Franca

i

—F—

o

Ongoing Work: DSL for Behavior Trees in Lingua Franca

XoK) Concept_BehaviortTree_DSL.If — rvh-bt O 8 [o8

a0
B

Concept_BehaviortTree_DSL.If X Concept_BehaviortTree_DSL.If

Concept_BehaviortTree_DSL.If > ...

1 target C; {§}
2

3 btree PacMan { 14
4 sequence { TiT
5 action {

6 reaction {= m
7 1f_print("Job 1");

8 1f_set(success, true);

9 =}

10 }

11 action { .

12 reaction {= Maln

13 1f_print("Job 2"); L

14 1f_set(success, true);

15 =} PacMan

16 } success
" ==
18} start -

19 ----_--E --------- >
o aliieReEoR / \ failure E

21 bt = new PacMan() L L N Pp———————
22 (1sec, 1sec))]

23 timer t (1 sec, 1 sec) ACt|0nO ACtIOIﬂ
24

25 reaction(t) -> bt.start {=

26 1f_print("Compute");

27 1f_set(bt.start, true);

28 =}

29 reaction(bt.success) {=

30 1f_print("Success");

31 =}

32 reaction(bt.failure) {=

33 1f_print("Failure");
34 =}

Zeile 26, Spalte 24 Leerzeichen: 4 UTF-8 LF LinguaFranca &’ -J

PacMan_BehaviorTree_Mockup_HFSM

(HandleGhostClose)

Condition: !GhostClose

Wrap-Up — BTs in Lingua Franca =

GhostCloseBehavior

ChaseGhost

(ChaseGhosy

* Truly modal BTs can be expressed with modal reactors k)

* Suitable for “select mode pattern”

* Must consider that modal transitions are by default “deferred”

* May also apply for BT nodes “with memory” .

(asterisk decorators) T T
* For general, “reactive” BTs, PacMan_BehaviorTree_Mockup
an actor model may be more suitable (O T2 pachano succes

(0, 5 msec)

* Modular construction
* Success + Failure communicated to neighbor/parent
e Can use existing LF language

e Can synthesize pictorial BTs within LF diagrams,
resulting in hybrid data flow/BT views

PacMan_BehaviorTree_Mockup

Behavior Trees in Esterel

Recall (Some) Basic Esterel Operators

sl ; s2 Run s1, s2 sequentially
sl || s2 Run s1, s2 in parallel
pause Finish tick (terminate with completion code 1)
trap T in s end Declare trap scope
exit T Exit trap (terminate with completion code 2 or higher)
Example:
trap T in
present I then exit T end; // If | holds in first tick: terminate whole program
pause;
emit O // Otherwise: emit O in second tick
end

Mapping BTs to Esterel

Observation: return values correspond nicely to completion codes in Esterel.

Esterel in turn can be mapped to hierarchical FSMs,
which should also work for LF modal models

0 — (normal) termination — “Succeeds”
2 (and higher) — throw exception — “Fails”
1 — pause operation — “Running”

Node type|Symbol Succeeds Fails Running
Fallback ? If one child succeeds It all children fail If one child returns Running
Sequence — If all children succeed If one child fails If one child returns Running

Parallel = If > M children succeed| If > N — M children fail else
Action text Upon completion If impossible to complete During completion

Condition text If true If false Never

Decorator O Custom Custom Custom

[Colledanchise Ogren "20]

“Paralle

A

‘II

=

Child 1

Child 2

1N

Esterel

Child N

Fig. 1.4: Graphical representation of a Parallel node with N children.

Algorithm 3: Pseudocode of a Parallel node with N children and success
threshold M

1

[

(= LY I S

fori<+ 1toN do

| childStatus(i) < Tick (child(i))

if Zi:clu'ldStanu(i):Success1 2 M then
| return Success

else if X cpitasiaus(iy=Faiture | > N — M then

L return Failure

return Running

[Colledanchise Ogren '20]

)

// Children signal failure with “exit Failure’
Parallel(childl, child2, ..., childN):
int SuccessCnt = 0, FailureCnt = 0;
trap SuccessPar in
[
trap Success in
trap Failure in
child1;
SuccessCnt++; // Increment SuccessCnt if child succeeds
exit Success;
end trap;
FailureCnt++; //Increment FailureCnt if child fails
end trap

||
||
loop
if (SuccessCnt >= M)
exit SuccessPar;
if (FailureCnt > N-M)
exit Failure;
pause;
end loop

]
end trap

26

“Paralle

‘II

=

1N

Esterel

A

Child 1 Child 2

Child N

Fig. 1.4: Graphical representation of a Parallel node with N children.

Algorithm 3: Pseudocode of a Parallel node with N children and success
threshold M

1

[

(= LY I S

~

fori<+ 1toN do
| childStatus(i) < Tick (child(i))

if Zi:clu'ldStams(i):Success1 2 M then
| return Success

else if X cpitasiaus(iy=Faiture | > N — M then
L return Failure

return Running

[Colledanchise Ogren '20]

// SPECIAL CASE M = N
// Children signal failure with “exit Failure”
// If any child fails, the parallel fails
// If all children succeed, the parallel succeeds
Parallel(childl, child2, ..., childN):
[
childi;
||
||
childN;
]

27

“Fallback”

?

Child 1 Child 2

in Esterel

Child N

Fig. 1.3: Graphical representation of a Fallback node with N children.

