
Visual Comparison of Graphical Models

Arne Schipper, Hauke Fuhrmann, Reinhard von Hanxleden
Christian-Albrechts-Universität zu Kiel

Department of Computer Science
Real-Time and Embedded Systems Group
{ars,haf,rvh}@informatik.uni-kiel.de

Abstract

Collaborative development, incremental design and re-
vision management require the ability to compare different
versions of software artifacts. There are well-established
approaches for comparing textual artifacts such as program
files. However, the situation is different in graphical mod-
eling. So far there exists little support to compare models
visually—graphically in the model diagram itself. This pa-
per presents several possible approaches and explores one
of these in further detail.

We apply paradigms of visualizing text files side-by-side
to graphical diagrams and enhance the views by additional
features such as automatic layout, navigation and folding.
These means allow to compare even complex models with-
out missing differences or getting lost in text based struc-
ture compares. As a proof of concept, the proposal is im-
plemented in KIELER, a prototypical modeling environment
based on Eclipse.

1. Introduction

Graphical modeling aims at creating higher abstractions
of a system by displaying graphical representations (model
diagrams) instead of plain text. Diagrams offer multi-
ple dimensions—usually two—instead of only the one-
dimensional texts. This is used to depict the contents in
an appealing and comprehensible way. The diagrams of-
ten are some kind of graphs, where the graph itself holds
its semantic. Inherently graphs can be represented by many
different embeddings, and a given embedding can be drawn
in different layouts. Additionally some information that
may have changed is not at all reflected in the diagrams
but only within some internal properties of graphical ele-
ments. Therefore it is often difficult to manually compare
two graphical representations to see what items are differ-
ent and even what parts are the same when only diagram
layout has changed. Therefore computer assistance in find-

ing changes is a crucial feature in collaborative and iterative
development.

It is of great importance to the success of system model-
ing that tools offer intuitive and easy to use interfaces to cre-
ate and change the model. A major concern is the depiction
of changes in graphical models in a graphical way, visual-
izing the changes in the same manner in which they were
produced. This prevents the user (of the modeling tool)
from switching of different abstraction levels, when trying
to map the textual description of the differences to the dia-
gram. As observed by Mehra et al., graphical comparison
is an advantage, as this is the natural way to compare visual
objects [7]. The still prevailing approach of converting the
differences to some structured text is just a workaround due
to the lack of better methods. Transforming the textually
displayed changes back to the graphical world requires, ac-
cording to Green, a “hard mental operation” [4], which is
unnecessary and should be avoided. Depicting changes in
the diagram itself helps the developer working with it to
understand the resulting modification in its meaning imme-
diately. As Ohst et al. point out, it is not appropriate for
two-dimensional documents like diagrams to display pos-
sible changes in the traditional way, in two linear columns
with corresponding elements facing each other [9]. In most
cases there is a reason why objects in a diagram are posi-
tioned like they are, and should not be realigned, at least
not in just one dimension.

That there is a real need for a visual comparison is also
supported by commercial applications recently introduced
that try to provide at least some limited form of graphi-
cal comparisons. SCADE Model Diff (Esterel Technologies)
and ecDIFF (Expert Control), intended for Simulink (Math-
works) models, were introduced into the market in 2007 and
2008.

We here propose different alternatives to display differ-
ences of graphical models. We combine well established
means, like structural comparisons and colored side-by-side
confrontation, with advanced model presentation and in-
teraction techniques, like automatic layout, navigation and



folding. To validate our approach for a wide and exten-
sible variety of graphical modeling languages, we imple-
mented a prototypical comparison facility in a modeling
environment based on Eclipse1. Our illustration focuses
on Statecharts, one behavioral modeling language of the
UML. However, our techniques are language independent
and should be applicable to other languages as well, includ-
ing those of UML/AADL. The contributions of this paper
are thus 1) an investigation of general mechanism to visu-
ally display model differences, 2) the augmentation of these
mechanisms with customized views, and 3) an outline of
how this is implemented in a general-purpose modeling en-
vironment.

This paper is structured as follows. The next section
discusses related work. In Section 3 we examine differ-
ent types of visual comparison. The implementation is pre-
sented in Section 4, results are summarized in Section 5.
The paper closes with a conclusion and outlook. As space
is limited, we cannot present our proposal here in much de-
tail. A more in-depth presentation, including background
on automatic diagram layout, the implementation, and case
studies, can be found in Schipper’s thesis [13].

