
Just Model! – Putting Automatic Synthesis of
Node-Link-Diagrams into Practice

Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden
Dept. of Computer Science, Christian-Albrechts-Universität zu Kiel, Germany

{chsch,msp,rvh}@informatik.uni-kiel.de

Abstract—Node-link-diagrams can effectively communicate
information, but their creation and maintenance require a lot of
manual effort. Therefore we follow the transient views approach
that aims at automatically deriving high quality diagrams from
arbitrary models. Besides composing diagram structures, this
task involves the arrangement of the diagram elements on the
canvas, and, on a finer-grained level of detail, the arrangement
of the shapes (rectangles, circles, lines, etc.) that form the diagram
elements. We show the feasibility of this approach by means of the
KIELER Lightweight Diagrams (KLighD) framework that creates
diagrams this way. We discuss our overall design objectives in
terms of this framework, investigate an alternative way to shape
diagram figures, and briefly demonstrate the usage of KLighD in
custom modeling environments by means of a case study.

I. INTRODUCTION

In software engineering it is common to use graphical
modeling languages to record and document software designs,
very often the UML or a derivative. In practice this is usually
done by manually drawing diagrams, i. e. by dropping diagram
figures onto a canvas, drawing connections, and moving those
figures around until a pleasing arrangement is achieved. This
procedure is very time consuming and requires appropriate
tools. Moreover, hand-made persisted diagrams easily become
incorrect if details in the design change over time. A lot of
effort is required just for keeping them up to date.

Considering these issues we advocate transient automat-
ically synthesized representations [1] that are obtained on-
demand, and discarded if not required any longer. Given
a model adhering to a domain-specific language (DSL) and
a function that maps the language constructs to diagram
figures, the modeling environment is in charge of creating a
corresponding diagram. In contrast to static views on models
like hand-drawn diagrams, transient views must be flexible to
achieve the “Visual Information Seeking Mantra” [2]:

Overview first, zoom and filter, then details-on-demand.

Contributions: We here demonstrate the feasibility of the
transient views approach by means of the KIELER Lightweight
Diagrams (KLighD) framework, which realizes this concept. We
address the challenge of designing an appropriate view model
format for describing diagrams, focusing on the composition
of basic shapes, text fields, and bitmaps to diagram figures. In
contrast to other formats such as Graphiti’s Pictogram format1

This work was funded in part by the German Science Foundation (PRETSY,
DFG HA 4407/6-1), the Program for the Future Economy of Schleswig-
Holstein and the European Regional Development Fund (ERDF), and ETAS
GmbH

1http://www.eclipse.org/graphiti/

or the new Diagram Definition (DD) format2 standardized by
the OMG, our approach supports relative positioning of figure
components. This flexibility simplifies very much the handling
of elements whose size cannot be determined statically, e.g.,
labels representing variable string values. Furthermore, we
propose a method to calculate the required size of compound
diagram figures based on concrete string values and such po-
sitioning data. This size information is required for calculating
the overall diagram layout through graph drawing methods [3],
which is an important premise of the transient views approach.
Users of Eclipse-based modeling tools may directly employ
and benefit from KLighD, however, the concepts proposed here
are applicable to visual modeling tools in general.

Outline: Section II discusses the state of practice in creating
diagrams and previous works on their automatic synthesis. In
Section III, we state our core objectives in the development of
KLighD and outline the solution approaches. We investigate the
composition of diagram figures by means of primitive shapes
and the figure size issue in Section IV. In Section V we turn
to practice and demonstrate the usage of KLighD by means
of a simple example that aims to encourage readers to try
it out themselves. We conclude this work in Section VI with
examples of KLighD applications and refer to ongoing activities.

II. MOTIVATION AND RELATED WORK

Gotel et al. [4] analyzed characteristics of pure infor-
mation visualization and software engineering visualization.
They found that “the visual characteristics of all software
engineering notations” have been neglected in favor of their
semantics. We agree with their emphasis of the potential for
synergies between those fields. We do not agree in their
focus on requirements engineering, though, since with the
success of textual DSL frameworks modeling techniques are
easily applicable in further stages of the software life cycle.
Since textual formats tend to “hide” semantic mistakes well,
especially if models get larger, graphical representations are
often a valuable complement.

There are miscellaneous tools and frameworks for docu-
menting structures and processes. In the industry Microsoft
Visio3 is very popular. Its major disadvantages are the manual
drawing effort to spend, and the gap between the specified
requirements or designs and their take-ups in other tools, e. g.
development environments, although Microsoft added some
means that address this issue in the latest releases. In many
cases changing one artifact does not change or indicate change

2http://www.omg.org/spec/DD/1.0/
3http://office.microsoft.com/visio/

on the others. The tool yEd4 is an interesting alternative that
supports automatic layout of diagrams.

The established graphical modeling approaches in the
Eclipse world (GEF, GMF, and Graphiti) as well as
DIAMETA [5], GME [6], and VMTS [7] focus on user editing
and are conceptually not designed to synthesize diagrams
fully automatically. Furthermore, such editors usually support
only a limited dedicated set of diagram elements, and their
extension is often cumbersome. Besides, there are various
diagram tools like PlantUML5 or UMLet6 that provide auto-
matic synthesis for pre-defined diagram types (the latter even
supports custom figures but requires Java programming). In
contrast, KLighD aims to be a more abstract, generic, and light-
weight solution supporting arbitrary node-link-diagrams for
visualizing domain-specific models in homogeneous modeling
environments, as explained in Section III.