Algorithm 2: Pseudocode of a Fallback node with N children

1 fori< 1toN do
childStatus < Tick (child(i))
if childStatus = Running then
return Running
else if childStatus = Success then
L return Success

A e W N

7 return Failure

[Colledanchise Ogren "20]

// Children signal failure with “exit Failure”
Fallback(childl, child2, ..., childN):
trap Success in
trap Failure in
childi;
exit Success; // Success when child1 terminates normally
end trap;
trap Failure in
child2;
exit Success; // Success when child2 terminates normally
end trap

childN; // If childN fails, propagate that out
// Otherwise, terminate normally (= Success)
end trap

“Sequence” in Esterel

_)

N\

Child 1 Child 2 Child N

Fig. 1.2: Graphical representation of a Sequence node with N children.

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori+ 1toN do

childStatus < Tick (child(i))
if childStarus = Running then

else if childStatus = Failure then

2
3
4 | return Running
S
6

L return Failure

7 return Success

[Colledanchise Ogren "20]

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(childl, child2, ..., childN):
childi;

child2;

childN;

29

— Eat Pills

o

\ AN

N

Ghost

Chase
Ghost

Avoid
Ghost
Scared

Fallback(child1, child2,
trap Success in
trap Failure in
childi1;
exit Success;
end trap; // Failure
trap Failure in
child2;
exit Success;
end trap // Failure

childN;
end trap

[Colledanchise Ogren "20]

But Remember:

At every tick,
start at root of BT

><
A

., childN):

childl;
child2;

childN;

Pac-Man()
trap Success in
trap Failure in
if (GhostClose) exit Failure;
trap Success in
trap Failure in
if (GhostScared) exit Failure;
ChaseGhost()
exit Success;
end trap;
AvoidGhost()
end;
exit Success;
end trap;
EatPills()
end trap

30

Sequence(childl, child2, ..., childN):

“Sequence” in Esterel — Not

_)

N\

Child 1 Child 2 Child N

Fig. 1.2: Graphical representation of a Sequence node with N children.

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori<+ 1toN do

2 childStatus < Tick (child(i))

3 if childStarus = Running then

4 | return Running

5 else if childStatus = Failure then
6 |_ return Failure

7 return Success

The problem: this translation implements an “un-
reactive” sequence with memory, where we resume at
running children, instead of re-starting each tick at first
child again

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(childl, child2, ..., childN):
childi;
child2; ; 2
childN; a

_>*
Pick Move Place
Object Object Object

[Colledanchise Ogren "20]

31

“Sequence” in Esterel —With Weak Suspend?

_)

N\

Child 1 Child 2 Child N

Fig. 1.2: Graphical representation of a Sequence node with N children.

Algorithm 1: Pseudocode of a Sequence node with N children

1 fori+ 1toN do

childStatus < Tick (child(i))
if childStarus = Running then

else if childStatus = Failure then

2
3
4 | return Running
S
6

L return Failure

7 return Success

[Colledanchise Ogren "20]

// Children signal failure with “exit Failure”
// If any child fails, this is propagated out
// Otherwise, terminate normally (success)
Sequence(childl, child2, ..., childN):

weak suspend

child1;)
child2; [/ 0 o
\ - —_—

childN;

when true

Note: should also consider nestings of reactive (no memory)
and non-reactive (with memory) constructs.

32

“Fallback”

?

Child 1 Child 2

in Esterel — With Weak Suspend

Child N

Fig. 1.3: Graphical representation of a Fallback node with N children.

Algorithm 2: Pseudocode of a Fallback node with N children

1 fori< 1toN do
childStatus < Tick (child(i))
if childStatus = Running then
return Running
else if childStatus = Success then
L return Success

A e W N

7 return Failure

[Colledanchise Ogren "20]

// Children signal failure with “exit Failure”
Fallback(childl, child2, ..., childN):
weak suspend
trap Success in
trap Failure in
childi;
exit Success; // Success when child1 terminates normally
end trap;
trap Failure in
child2;
exit Success; // Success when child2 terminates normally
end trap

childN; // If childN fails, propagate that out
// Otherwise, terminate normally (= Success)
end trap
when true

Esterel Sketches for
Select Mode Pattern

TN

Ghost
Scared

/\

Eat Pills

Avoid
Ghost

Chase
Ghost

Sequence special case:

* Only 2 children

* childl is a condition, i.e.,
“instantaneous”, returns either
Failure or Success

// Option 1: child1 encodes
// Success/Failure as true/false:
Sequence(childl, child2):
abort

child2
when immediate !child1

// Option 2: child1 encodes
// Success/Failure with
// as termination/exit Failure:
Sequence(childl, child2):
loop
trap Success in
trap Failure in
childi;
exit Success;
end trap; // Failure
emit abortChild2;
exit Failure
end trap; // Success
pause;
end
||
abort
child2
when immediate abortChild2

Fallback special case:

* Only 2 children

e childl returns either Failure or
Running

// child1 encodes Failure/Running
// as termination/exit Failure:
Fallback(child1, child2):
trap Success in
[
loop
trap Failure in
childi;
// Usually don’t get here
exit Success;
end trap; // Failure
emit abortChild2;
end trap; // Success
pause;
end
||
abort
child2
when immediate abortChild2

]
end trap

Wrap-Up — BTs in Esterel

* As in Esterel, individual BT nodes do maintain (internal) state

 However, “reactive” BT does not maintain state;
e.g., sequence always starts at first child

* BT return values resemble Esterel completion codes
 However, emulating “reactiveness” with Esterel (v5) appears non-trivial

* Possible approaches (?):
* weak suspension, to avoid changing state

* Explicit control structure, based on existing primitives such as (weak) aborts, loops,
(weak) suspend, gotopause, ...

* New primitive(s) designed explicitly for reactiveness
» Dataflow approach, as in “FSM pattern” also used in Lingua Franca

Thanks!