2. Related Work

Beginning with the diff tool [6], the comparison of con-
tent initially took place at the textual level. The first steps in
comparing non-flat file data were taken in database applica-
tions, but those worked only on relational data. Chawathe
et al. elaborated the ability to compare hierarchically struc-
tured information, satisfying a rising demand resulting from
the immense growth of the amount of structured data in gen-
eral [2]. This method is also applied to documents written in
the eXtensible Markup Language (XML) by Ohst et al. [9].
First implementations emanated from the XML content of
model files and used the XML elements as a base for struc-
tural comparison. The representation was in a tree structure.
Applications working with this paradigm are The Compare
Utility (Spark Systems) or the XML Differencing tool (Sty-
lus Studio).

Considering actual models, an interesting approach is
used by CoObRa [15]. The model elements themselves are
considered as objects in a Version Control System (VCS).
Every operation carried out by the user to the model ele-
ments in the Integrated Development Environment (IDE) is
mapped to an operation on the object in the VCS. Only these
change operations are saved, so this mechanism saves stor-
age space and the difference computation between the ver-
sions is derived for free. A client-server concept is used to
enable multiple developers to work on one project.

A generic approach in comparing and merging uses SiD-
iff [14, 17]. Input models are transformed to an internal data

1http://www.eclipse.org

structure. The structure-based diff is then performed with
this data, leading to a generic description of the differences.
Depending on the type and semantics of the input models,
the output must be interpreted in an appropriate manner to
obtain the differences in the domain of the original model.

Both of the above concepts were implemented as plug-
ins in the round trip engineering tool FUJABA2, still with
the lack of an appropriate graphical representation. A simi-
lar method is used by EMF Compare of Brun and Toulmé [1,
16], employed in the Eclipse Modeling Framework (EMF)3.
EMF Compare is limited to display the changes as structured
data in a tree-like view, and again, no graphical facilities
are given. However, as further explained in Section 4.2, we
can build on EMF Compare to compute differences, and en-
hance it with means to graphically visualize the differences.

Another work focusing on Eclipse is a plug-in suite of
Mehra et al. [7]. The input model is mapped to Java ob-
jects on which the comparison is performed in a generic
way similar to EMF Compare and SiDiff. They also pro-
vide support to display the differences in a graphical way.
However, there are some drawbacks, as the two versions are
drawn into one diagram with a re-computation of the layout
and ugly overlappings may occur.

The aforementioned SCADE Model Diff is designed to
analyze differences between two SCADE models or two ver-
sions of a model. The differences are represented in terms
of added, deleted, changed, or moved elements. Only the
semantics are taken into account, no layout information.
The results are presented in several ways, in a diff tab show-
ing all the differences in a list, in a diff window, displaying
two tree structures side by side, or in a location window, ex-
hibiting two graphical models—SCADE models—with high-
lighted differences. Furthermore it is possible to generate a
textual report of the changes. Unfortunately the tool is lim-
ited to the SCADE own dataflow and behavioral languages,
and it does not provide advanced features like automatic
zooming/panning/folding.

Girschick presents an algorithm to detect and display
changes in UML class diagrams [3]. This algorithm is spe-
cific to UML class diagrams. Reports of changes are shown
in an HTML page, including a graphical view of the merged
diagram and a textual description of the changes. The view
of the diagram is a merged version of both, which can lead
to unaesthetic overlappings when much has been changed
between the two versions.

Another example is the plug-in for Pounamu, a meta-
Computer-Aided Software Engineering (CASE) tool devel-
oped by Zhu et al., using a more generic approach that is not
limited to one kind of model [19]. The method to display
changes is more interactive and the user can, when check-
ing out a newer version, see every change in the diagram

2http://www.fujaba.de
3http://www.eclipse.org/modeling/emf/

2

http://www.eclipse.org
http://www.fujaba.de
http://www.eclipse.org/modeling/emf/


Statechart v. 1

I S 1

Collapse

I I 1

S 2
A/B

C/D F/

(a) Version 1

Statechart v. 2

I S 1a

S 3

Collapse

I I 1

G/H

C/D

J/

(b) Version 2

Figure 1. The two original versions of the ex-
ample diagram.

Statechart v. 1

I S 1

Collapse

I I 1

S 2
A/B

C/D F/

(a) Version 1

Statechart v. 2

I S 1a

S 3

Collapse

I I 1

G/H

C/D

J/

(b) Version 2

Figure 2. Plain visual diff. Color leg-
end: green/additions, red/deletions,
blue/changes.

immediately and accept or reject it. The graphical represen-
tation works with two layers on top of each other, one for
each diagram.

