
1

Runtime Enforcement of Cyber-Physical Systems∗

SRINIVAS PINISETTY, Aalto University, Finland and University of Gothenburg, Sweden

PARTHA S ROOP, University of Auckland, New Zealand

STEVEN SMYTH, Kiel University, Germany

NATHAN ALLEN, University of Auckland, New Zealand

STAVROS TRIPAKIS, Aalto University, Finland and UC Berkeley, USA

REINHARD VON HANXLEDEN, Kiel University, Germany

Many implantable medical devices, such as pacemakers, have been recalled due to failure of their embedded

software. This motivates rethinking their design and certification processes. We propose, for the first time, an

additional layer of safety by formalising the problem of run-time enforcement of implantable pacemakers.While

recent work has formalised run-time enforcement of reactive systems, the proposed framework generalises

existing work along the following directions: (1) we develop bi-directional enforcement, where the enforced

policies depend not only on the status of the pacemaker (the controller) but also of the heart (the plant), thus

formalising the run-time enforcement problem for cyber-physical systems (2) we express policies using a

variant of discrete timed automata (DTA), which can cover all regular properties unlike earlier frameworks

limited to safety properties, (3) we are able to ensure the timing safety of implantable devices through the

proposed enforcement, and (4) we show that the DTA-based approach is efficient relative to its dense time

variant while ensuring that the discretisation error is relatively small and bounded. The developed approach is

validated through a prototype system implemented using the open source KIELER framework. The experiments

show that the framework incurs minimal runtime overhead.

CCS Concepts: • General and reference→ Verification; • Theory of computation→ Program verifi-
cation; • Software and its engineering→ Software verification; Formal software verification;

Additional Key Words and Phrases: Runtime Monitoring, Runtime Enforcement, Automata, Timed Properties,

Cyber-Physical Systems, Synchronous Programming, SCCharts

ACM Reference format:
Srinivas Pinisetty, Partha S Roop, Steven Smyth, Nathan Allen, Stavros Tripakis, and Reinhard von Hanxleden.

2017. Runtime Enforcement of Cyber-Physical Systems. 1, 1, Article 1 (July 2017), 25 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

∗
“This article was presented in the International Conference on Embedded Software (EMSOFT) 2017 and appears as part of

the ESWEEK-TECS special issue.”

This work has been partially supported by the Academy of Finland, the U.S. National Science Foundation (awards #1329759

and #1139138), the Deutsche Forschungsgemeinschaft (PRETSY2 project, award DFG HA 4407/6-2), the Swedish Research

Council (grant Nr. 2015-04154, PolUser: Rich User-Controlled Privacy Policies) and the University of Auckland Faculty Research
Development Fund (grant Nr. 3707500).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

XXXX-XXXX/2017/7-ART1 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

1 INTRODUCTION
Pacemakers are life saving devices that correct bradycardia, a type of arrhythmia when the heart

is beating less than 50 beats per minute (bpm). While over a million pacemakers are implanted

every year, there have been several adverse events associated with these devices. Ironically, devices

designed to save lives have caused serious harm including death of many patients [2]. Such sobering

statistics call for alternative techniques inspired by formal methods.

The first known formal model of the cardiac cell based on Hybrid Automata (HA) was developed

in 2008 [24]. Subsequently, Boston Scientific released a specification, based on which a formal

model of the pacemaker using Timed Automata (TA) [16] was developed. This model was validated

using a random heart model also expressed as TA. While this paved the way for model-checking,

the limitation of this work is that the associated heart model was simplistic. Subsequently, Oxford

university researchers [9] created a 33-node HA model to capture forward conduction of the heart.

They then validated a TA-based specification of the pacemaker [16] by creating the closed loop

system in Simulink. Recently, this model was extended to capture not only forward, but also

backward conduction [25].

In spite of the use of such formal models, model checking remains elusive due to limitations

with the underlying HA. For example, recently the SpaceEx model checker for hybrid automata

was used in [21]. Here, they showed that the tool could only verify a conduction system of up to 16

cells. To overcome such scalability problems, recent work examined abstraction [14] and statistical

model checking [17]. However, we believe that all these ignore a key requirement for pacemaker

validation. The human heart is not static but a time varying dynamic system i.e. different types of

arrhythmia may happen randomly and also the state of the heart might change randomly. It will be

extremely difficult to validate such a closed-loop system formally, albeit recently a mode-based

testing approach has been developed. Here, the heart goes through run-time parametrisation to

exhibit different types of arrhythmia [1]. This is where we believe that run-time enforcement [20]

may provide an alternative that is both formal and scalable.

We propose the closed-loop Run-time Enforcement (RE) of the heart-pacemaker system, where

they interact through an “enforcer”, which provides an additional layer of safety. It is designed to

enforce a set of critical properties and does not perform all the tasks of a typical pacemaker, which

may include rate adaptation, Electrogram (EGM) processing (signal processing), and efficiency

considerations. The enforcement monitor, on the other hand, is much simpler and deals with the

run-time enforcement of certain “life or death” properties, which are only enforced when the

pacemaker fails to guarantee them. The heart-pacemaker combination provides a typical example

of a Cyber-Physical System (CPS) [15] and we need to carefully consider the enforcement of such

systems based on the current status of related work.

A Pacemaker is a reactive system, which must react to the stimulus provided by the heart. While

run-time enforcement of transformational systems is extensively studied, the enforcement of reactive

systems is just emerging [6]. Unlike the enforcers in the former category, which can delay events

through buffering, enforcers for reactive systems must operate in the same reactive cycle. While

the shield synthesis [6] is relevant in the pacemaker context to some degree, it only performs the

enforcement in one direction. While enforcing properties of CPS, bi-directional enforcement (i.e.,

monitoring both the inputs and the outputs of the controller, and editing erroneous inputs/outputs

when necessary) is critical. More importantly, the enforcer must perform the enforcement of timed

properties, which is yet to be formalised for bi-directional enforcement of reactive systems. In

addition to order of events, timed properties allow to express how time should elapse between

events, and occurrence time of events effects satisfaction of the property.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:3

1.1 Overview of the proposed approach
In this section, we describe the general principles of bi-directional RE for CPS via examples illus-

trating the expected input/output behavior of the synthesized enforcer.

Heart
(Plant)

Enf orcer
Pacemaker
(Controller)

φ
Inputs Transformed Inputs

OutputsTransformed Outputs

AS

VS

AP ′

VP ′

AS ′

VS ′

AP

VP

Fig. 1. Enforcer between heart and pacemaker.

Let us consider the framework in the Figure 1, where the heart is the plant, and the pacemaker is

the controller. We will consider some requirements of the pacemaker.

The set of Boolean inputs from the heart to the pacemaker are I = {AS,VS}, where Atrial

Sense (AS) is the sensor to sense the electrical pulse that contracts the walls of the atria, and

Ventricular Sense (VS) is the sensor to sense the electrical pulse that contracts the walls of the

ventricle. The set of Boolean outputs from the pacemaker areO = {AP ,VP }, where Atrial Pace (AP)
(resp. Ventricular Pace (VP)) is the signal generated by the pacemaker to pace the atrium (resp.

ventricle).

Reset

Extension

Atrium

AS AR AS

AP

AS1 2

3

4

Ventricle

VS

VP

VR

VP VP

1

2 3 4

AVI

PVARP

VRP

AEI

LRI

URI

AVI

VRP

AEI

LRI

URI

AVI

PVARP

VRP

LRI

URI

AVI

PVARP

VRP

Fig. 2. Timing Diagram for a DDD mode pacemaker

A timing diagram for a DDD mode pacemaker is shown in Figure 2. At the top of the diagram

EGMs for both an atrium and ventricle are shown, while the bottom of the diagram shows the

status of various timers during the pacemaker operation. Labels on the two traces show whether

the event is a sensed natural event (AS or VS), ignored natural event (Atrial Refractory Sense (AR)
or Ventricular Refractory Sense (VR)), or artificial pacing from the pacemaker (AP or VP).
The key timers shown at the bottom of the figure are Post-Ventricular Atrial Refractory Period

(PVARP), Atrioventricular Interval (AVI), Lower Rate Interval (LRI) and Upper Rate Interval (URI).
These maintain specific timing delay i.e. the AVI timer maintains the correct time delay between

any atrial event and a subsequent ventricular event.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:4 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

In this paper we consider the following requirements from [16]. Note that timing intervals such

as AV I , AEI and LRI are real values denoted as some constant C . Their discrete counter parts are
denoted as AV IT ICKS , AEIT ICKS etc are denoted as CT ICKS

1
.

P1 AP and VP cannot happen simultaneously.

P2 VS or VP must be true within AV IT ICKS after an atrial event AS or AP .
P3 AS or AP must be true within AEIT ICKS after an ventricle event VS or VP .
P4 After a ventricle event, another ventricle event can happen only afterURIT ICKS .
P5 After a ventricle event, another ventricle event should happen within LRIT ICKS .

Properties P1 . . . P5 are discrete time properties, and their dense variants with real-time constraints

are denoted as P ′
1
. . . P ′

5
. Dense time properties can be expressed as Timed Automata (TA) [3].

We express discrete time properties using a variant of Discrete Timed Automata (DTA) [7]

that we call Synchronous DTA (SDTA). SDTA have a different timed semantics, where discrete

transitions are not possible and all transitions take one tick relative to the ticks of a synchronous

global clock inspired by synchronous languages [5]. The use of DTA over TA is primarily motivated

by the fact that the approach can directly use a formulation similar to synchronous languages,

where time is discretized. This makes the overall algorithm simple, where the pacemaker and the

enforcer are composed synchronously. From now on when we refer to DTA in this paper, we mean

SDTA. We introduce this formally in Section 2.

In this paper, we consider and focus on the heart-pacemaker system to illustrate the proposed RE

framework. Our formalization is also applicable in general to other types of CPS, where in addition

to enforcing outputs from the system, enforcing inputs from the physical side is also relevant. For

instance, in the automotive domain, consider a cruse controller. Consider a property which states

that “when the brake and cruise inputs are simultaneously present, the brake is given priority”. In

this event, the enforcer will forward the brake input while toggling the cruise input. Moreover,

when we enforce security policies, an enforcer should be allowed to suppress malicious inputs from

an attacker. When we consider systems such as Unmanned Aerial Systems (UAS), an attacker may

modify and feed-in bad inputs to take control over the system. An enforcement mechanism may be

used to detect and prevent such attacks.

The main contributions of the paper are:

• We introduce the concept of synchronous run-time enforcement of reactive systems, which

includes timed properties, using DTA-based specification. A key motivation for using the

synchronous framework is that it is a standard framework while designing reactive systems

and lends itself nicely to the run-time enforcement problem, which is yet to be studied for

synchronous systems involving timed properties.

• The developed synchronous approach is intentional, as compared to the approach based

on dense TA, the developed algorithm is simple and does not require region or zone graph

construction.

• We formalise a set of constraints for enforcer synthesis, which are novel. Except soundness,

all other constraints are new and specific to the developed formulation.

• The developed framework is implemented in the SCCharts tool-chain, which supports syn-

chronous enforcement in addition to synchronous observers.