The work of Storey et al. [8] employs automatic diagram
synthesis for program comprehension and architecture recov-
ery. In a follow-up work Bull et al. [9] developed the Zest7

framework enabling visualizations of flat graph structures in
Eclipse. Its aim is to provide a graph widget that seamlessly
integrates into the existing widget zoo. Their concept of Model
Driven Visualization (MDV) leverages MDSE techniques like
model to model transformations to perform queries on arbitrary
data. The results are visualized by means of fitting widgets
such as tables, tree views, and graphs. The publicly available
Zest framework, however, does not provide any support on
MDSE techniques, but requires classic programming.

Köhnlein presented a very appealing prototype on syn-
thesizing diagrams8 based on interpreted mappings and style
sheet descriptions in a semi-automatic way. Besides manual
element placing automatic layout is also available. In his
demonstrations the user is, however, required to perform a lot
of mouse operations in order to obtain the desired diagram.
Similarly to Zest the Generic Graphical View supports neither
ports nor (arbitrarily) nested hierarchic diagrams.

The work presented here fits into the general context of
modeling pragmatics [10], which focuses on human productiv-
ity aspects during modeling activities, and where the separation
of a model from customized, automatically generated views is
a key concept. The Kiel Integrated Environment for Layout
Eclipse RichClient (KIELER) is a testbed for validation of
modeling pragmatics concepts and provides the environment
for KLighD, e. g. automatic layout by means of graph drawing
methods. However, that aspect is not in focus of this work.

III. KIELER LIGHTWEIGHT DIAGRAMS (KLIGHD)

KLighD is our proposal for on-demand graph visualization
in the software engineering context. The key enabler of such
a tool is the ability to arrange graph elements to form an
aesthetic layout [11]. Since different kinds of graphs—and dif-
ferent kinds of data being represented by graphs—demand for
different kinds of arrangement, the layout engine must support
different layout strategies. For instance, classes depicted in a

4http://www.yworks.com/de/products_yed_about.html
5http://plantuml.sourceforge.net/
6http://www.umlet.com/
7http://www.eclipse.org/gef/zest/
8http://koehnlein.blogspot.de/2012/01/discovery-diagrams-for-generic.html

KIML

KLighD

mapping A mapping B mapping ...

diagrammodel
5) 6)

7)1)

3)

4)

2)

Figure 1. Data flow in KLighD: 1) Request for diagram of semantic model
called “model”, 2) mapping selection, 3) mapping application, 4) receipt of
corresponding KGraph+KRendering data, 5) handover to KIML, 6) receipt of
complete diagram data, 7) translation of abstract descriptions into concrete
data and handover to a Piccolo2D diagram canvas.

UML class diagram are usually arranged differently compared
to states in a UML statechart or the elements of a Simulink
model. With the KIELER Infrastructure for Meta Layout (KIML)
there is such a layout facility [1], [10].

The KLighD framework is supposed to meet the following
objectives.

A. Reduction of time to diagram

The time software engineers spend on creating graphical
representations of their designs is to be reduced drastically.
This applies to the time budget expended for obtaining a single
representation, as well as to the training effort that is required
to get able to set up an automatic view synthesis.

KLighD achieves that by means of the formal input language
KRendering, which enables precise and compact formulation
of diagrams. Technical details, e. g. the arrangement of the par-
ticular figure elements, are specified in a descriptive manner.
Such diagram descriptions are usually not composed by users,
but created and maintained underneath KLighD’s hood. Instead,
the framework is provided with mappings of DSL structures
to KRendering data. With that knowledge in mind KLighD is
just required to create visualizations of given models. This
task consists of selecting the required mapping, applying it to
the provided model, applying automatic layout to the diagram
data, and translating that data into such suitable for drawing
the diagram. Figure 1 illustrates the procedure.

For details on the KRendering language we refer to [1],
whereas the core concepts are explained below.

B. Integration of established MDSE concepts and tools

Diagram synthesis implementations shall be realizable
using model transformations. Modern model transformation
languages such as Xtend9 or ATL [12] provide special support
for data translations in form of powerful language constructs
and rich convenience function libraries. For example, they
allow to formulate translations in a functional programming
style, which enables much more condensed implementations
than classic programming languages do. The employment of
model transformation techniques also paves the way for re-
using queries on modeled data, which may be used for model
validation and runtime code generation, too.

9http://www.xtend-lang.org

The KRendering language has been defined in EMF’s meta-
modeling language Ecore [13]. Hence, in addition to the ad-
vantages mentioned above, KLighD benefits from EMF’s mature
features such as opposite references or adapters. In addition we
built up a convenience function library that can be incorporated
in diagram synthesis mappings implemented in Xtend or Java.
Concrete DSL to KRendering translations can be compacted
very much by means of this library, as we show in Section V.

C. Efficiency

Browsing rendered diagrams shall work without any no-
table delays, e. g. while zooming or panning the visible area.
Especially in case of big diagrams the tool has to work as
stable as with just a couple of nodes and edges. In contrast to
other disciplines dealing with millions of nodes and edges, we
assume a magnitude of up to hundreds of diagram elements,
an amount that can be mentally handled by humans.