Overall, there still appears to exist little work on how
these differences are presented best to the user, especially
when they are supposed to appear in the diagram itself.
There are several works considering graphical languages,
perception and representation, correlation between syntax
and semantics, secondary notation, etc. [11, 12]. However,
a sound solution for a graphical comparison still appears to
be lacking.

3. Visual Comparison

A sound layout is vital for the correct understanding of
graphical models [10, 5]. The automatic layout of graph-
ical diagrams is not trivial, but not discussed further here.
We assume that the modeling environment does provide an
automatic layout facility, as is for example the case with
KIELER (see Section 4.1).

The mental map of the user, that is the position of ele-
ments, their connections and sizes, should be preserved as
much as possible to support the user’s understanding of dif-
ferent diagram versions [8, 12]. This applies also to the vi-
sual comparison, when different diagram versions are pre-
sented to the user and they may be altered to visualize pos-
sible changes.

The following classification of possible visualization

Freely merged Statechart

I S 1a

S 3

Collapse

I I 1

S 2

G/H

C/D

J/

A/B

F/

Figure 3. Freely merged visual diff.

Incrementally merged Statechart

I S 1a
S 3

Collapse

I I 1

S 2G/H

C/D

J/

A/B

F/

Figure 4. Incrementally merged visual diff.

mechanisms combines previous proposals (presented in
Section 2) with further alternatives. The two versions re-
ferred to can be selected by the user. This will generally
be, but not necessarily, the actual version where he or she is
working on and any older one. To illustrate the alternatives,
we will compare the Statechart examples shown in Figure
1. The classification is as follows:

Plain: The two original layouts are just shown side by side,
with colors or similar markers indicating differences.
This is illustrated in Figure 2.

Animation: A small animation or video is created, which
shows the transition from one version to the other by
morphing the Statechart, thus maintaining the mental
map of the user.

Pop-up: Having enabled the compare mode, the user can
navigate through the one version of the Statecharts,
which is annotated with modifications, and pop-ups
will show in detail the changes that occurred in the
neighborhood relative to the other version.

Free merge: A merge of the two versions is calculated.
This merged model will be laid out from scratch, with
colors showing alterations from one release to the next
one. This can be seen in Figure 3, the coloring is like
in plain.

Incremental merge: This is similar to the free merge and
shown in Figure 4. The calculation of the merge re-
mains the same. The layout is not computed from

3



scratch, instead one of the original layouts serves as a
reference for the merged layout, maintaining the men-
tal map of the developer.

A side by side comparison, in its static case as described
here, is the simplest way of comparing entities. The first
thing coming into mind as an analogy for this type of com-
parison is the ordinary textual diff, enhanced by a graphical
representation showing the versions in two columns with
corresponding text blocks at the same vertical level.

There are several advantages in this mechanism. No new
layout has to be computed. Just the two existing layouts are
next to each other. In this manner, different colors could
help the developer to discover the changes. This is particu-
lar true for states that just have changed attributes, a char-
acteristic which cannot be detected in a graphical model at
first glance.

Trying out the proposals manually showed that some of
them are not adequate, like pop-up, and some, like anima-
tion, seemed to be too elaborate to be implemented within
standard tools.

4. Implementation

As a proof of concept and to be actually able to test
the visual comparison, we implemented an enhanced visual
diff, i. e. the plain visual diff with additional features added
such as automatic layout, folding, zooming, and panning.
This naturally takes advantage of hierarchies in a model; we
detect when an internal element of a model has changed, but
see internal differences only when we are interested in them.
The implementation was integrated into the existing exper-
imental framework Kiel Integrated Environment for Layout
for the Eclipse Rich Client Platform (KIELER).

4.1. KIELER

KIELER4 is an experimental modeling framework to in-
vestigate the graphical model-based design of complex sys-
tems. KIELER is based on the Eclipse rich client platform
and is modularly structured. Due to this, many plug-ins of
the Eclipse world can be used. The KIELER Infrastructure
for Meta Layout (KIML)5 provides the automatic layout of
different diagram types.

The graphical editors intended to use the visual com-
parison were created for the use in KIELER with techniques
such as the Eclipse Modeling Framework (EMF), the Graph-
ical Editing Framework (GEF)6 and the Graphical Modeling
Framework (GMF)7. For the initial implementation a State-
chart editor was used, but the visual comparison works also

4http://www.informatik.uni-kiel.de/rtsys/kieler/
5http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML
6http://www.eclipse.org/gef/
7http://www.eclipse.org/gmf/

Figure 5. The structure of EMF Compare8

with a developed dataflow editor, as well as with the stan-
dard Eclipse UML tools, which are based on EMF/GMF, and
any other EMF/GMF editor.