2 PRELIMINARIES AND NOTATIONS
A finite (resp. infinite) word over a finite alphabet Σ is a finite sequence σ = a1 · a2 · · ·an (resp.

infinite sequence σ = a1 · a2 · · ·) of elements of Σ. The set of finite (resp. infinite) words over Σ is

1CT ICKS = ⌈ C
WCRT ⌉ or CT ICKS = ⌊

C
WCRT ⌋.WCRT denotes the worst case reaction time and this is detailed in

Section 4.2.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:5

denoted by Σ∗ (resp. Σω). The length of a finite word σ is n and is denoted by |σ |. The empty word

over Σ is denoted by ϵΣ, or ϵ when clear from the context. Σ+ denotes Σ∗ \ {ϵ }. The concatenation
of two words σ and σ ′ is denoted by σ · σ ′. A word σ ′ is a prefix of a word σ , denoted as σ ′ ≼ σ ,
whenever there exists a word σ ′′ such that σ = σ ′ · σ ′′; conversely σ is said to be an extension of σ ′.

We focus on systems such as the pacemaker that has Boolean signals as inputs and outputs.

We consider a reactive system with a finite ordered sets of Boolean inputs I = {i1,i2, · · · ,in } and
Boolean outputs O = {o1,o2, · · · ,on }. The input alphabet is ΣI = 2

I
, and the output alphabet is

ΣO = 2
O
and the input-output alphabet Σ = ΣI × ΣO . Each input (resp. output) event will be

denoted as a bit-vector/complete monomial. For example, let I = {A,B}. Then, the input {A} ∈ ΣI
is denoted as 10, while {B} ∈ ΣI is denoted as 01 and {A,B} ∈ ΣI is denoted as 11. A reaction (or

input-output event) is of the form (xi ,yi), where xi ∈ ΣI and yi ∈ ΣO .

2.1 CPS as a synchronous system
Controllers of CPSs operate synchronously [5] in a reactive loop that executes once every tick /
reaction. During a tick, all three components – the plant, the controller, and the enforcer – are

executed once. An execution σ of a synchronous program P is an infinite sequence of input-output

events σ ∈ Σω , and the behavior of a synchronous program P is denoted as exec(P) ⊆ Σω . The
language of P is denoted by L (P) = {σ ∈ Σ∗ |∃σ ′ ∈ exec(P) ∧ σ ≼ σ ′}. L (P) is the set of all finite
prefixes of the sequences in exec(P).

2.2 Properties
A property φ over Σ defines a set L (φ) ⊆ Σ∗. A program P |= φ iff L (P) ⊆ L (φ). In this paper,

properties are formally defined as automata extended with a set of integer variables that we define

in the sequel.

2.2.1 Discrete Timed Automata (DTA). We will now introduce DTA that are automata extended

with a set of integer variables that are used as discrete clocks for instance to count the number of

ticks before a certain event occurs. DTA are timed automata with integer valued clocks [7]. In this

paper, properties that we want to enforce are defined using a variant of DTA, defined as follows:

Definition 2.1 (Discrete Timed Automata (DTA)). A Discrete Timed Automaton is a tuple A =

(L,l0,lv ,Σ,V ,∆,F) where L is the set of locations, l0 ∈ L is the initial location, Σ is the alphabet, V
is a set of integer clocks, F ⊆ L is the set of accepting locations, and lv is a unique non-accepting

trap location. The transition relation ∆ is ∆ ⊆ L ×G (V) × R × Σ × L whereG (V) denotes the set of
guards, i.e., constraints defined as conjunctions of simple constraints of the form v ▷◁ c with v ∈ V ,

c ∈ N and ▷◁ ∈ {<,≤,=,≥,>}, and R ⊆ V is a subset of integer clocks that are reset to 0.

A DTA is a finite automaton extended with a finite set of integer variables (i.e., discrete clocks).

Let V = {v1, . . . ,vk } be a finite set of integer clocks. A valuation for v is an element of N, that is a
function from v to N. The set of valuations for the set of clocks V is denoted by χ . For χ ∈ NV ,
χ + 1 is the valuation assigning χ (v) + 1 to each clock variable v ofV . Given a set of clock variables

V ′ ⊆ V , χ[V ′ ← 0] is the valuation of clock variables χ where all the clock variables in V ′ are
assigned to 0. Given д ∈ G (V) and χ , χ |= д if д holds according to χ .

Example 2.2 (Example property defined as a DTA). Let I = {A} and O = {B}, and the input-output

alphabet Σ = 2
I × 2O . Event (1,0) indicates (A,B)2. Consider the following property: S1: “A and

B cannot happen simultaneously, A and B alternate starting with an A. B should be true with in 5
ticks after A occurs.”. The DTA in Figure 3 defines property S1, where the set of integer clocks

2
In some examples, for convenience, we use − to indicate either 0 or 1.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:6 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

l0 l1

l2

(1, 0), v1 := 0

(0, 0), v1 := 0

(1, 1)|(0, 1)

(0, 0), v1 < 5

(0, 1)

Σ, v1 ≥ 5|
(1, 1), v1 < 5|(1, 0), v1 < 5

Σ

Fig. 3. Property S1 defined as DTA AS1 .

V = {v1}. Location l0 is the initial location, location l2 is the non-accepting trap location and the

set of accepting locations is {l0}. Clock v1 is reset to 0 upon transition from l0 to l1. The transition
from location l1 to l1 (self-loop) is taken upon input-output event (0,0) and if the value of the clock

v1 is less than 5.

l0 l1

l2

(AS−, −−) |(−−,AP−),
v1 := 0

Σ \ {(AS−, −−) |(−−,AP−) },
v1 := 0

Σ \ {(−V S, −−) |(−−, −V P) },
v1 ≤ AV IT ICKS

(−V S, −−) |(−−, −V P)
v1 ≤ AV IT ICKS

Σ,v1 > AV IT ICKS

Σ

Fig. 4. Property P2 defined as DTA AP2 .

The semantics of a DTA is defined as a transition system where each state consists of the current

location and the current values of all the integer clocks. The semantics of a DTA is defined as

follows.

Definition 2.3 (Semantics of DTA). The semantics of a DTA is a transition system [[A]] =

(Q ,q0,Σ,→,QF ,qv) where Q = L × NV is the set of states, q0 = (l0, χ0) is the initial state where
χ0 is the valuation that maps every integer clock variable in V to 0, QF = F × NV is the set of

accepting states, and qv = lv ×NV is the set of trap states. The transition relation→⊆ Q × Σ ×Q is

a set of transitions of the form (l , χ)
a
−→ (l ′, χ ′) with χ ′ = (χ + 1)[r ← 0] whenever there exists

(l ,д,r ,a,l ′) ∈ ∆ such that χ |= д.

A run ρ of A from a state q ∈ Q over a untimed trace σ = a1 · a2 · · ·an ∈ Σ∗ is a sequence of

moves in [[A]] denoted as ρ = q
a1
−−→ q1 · · ·qn−1

an
−−→ qn , for some n ∈ N, and is denoted as q

σ
−→ qn .

The set of runs from the initial state q0 ∈ Q , is denoted Run(A) and RunQF (A) denotes the subset
of those runs accepted byA, i.e., ending in an accepting state qn ∈ QF . We denote by L (A) the set
of untimed traces of runs in RunQF (A), and we use DTA to define untimed languages. We thus say

that a untimed word is accepted by A if it is the trace of an accepted run.

Definition 2.4 (Deterministic (complete) DTA). Adiscrete timed automatonA = (L,l0,lv ,Σ,V ,∆,F)
with its semantics [[A]] is said to be a deterministic DTA whenever for any location l and any two

distinct transitions (l ,д1,a,Y1,l
′
1
) ∈ ∆ and (l ,д2,a,Y2,l

′
2
) ∈ ∆ with same source l , the conjunction of

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:7

guards д1 ∧ д2 is unsatisfiable. A is complete whenever for any location l ∈ L and any event a ∈ Σ,
the disjunction of the guards of the transitions leaving l and labelled by a evaluates to true.

Remark 1. In this paper, we focus on enforcement of properties that can be defined by a DTA, i.e.,
the set of regular discrete time properties. In the rest of this paper, since we consider synchronous
programs, we restrict to properties defined as deterministic DTA. Note that deterministic DTA are
not time-deterministic, i.e., the time until something happens can be non-deterministic. Regarding
completeness, if the user provides an incomplete DTA, we complete it by introducing a unique non-
accepting trap location. We also consider that the set of locations L contain only locations that are
reachable from the initial location l0.

Example 2.5 (Run of a DTA). Let us consider the DTA in Figure 3. The set of clock variables

V = {v1}, and initial location is l0. Initial state of this DTA is (l0,v1 = 0). Let σ = (0,0) · (1,0) ·

(0,0) · (0,0) · (0,1). Run of the DTA from the initial state (l0,v1 = 0) upon σ is (l0,v1 = 0)
(0,0)
−−−→

(l0,v1 = 0)
(1,0)
−−−→ (l1,v1 = 0)

(0,0)
−−−→ (l1,v1 = 1)

(0,0)
−−−→ (l1,v1 = 2)

(0,1)
−−−→ (l0,v1 = 3). σ is an accepted

by the DTA in Figure 3 since the state reached upon σ is (l0,v1 = 3) which is an accepting state.

Definition 2.6 (Product of DTAs). Given two discrete TAs A1 = (L1,l1
0
,l1v ,Σ

1,V 1,∆1,F 1) and
A2 = (L2,l2

0
,l2v ,Σ

2,V 2,∆2,F 2) with disjoint sets of integer clocks, their product is the DTA A1 ×

A2 = (L,l0,lv ,Σ,V ,∆,F) where L = L1×L2, l0 = (l1
0
,l2
0
), lv = (l1v ,l

2

v),V = V
1∪V 2

, F = F 1×F 2, and

∆ ⊆ L × G (V) × R × Σ × L is the transition relation, with ((l1,l2),д1 ∧ д2,R1 ∪ R2,a, (l1
′

,l2
′

)) ∈ ∆ if

(l1,д1,R1,a,l1
′

) ∈ ∆1
and (l2,д2,R2,a,l2

′

) ∈ ∆2
. In the product DTA, all locations in (L1×l2v)∪(l

1

v×L
2)

are trap locations, and all the outgoing transitions for these locations can be replaced with self

loops. We consider merging all the trap locations into a single location lv where any outgoing

transition from any location in L \ (L1 × l2v) ∪ (l1v × L
2) to a location in (L1 × l2v) ∪ (l1v × L

2) goes to
lv instead.

The product of DTAs is useful when we want to enforce multiple properties. Given two determin-

istic and complete DTAs A1
and A2

the DTA A obtained by computing their product recognizes

the language L (A1) ∩ L (A2), and is also deterministic and complete.

2.2.2 Preliminaries to RE. Given an input-output word σ = (x1,y1) · (x2,y2) · · · (xn ,yn) ∈ Σ∗,
the input word obtained from σ is denoted by σI where σI = x1 · x2 · · · xn ∈ Σ∗I is the projection
on inputs ignoring outputs. Similarly, the output word obtained from σ is denoted by σO where

σO = y1 · y2 · · ·yn ∈ Σ
∗
O is the projection on outputs.

We consider bi-directional enforcement, where the enforcer has to first transform inputs from

the environment in each step according to property φ defined as DTAAφ . We thus need to consider

the input property that we obtain from Aφ by projecting on inputs.

Definition 2.7 (Input DTA AφI). Given property φ defined as DTA Aφ = (L,l0,lv ,Σ,V ,∆,F),
input DTAAφI = (L,l0,lv ,ΣI ,V ,∆I ,F) is obtained fromAφ by ignoring outputs on the transitions,

i.e., for every transition (l ,д,r , (x ,y),l ′) ∈ ∆ in Aφ , there is a transition (l ,д,r ,x ,l ′) ∈ ∆I in AφI .