On the one hand we rely on the promising graph drawing
framework Piccolo2D [14] that has been ported to the Eclipse
Standard Widget Toolkit (SWT). It comes without any sophis-
ticated re-arrangement logic, but with an innovative camera
concept making it very fast and responsive.

On the other hand we minimize the intermediate data
being created during the view synthesis, layout, and update
processes. For that reason we built the KRendering language
on top of KGraph, the input and output language used by
KIML for automatic diagram layout. In more detail, the struc-
ture of diagrams, i. e. nodes, their ports, edges, and labels,
is formulated in terms of KGraph elements. Their look is
defined by augmenting those elements with KRendering data.
In order to get the diagram data supplemented with positioning
information KLighD can immediately hand them over to KIML.
This way, we omit costly data extraction for preparing KIML’s
input and applying the result to the rendered diagram, see steps
5) and 6) in Figure 1.

Furthermore, we omit the employment of any transaction
mechanisms like incorporated in GMF-based editors for the
sake of realizing undo and redo operations.

D. Interactivity

For coping with large data and for displaying simulation
results in an intuitive fashion, the visualization framework
is supposed to support highlighting, semantic zooming [15],
and further diagram manipulation operations. Semantically
zooming diagrams involves the addition of further details
to diagram elements (expand), as well as their reduction
(collapse). This principle is illustrated by the diagram excerpts
depicted in Figure 2. While Figure 2(a) shows a part of a data
flow network with collapsed representation of sequentialActor_1,
Figure 2(b) shows the same excerpt with sequentialActor_1 in
expanded mode. Regarding the highlighting, special attention
has to be paid if multiple tool components are in a competition
for highlighting particular diagram elements.

We care about these concerns in the design of the KRender-
ing language in the following way: Diagram figures are deter-
mined by composing primitive shapes like rounded rectangles,
ellipses or polygons. These shapes are configured in terms of
colorings, line styles, fonts, etc. by attaching styles. Such styles

InOut1 InOut1

InOut2 InOut2

Input

Output

localData

sequentialActor_1

In
O
u
t1

In
O
u
t2Input1

Input3

Output3

(a) Collapsed representation of sequentialActor_1

InOut1 InOut1

InOut2 InOut2

Input

Output

localData

sequentialActor_1

In
O
u
t1

In
O
u
t2

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Output1

Output2

Output3

init

idle

start failure

step_I

ok

step_II

step_III

(b) Expanded representation of sequentialActor_1

Figure 2. Hierarchic data flow diagram rendering excerpts created by
KLighD with different amounts of detail. While the representation of operator
sequentialActor_1 is abbreviated by a simple box in the first drawing its
sequential behavior is outlined in the second one. Besides, only names of
connected ports are shown in the collapsed representation, while all port names
are visible in the expanded one. Further refinement may attach transition labels.

can be added and removed by highlighters interchangeably,
with each of those highlighters being not allowed to remove
or manipulate style objects contributed by others. In case of
conflicting style statements the last (youngest) one will make
it into the diagram. If it gets removed again the look of
the related figure will change immediately according to the
previous statement in the row or the default configuration.

The amount of detail of diagrams is influenced by means
of Actions, which may be related to figure primitives, too.
Such an action specifies its trigger (e. g. single click or double
click) and refers to an implementation that is to be executed
when the trigger is fired. KLighD provides some standard action
implementations, e. g. for collapsing and expanding nodes;
further actions may be provided via an extension point.

IV. FIGURE ARRANGEMENT IN KRENDERING

As mentioned above, diagram elements like nodes and
edges are represented by figures that are described by means
of KRendering-based definitions. The figures usually consist
of nested rectangles, lines, text fields, etc. In this section we
discuss the arrangement of such figures. We refer to that as
the micro layout of diagram figures. This is distinct from the
arrangement of diagram elements, i. e. the layout of the overall
diagram, which we refer to as the macro layout of diagrams

some text

(a) initial figure

some longer text

(b) with extended text

some longer text

(c) bottom left alignment

Figure 3. Diagram figures with sufficient initial size adhering to similar
KRendering-based descriptions; only the label text and alignment varies.

and which is KIML’s matter. In order to illustrate that consider
sequentialActor_1 in Figure 2(b). While the positions of the
state representatives (the rounded rectangles) are matter of the
macro layout, the positions of their label strings are matter of
the micro layout.

In common editor-based diagram drawing tools, the micro
layout is either performed by layout managers (e. g. Stack-
Layout, FlowLayout, ToolbarLayout, XYLayout, etc.), or by
full-custom handwritten implementations, like in Graphiti-
based editors. They are part of the editing tools in both
cases and not reflected in the diagram description at all.
KGraph/KRendering-based diagrams, however, are supposed
to be fully self-contained on the one hand, and robust with
respect to changes of size constraints on the other hand. Such
size constraints are imposed by text fields of arbitrary length,
or, in case of hierarchic nodes, by the size of the content, as
seen in Figure 2(b). Both requirements are derived from the top
level objective Reduction of time to diagram. Thus, we propose
to specify micro layout concerns in an abstract fashion.

A. Smart Figure Layout

We address the above requirements by providing three
figure layout strategies in the KRendering language.

1) Reference-point-based child placement: The child figure is
located at a reference position within the parent figure, and
aligned according to horizontal and vertical alignment settings.
The size of the child figure may be determined by related
minimal height and width parameters; additional horizontal
and vertical margins may be configured.