4.2. EMF Compare

As the main point of visual comparison is about the
representation, existing supporting applications were used
where applicable. Of particular benefit here was the afore-
mentioned EMF Compare plug-in. This is a plug-in which
extends the normal compare function of Eclipse by the sup-
port for EMF models. As depicted in Figure 5, first a match
engine tries to find matches between the elements of the dif-
ferent versions with various metrics and computes a match
model that is essentially a union of the compared models.
Second, a diff builder extracts the differences into a diff
model, which consists of additions, deletions and changes.
The matching and differencing algorithm was inspired by
work of Xing et al. [18]. Using EMF Compare, we can
build on an established means to compute the differences,
and can focus on just visualizing them.

4.3. Navigation and Visualization

Figure 6 shows how the example diagrams from Figure 1
are compared by our visual comparison tool. We use the ap-
proach established by EMF Compare of side-by-side win-
dows with the two versions of the diagram, with an addi-
tional third window on top that gives a structured textual de-
scription of the changes and guides the user through them.

It turned out to be very useful to provide the compari-
son tool with means to easily navigate through the changes.
This was achieved by an adaptable click and zoom mech-
anism. Whenever clicking on an element in any of the
windows—that includes also the top window with the tex-
tual description of the changes—, the other two windows
scroll and zoom to the corresponding position in the dia-
gram.

8http://wiki.eclipse.org/index.php/EMF Compare

4

http://www.informatik.uni-kiel.de/rtsys/kieler/
http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIML
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://wiki.eclipse.org/index.php/EMF_Compare


(a) Collapsing disabled. (b) State Collapse has been collapsed, as there
are no changes inside.

(c) Auto-navigation zooms and scrolls to selected
changes.

Figure 6. Enhanced visual comparison of two Statecharts.

Another sensible option is to collapse the regions of the
diagram which are not of interest. In the particular case
of Statecharts, it is possible to collapse composite states in
which no change occurred to gain more space during the
diagram view, and to draw the users attention to the actual
changes. This is shown in Figure 6(b), in contrast to Figure
6(a). The automatic layout facilities of KIML are employed
to use the space best.

The implementation is tightly integrated with the es-
tablished Eclipse work flow. The visual comparison is
launched when clicking on two diagram files, just as it is
done with two textual files. It is also possible to compare a
diagram file against its local history. The color scheme used
to indicate additions, changes and deletions is the same as
used by EMF Compare, see also Figure 2. This is consistent
within Eclipse and can be customized by the user.

Automatic zooming and panning navigates the user to
selected changes as depicted in Figure 6(c). Changes can
be either selected in the structural view or in the graphi-
cal views. The zoom level might be different in the two
graphical representations to show the affected objects and
its context.

5. Results

We collected feedback within our work group and from
an industrial development unit (Philips Medical Systems)
that uses Statecharts. The overall evaluation was quite pos-
itive. The general implementation, the facility to perform a
visual comparison as such, was well accepted. During the
use some interesting benefits could be identified. Whereas

simple structural changes of a diagram, such as removing or
adding of a state, can be detected in a reasonable amount of
time manually, especially for small changes the visual com-
parison was deemed very useful. Those small changes in-
corporate mainly the altering of attributes, on the one hand
of states, which in most cases are not shown in a diagram di-
rectly, on the other hand changes of the triggers and effects
of a transition. Those changes manifest themselves just in
different letters drawn next to a transition and are hard to
recognize graphically.

The main benefit when showing these differences of the
diagram was the way they were presented to the user. In
former difference representations the changes were shown
textually to the user, who then had to identify them in the
diagram later on to interpret them and to deduce the func-
tional differences. In our approach, the changes are instead
directly mapped to the two diagrams.

Other aspects mentioned positively were the ability to
collapse regions which were not of interest and the syn-
chronous scrolling and zooming of the diagrams.

A significant advantage of the generic EMF approach
when working with models in the KIELER environment is
that the visual comparison can be used with any EMF model,
even with any editor, as long as it is generated with GMF.
For example Figure 7 shows a comparison of two dataflow
diagrams as used by Matlab Simulink, Ptolemy or SCADE.
They were created with a GMF editor and automatically laid
out with KIELER. Moving from Statecharts to dataflow di-
agrams did not require any extensions or modifications of
our compare facility.

5



Figure 7. Visual comparison of dataflow dia-
grams.

6. Conclusions and Outlook

To provide facilities to compare diagrams graphically is
a logical consequence of graphical modeling. The presented
comparison tool is just a first step, the next stage would be to
implement in the same manner views that support the users
graphically when merging changes into diagrams.