L (AφI) is denoted as φI ⊆ Σ∗I .

AutomatonAφI is identical to automatonAφ where we ignore outputs when we traverse in the

automaton. Locations L in both the automata, initial state l0 and violating state lv are exactly the

same. Moreover, all the clock variables in Aφ also remain in AφI . Also, the number of transitions,

source and destination of each transition, and the guards and resets of clock variables are also the

same in both automata. The only difference is we ignore outputs in the automaton AφI . If (x ,y)
is in Σ, then x ∈ ΣI , and every transition (l ,д,r , (x ,y),l ′) ∈ ∆ in Aφ , is replaced with transition

(l ,д,r ,x ,l ′) ∈ ∆I in AφI .

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:8 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

l0 l1

l2

1, v1 := 0

0, v1 := 0

1|0

0, v1 < 5

0

1|0, v1 ≥ 5
1, v1 < 5

1|0

Fig. 5. Automaton obtained from AS1 in Fig. 3 by projecting on inputs.

Example 2.8 (Input DTA AφI obtained from Aφ). Let us consider the DTA in Figure 3 defining

the property S1 introduced in Example 2.2. Figure 5 presents the input DTA obtained from the DTA

in Figure 3. Though the DTA Aφ is deterministic, the input DTA AφI might be non-deterministic

as is the case in Figure 5.

Edit Functions. Given property φ ⊆ Σ∗, defined as DTA Aφ = (L,l0,lv ,Σ,V ,∆,F) with semantics

[[Aφ]] = (Q ,q0,Σ,→,QF ,qv), we introduce editIφI (resp. editOφ), which the enforcer uses for

editing input (resp. output) events (whenever necessary), according to input property φI (resp.
input-output property φ). Note that in each step the enforcer first processes the input from the

environment, and transforms it using editIφI based on the input property φI obtained from the

input-output property φ that we want to enforce. Later, the output produced by the program is

transformed by the enforcer (when necessary) using editOφ based on the input-output property φ
that we want to enforce.

• editIφI (σI): Given σI ∈ Σ∗I , editIφI (σI) is the set of input events x in ΣI such that the word

obtained by extending σI with x can be extended to a sequence that satisfies φI (i.e., there exists
σ ′ ∈ Σ∗I such that σI · x · σ

′
satisfies φi). Formally,

editIφI (σI) = {x ∈ ΣI : ∃σ
′ ∈ Σ∗I ,σI · x · σ

′ |= φI }.

Consider the automaton AφI = (L,l0,lv ,ΣI ,V ,∆I ,F) with semantics [[Aφ I]] = (QI ,q0I ,ΣI ,→I

,QFI ,qvI). Let qI ∈ QI correspond to a state reachable inAφI (i.e., q0I
σI
−−→ qI) upon σI . We define

editIAφI
(qI) as follows:

editIAφI
(qI) = {x ∈ ΣI : ∃σ

′ ∈ Σ∗I ,qI
x ·σ ′
−−−→I q

′
I ∧ q

′
I ∈ QFI }.

Example 2.9. Consider the automaton in Fig. 5 obtained from the automaton in Fig. 3 by ignoring

outputs. Let σ = (0,0) · (1,0), and thus σI = 0 · 1. Then (l0,v1 = 0)
0·1
−−→I (l1,v1 = 0), and

editIAφI
((l1,v1 = 0)) = {0}.

• editOφ (σ ,x): Given an input-output word σ ∈ Σ∗ and an input event x ∈ ΣI , editOφ (σ ,x)
is the set of output events y in ΣO such that the input-output word obtained by extending σ
with (x ,y) can be extended to a sequence that satisfies the property φ (i.e., ∃σ ′ ∈ Σ∗ such that

σ · (x ,y) · σ ′ |= φ). Formally,

editOφ (σ ,x) = {y ∈ ΣO : ∃σ ′ ∈ Σ∗,σ · (x ,y) · σ ′ |= φ}.

Consider the DTA Aφ = (L,l0,lv ,Σ,V ,∆,F) defining property φ with semantics [[Aφ]] =

(Q ,q0,Σ,→,QF ,qv), and an input event x ∈ ΣI . If q ∈ Q corresponds to a state reached in

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:9

Aφ upon σI (i.e., q0
σ
−→ q), editOφ (σ ,x) can be alternatively defined as follows:

editOAφ (q,x) = {y ∈ ΣO : ∃σ ′ ∈ Σ∗,q
(x,y) ·σ ′
−−−−−−→ q′ ∧ q′ ∈ QF }.

Example 2.10. Let us consider the property S1 defined by the automaton in Figure 3. We have

editOAφ ((l0,v1 = 0),0) = {0}.

• rand-editIφI (σI): Given σI ∈ Σ∗I if editIφI (σI) is non-empty, then rand-editIφI (σI) returns an
element (chosen randomly) from editIφI (σI), and is undefined if editIφI (σI) is empty. Given qI ∈
QI , if editIAφI

(qI) is non-empty, then rand-editIAφI
(qI) returns an element (chosen randomly)

from editIAφI
(qI), and is undefined if editIAφI

(qI) is empty.

• rand-editOφ (σ ,x): Givenσ ∈ Σ∗, andx ∈ ΣI , if editOφ (σ ,x) is non-empty, then rand-editOφ (σ ,x)
returns an element (chosen randomly) from editOφ (σ ,x), and is undefined if editOφ (σ ,x) is
empty. Given q ∈ Q and x ∈ ΣI , if editOAφ (q,x) is non-empty, then rand-editOAφ (q,x) returns
an element (chosen randomly) from editOAφ (q,x), and is undefined if editOAφ (q,x) is empty.

• minD-editIφI (σI ,x): GivenσI ∈ Σ∗I andx ∈ ΣI , if editIφI (σI) is non-empty, thenminD-editIφI (σI ,x)
returns an event from editIφI (σI) with minimal distance

3
w.r.t x , and is undefined if editIφI (σI) is

empty. Given qI ∈ QI and x ∈ ΣI , if editIAφI
(qI) is non-empty, thenminD-editIAφI

(qI ,x) returns
an event from editIAφI

(qI) with minimal distance w.r.t x , and is undefined editIAφI
(qI) is empty.

• minD-editOφ (σ ,x ,y): Given σ ∈ Σ∗, x ∈ ΣI and y ∈ ΣO , if editOφ (σ ,x) is non-empty, then

minD-editOφ (σ ,x ,y) returns an event from editOφ (σ ,x) with minimal distance w.r.t y, and is

undefined if editOφ (σ ,x) is empty. Given q ∈ Q , x ∈ ΣI and y ∈ ΣO , if editOAφ (q,x) is non-
empty, then minD-editOAφ (q,x ,y) returns an event from editOAφ (q,x) with minimal distance

w.r.t y, and is undefined editOAφ (q,x) is empty.

3 PROBLEM DEFINITION
In this section, we formalize the runtime enforcement problem for CPS. We consider a digital

controller (e.g. the pacemaker) with Boolean input and output streams, and enforcement of any

regular property φ, defined as a DTA. We also consider a plant (e.g. the heart) to be a continuous

system, which is sampled periodically, that result in Boolean streams (e.g. the Atrial Sense (AS)
and Ventricular Sense (VS) signals sensed by the pacemaker leads). In the setting we consider, as

illustrated in Figure 1, an enforcer monitors and corrects both input and output of a synchronous

program according to a given correctness property φ. Let us recall that an input event (x ,y) is a
tuple, where x is the input (values of all Boolean inputs), and y is the output (values of all Boolean

outputs). At each step, the enforcer consumes an input event (x ,y) and produces an output event

(x ′,y ′) by editing x and y if necessary.

We assume that the controller (pacemaker) may be invoked through a special function call called

ptick. Since the pacemaker is considered to be a black-box, internals of the function ptick are

considered to be unknown. Formally, ptick is a function (with internal state) from ΣI to ΣO that

takes a bit vector x ∈ ΣI and returns a bit vector y ∈ ΣO .
An enforcer for a property φ can only edit an input-output event when necessary, and it cannot

block, delay or suppress events. Let us recall the two functions editIφI and editOφ that were

introduced in Section 2 that the enforcer for φ uses to edit the current input (respectively output)

event according to property φ.
At an abstract level, an enforcer may be viewed as a function that transforms words. An enforce-

ment function for a given property φ takes as input a word over Σ∗ and outputs a word over Σ∗

that satisfies φ, or can be extended to satisfy φ in the future.

3
Distance between two events belonging to the same alphabet is the number of bits that differ in both the events.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:10 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

Definition 3.1 (Enforcer for φ). Given property φ ⊆ Σ∗, an enforcer for φ is a function Eφ : Σ∗ → Σ∗

satisfying the following constraints:

Soundness
∀σ ∈ Σ∗,∃σ ′ ∈ Σ∗ : Eφ (σ) · σ

′ |= φ . (Snd)
Monotonicity

∀σ ,σ ′ ∈ Σ∗ : σ ≼ σ ′ ⇒ Eφ (σ) ≼ Eφ (σ
′). (Mono)

Instantaneity
∀σ ∈ Σ∗ : |σ | = |Eφ (σ) |. (Inst)

Transparency
∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO ,∃σ

′ ∈ Σ∗ :
Eφ (σ) · (x ,y) · σ

′ |= φ
⇒ Eφ (σ · (x ,y)) = Eφ (σ) · (x ,y).

(Tr)

Causality
∀σ ∈ Σ∗,∀x ∈ ΣI ,∀y ∈ ΣO ,
∃x ′ ∈ editIφI ((Eφ (σ))I),∃y

′ ∈ editOφ (Eφ (σ),x
′) :

Eφ (σ · (x ,y)) = Eφ (σ) · (x
′,y ′).

(Ca)

Soundness. (Snd) means that for any input word σ ∈ Σ∗, the output of the enforcer Eφ (σ) can be

extended to a sequence that satisfies φ (i.e., ∃σ ′ ∈ Σ∗ : Eφ (σ) · σ
′ |= φ).

Monotonicity. (Mono) expresses that the output of the enforcer for an extended input word σ ′ of
an input word σ , extends the output produced by the enforcer for σ . The monotonicity constraint

means that the enforcer cannot undo what is already released as output.

Instantaneity. (Inst) expresses that for any given input sequence σ , the output of the enforcer
Eφ (σ) should contain exactly the same number of events that are in σ (i.e., |σ | = |Eφ (σ) |). This
means that, the enforcer cannot delay, insert and suppress events. Whenever the enforcer receives

a new input event, it must react instantaneously and produce an output event immediately. This

requirement is essential for the enforcement of CPSs, which are reactive in nature.

Transparency. Transparency means that the enforcer will not unnecessarily edit any event. Any

new input event (x ,y) will be simply forwarded by the enforcer if what has been computed as

output earlier by the enforcer followed by (x ,y) can be extended to a sequence that satisfies φ in

the future.

(Tr) expresses that for any given input sequence σ and any input event (x ,y), if the output of
the enforcer for σ (i.e., Eφ (σ)) followed by the input event (x ,y) has an extension σ ′ ∈ Σ∗ such
that Eφ (σ) · (x ,y) · σ

′
satisfies the property φ, then the output that the enforcer produces for input

σ · (x ,y) will be Eφ (σ) · (x ,y).