2) Sub-area-based child placement: The child figure is laid
out within a contained area of the parent that is determined
by top left and bottom right positions.10 These positions form
a bounding box and, thus, the bottom right position is never
located left or above the top left position.

3) Grid-based child placement: All children of the parent
figure are positioned along a grid with a given number of
columns. The size of the particular colums and rows is derived
from the size of the contained child figures, the size of the
parent figure, and minimal width/height constraints.

To achieve robustness against size changes, we introduce a
more abstract notion of position. As usual a position consists
of a horizontal and a vertical component. These components,
however, consist of an absolute part in dots/pixels, and a
relative part in range of zero to one, which is applied to the
width or height of the parent figure. In addition, the horizontal
position components refer either to the left or right bound of
the parent, and the vertical ones to the top or bottom bound.
The given length is applied from the respective side towards

10In the previous version of KRendering this placement strategy was called
“direct placement” [1].

1 KNode {
2 width=200 height=50
3 KRoundedRectangle {
4 lineWidth=3!
5 KRectangle {
6 lineStyle=DASH_DOT
7 KAreaPlacementData
8 topLeft TOP abs=8px rel=0, LEFT abs=8px rel=0
9 bottomRight BOTTOM abs=8px rel=0, RIGHT abs=8px rel=0

10 KText "some text" {
11 italic
12 KPointPlacementData
13 refPoint TOP abs=0px rel=0.5, LEFT abs=0px rel=0.5
14 horMargin=8px
15 horAlignment=CENTER
16 vertAlignment=CENTER
17 }}}}

Listing 1. Description of the diagram figure in Figure 3(a) in the KRendering
format (pseudo code). Modifying the label text to “some longer text" leads to
Figure 3(b). The label position and alignment were changed for Figure 3(c).

the center of the figure. Note that the freedom w. r. t. the
position reference sides is not restricted by the sub-area-based
child placement condition. That condition refers to concrete
coordinates being calculated based on the abstract position
data. This way we can express the positioning of a child at a
fixed ratio w. r. t. the parent’s size rather than at a fixed absolute
position. For example, we can place text labels at the center of
their parents. We can also direct a figure to occupy a certain
quadrant or corner of its parent, or prescribe a fixed margin
surrounding the child regardless of the parent’s concrete size.

Example: Imagine a diagram figure that consists of two
nested rectangles and a text label like in Figure 3(a). There
shall be a margin of 5px between the inner and outer rectangle,
the label shall be aligned centrally in both horizontal and
vertical directions. In addition, the label shall preserve a margin
of at least 5px to the inner rectangle on its left and right side.

Listing 1 shows the KRendering-based description of Fig-
ure 3(a). It starts with the definition of a KNode that denotes
the structural diagram element. The node is configured with
an initial size and a composed KRendering defining its look.
The root figure is a rounded rectangle of line width 3. This
line width is to be applied to its children, too, indicated
by the exclamation mark. The rounded rectangle contains a
regular rectangle with a special line style. This child rendering
definition is augmented with KAreaPlacementData that define
the area of the rounded rectangle to be covered by this inner
rectangle. This definition determines insets of 8px on each side
w. r. t. the bounds of the rounded rectangle. The value of 8px
is chosen to comply with the line width of 3 and the required
margin of 5px mentioned above.

The inner rectangle is equipped with a text field, indicated
by the keyword KText followed by the string to be displayed.
It is augmented with KPointPlacementData that define the ref-
erence position of the text figure to be at the half width and
half height of the containing rectangle. This is indicated by the
position components’ relative portions of 0.5. The text figure is
to be aligned centrally for both dimensions meaning it grows
equally to the four directions starting from the reference point.
The horMargin of 8px reflects the required minimal margin of
the label (5px) adjusted by the parent’s line width of 3px.

If we modify the label string to “some longer text”, we will
obtain the diagram figure depicted in Figure 3(b). If we, in

some longer text exceeding the defined bounds

(a) broken micro layout

some longer text exceeding the defined bounds

(b) increased figure satisfying the micro layout

Figure 4. Diagram figure drawings with insufficient given size values.

contrast, would like to let the text start on the lower left
corner, we would simply define the reference point to be at
BOTTOM abs=0px rel=0, LEFT abs=0px rel=0, set the horizontal
alignment to LEFT, and the vertical alignment to BOTTOM. A
related drawing is depicted in Figure 3(c). Additional margins
on the left and bottom side might be configured by means of
the absolute position parameters. Aligning the text, e. g. on the
lower right corner, works analogously with the reference point
on the RIGHT and the horizontal alignment to RIGHT.

B. Estimating the required node size

So far we are able to place primitive figures, described
in form of rendering definitions, within a compound dia-
gram figure of given size. Often, however, it is required to
adapt the size of the whole diagram node in order to meet
the requirements imposed by the attached figures’ placement
strategies. Especially in case of text fields of variable length,
e. g. those representing the name or another value of an
object, an adjustment of the node size is usually necessary
or, at least, desired. To illustrate, consider the example in
Figure 3/Listing 1 again. If we extend the text string to be
displayed to “some longer text exceeding the defined bounds”, we
will expect a result as depicted in Figure 4(b) rather than a
figure like Figure 4(a) with the text violating the figure bounds.