It should also be worthwhile to implement and evaluate
some of the other proposals presented here, such as free and
incremental merge. With well-designed incremental lay-
out algorithms the incremental merge could be useful, es-
pecially if space is scarce and preserving the mental map is
crucial.

Acknowledgment

We thank Jan Täubrich and his colleagues from Philips
Medical Systems DMC GmbH, Hamburg, for suggesting
this topic and very helpful comments.

References

[1] C. Brun. Comparing and Merging Models with Eclipse: an
Update on EMF Compare. In EclipseCon 2008, Santa Clara,
California, Mar. 2008.

[2] S. S. Chawathe and H. Garcia-Molina. Meaningful change
detection in structured data. In SIGMOD ’97: Proceed-
ings of the 1997 ACM SIGMOD international conference
on Management of data, pages 26–37, New York, NY, USA,
1997. ACM.

[3] M. Girschick. Difference detection and visualization in
UML class diagrams. Technical Report TUD-2006-5, De-
partment of Computer Science, TU Darmstadt, Aug. 2006.

[4] T. R. G. Green. Cognitive Dimensions of Notations. In Com-
panion Proceedings of the CHI ’98 Conference on Human
Factors in Computing Systems, pages 443–460, Cambridge,
UKDepartment of Computer Science, University of Calgary,
1989. Cambridge University Press.

[5] D. Harel. On the aesthetics of diagrams. Lecture Notes in
Computer Science, Mathematics of Program Construction,
1422/1998:1–5, 1998.

[6] J. Hunt and M. McIlroy. An algorithm for differential file
comparison. Technical Report 41, Bell Laboratories, July
1976.

[7] A. Mehra, J. Grundy, and J. Hosking. A generic approach to
supporting diagram differencing and merging for collabora-
tive design. In ASE ’05: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineer-
ing, pages 204–213, New York, NY, USA, 2005. ACM.

[8] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. Journal of Visual Languages
& Computing, 6(2):183–210, June 1995.

[9] D. Ohst, M. Welle, and U. Kelter. Differences between
versions of UML diagrams. SIGSOFT Softw. Eng. Notes,
28(5):227–236, 2003.

[10] M. Petre. Why looking isn’t always seeing: Readership
skills and graphical programming. Communications of the
ACM, 38(6):33–44, June 1995.

[11] H. C. Purchase. Metrics for graph drawing aesthetics. Jour-
nal of Visual Languages and Computing, 13(5):501–516,
2002.

[12] H. C. Purchase, E. E. Hoggan, and C. Görg. How impor-
tant is the ”mental map”? — An empirical investigation of
a dynamic graph layout algorithm. In M. Kaufmann and
D. Wagner, editors, Graph Drawing, volume 4372 of Lec-
ture Notes in Computer Science, pages 184–195. Springer,
2006.

[13] A. Schipper. Layout and Visual Comparison of State-
charts. Diploma thesis, Christian-Albrechts-Universität zu
Kiel, Dec. 2008. http://rtsys.informatik.uni-kiel.de/∼biblio/
downloads/theses/ars-dt.pdf.

[14] M. Schmidt and T. Glötzner. Constructing Difference Tools
for Models Using the SiDiff Framework (Informal Research
Demonstration). In ICSE 2008 Companion Proceedings,
30th International Conference on Software Engineering,
Leipzig, May 2008.

[15] C. Schneider, A. Zündorf, and J. Niere. CoObRA - a small
step for development tools to collaborative environments.
In Workshop on Directions in Software Engineering Envi-
ronments; 26th International Conference on Software Engi-
neering, Scotland, UK, 2004.

[16] A. Toulmé. Model Comparison Panel. In EclipseCon 2007,
Santa Clara, California, Mar. 2007.

[17] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference
Computation of Large Models. In ESEC-FSE ’07: Proceed-
ings of the 6th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering, pages 295–304,
New York, NY, USA, 2007. ACM.

[18] Z. Xing and E. Stroulia. Differencing logical UML models.
Automated Software Engg., 14(2):215–259, 2007.

[19] N. Zhu, J. C. Grundy, J. G. Hosking, N. Liu, S. Cao, and
A. Mehra. Pounamu: A meta-tool for exploratory domain-
specific visual language tool development. Journal of Sys-
tems and Software, 80(8):1390–1407, 2007.

6

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf

	. Introduction
	. Related Work
	. Visual Comparison
	. Implementation
	. KIELER
	. EMF Compare
	. Navigation and Visualization

	. Results
	. Conclusions and Outlook