Causality. (Ca) expresses that for every input event (x ,y) the enforcer produces output event
(x ′,y ′) where the enforcer first processes the input part x , to produce the transformed input x ′

according to property φ using editIφI . The enforcer later reads and transforms output y ∈ ΣO
(output of the program after invoking function ptick with x ′), to produce the transformed output

y ′ using editOφ .

The input-output sequence released as output by the enforcer upon reading the input-output

sequence σ is Eφ (σ) and (Eφ (σ))I ∈ Σ
∗
I is the projection on the inputs. editIφI (Eφ (σ))I) returns a

set of input events in ΣI , such that Eφ (σ))I followed by any event in editIφI (Eφ (σ))I) satisfies φI .
editOφ (Eφ (σ)),x

′) returns a set of output events in ΣO , such that for any eventy in editOφ (Eφ (σ)),x
′),

Eφ (σ)) · (x
′,y) satisfies φ.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:11

Lemma 3.2 (Soundness, instantaneity, causality). (Ca) ⇒ (Snd) and (Ca) ⇒ (Inst).

For any φ, for any σ ∈ Σ∗, proof of Lemma 3.2 is straightforward from the constraints (Defini-

tion 3.1) and the definitions of edit functions.

Remark 2. Our transparency constraint (Tr) is stronger than standard transparency in RE mecha-
nisms (say Tr’), which is the following:

∀σ ∈ Σ∗ : σ |= φ =⇒ Eφ (σ) = σ . (Tr’)

Constraint (Tr’) means that when any given input-output word σ ∈ Σ∗ provided as input to the
enforcer satisfies the property φ, then the enforcer should not edit any event and thus the output of the
enforcer Eφ (σ) should be σ . Constraint (Tr) also ensures constraint (Tr’).

Remark 3 (On editing inputs). Note that our approach is general, and as a special case also
works when the user wishes to forbid editing (correcting) the inputs (so the inputs become observable
only, but not modifiable). For instance, in the pacemaker running example (introduced in Section
1), where the set of inputs is I = {AS ,VS }, and the set of outputs is O = {AP ,VP }, we can consider
enforcing only properties that are concerned with outputs such as property “P1: AP and VP cannot
happen simultaneously”, and for the automaton defining P1, the set of actions are considered to be
Σ = ΣI × ΣO , where ΣI = 2

I ,ΣO = 2
O . Thus, if properties to be enforced are concerned (express

constraints) only with outputs (such as property P1) , then the enforcer is guaranteed not to modify
inputs.

Definition 3.3 (Enforceability). Let φ ⊆ Σ∗ be a property. We say that φ is enforceable iff an

enforcer Eφ for φ exists according to Definition 3.1.

q0 q1 qv
Σ Σ

Σ

Fig. 6. A non-enforceable property.

Example 3.4 (Non-enforceable property). We illustrate that not all regular properties defined as

DTA are enforceable according to Definition 3.1. Consider the automaton in Figure 6 defining the

property φ that we want to enforce, with I = {A}, O = {B} and Σ = ΣI × ΣO . Let the input-output
sequence provided as input to the enforcer be σ = (1,1) · (1,0). When the enforcer reads the first

event (1,1), it can output (1,1) (since every event in Σ from q0 leads to a non-violating state q1).
Note that from q1, every event in Σ only leads to the trap state qv . Thus, when the second event

(1,0) is read, every possible editing of this event will only lead to violation of the property. Upon

reading the second event (1,0), releasing any event in Σ as output will violate soundness (since we

will reach the trap state qv , and there will be no possibility to reach an accepting state also in the

future), and if no event is released as output, then the instantaneity constraint will be violated.

Theorem 3.5 (Condition for enforceability). Consider a property φ that is defined as DTA
Aφ = (L,l0,lv ,Σ,V ,∆,F), with semantics [[Aφ]] = (Q ,q0,Σ,→,QF ,qv). Property φ is enforceable iff
the following condition holds:

∀q ∈ Q ,q < qv ⇒ ∃σ ∈ Σ
+
: q

σ
−→ q′ ∧ q′ ∈ QF . (EnfCo)

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:12 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

Theorem 3.5 expresses that for a property φ defined as DTA Aφ = (L,l0,lv ,Σ,V ,∆,F) with
semantics [[Aφ]] = (Q ,q0,Σ,→,QF ,qv), Eφ according to Definition 3.1 exists iff an accepting state

is reachable from every non-violating state (i.e., from every state q < qv) in 1 or more steps. Let

us recall that we consider Q to contain only states that are reachable from q0. Moreover, we also

consider that if a state q ∈ Q is non-accepting and non-violating (i.e., q < {QF ∪ qv }), then we

consider whether there is a path from q to a state in QF . State q is merged with qv otherwise.

4 ENFORCER SYNTHESIS
In this section, we provide an algorithm for implementing the bi- directional synchronous enforce-

ment problem defined in Section 3 for properties expressed as DTA. We also compare our approach

with an enforcement approach based on (dense) timed automata.

4.1 Algorithm
Let the automaton Aφ = (L,l0,lv ,Σ,V ,∆,F) with semantics [[Aφ]] = (Q ,q0,Σ,→,QF ,qv) define
property φ. Input automaton AφI = (L,l0,lv ,ΣI ,V ,∆I ,F) with semantics [[Aφ I]] = (Q ,q0,ΣI ,→I
,QF ,qv) is obtained from Aφ by projecting on inputs (See section 2.2.2).

ALGORITHM 1: Enforcer
1: t ← 0

2: q ← q0
3: while true do
4: xt ← read_in_chan()

5: if ∃σ ′I ∈ Σ
∗
I : q

xt ·σ ′I
−−−−−→I q

′ ∧ q′ ∈ QF then
6: x ′t ← xt
7: else
8: x ′t ← rand-editIAφI

(q)

9: end if
10: ptick(x′t)
11: yt ← read_out_chan()

12: if ∃σ ′ ∈ Σ∗ : q
(x ′t ,yt) ·σ

′

−−−−−−−−−→ q′ ∧ q′ ∈ QF then
13: y′t ← yt
14: else
15: y′t ← rand-editOAφ (q,x

′
t)

16: end if
17: release((x ′t ,y

′
t))

18: q ← q′′ where q
(x ′t ,y

′
t)

−−−−−−→ q′′ ∧ q′′ < qv
19: t ← t + 1
20: end while

We provide an online algorithm that requires automata Aφ and AφI as input. Algorithm 1 is

an infinite loop, and an iteration of the algorithm is triggered at every time step. We adapt the

reactive interface that is used for linking the program to its adjoining environment by following the

structure of the interface described in [4]. We extend the interface by including the enforcer as an

intermediary between the synchronous program and its adjoining environment.

In Algorithm 1, t keeps track of the time-step (tick), initialized with 0, while q keeps track of the

current state of both automata Aφ and AφI . Note that state q contains information about current

location and the values of all the variables. Recall that the automaton AφI is created from Aφ

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:13

by projecting on inputs (see Section 2.2.2) and therefore has an identical structure with the only

difference being that outputs are ignored on the transitions of AφI . For each transition, the guards

and resets on clock variables are also the same in both automata. Note that at the beginning of

each iteration of the algorithm, the current states of both the automata [[Aφ]] and [[AφI]] are the

same (where both are initialized with q0). At t , if EOut ∈ Σ∗ is the input-output sequence obtained
by concatenating all the events released as output by the enforcer until time t , then q corresponds

to the state that we reach in [[Aφ]] upon reading EOut. Similarly, if EOutI ∈ Σ∗I is the sequence
obtained by projecting on x ′i from EOut, q also corresponds to the state that we reach in [[AφI]]

upon reading EOutI.
Function read_in_chan (resp. read_out_chan) is a function corresponding to reading input

(resp. output) channels, while function ptick corresponds to invoking the synchronous controller

execution. Function release takes an input-output event, and releases it as output of the enforcer.

Each iteration of the algorithm proceeds as follows: first all the input channels are read using

function read_in_chan and the input event is assigned to xt . Then the algorithm tests whether an

accepting state is reachable from the current state q upon xt extended with any sequence σI ∈ Σ
∗
I .

In case if this test succeeds, then it is not necessary to edit the input event xt , and the transformed

input x ′t is assigned xt . Otherwise, x
′
t is assigned with the output of rand-editIAφI

(q). Let us recall
that rand-editIAφI

(q) returns an input event that leads to a state q′′ from q in [[AφI]], such that q′′

is an accepting state, or an accepting state is reachable from q′′.
After transforming the input xt according to AφI , the program is invoked with the trans-

formed input x ′t using function ptick. Afterwards, all the output channels are read using function

read_out_chan and the output event is assigned to yt . Then the algorithm tests whether an accept-

ing state is reachable in [[Aφ]] from the current state q upon (x ′t ,yt) followed by any sequence

σ ′ ∈ Σ∗. If this test succeeds, then it is not necessary to edit the output eventyt , and the transformed

output y ′t is assigned yt . Otherwise, y
′
t is assigned with the output of rand-editOAφ (q,x

′
t). Note

that rand-editOAφ (q,x
′
t) returns an output event y ′t such that the input-output event (x ′t ,y

′
t) leads

to a state q′′ in [[Aφ]] such that q′′ is an accepting, or an accepting state is reachable from q′′ in
[[Aφ]].

Before proceeding with the next iteration, current state q is updated to q′′ which is the state

reached upon (x ′t ,y
′
t) from state q in [[Aφ]], and the time-step t is incremented. Note that if there

exists a transition from q to q′′ upon (x ′t ,y
′
t) in [[Aφ]], then there also exists a transition from q to

q′′ upon x ′t in [[AφI]]. The current states of both the DTA are always synchronized and the same

at the beginning of each iteration of the algorithm.

Definition 4.1 (E∗φ). Consider an enforceable safety property φ. We define the function E∗φ :

Σ∗ → Σ∗, where Σ = ΣI × ΣO , as follows. Let σ = (x1,y1) · · · (xk ,yk) ∈ Σ∗ be a word received by

Algorithm 1. Then we let E∗φ (σ) = (x ′
1
,y ′

1
) · · · (x ′k ,y

′
k), where (x

′
t ,y
′
t) is the pair of events output by

Algorithm 1 in Step 17, for t = 1, ...,k .

Theorem 4.2 (Correctness). Given any safety property φ defined as DTA Aφ that satisfies
condition (EnfCo), the function E∗φ defined above is an enforcer for φ, that is, it satisfies (Snd), (Tr),
(Mono), (Inst), and (Ca) constraints of Definition 3.1.

Example 4.3. Consider property P1 introduced in Example 2.2, defined as DTA presented in

Figure 3, and its corresponding input DTA is presented in Figure 5. Table 1 illustrates an example

input-output behavior of the algorithm. In Table 1, t indicates tick, x (resp. y) indicates input (resp.
output) read by the algorithm, x ′ (resp. y ′) indicates input (resp. output) released by the algorithm.

In the last column, fwdI (resp fwdO) indicate that the input (resp. output) is simply forwarded, and

edtI (resp. edtO) indicate that the input (resp. output) is edited. The input-output word read by the

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:14 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

Table 1. Example illustrating Algorithm 1.

t x x ′ y y ′ q EnfAct

0 ϵ ϵ ϵ ϵ (l0,v1 = 0) -

1 0 0 1 0 (l0,v1 = 0) fwdI , edtO
2 1 1 1 0 (l1,v1 = 0) fwdI , edtO
3 1 0 0 0 (l1,v1 = 1) edtI , fwdO
4 1 0 0 0 (l1,v1 = 2) edtI , fwdO
5 0 0 1 1 (l0,v1 = 3) fwdI , fwdO

enforcer is (0,1) · (1,1) · (1,0) · (1,0) · (0,1), and the input-output word released as output by the

enforcer is (0,0) · (1,0) · (0,0) · (0,0) · (0,1).