To this end, we developed a heuristic estimation of node
sizes based on the attached KRendering data. It is related to
the calculation of the minimal and preferred sizes of figures
by the layout managers of Eclipse GEF. Since the node size
must be known while computing the macro layout, we situate
it as a macro-layout-preprocessing activity that is performed
between steps 4) and 5) according to Figure 1. Since the macro
layout might also affect the size of nodes, this estimation will
not work in general, because with the relative position portions
we would have to search for fix points. Regarding our objective
Efficiency we avoid fix point iterations. Our approach works
quite well in common cases, though.

Algorithm 1 illustrates the starting point of the size es-
timation function that distinguishes three major cases. If the
current rendering definition is a text field, the required space of
the string’s drawing is to be determined, e. g. by means of the
platform’s window system. That calculation must incorporate
the selected font, font size, and font style (normal, bold, italic).
If the rendering definition is an instance of KChildArea, a
required size of (0, 0) will be assumed. Child areas are virtual
rendering definitions acting as placeholders for the children of
KNodes in hierarchic diagrams. Since the placement of those
children is determined during the macro layout phase, the
required space is allocated at that time, too. Thus, a required
size of zero is returned by the node size estimation function.

Both the KText and KChildArea cases serve as axioms of
this function. In contrast, the size of KContainerRenderings, i. e.
those that may contain child rendering definitions, must be
derived from the sizes of the contained children recursively. In

Algorithm 1 Size estimation of KRendering-based diagram
figure definitions

1 function estimateSize(rendering, (float, float) initialSize) returns (float, float):
2 switch (type(rendering))
3 case KText:
4 return estimateTextSize(rendering)
5 case KChildArea:
6 return (0, 0) // the size of child areas is determined by the macro layout
7 case KContainerRendering:
8 if (requiresGridChildPlacement(rendering))
9 return estimateGridSize(rendering, initialSize)

10 else
11 (float, float) maxSize← initialSize
12 for (KRendering r in children(rendering))
13 if (child has KPointPlacementData)
14 maxSize← max(maxSize, estimatePointPlacedChildSize(child))
15 elsif (child has KAreaPlacementData)
16 maxSize← max(maxSize, estimateAreaPlacedChildSize(child,

initialSize))
17 end if
18 end for
19 return maxSize
20 end if
21 end switch

order to comply with the size constraints imposed by the child
figures’ placement strategies, these strategies must be applied
in the inverse way. Thus, further cases are to be distinguished.
In case the children are to be arranged in a grid all children
are treated at once, since they impose interdependencies in
terms of heights and widths of the grid’s rows and columns. In
contrast, children being arranged according to the reference-
point and sub-area-based strategies are considered indepen-
dently. Otherwise we would have to perform further fix point
iterations. Therefore, the size estimation is performed for each
child separately, and the final required size is the maximum of
the sizes required by the contained children (the max() function
in line 14 and line 16 is applied componentwise).

In the following, we explain the size estimation w. r. t. the
particular placement strategies. For the sake of brevity we omit
the grid-based one. A basic precondition is assumed to hold for
all child rendering definitions: Each child’s bounds (adjusted
by required margins) are equal to its parent’s bounds or fully-
enclosed by them. This implies that children are never larger
than their parents and do not overlap their parents bounds.

Algorithm 2 illustrates the process for rendering definitions
augmented with reference-point-based placing information.
First, the maximum of the minimal size defined in the place-
ment data and the actually required size is calculated, see
Algorithm 2 line 4 (again, max() is applied componentwise). In
case of LEFTward horizontal alignment the child figure’s left
bound is to be put on the reference position. Thus, we estimate
the child figures’ required width by the sum of the leftward
indentation defined by the reference position’s absolute part,
the child’s actual width, and the horizontal margin, which is
to be added on the child’s right side in this case (Algorithm 2
line 10). The reference position’s relative part is ignored as
its proper incorporation would require the aforementioned fix
point iteration. The RIGHTward alignment case is symmetric.

In case of CENTRAL alignment the horizontal margin pre-
scribed by the placement data is to be applied to both sides,

Algorithm 2 Estimation of space required by a rendering
definition placed according to the point-based placing strategy.

1 function estimatePointPlacedChildSize(child) returns (float, float):
2 ppd← placementData(child)
3 (float h, float w) minimalSize = (ppd.minHeight, ppd.minWidth)
4 (float h, float w) cSize← max(estimateSize(child, minimalSize), minimalSize)
5 float requiredHeight, requiredWidth
6

7 switch (ppd.horAlignment)
8 case LEFT:
9 case RIGHT:

10 requiredWidth← ppd.refPos.x.abs + cSize.w + ppd.horMargin
11 break
12 case CENTRAL:
13 float halfWidth← cSize.w / 2
14 if (ppd.refPos.x.abs > halfWidth + ppd.horMargin)
15 requiredWidth← ppd.refPos.x.abs + halfWidth + ppd.horMargin
16 else
17 requiredWidth← 2 × halfWidth + 2 × ppd.horMargin
18 end if
19 end switch
20

21 ... // vertical dimension analogously
22 return (requiredHeight, requiredWidth)

hM
hW hW

hM

refPos.x.abs

(a) The hor. position’s absolute part
exceeds the sum of hM and hW.

hM
hW hW

hM

refPos.x.abs

(b) The hor. absolute position part is
below the sum of hM and hW.

