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Abstract—Most visual languages are not purely graphical but
include textual labels to complete the picture. However, in some
languages labels tend to become rather long and thereby enlarge
diagrams considerably. Since today’s state-of-the-art development
tools usually display diagrams in full detail, users must often
scroll through the diagram or zoom out until the diagram fits
inside the available drawing area, but then ceases to be legible.

In this paper, we address this problem by examining ways
to dynamically shorten the text of labels to keep the size of a
diagram manageable. We introduce a number of label shortening
strategies, explain ways to integrate them into diagram genera-
tion processes based on automatic layout algorithms, and explain
their relation to the established focus and context approach which
aims at solving a similar problem. We evaluate our strategies
based on the SCChart visual language and an open-source,
Eclipse-based modeling environment.

I. INTRODUCTION

Visual languages are in widespread use for a variety of
applications. Languages such as the Unified Modeling Lan-
guage (UML) provide different complementary views on the
systems built by developers, for example by visualizing the
different components they are composed of, or by showing
how those components interact. In the automotive, avion-
ics, and embedded systems industries, visual languages are
largely used as programming languages to develop software
following model-based development concepts. Languages such
as ASCET (ETAS Group), LabVIEW (National Instruments),
SCADE (Esterel Technologies), or Simulink (MathWorks)
allow developers to define software systems using node-link
diagrams: nodes are entities that can consume and produce
data, which are then transmitted between them through links
(or edges).

One reason for the existence of the UML is that it is hard to
keep an overview of a software system while looking at code
written in traditional, textual programming languages, giving
rise to the need for additional visual representations of the sys-
tem’s high- to medium-level architecture. One might assume
that this is a flaw inherent only to textual languages, but visual
programming languages suffer from the same shortcoming: in
practice, software systems can easily consist of hundreds of
diagrams, with each diagram usually containing about 10 to
50 levels of hierarchy (we received reports of diagrams with
hundreds of levels of hierarchy).

Developers may easily get lost in this kind of complexity,
but even with only one level of hierarchy a diagram can
quickly grow too large to be displayed on a single screen
in its entirety. One reason for this—that we are particularly
interested in in this paper—is that most visual languages
cannot make do without labels that give meaning to the visual
elements. Depending on the language, these labels can grow
rather long and thus enlarge the diagram significantly, regard-
less of whether or not they are contributing any significant
information at a particular moment. Developers are thus forced
to either keep scrolling back and forth in the diagram, or to
decrease the zoom level and causing legibility to suffer. In fact,
we have witnessed developers feeling the need to work around
these problems by introducing more levels of hierarchy, each
kept as small as possible.

A. Model-View Separation

In keeping with the established separation between the
model and its views, the solution just described attempts to
solve a view problem by changing the model when in fact the
model’s development should be guided only by the problem
it is supposed to solve, not by shortcomings of the software
used to develop it. Today’s commonly used development tools
usually consider all information contained in a model to be
of equal importance to the developer and thus provide them
with views of the model with all of its details. Instead, it
should be recognized that the importance of different pieces
of information varies both depending on the task at hand
and from element to element. Showing all the details should
be replaced by a view filtering approach that displays only
the relevant information. Incidentally, this is how views were
defined in the first place when the model-view-controller
paradigm was introduced by Reenskaug [1]: “[The view]
would ordinarily highlight certain attributes of the model and
suppress others. It is thus acting as a presentation filter.”

This realization and subsequent improvements to the usabil-
ity of visual languages are closely related to modeling prag-
matics [2], which aims to increase developer productivity by
making working with visual languages easier. One approach to
increase the usability of visual languages is view management:
adjusting the level of detail of each element to be appropriate
for the current task. This is not limited to the main view,