4.2 Comparison with the enforcement of TA
In this section, we compare the proposed enforcement based on DTA with dense timed automata

TA [3]. First we provide the steps of obtaining a TA from the corresponding DTA. LetWCRT , the
Worst Case Reaction Time (WCRT), be the worst case value of the tick length of Algorithm 1. Given

any DTA φ, we create a TA φ ′ as follows:

(1) Every integer clock v ∈ V is replaced by a real-valued clock v ′ ∈ V ′, where V is the set of

integer clocks and V ′ is the set of dense time clocks as in [3].

(2) Every transition guard of the form v ▷◁ CT ICKS where CT ICKS is a discrete clock value is

replaced by v ′ ▷◁ C , where C is the actual real-value. For example, v1 ≤ AV IT ICKS , in the

self loop on location l1 in Figure 4 is replaced by v1′ ≤ AV I . Here, AV IT ICKS is an integer

approximation of AV I , which can be obtained by ⌊ AV I
WCRT ⌋ or ⌈

AV I
WCRT ⌉.

Theorem 4.4 (Error Bound). The maximum timing error while enforcing any DTA φ relative to
the TA φ ′ is always less than WCRT i.e. ∀v ∈ V ,v ′ ∈ V ′ |(v ×WCRT) −v ′ | <WCRT .

Proof. The proof sketch is based on the following observations:

(1) Error never accumulates as clocks are initialised to zero before incrementing every tick from

any non-accepting state.They are then reset when we reach an accepting state. This sequence

must be followed while enforcing any φ. So, if the property is correctly enforced, this will

hold.

(2) Here v is a discrete clock and v ′ is its dense counterpart. The maximum value of v is

CT ICKS ∈ N and that of v ′ is C ∈ R. Hence, the maximum real value corresponding to v is

(CT ICKS ×WCRT). Thus the maximum error between the real values computed by the two

clocks is |(CT ICKS ×WCRT) − C |. If CT ICKS = ⌊
C

WCRT ⌋, then the maximum error will be

|(⌊ C
WCRT ⌋ ×WCRT) −C |, which is always less thanWCRT . Likewise, if CT ICKS = ⌈

C
WCRT ⌉,

the maximum error will also be less thanWCRT .

□

Soundness of tick counting. In the current context of pacemaker enforcement, the above result

suffices to ensure the soundness of the DTA based discretisation. This is since the WCRT for the

33-node heart model [25], the enforcer, and the pacemaker is shown to be 1ms (further elaborated

in Section 5). Pacemaker specification allows a tolerance value for each timing interval such as

AVI , Atrial Escape Interval (AEI) etc. to be ± 5ms. As the error is bounded in the interval [0,1)ms,

the developed approach is sound.

Complexity of DTA and TA based enforcement. The complexity of DTA-based enforcement is

O (|Aφ | ×C1 ×C2 × · · · ×Cn), where C1,C2, . . . ,Cn represent the maximum values of the clocks

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:15

v1,v2, . . . ,vn . while the complexity of TA enforcement has been shown to be PSPACE-complete due

to the need for reachability computation [11, 19]. We, however, observe that complexity reduction is

not the primary motivation of the current work. While we envisage, based on [7], that our approach

may scale better than dense TA, an objective comparison between the dense and discrete time

variants is considered as future work.

5 IMPLEMENTATION AND RESULTS
In order to evaluate the proposed enforcement approach, Algorithm 1 was implemented in the

open-source SCCharts framework
4
, a Statechart dialect designed for safety-critical systems. The

generated enforcer was executed alongside multiple heart and pacemaker models in order to

measure the overhead associated with enforcement.

(a) P2 safety property in SCCharts

(c) Autom. generated enforcer
(opt.)

(b) Autom. generated enforcer (unopt.) (d) Runtime scheduling path

Fig. 7. Example safety automaton of the P2 example in SCCharts (a), its automatically generated Enforcer
(b), and the optimized version of the enforcer (c). The runtime scheduling is depicted in (d).

Enforcer Enforcer LoC

Complex Heart [25] Random Heart [16]

Time (ms) Increase Time (ms) Increase

None — 5239.1 495.8

P1 24 5274.3 0.67% 528.5 6.59%

P2 32 5294.3 1.05% 544.3 9.79%

P3 32 5303.3 1.23% 546.1 10.14%

P4 28 5306.7 1.29% 532.6 7.43%

P5 28 5313.3 1.42% 545.2 9.96%

P2 ∧ P3 96 5480.7 4.61% 619.83 25.02%

Table 2. Results of the enforcer case-study

Applying Algorithm 1 allows us to transform property P2 into an SCChart representation of the

enforcer Eφ , as illustrated in Figure 7b. The generated enforcer has three concurrent regions (as in

Section 4.1) — one for reading and editing the inputs, one for invoking the tick function ptick, and
a final one for processing and emitting the outputs. The rand-editOφ function can be seen in the

output region, where the VP signal would be modified if AV IT ICKS ticks have passed without any

other ventricular event. As P2 is such that the input region does not modify any variables, it can be

omitted during an optimization phase, creating an enforcer as shown in Figure 7c.

4
https://rtsys.informatik.uni-kiel.de/kieler

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://rtsys.informatik.uni-kiel.de/kieler

1:16 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

The scheduling of execution for the model can be seen in Figure 7d. The inputs (AS and VS)
from the heart initially pass through the input region of the enforcer where they may be modified

depending on rand-editIφI . The transformed inputs are then passed through to the pacemaker via

the ptick effect in the tick region. Subsequently, the outputs from the pacemaker (AP and VP) may

be transformed in the output region as described by rand-editOφ , before being returned back to

the heart.

In order to evaluate the effect of enforcement on the execution time, the enforcers were synthe-

sised for all properties P1 through P5. We also synthesized an enforcer for P2 ∧ P3. The complete

system, including the heart model, pacemaker, and enforcer, was executed on an ARM Cortex-A9

on an Altera DE1-SoC operating at 800MHz. Each of these systems were run for 100,000 ticks of
execution, corresponding to 100 seconds of simulated time using a 1ms step size. A total of 10

separate trials were performed for each example, with their average execution time taken as the

mean of all trials. For each of these tests, the pacemaker under test is a naïve implementation of

the Boston Scientific pacemaker specification and University of Pennsylvania (UPenn) TA model

in [16].

Table 2 shows the results of these executions for both the un-enforced (None) and enforced

(P1 – P5 and P2 ∧ P3) models. In addition, the total Lines of Code (LoC) of the generated code

is shown. Here, we can see that the addition of a single enforcer incurs minimal overhead when

executed alongside an already complex model of the human heart, such as that of [25]. In such a

scenario, overheads range from between 0.67% to 1.42% for single enforcers. Additionally, in order

to illustrate the ability of our approach to easily test different models, a further experiment was

completed using a much simpler model from [16] named the Random Heart Model. Alongside this

simpler model we can see faster execution speeds but similar absolute overheads associated with

enforcement, and hence higher percentage overheads. For the combined enforcement of P2 ∧ P3,
the LoC increase to 96 from 32 for both P2 and P3, while the timing overhead increases to 4.61%.
Additionally, WCRT analysis revealed a value of 583 µs for the non-enforcement case, a value

which changed mostly negligibly (less than ∼ 0.5%) with the addition of enforcers. It is of note

that due to the black box assumption for the heart and pacemaker models, WCRT analysis must

use a Monte Carlo simulation approach, similar to the tests for execution time. This approach is

the reason for the prior statements in Section 4.2 using a value of 1ms.

6 RELATEDWORK
Online verification of CPS is emerging as a promising avenue to tackle the decidability and com-

plexity issues associated with the static verification. A mechanism for assuring safety properties of

CPS via online verification is proposed in [8]. At every time step, the model of the hybrid system is

updated/generated online based on the values of observable system parameters, and the reachable

state-space for the next time-step is checked. If any unsafe state is reachable, then the system is

stopped. We envisage that for safety critical systems, which are reactive, stopping the system may

not be feasible and hence consider RE as an alternative paradigm.

Several RE models have been proposed such as Security automata [20] that focus on enforcement

of safety properties, where the enforcer blocks the execution when it recognizes a sequence of

actions that doses not satisfy the desired property. Edit automata [18] allows the enforcer to correct

the input sequence by suppressing and/or inserting events, and the RE mechanisms proposed in [12]

allow buffering events and releasing them upon observing a sequence that satisfies the desired

property. Synthesis of enforcers for real-time properties expressed as dense TA has been stud-

ied [11, 19]. These approaches focus on uni-directional RE. Mandatory Result Automata (MRA) [10]

extended edit-automata [18], by considering bi-directional runtime enforcement, where the focus

is on handling communication between two parties. However none of the above approaches are

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:17

suitable for reactive systems since halting the program and delaying actions is not suitable. This is

because for reactive systems the enforcer has to react instantaneously.

Our work is closely related to [6], which introduces a framework to synthesize enforcers for

reactive systems, called shields, from a set of safety properties. In [6] untimed properties are

considered where properties are expressed as automata. In our work we consider timed properties

expressed as DTA. Moreover, in [6], the shield is uni-directional, where it observes inputs from the

plant and outputs from the controller, and transforms erroneous outputs. In our work, we consider

bi-directional enforcement, as explained and illustrated in Fig. 1.

Our work is inspired by the concept of synchronous observers [13], which express safety prop-

erties using concurrent threads in a synchronous program. Bounded liveness properties can be

expressed using the concept of tick counting. These safety properties are then statically verified

using model checking. We extend the concept of synchronous observers to the run-time setting by

introducing the problem of synchronous run-time enforcement for the first time. While observers

are specified by the designer, enforcers are synthesized based on a set of regular policies expressed

as DTAs. Repair of reactive programs w.r.t a specification [22] deals with white-box programs, syn-

thesizing a repaired program close to the faulty program. Contrary to [22], in our work, we consider

the system (synchronous program) to be a black-box, and we focus on synthesis of enforcers from

properties.

7 CONCLUSION AND FUTUREWORK
There have been wide spread recalls of implantable pacemakers and ICD devices due to safety

issues [2]. Considering this, formal methods based solutions have emerged. Most approaches

consider hybrid / timed automata models of the cardiac conduction system, which is composed

in closed-loop with timed automata models of the pacemaker. Such systems are either analysed

through model checking, and when this is not feasible due to model complexity, model-based

testing is considered. In both cases, the heart is considered a static system. This is in stark contrast

to a real heart that is a highly dynamical system, where arrhythmia is a random event. This paper

formalises the runtime enforcement problem, particularly considering a dynamically evolving heart.

We formalise the runtime enforcement problem for cyber physical systems (CPS) as a bi-directional

runtime enforcement of reactive systems, for the first time. Moreover, we propose the use of discrete

timed automata (DTA) in place of timed automata to express properties to be enforced. DTA express

regular properties while earlier work on RE of reactive systems considered a subset. We show that

the error due to the proposed discretisation is bounded and well within the required tolerance

value of the pacemaker. We developed an on-line algorithm, and implemented it in the SCCharts

tool-chain. Our experimental results show that the framework incurs minimal runtime overhead.