Figure 5. Placing constellations of a point-based placed child shape (dashed
rectangle) in a parent shape (dotted rectangle) that is to be aligned centrally,
limited to the horizontal dimension. The reference point is marked by the
cross, hW denotes the child’s half width, hM refers to the horizontal margin.

i. e. on the left and right. This entails a distinction of two
cases, which are illustrated in Figure 5. In case the reference
position’s absolute part exceeds the sum of half width and
horizontal margin (Figure 5(a)), the required width is estimated
by the sum of the absolute part, the child’s half width, and the
horizontal margin, see Algorithm 2 line 15. Otherwise, the
basic precondition stated above appears to be violated, since
the child adjusted by its margins seems to overlap the parent’s
bound (Figure 5(b)). This violation, however, may be fixed
by a valid relative positioning part. Since the parent size is
still unknown, we cannot compute the distance determined
by the relative part. We, thus, assume the good case, i. e.
the satisfaction of our precondition, and estimate the required
width by the sum of the child’s width and twice the margin.
The estimation of the required height works similarly.

The required space-estimation of rendering definitions ar-
ranged according to the sub-area-based placement strategy
is outlined in Algorithm 3. Due to the similar treatment of
horizontal and vertical dimension we skip to the vertical one.
Again, the actual minimal size of the child rendering definition
is calculated first, and the size gain due to the placement
parameters is determined subsequently. The gain is affected
by the share of the parent’s width to be covered by the child,
as well as by the absolute amount the child is smaller than
the parent. The share is derived from the positions’ relative
parts, the absolute amount from the positions’ absolute parts,

Algorithm 3 Estimation of space required by a rendering
definition placed according to the area-based placing strategy.

1 function estimateAreaPlacedChildSize(child, initialSize) returns (float, float):
2 apd← placementData(child)
3 (float h, float w) cSize← estimateSize(child, applyAreaPlacing(initialSize, apd))
4 float absAmount, share;
5

6 Position left← apd.topLeft.x
7 Position right← apd.bottomRight.x
8 switch ((left.referenceSide, right.referenceSide))
9 case (LEFT, RIGHT): // topLeft refers to the left side, bottomRight to the right

10 share← 1.0 − left.rel − right.rel
11 absAmount← left.abs + right.abs
12 break
13 case (LEFT, LEFT): // topLeft refers to the left side, bottomRight to the left
14 share← right.rel − left.rel
15 absAmount←−right.abs + left.abs
16 break
17 case (RIGHT, RIGHT): // topLeft refers to the right side, bottomRight to right
18 share← left.rel − right.rel
19 absAmount←−left.abs + right.abs
20 break
21 case (RIGHT, LEFT): // topLeft refers to the right side, bottomRight to the left
22 share← right.rel − (1.0 − left.rel)
23 absAmount←−right.abs − left.abs
24 end switch
25 float requiredWidth← (share == 0.0 ? 0.0 : cSize.w / share) + absAmount
26

27 ... // vertical dimension analogously
28 float requiredHeight← (share == 0.0 ? 0.0 : cSize.h / share) + absAmount
29 return (requiredHeight, requiredWidth)

respectively. Due to the flexibility in defining the positions of
the sub area’s topLeft and bottomRight corners in terms of the
horizontal reference sides (see Section IV-A), four cases are
to be distinguished for computing these values, see lines 9
to 21. The child’s required width is then obtained by dividing
the child’s actual width by the share and adding the absolute
amount. Note the special treatment in case the share is equal to
zero. This will occur if the width of the child is adjusted only
by the positions’ absolute parts, like in Listing 1 for example.

V. CASE STUDY: UML USE CASE DIAGRAMS

To demonstrate the effectiveness of our approach, we now
present an exemplary application of KLighD for synthesizing
UML use case diagrams. We utilize the Xtend language and
KRendering-related convenience functions that form an inter-
nal DSL. It abstracts, e. g., factory and constructor calls, and the
style definitions via separate objects by simple setter methods.

Use case diagrams show actors by means of stick figures
and use cases in form of labeled ellipses. Those figures
are usually connected by simple straight lines that represent
relations between actors and use cases. We used the Papyrus11

tool to create a simple example, see Figure 6, that contains two
actors named Actor 1 & Actor 2. Actor 1 is related to use case
Simple UseCase A, Actor 2 to use case Simple UseCase B. Both
actors are related to a third use case named Very important Use-
Case requiring lots of attention. Papyrus structures this semantic
information on actors, use cases, and relations according to the
UML2 meta model provided by the Eclipse MDT project. Thus,

11http://www.eclipse.org/papyrus/

Actor 2

Actor 1

Very important UseCase requiring lots of attention

Simple UseCase A

Simple UseCase B

Figure 6. UML use case diagram automatically created & arranged by KLighD.

1 def KNode createUseCaseNode(UseCase useCase) {
2 return useCase.createNode().putToLookUpWith(useCase) => [
3 it.addEllipse() => [
4 it.foreground = "darkGray".color
5 it.addText(useCase.name).putToLookUpWith(useCase) => [
6 it.setSurroundingSpace(10, 0.1f) // absolute part, relative part
7]]] }

Listing 2. Synthesis of UML use case figure definitions, formulated in Xtend.

our diagram synthesis must translate data complying with that
meta model into KGraph/KRendering data.

Listing 2 shows the translation of UseCase objects into
related diagram objects. Each one is represented by a dedicated
diagram figure, so a related KNode is created by means of the
createNode() function. In order to easily access the node object
while translating the relations later on, an explicit mapping
of the UseCase object and the node is kept in mind by that
function. Since this mapping is maintained in one direction
only, there is the function putToLookUpWith(...) that builds up
a bidirectional map. These data are available as long as the
diagram exists and, thus, enable to reveal and focus semantic
elements, which are related to selected diagram figures, e. g.
in an editor or another viewer. Thanks to Xtend we can write
these calls in suffix notation as shown in the listing.

Once the required node is created, it needs to be configured.
This can be done elegantly with the . . . => [. . .] construct. It
applies the procedure in square brackets to the object on the
left. Within the procedure that object is accessible via the built-
in identifier it and returned finally. We augment the node with
an ellipse, whose foreground/stroke color is set to dark gray,
and which is equipped with the required text field displaying
the name of the UseCase object. The size of the whole figure
is not defined, since it is to be determined automatically by
the text field’s string according to the principles discussed in
Section IV-B.

The actor figures are composed as depicted in Listing 3.
The required KNodes are created similarly to those of the use
cases; the node size, however, is defined explicitly, since it
is fixed rather than derived from text strings. The actors’
names are displayed by explicit node labels (a construct of
the KGraph format), which are attached and configured by the
addOuterCentralBottomNodeLabel(. . .) method. The root rendering
definitions of actor figures are invisible rectangles that act as

1 def KNode createActorNode(Actor actor) {
2 return actor.createNode().putToLookUpWith(actor) => [
3 it.setNodeSize(60, 100);
4 it.addOuterCentralBottomNodeLabel(actor.name).putToLookUpWith(actor)
5 it.addRectangle() => [
6 it.invisible = true
7 it.addPolyline() => [
8 it.points += createKPosition(LEFT, −2, 0.5f, TOP, 34, 0)
9 it.points += createKPosition(LEFT, −2, 0.5f, TOP, −2, 0.5f)

10 ...
11 it.points += createKPosition(RIGHT,−2, 0.5f, TOP, −2, 0.5f)
12 it.points += createKPosition(RIGHT,−2, 0.5f, TOP, 34, 0)
13]
14 it.addEllipse().setPointPlacementData(
15 createKPosition(LEFT, 0, 0.5f, TOP, 0, 0), // ref side, abs part, rel part
16 H_CENTRAL, V_TOP, 0, 0, 35, 35 // alignment, margins, width, height
17).background = "white".color
18]] }

Listing 3. Synthesis of UML actor figure descriptions, formulated in Xtend.

1 override KNode transform(Model input) {
2 return input.createNode() => [// the root node representing the diagram canvas
3 it.addLayoutParam(LayoutOptions::SPACING, 40f)
4 // ... and add the diagram elements
5 it.children += input.packagedElements.map[
6 switch(it) {
7 Actor: it.createActorNode()
8 UseCase: it.createUseCaseNode()
9 default: null

10 }
11].filterNull() // drops null values
12 // create representations of the associations (edges)
13 // they are attached to the diagram implicitly by setting their source node
14 input.packagedElements.filter(typeof(Association)).forEach[association |
15 association.createEdge().putToLookUpWith(association) => [
16 it.source = association?.ownedEnds.head?.type?.node
17 it.target = association?.ownedEnds.last?.type?.node
18 it.addPolyline()
19]
20]] }

Listing 4. Main mapping function building descriptions of UML use case
diagrams based on model data conforming to the UML2 meta model (Xtend).

containers of the polylines forming the bodies of the stick
figures and ellipses forming the heads. The start, bend, and end
points of the body polylines are determined in KRendering’s
flexible position notation, too. They, besides, determine the
positions of the polylines within their parent rendering defi-
nitions, and here therefore within the whole diagram figures.
In the listing the enumeration of the 17 points is abbreviated.
The ellipse rendering definitions are placed according to the
reference point–based placing strategy with a horizontal and
vertical margin of zero, the (minimal) width and height equal to
35px yield the desired circles. The circles’ explicit background
color avoids the polylines’ ends to project into the circles.

The main function of the diagram synthesis is shown in
Listing 4. Its signature is prescribed by the required super class
AbstractDiagramSynthesis. The function creates a root KNode and
configures some macro layout parameters. Afterwards, the
switch statement in the square brackets is applied to each of
the entries in the input object’s list named packagedElements,
indicated by the map() function. The resulting KNodes and

null values are combined to a new list returned by map().
The nulls are dropped by the filterNull() function applied to the
aforementioned list, and the remaining collection of KNodes is
added to the root node’s children.

In order to synthesize the links representing the relations
between actors and use cases, the packagedElements list is
traversed again, whereby only elements of type Association are
regarded, indicated by the filter() function call. Similar to the
creation of nodes, a KEdge is created for each Association object
and linked for tracing purposes. Source and target of these
edges are set by revealing the ends of the association, i. e. the
actors and use cases related to each other. They are returned by
the expressions association?.ownedEnds.{head|tail}?.type? in this
case, the question marks avoid potential null pointer faults. The
expression node returns the KNode object that has been created
while applying createNode() to the actor or use case object
beforehand. Besides, setting the source of edges automatically
attaches those edges to the networks of KNodes via EMF’s
opposite reference mechanism. Finally, polyline rendering def-
initions are attached. The concrete start, bend, and end points
are matter of the macro layout and, thus, not regarded here.