One possible avenue for future work is related to an empirical comparison of dense vs discrete

run-time enforcement. In addition, from a practical standpoint, we will consider implementing the

enforcer as an external device similar to [23]. We also plan to study the use of RE as a certification

aid, and will also consider personalised policies for enforcement and will develop the pacemaker

case-study fully with input from physicians. This may involve the introduction of additional features

in the framework such as compositionality of the enforcers and priority between properties.

APPENDIX: PROOFS
Proof of Theorem 3.5. Let us recall Theorem 3.5. Consider a property φ defined as DTA Aφ =

(L,l0,lv ,Σ,V ,∆,F) with semantics [[Aφ]] = (Q ,q0,Σ,→,QF ,qv). Property φ is enforceable iff the

condition (EnfCo) holds which is the following condition:

∀q ∈ Q ,q < qv =⇒ ∃σ ∈ Σ+ : q
σ
−→ q′ ∧ q′ ∈ QF .

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:18 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

DTA Aφ is deterministic and complete (Definition 2.4). From Remark 1, let us recall that L
contains only locations that are reachable from the initial location l0. In [[Aφ]], We consider that

Q contains only states that are reachable from q0. If a state q ∈ Q that is reachable from q0 is
non-accepting and non-trap (i.e., q < {QF ∪ qv }), then we consider that there is a path from q to an

accepting state in QF . State q is merged with qv otherwise.

We prove that:

• Sufficient: If condition (EnfCo) holds then Eφ according to Definition 3.1 exists.

Due to condition (EnfCo), whatever may be the current state q ∈ Q \ {qv } of the property
Aφ being enforced, there is at least one possibility to correct (edit) the event that the enforcer

receives when in state q (in case if the received event leads to a state from where only states

in qv are reachable). That is, due to condition (EnfCo), ∀q ∈ Q \ {qv }, we know for sure

that editIAφI
(q) will be non-empty (i.e., ∃x ∈ ΣI ,∃σI ∈ Σ∗I : q

x ·σI
−−−→I q

′ ∧ q′ ∈ QFI). Also,

∀q ∈ Q \ {qv },∀x ∈ editIAφI
(q) : editOAφ (q,x) will be also non-empty (i.e., ∃y ∈ ΣO ,∃σ ∈

Σ∗ : q
(x,y) ·σ
−−−−−−→ q′ ∧ q′ ∈ QF).

For any property φ defined as DTA Aφ , the enforcement function E∗φ (Definition 4.1) is an

enforcer for φ which satisfies all the constraints according to Definition 3.1. Theorem 4.2

shows that for any property φ (defined as DTA Aφ) that satisfies the condition for enforce-

ability (EnfCo), the enforcement function E∗φ (Definition 4.1) is an enforcer for φ, that is, it
satisfies (Snd), (Tr), (Mono), (Inst), and (Ca) constraints of Definition 3.1.

• Necessary: If Eφ according to Definition 3.1 exists, then condition (EnfCo) holds.
Suppose that an enforcer Eφ for φ according to Definition 3.1 exists and assume that condi-

tion (EnfCo) does not hold for Aφ .

Since condition (EnfCo) does not hold, ∃q ∈ Q \ {qv } : ∀(x ,y) ∈ Σ,∀σ ∈ Σ∗,q
(x,y) ·σ
−−−−−−→

q′ ∧ q′ ∈ Q \QF , i.e., there exists a state q ∈ Q \ {qv } such that there is no path that leads to

an accepting state in QF from q.

SinceQ contains only states that are reachable from q0, ∃σ ∈ Σ
∗
: q0

σ
−→ q, i.e., there certainly

exists a word σ ∈ Σ∗ that leads to the problematic state q from the initial state q0, where q is

the initial state q0 itself, or an accepting state (i.e., q ∈ QF), or q is a non-violating state from

which an accepting state is reachable (i.e., q ∈ Q \QF ∪ q0).
– q is the initial state q0:
In this case, σ = ϵ and there is no path from the initial state q0 to an accepting state in

qv . Upon receiving any event as input, the edit functions will be empty and the enforcer

cannot produce any event as output. If the enforcer outputs some event, then soundness

constraint will be violated, and not releasing any event will violate instantaneity and

causality constraints.

– q ∈ Q \QF ∪ q0:
In this case, q is an non-accepting and non-violating state. When q is non-accepting and

non-violating (i.e., q ∈ Q \QF ∪ q0), since we consider that an accepting state is reachable

from such states (a non-accepting state is considered to be merged with qv if an accepting

state is not reachable form it), our assumption is false and condition (EnfCo) holds in this

case.

– q ∈ QF :

There is a word σ ∈ Σ∗ that leads to state q ∈ QF . If that word σ is the input word to

the enforcer, then due to constraint (Tr), it cannot edit any event in σ , and the enforcer

produces σ as output and reaches state q.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:19

When in state q, upon receiving any event (x ,y) ∈ Σ, the enforcer has no possibility to

correct it, since there is no path from q to an accepting state (i.e., since ∀σ ′ ∈ Σ∗ : q
σ ′
−−→ qv).

Thus, ∀(x ,y) ∈ Σ, when the input word given to the enforcer is σ · (x ,y), the enforcer
cannot produce any event as output since editIAφI

() and editOAφ () from location q will

be empty, violating constraints (Inst) and (Ca).
Thus, our assumption is false and condition (EnfCo) holds for Aφ .

□

Before we discuss proof of Theorem 4.2, we introduce the following Lemma that is useful in

proving Theorem 4.2.

Lemma 1.1. LetAφI = (L,l0,lv ,ΣI ,V ,∆I ,F) be the input DTA obtained fromAφ = (L,l0,lv ,Σ,V ,∆,F)
according to Definition 2.7.

We have the following properties:

1 ∀(x ,y) ∈ Σ,∀l ,l ′ ∈ L : (l ,д,r , (x ,y),l ′) ∈ ∆⇒ (l ,д,r ,x ,l ′) ∈ ∆I .
2 ∀x ∈ ΣI ,∀l ,l

′ ∈ L : (l ,д,r ,x ,l ′) ∈ ∆I ⇒ ∃y ∈ ΣO : (l ,д,r , (x ,y),l ′) ∈ ∆ .

Intuitively, property 1 of Lemma 1.1 states that if there is a transition from location l ∈ L to

location l ′ ∈ L upon input-output event (x ,y) ∈ Σ in Aφ , then there is also a transition from

location l to location l ′ in the input automaton AφI upon the input event x ∈ ΣI . Property 2 of

Lemma 1.1 states that if there is a transition from location l ∈ L to location l ′ ∈ Q upon input

event x ∈ ΣI , then there certainly exists an output event y ∈ ΣO s.t. there is a transition from

location l to location l ′ upon event (x ,y) in the automaton Aφ . Lemma 1.1 immediately follows

from Definitions 2.1 and 2.7.

Proof of Theorem 4.2. Let us recall the condition for enforceability:

A propertyφ that is defined asDTAAφ = (L,l0,lv ,Σ,V ,∆,F), with semantics [[Aφ]] = (Q ,q0,Σ,→
,QF ,qv) is enforceable iff the following condition holds:

∀q ∈ Q ,q < qv =⇒ ∃σ ∈ Σ+ : q
σ
−→ q′ ∧ q′ ∈ QF .

Let us also recall the definition of functionE∗φ : Σ∗ → Σ∗ (Definition 4.1). Letσ = (x1,y1) · · · (xk ,yk) ∈
Σ∗ be a word received by Algorithm 1. Then we let E∗φ (σ) = (x ′

1
,y ′

1
) · · · (x ′k ,y

′
k), where (x ′t ,y

′
t) is

the pair of events output by Algorithm 1 in Step 17, for t = 1, ...,k .
Note that input DTA AφI = (L,l0,lv ,ΣI ,V ,∆I ,F) (with semantics [[Aφ I]] = (Q ,q0,ΣI ,→I

,QF ,qv)) is obtained from Aφ = (L,l0,lv ,Σ,V ,∆,F) (with semantics [[Aφ]] = (Q ,q0,Σ,→,QF ,qv))
by projecting on inputs (See Definition 2.7, Section 2).

We shall prove that given any propertyφ defined as DTAAφ that satisfies condition (EnfCo), the
function E∗φ is an enforcer for φ, that is, it satisfies (Snd), (Tr), (Mono), (Inst), and (Ca) constraints
of Definition 3.1.

Let us prove this theorem using induction on the length of the input sequence σ ∈ Σ∗ (which
also corresponds to the number of ticks (t in Algorithm 1).

Induction basis. Theorem 4.2 holds trivially for σ = ϵ since the algorithm will not release any

input-output event as output and thus E∗φ (ϵ) = ϵ .
Induction step. Assume that for every σ = (x1,y1) · · · (xk ,yk) ∈ Σ∗ of some length k ∈ N, let

E∗φ (σ) = (x ′
1
,y ′

1
) · · · (x ′k ,y

′
k) ∈ Σ

∗
, for t = 1, . . . ,k , and Theorem 4.2 holds for σ , i.e., E∗φ (σ) satisfies

the (Snd), (Tr), (Mono), (Inst), and (Ca) constraints. Let q ∈ Q \ {qv } be the current state of both
the automata Aφ and AφI after processing input σ of length k , i.e., q corresponds to the state that

we reach upon E∗φ (σ) in [[Aφ]], and the state that we reach in [[AφI]] upon E∗φ (σ)I . Note that the

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:20 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

current state q in Algorithm 1 can never belong to the set of trap states qv (q is initialized to q0 and
it is updated in step 18 to a state q′ ∈ Q \ {qv }).

We now prove that for any event (xk+1,yk+1) ∈ Σ, Theorem 4.2 holds for σ · (xk+1,yk+1), where
xk+1 ∈ ΣI is the input event read by Algorithm 1, and yk+1 ∈ ΣO is the output event read by

Algorithm 1 in k + 1th iteration (i.e., when t = k + 1).
We have the following two possible cases based on whether there exists a word σ ′ ∈ Σ∗ s.t. an

accepting state is reachable in [[Aφ]] from q upon (xk+1,yk+1) · σ
′
.

• ∃σ ′ ∈ Σ∗ : q
(xk+1,yk+1) ·σ ′
−−−−−−−−−−−→ q′ ∧ q′ ∈ QF .

In Algorithm 1, the condition tested in step 5 will evaluate to true since from Lemma 1.1, in

[[AφI]] we will have q
xk+1 ·σ ′I
−−−−−−→I q

′ ∧ q′ ∈ QFI , and thus x ′k+1 = xk+1.

Also, the condition tested in step 12will evaluate to true in this case since∃σ ′ ∈ Σ∗ : q
(xk+1,yk+1) ·σ ′
−−−−−−−−−−−→

q′ ∧ q′ ∈ QF , and thus y ′k+1 = yk+1. At the end of the k + 1th iteration, the input-output event

released as output by the algorithm in step 17 is (xk+1,yk+1). The output of the algorithm after

completing the k + 1th iteration is E∗φ (σ · (xk+1,yk+1)) = E∗φ (σ) · (xk+1,yk+1).

Regarding constraint (Snd), in this case, what has been already released as output by the algorithm
earlier before reading event (xk+1,yk+1) (i.e., E

∗
φ (σ)) followed by the new input-output event

released as output (xk+1,yk+1) can be extended to a sequence that satisfies φ (since q is the state

reached upon E∗φ (σ), and there exists a word σ ′ s.t. an accepting state is reachable from q upon

(xk+1,yk+1) · σ
′
). Thus constraint (Snd) holds in this case.

Regarding constraint (Mono), it holds since σ ≼ σ · (xk+1,yk+1) and also E∗φ (σ) ≼ E∗φ (σ) ·
(xk+1,yk+1).

Regarding constraint (Inst) from the induction hypothesis, we have for σ of some length k ,
|σ | = |Eφ (σ) |. We also have E∗φ (σ · (xk+1,yk+1)) = E∗φ (σ) · (xk+1,yk+1). Thus, |σ · (xk+1,yk+1) | =
|E∗φ (σ · (xk+1,yk+1)) | = k + 1, and constraint (Inst) holds. Constraint (Tr) holds in this case since

the output of the enforcer before reading (xk+1,yk+1) i.e., E
∗
φ (σ) followed by the new input-output

event read (xk+1,yk+1) satisfies the property φ and we already saw that the output event released

by the algorithm after reading (xk+1,yk+1) is E
∗
φ (σ) · (xk+1,yk+1).

Regarding constraint (Ca), in this case from the induction hypothesis, from the definitions of

editIAφI
and editOAφ we have xk+1 ∈ editIAφI

(q), and also yk+1 ∈ editOAφ (q,xk+1).

Theorem 4.2 thus holds for σ · (xk+1,yk+1) in this case.

• ∄σ ′ ∈ Σ∗ : q
(xk+1,yk+1) ·σ ′
−−−−−−−−−−−→ q′ ∧ q′ ∈ QF .

In this case, it is not possible to reach an accepting state in [[Aφ]] from the current state q upon

the new event (xk+1,yk+1) followed by any extension it.

In this case, we have two sub-cases, based on whether ∃σ
′

I ∈ Σ
∗
I : q

xk+1 ·σ ′I
−−−−−−→I q

′ ∧ q′ ∈ QF .

• ∃σ
′

I ∈ Σ
∗
I : q

xk+1 ·σ ′I
−−−−−−→I q

′ ∧ q′ ∈ QF .

In Algorithm 1, the condition tested in step 5 will evaluate to true and thus x ′k+1 = xk+1.

In this case, the condition tested in step 12 will evaluate to false since ∄σ ′ ∈ Σ∗ : q
(xk+1,yk+1) ·σ ′
−−−−−−−−−−−→

q′∧q′ ∈ QF .y
′
k+1 will thus be an element belonging to the set editOAφ (q,xk+1) if editOAφ (q,xk+1)

is non-empty.

It is important to notice that editOAφ (q,xk+1) will be non-empty in this case since we know

for sure that ∃y ′k+1 ∈ ΣO ,q
′ ∈ Q ,σ ′ ∈ Σ∗ : q

(xk+1,y′k+1) ·σ
′

−−−−−−−−−−−→ q′ ∧ q′ ∈ QF (from the condition for

enforceability (EnfCo), hypothesis (q < qv), definition of editOAφ , and Lemma 1.1). Thus y ′k+1

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:21

is an element belonging to editOAφ (q,xk+1). The output of the algorithm after completing the

k + 1th iteration is E∗φ (σ · (xk+1,yk+1)) = E∗φ (σ) · (xk+1,y
′
k+1).

Regarding constraint (Snd), from the definition of editOAφ , we know that E∗φ (σ) followed by

the new input-output event released as output (xk+1,y
′
k+1) can be extended to satisfy property

φ (i.e., ∃σ ′ ∈ Σ∗ : E∗φ (σ) · (xk+1,y
′
k+1) · σ

′ |= φ), and thus constraint (Snd) holds.
The reasoning for constraints (Mono) and (Inst) are similar to the previous cases since we saw

that Algorithm 1 releases a new event (xk+1,y
′
k+1) as output after reading event (xk+1,yk+1)

after completing k + 1th iteration.

Constraint (Tr) holds trivially in this case since E∗φ (σ) · (xk+1,yk+1) ̸ |= φ.

Regarding constraint (Ca), in this case from the induction hypothesis, from the definitions of

editIAφI
we have xk+1 ∈ editIAφI

(q), and we already discussed that editOAφ (q,xk+1) will be
non-empty and thus constraint (Ca) holds in this case.

• ∄σ
′

I ∈ Σ
∗
I : q

xk+1 ·σ ′I
−−−−−−→I q

′ ∧ q′ ∈ QF .

In Algorithm 1, the condition tested in step 5 will evaluate to false in this case. It is important

to notice that editIAφI
(q) will be non-empty since from the condition for enforceability and

Lemma 1.1, we know for sure that ∃x ′k+1 ∈ ΣI ,q
′ ∈ Q ,σ ′I ∈ ΣI : q

x ′k+1 ·σ
′
I

−−−−−−→ q′ ∧ q′ ∈ QF in

[[AφI]]. Thus, x
′
k+1 will be an element belonging to editIAφI

(q).

We have two sub-cases based on whether

∃σ ′ ∈ Σ∗ : q
(x ′k+1,yk+1) ·σ

′

−−−−−−−−−−−→ q′ ∧ q′ ∈ QF in [[Aφ]] or not.

• ∃σ ′ ∈ Σ∗ : q
(x ′k+1,yk+1) ·σ

′

−−−−−−−−−−−→ q′ ∧ q′ ∈ QF in [[Aφ]].

In Algorithm 1, the condition tested in step 12 will evaluate to true in this case. Thus,

y ′k+1 = yk+1 in this case and the event released as output by the algorithm at the end of

k + 1th iteration is (x ′k+1,yk+1). We have E∗φ (σ · (xk+1,yk+1)) = E∗φ (σ) · (x
′
k+1,yk+1).

Regarding constraint(Snd), from the condition of this case (i.e., ∃σ ′ ∈ Σ∗ : q
(x ′k+1,yk+1) ·σ

′

−−−−−−−−−−−→

q′∧q′ ∈ QF), we know that E∗φ (σ) followed by the new input-output event released as output

(x ′k+1,yk+1) can be extended to satisfy the property φ, and thus constraint (Snd) holds.
The reasoning for constraints (Mono) and (Inst) are similar to the previous cases since

we saw that the algorithm releases a new event (x ′k+1,yk+1) as output after reading event

(xk+1,yk+1) at the end of k + 1th iteration.

Constraint (Tr) holds trivially in this case since E∗φ (σ) · (xk+1,yk+1) ̸ |= φ.

Regarding constraint (Ca), we already discussed that editIAφI
(q) is non-empty and x ′k+1 ∈

editIAφI
(q), and yk+1 ∈ editOAφ (q,x

′
k+1) from the condition of this case and definitions of

editIAφI
and editOAφ .

• ∄σ ′ ∈ Σ∗ : q
(x ′k+1,yk+1) ·σ

′

−−−−−−−−−−−→ q′ ∧ q′ ∈ QF in [[Aφ]].

In the algorithm, the condition tested in step 12will evaluate to false in this case.y ′k+1 will thus
be an element belonging to the set editOAφ (q,x

′
k+1) if editOAφ (q,x

′
k+1) is non-empty. Note

that editOAφ (q,x
′
k+1) will be non-empty in this case since we know for sure that ∃y ′k+1 ∈

ΣO ,σ
′ ∈ Σ∗ : q

(x ′k+1,y
′
k+1) ·σ

′

−−−−−−−−−−−→ q′ ∧ q′ ∈ QF in [[Aφ]] (from the enforceability condition,

definitions, and Lemma 1.1). Thus y ′k+1 is an element belonging to editOAφ (q,x
′
k+1). The

output of the algorithm after completing the k + 1
th

iteration is E∗φ (σ · (xk+1,yk+1)) =

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:22 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

E∗φ (σ) · (x
′
k+1,y

′
k+1) where x

′
k+1 is an element belonging to editIAφI

(qI) andy
′
k+1 is an element

belonging to editOAφ (q,x
′
k+1).

Regarding constraint (Snd), from the definitions of editIAφI
and editOAφ , we know that

Eφ (σ) · (x
′
k+1,y

′
k+1) can be extended to a sequence that satisfies the property φ and thus

constraint (Snd) holds. The reasoning for constraints (Mono) and (Inst) are similar to

the previous cases since we saw that the algorithm releases a new event (x ′k+1,y
′
k+1) as

output after reading event (xk+1,yk+1). In this case, constraint (Tr) holds trivially since

Eφ (σ) · (xk+1,yk+1) ̸ |= φ. Regarding constraint (Ca), we already discussed that editIAφI
(q)

is non-empty and x ′k+1 ∈ editIAφI
(q), and also that editOAφ (q,x

′
k+1) is non-empty and

y ′k+1 ∈ editOAφ (q,x
′
k+1) and thus constraint (Ca) holds.

Theorem 4.2 thus holds for σ · (xk+1,yk+1) in this case.

Thus Theorem 4.2 holds for σ · (xk+1,yk+1). □

2 APPENDIX: FUNCTIONAL DEFINITION
Recall that an input-output event (reaction) is a pair (x ,y), where x ∈ ΣI is the input and y ∈ ΣO
is the output. Upon consuming an input-output event (x ,y) as input, the enforcer produces an
input-output event (x ′,y ′) as output immediately.

Heart
(Plant)

Enf orcer

EI

EO

Pacemaker
(Controller)

φ
Inputs

Transformed Inputs

Outputs
Transformed Outputs

AS

VS

AP ′

VP ′

AS ′

VS ′

AP

VP

Fig. 8. Enforcement function

The enforcer first processes the input x (i.e., input from the environment) and produces trans-

formed input x ′, and later it processes the output y (i.e., output produced by the program), to finally

produce the transformed input-output event (x ′,y ′). As illustrated in Figure 8, the enforcement

function Eφ is defined by composing two functions EI and EO , where function EI reads input
from the environment x (ignoring output) and produces transformed input x ′, and EO reads trans-

formed input x ′ (output of EI) and output y (output produced by the program upon input x ′) and
produces/adds transformed input-output event (x ′,y ′) to the output of the enforcer.

Definition 2.1 (Enforcement function). Given property φ ⊆ Σ∗ defined as DTA Aφ , that we want

to enforce, the enforcement function Eφ : Σ∗ → Σ∗ is defined as:

Eφ (σ) = EO (EI (σI),σO)

where:

EI : Σ
∗
I → Σ∗I is defined as:

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

Runtime Enforcement of Cyber-Physical Systems 1:23

EI (ϵΣI) = ϵΣI

EI (σI · x) =

EI (σI) · x if ∃σ ′I ∈ Σ
∗
I : EI (σI) · x · σ

′
I |= φI ,

EI (σI) · x
′

otherwise

where x ′ = rand-editIAφI
(q).

EO : Σ∗I × Σ∗O → (ΣI × ΣO)
∗
is defined as:

EO (ϵΣI ,ϵΣO) = ϵΣ

EO (σI · x ,σO · y) =

EO (σI ,σO) · (x ,y) if ∃σ ′ ∈ Σ∗ : EO (σI ,σO) · (x ,y) · σ
′ |= φ,

EO (σI ,σO) · (x ,y
′) otherwise

where y ′ = rand-editOAφ (q,x), and q is the state reached in [[Aφ]] upon EO (σI ,σO)
5
.

Let us understand Definition 2.1 further. Function Eφ takes a word over Σ∗ and returns a word

over Σ∗ as output. For a word σ ∈ Σ∗, σI ∈ Σ
∗
I is the projection of σ on inputs, and σO ∈ Σ

∗
O is the

projection of σ on outputs. Function Eφ is defined using two functions EI and EO , and the output

of function EO is the output of the enforcement function Eφ .