Our diagram synthesis mapping is contributed to KLighD
by registering it via an extension point. If KLighD is demanded
to show a diagram of our example model by executing Dia-
gramViewManager.getInstance().createView(<ourExample>), e. g. via
a menu entry, a new Eclipse view will be opened showing the
diagram in Figure 6. Thus, regarding this case study an effort
of writing down about 60 lines of code is required to come to
simple use case diagrams rather than implementing a custom
editor or viewer by means of the established technologies. The
source of this exemplary diagram synthesis is available in the
KIELER source code repository.12

VI. CONCLUSION AND FUTURE WORK

With the work of this paper we tackle the problem of wast-
ing lots of productivity while creating graphical representations
of system designs. Instead of drawing diagrams manually,
we propose their automatic generation from a specification
(a model) at the time they are needed. This transient view
approach is an advancement of Model Driven Visualization
(MDV). The KLighD framework demonstrates the feasibility of
this concept and is our proposal for employing on-demand
synthesized node-link-diagrams. Besides the required ability
to construct appealing diagram layouts, we draw attention to
the issue of composing the diagram figures, which appears to
be almost equally important in practice since diagram figures
are usually labeled with at least a name.

The KLighD framework was conceived within the MENGES13

project, which aimed at employing MDSE methods in the devel-
opment of safety-critical railway signaling systems. Currently,
we are working on its integration in an advanced model
browser that is developed by an automotive software supplier.
It is supposed to equip engineers applying software in the field
with a tool realizing state of the art browsing techniques like
semantic zooming in an intuitive fashion, and to display results
of queries on the model base.

12http://git.rtsys.informatik.uni-kiel.de/projects/KIELER/repos/pragmatics/
browse/plugins/de.cau.cs.kieler.klighd.examples/

13http://menges.informatik.uni-kiel.de/

Beyond the visualization of data perceived as models,
KLighD can be employed for visualizing arbitrary data in form
of node-link-diagrams. For example, it is currently used in
a project for representing Java collection data and other data
structures in a human-friendly form while debugging a piece of
Java software. In addition to diagram drawings in the tool we
are also working on a Scalable Vector Graphics (SVG) export.

Other future work will address the specification of diagram
synthesis mappings by means of a DSL rather than implement-
ing it in model to model transformation or program code. We
intend to achieve a further step of abstraction with such a
DSL. This, in turn, might pave the way for allowing domain
experts, which are often programming non-experts, to extend
their modeling tools by further specific diagram syntheses.

REFERENCES

[1] C. Schneider, M. Spönemann, and R. von Hanxleden, “Transient
view generation in Eclipse,” in Proceedings of the First Workshop on
Academics Modeling with Eclipse, Kgs. Lyngby, Denmark, Jul. 2012.

[2] B. Shneiderman, “The eyes have it: A task by data type taxonomy
for information visualizations,” in Proceedings of the 1996 IEEE
Symposium on Visual Languages (VL’96). IEEE Computer Society,
Sep. 1996, pp. 336–343.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1998.

[4] O. Gotel, F. T. Marchese, and S. J. Morris, “The potential for synergy
between information visualization and software engineering visualiza-
tion,” in Proceedings of 12th International Conference on Information
Visualisation (IV’08). IEEE Computer Society, 2008, pp. 547–552.

[5] M. Minas, “Generating meta-model-based freehand editors,” in Pro-
ceedings of the 3rd International Workshop on Graph Based Tools
(GraBaTs’06), ser. Electronic Communications of the EASST, vol. 1,
Berlin, Germany, 2006.

[6] Á. Lédeczi, M. Maróti, Á. Bakay, G. Karsai, J. Garrett, C. Thomason,
G. Nordstrom, J. Sprinkle, and P. Völgyesi, “The generic modeling
environment,” in Workshop on Intelligent Signal Processing, 2001.

[7] G. Mezei, T. Levendovszky, and H. Charaf, “Visual presentation so-
lutions for domain specific languages,” in Proceedings of the IASTED
International Conference on Software Engineering, Innsbruck, 2006.

[8] M.-A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Müller, “On
integrating visualization techniques for effective software exploration,”
in Proceedings of the IEEE Symposium on Information Visualization.
IEEE, 1997, pp. 38–45.

[9] R. I. Bull, M.-A. Storey, M. Litoiu, and J.-M. Favre, “An architecture to
support model driven software visualization,” in Proceedings of the 14th
IEEE International Conference on Program Comprehension (ICPC’06).
IEEE, 2006, pp. 100–106.

[10] H. Fuhrmann and R. von Hanxleden, “Taming graphical modeling,” in
Proceedings of the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), ser. LNCS,
vol. 6394. Springer, Oct. 2010, pp. 196–210.

[11] H. C. Purchase, “Metrics for graph drawing aesthetics,” Journal of
Visual Languages and Computing, vol. 13, no. 5, pp. 501–516, 2002.

[12] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1-2, pp. 31–39, 2008.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse
Modeling Framework, 2nd ed., ser. Eclipse Series. Addison-Wesley,
Pearson Education, 2009.

[14] B. B. Bederson, J. Grosjean, and J. Meyer, “Toolkit design for interac-
tive structured graphics,” IEEE Transactions on Software Engineering,
vol. 30, no. 8, pp. 535–546, Aug. 2004.

[15] K. Perlin and D. Fox, “Pad: An Alternative Approach to the Computer
Interface,” in Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, ser. SIGGRAPH ’93. New York,
NY, USA: ACM, 1993, pp. 57–64.