Function EI . For a given word σ ∈ Σ∗, function EI takes the word obtained by projecting on the

inputs (σI ∈ Σ
∗
I) as input and returns a word in Σ∗I as output. Function EI is defined inductively. It

returns ϵΣI when the input σI = ϵΣI . If σI is read as input EI (σI) is returned as output, and when

another new input x ∈ ΣI is observed, there are two possible cases based on whether EI (σI) · x can

be extended to a sequence that satisfies the property φI or not.

• If EI (σI) followed by the new input x can be extended to a sequence that satisfies the property

φI (property obtained from φ by projecting on inputs) in the future, then the new input x is

appended to the previous output of function EI (i.e., EI (σI · x) = EI (σI) · x).
• If the previous case does not hold, then EI (σI) · x cannot be extended to satisfy property

φI in the future (i.e., ∄σ ′I ∈ Σ∗I such that EI (σI) · x · σ
′
I |= φI). Thus, input x is edited using

rand-editIAφI
(q) to obtain transformed input x ′, and this transformed input x ′ is appended

to the previous output of function EI (i.e., EI (σI · x) = EI (σI) · x
′
). rand-editIAφI

(q) returns
x ′ ∈ ΣI , such that EI (σI) · x

′
can be extended to a sequence that satisfies φI .

Function EO . Function EO takes an input word belonging to Σ∗I and an output word belonging to

Σ∗O as input, and it returns an input-output word belonging to Σ∗ which is a sequence of tuples,

where each event contains an input and an output.

Function EO is defined inductively. When both input word and output word are empty, the

output of EO is ϵ . If σI ∈ Σ
∗
I , and σO ∈ Σ

∗
O is read as input, its output will be EO (σI ,σO), and when

another new input event x and output event y are observed, there are two possible cases based on

whether EO (σI ,σO) · (x ,y) can be extended to a sequence that satisfies property φ or not.

• If EO (σI ,σO) followed by (x ,y) can be extended to a sequence that satisfies φ, then (x ,y) is
appended to the previous output of function EO (i.e., EO (σI · x ,σO · y) = EO (σI ,σO) · (x ,y)).
• If the above case does not hold, then EO (σI ,σO) · (x ,y) does not satisfy φ and there is no

extension σ ′ ∈ Σ∗ such that EO (σI ,σO) · (x ,y) · σ
′ |= φ. Thus, output y is edited using

5
The automaton AφI is created from Aφ by projecting on inputs (see Section 2.2.2) and therefore has an identical structure

with the only difference being that outputs are ignored on the transitions of AφI . The set of states in [[Aφ]] and [[AφI]]

are the same. Note that if there exists a path to state q from the initial state upon EO (σI , σO) in [[Aφ]], then there also

exists a path to state q upon EO (σI , σO)I (which is EI (σI)) in [[AφI]].

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

1:24 S. Pinisetty, P. S. Roop, S. Smyth, N. Allen, S. Tripakis, and R. von Hanxleden

rand-editOAφ (q,x) to obtain transformed output y ′, and the event (x ,y ′) is appended to the

previous output of the function EO (i.e., EO (σI · x ,σO · y) = EO (σI ,σO) · (x ,y
′)). Function

rand-editOAφ (q,x) returns y
′ ∈ ΣO such that EO (σI ,σO) · (x ,y

′) can be extended to a

sequence that satisfies φ.

Regarding state q in definitions EO and EI , atate q is the state reachable in [[Aφ]] upon EO (σI ,σO).
[[Aφ]] and [[AφI]] have the same set of states. In definition of EI , q correspond to the same state in

[[AφI]], which is a state reachable in [[AφI]] upon EI (σI).

Definition 2.2 (Optimal enforcement function). Given property φ ⊆ Σ∗, that we want to enforce,

the optimal enforcement function Eφ -opt : Σ∗ → Σ∗ is defined as:

Eφ -opt(σ) = EO -opt(EI -opt(σI),σO).

The only difference in EI -opt compared to EI in Definition 2.1 is that in minD-editIAφI
is used

instead of rand-editIAφI
. That is, x ′ = rand-editIAφI

(q) is replaced with x ′ = minD-editIAφI
(q,x).

Thus, instead of picking any random element from editIAφI
(q), an element in editIφI (q) which

differs minimally w.r.t the actual input x is selected using minD-editIAφI
(q,x).

Similarly, the only difference in EO -opt compared to EO in Definition 2.1 is that in EO -opt,
minD-editOAφ is used instead of rand-editOAφ (i.e., y ′ = rand-editOAφ (q,x) is replaced with

y ′ = minD-editOAφ (q,x ,y)).

Theorem 2.3 (Eφ -opt exists iff Eφ exists). Given some property φ, an optimal enforcer Eφ -opt
(according to Definition 2.2) exists iff an enforcement function Eφ (according to Definition 2.1) exists.

REFERENCES
[1] Weiwei Ai, Nitish Patel, and Partha Roop. 2016. Requirements-centric closed-loop validation of implantable cardiac

devices. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 846–849.
[2] Homa Alemzadeh, Ravishankar K Iyer, Zbigniew Kalbarczyk, and Jai Raman. 2013. Analysis of safety-critical computer

failures in medical devices. Security & Privacy, IEEE 11, 4 (2013), 14–26.

[3] Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126, 2 (1994), 183 – 235.

https://doi.org/10.1016/0304-3975(94)90010-8

[4] Charles Andre, Frédéric Boulanger, and Alain Girault. 2001. Software implementation of synchronous programs. In

Application of Concurrency to System Design, 2001. Proceedings. 2001 International Conference on. IEEE, 133–142.
[5] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. 2003. The synchronous languages

12 years later. Proc. IEEE 91, 1 (Jan 2003), 64–83. https://doi.org/10.1109/JPROC.2002.805826

[6] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and ChaoWang. 2015. Shield Synthesis: Runtime Enforcement

for Reactive Systems. In TACAS (LNCS), Vol. 9035. Springer.
[7] Marius Bozga, Oded Maler, and Stavros Tripakis. 1999. Efficient Verification of Timed Automata Using Dense and

Discrete Time Semantics. In Correct Hardware Design and Verification Methods: 10th IFIP WG10.5 Advanced Research
Working Conference, CHARME’99 BadHerrenalb,Germany,September 27–29, 1999 Proceedings, Laurence Pierre and

Thomas Kropf (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 125–141. https://doi.org/10.1007/3-540-48153-2_11

[8] Lei Bu, Qixin Wang, Xin Chen, Linzhang Wang, Tian Zhang, Jianhua Zhao, and Xuandong Li. 2011. Toward Online

Hybrid Systems Model Checking of Cyber-physical Systems’ Time-bounded Short-run Behavior. SIGBED Rev. 8, 2
(June 2011), 7–10. https://doi.org/10.1145/2000367.2000368

[9] Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre. 2013. A simulink hybrid heart model for

quantitative verification of cardiac pacemakers. In Proceedings of the 16th international conference on Hybrid systems:
computation and control. ACM, 131–136.

[10] Egor Dolzhenko, Jay Ligatti, and Srikar Reddy. 2015. Modeling runtime enforcement with mandatory results automata.

Int. J. Inf. Sec. 14, 1 (2015), 47–60.
[11] Ylies Falcone, Thierry Jéron, Hervé Marchand, and Srinivas Pinisetty. 2016. Runtime enforcement of regular timed

properties by suppressing and delaying events. Science of Computer Programming 123 (2016), 2–41.

[12] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. 2011. Runtime enforcement monitors:

composition, synthesis, and enforcement abilities. FMSD 38, 3 (2011), 223–262.

[13] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. 1994. Synchronous observers and the verification of

reactive systems. In Algebraic Methodology and Software Technology (AMASTâĂŹ93). Springer, 83–96.

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1007/3-540-48153-2_11
https://doi.org/10.1145/2000367.2000368

Runtime Enforcement of Cyber-Physical Systems 1:25

[14] Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul Mangharam. 2014. Closed-loop verification of medical devices

with model abstraction and refinement. International Journal on Software Tools for Technology Transfer 16, 2 (2014),
191–213. https://doi.org/10.1007/s10009-013-0289-7

[15] Z. Jiang, M. Pajic, and R. Mangharam. 2012. Cyber-Physical Modeling of Implantable Cardiac Medical Devices. Proc.
IEEE 100, 1 (Jan 2012), 122–137. https://doi.org/10.1109/JPROC.2011.2161241

[16] Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam. 2012. Modeling and Verification of a

Dual Chamber Implantable Pacemaker. In Proceedings of the 18th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’12). Springer-Verlag, Berlin, Heidelberg, 188–203. https://doi.org/10.
1007/978-3-642-28756-5_14

[17] Marta Kwiatkowska, Harriet Lea-Banks, Alexandru Mereacre, and Nicola Paoletti. 2014. Formal modelling and

validation of rate-adaptive pacemakers. In Healthcare Informatics (ICHI), 2014 IEEE International Conference on. IEEE,
23–32.

[18] Jay Ligatti, Lujo Bauer, and David Walker. 2009. Run-Time Enforcement of Nonsafety Policies. ACM Trans. Inf. Syst.
Secur. 12, 3, Article 19 (Jan. 2009), 19:1–19:41 pages.

[19] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, HervéMarchand, Antoine Rollet, and Omer Nguena Timo. 2014. Runtime

enforcement of timed properties revisited. FMSD 45, 3 (2014), 381–422. https://doi.org/10.1007/s10703-014-0215-y

[20] Fred B. Schneider. 2000. Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 1 (2000), 30–50.
[21] Partha S. Roop Sidharta Andalam, Avinash Malik and Mark Trew. 2016. Hybrid Automata Model of the Heart for

Formal Verification of Pacemakers. In Applied Verification for Continuous and Hybrid Systems (ARCH’16). Vienna,
Austria.

[22] Christian von Essen and Barbara Jobstmann. 2013. Program Repair without Regret. Springer, Berlin, Heidelberg, 896–911.
https://doi.org/10.1007/978-3-642-39799-8_64

[23] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li. 2011. IMDGuard: Securing implantable medical devices with the external

wearable guardian. In 2011 Proceedings IEEE INFOCOM. 1862–1870. https://doi.org/10.1109/INFCOM.2011.5934987

[24] P Ye, E Entcheva, SA Smolka, and R Grosu. 2008. Modelling excitable cells using cycle-linear hybrid automata. IET
systems biology 2, 1 (2008), 24–32.

[25] Eugene Yip, Sidharta Andalam, Partha S Roop, Avinash Malik, Mark Trew, Weiwei Ai, and Nitish Patel. 2016. Towards

the Emulation of the Cardiac Conduction System for Pacemaker Testing. arXiv preprint arXiv:1603.05315 (2016).

, Vol. 1, No. 1, Article 1. Publication date: July 2017.

https://doi.org/10.1007/s10009-013-0289-7
https://doi.org/10.1109/JPROC.2011.2161241
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/978-3-642-28756-5_14
https://doi.org/10.1007/s10703-014-0215-y
https://doi.org/10.1007/978-3-642-39799-8_64
https://doi.org/10.1109/INFCOM.2011.5934987

	Abstract
	1 Introduction
	1.1 Overview of the proposed approach

	2 Preliminaries and Notations
	2.1 CPS as a synchronous system
	2.2 Properties

	3 Problem Definition
	4 Enforcer Synthesis
	4.1 Algorithm
	4.2 Comparison with the enforcement of TA

	5 Implementation and Results
	6 Related Work
	7 Conclusion and Future Work
	2 APPENDIX: Functional Definition
	References