978-1-5090-0252-8/16/$31.00 c©2016 IEEE



DudeSwitching

input bool firstDude_switch_impendingDoom
input bool firstDude_switch_apocalypse
input bool secondDude_switch_impendingDoom
input bool secondDude_switch_apocalypse
input bool thirdDude_switch_impendingDoom
input bool thirdDude_switch_apocalypse
output int indicatorReady = 0
output int indicatorImpendingDoom = 0
output int indicatorApocalypse = 0
bool firstDude_request_ready
bool firstDude_request_impendingDoom
bool firstDude_request_apocalypse
bool secondDude_request_ready
bool secondDude_request_impendingDoom
bool secondDude_request_apocalypse
bool thirdDude_request_ready
bool thirdDude_request_impendingDoom
bool thirdDude_request_apocalypse

readyState

int entryTime = <millis()>
int currentTime = entryTime

entry / indicatorReady = 255
exit / indicatorReady = 0

notQuiteBoringYetWeAreWorkingOnIt itsBoringThankYouVeryMuch

2:  / currentTime = <millis()>

1: currentTime - entryTime >= 300000 / indicatorReady = 0

[-]

impendingDoomState

entry / indicatorImpendingDoom = 255
exit / indicatorImpendingDoom = 0

apocalypseState

entry / indicatorApocalypse = 255
exit / indicatorApocalypse = 0

firstDude_request_ready == false || secondDude_request_ready == false || thirdDude_request_ready == false

2: firstDude_request_ready == true && secondDude_request_ready == true && thirdDude_request_ready == true

1: firstDude_request_apocalypse == true || secondDude_request_apocalypse == true || thirdDude_request_apocalypse == true

firstDude_request_apocalypse == false && secondDude_request_apocalypse == false && thirdDude_request_apocalypse == false

[-] Controller

firstDudeLogic @ OneDudeLogic

[+]

[-] FirstDude

secondDudeLogic @ OneDudeLogic

[+]
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thirdDudeLogic @ OneDudeLogic

[+]

[-] ThirdDude

(a) Without label management.
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(b) With label management.

Fig. 1. The same diagram (a) with all labels displayed without modification, and (b) with label size managed by wrapping the label’s text appropriately.
The area available to draw the SCChart is the same in both figures, but the diagram in (b) can be drawn with a larger zoom factor. In this particular case, the
label size adjustment is performed without reducing the amount of information in the diagram.

but can include additional views generated on the fly with
automatic layout algorithms [3] to show a filtered and possibly
highly specialized view of the model. Label management is
one of the building blocks of view management, focussing
on how labels are displayed. As an example, Fig. 1 shows
the same model with different label management strategies
applied to the edge labels. If the area available to draw a
diagram stays constant, as is typical when viewing and editing
diagrams, reducing label detail allows for a larger zoom factor
and increased legibility by only sacrificing information that is
not of immediate importance.

B. Contributions

In this paper, we explore ways to integrate label manage-
ment into view management. Based on a case study, we present
different label management strategies based on modifying a
label’s text, as well as different ways of integrating them
into the view generation process. We show how the role
of automatic layout algorithms can be expanded to include
decisions not only regarding where elements are placed, but
also what information these elements show. We thus do not
focus only on shortening labels, but also on the impact this has
on the whole process of generating and displaying diagrams.
While our case study focusses on viewing scenarios, the
introduced concepts should be applicable to editing scenarios
as well. For the scope of this paper, we limit our discussions
to edge labels only.

C. Related Work

This paper builds upon work done by Hauke Fuhrmann
as part of his dissertation [4]. Therein, he defines label
management as one important part of filtering views presented
to the user. He introduces the concept of a label manager
and the need for it to be customizable to specific languages
and introduces several approaches to label management, which
we extend by new approaches. We build on this foundation
by investigating and evaluating concrete label managers and

proposing ways for combining them and for integrating them
into view generation and user interaction.

Over the years, different methods have been proposed to
solve the problem of too much data and too little screen
space. Opticially distorting fisheye views [5] show the areas of
interest to the user with increased magnification, with results
that mimic the classic fisheye lens effect. Applied to our use
cases, the distortion would negatively impact legibility. Graph-
ical fisheye views [6] remove the distortion by magnifying
the nodes themselves and applying automatic layout to keep
nodes, edges, and labels straight. In this paper, we focus on
changing the text of labels instead of their magnification. Both
techniques however may well be combined.

Been et al. apply label filtering concepts to dynamic map
exploration [7]. As the user zooms in and out, labels are
shown and hidden depending on the space available for them.
Especially if combined with a notion of a label’s importance,
this approach seems to work very well for map exploration, as
demonstrated for example by Google Maps. However, in this
approach a label is either completely visible or completely
hidden and does not influence its surroundings much. In this
paper, we are interested in changing a label’s actual content,
and with it its size, to allow more diagram elements to fit on
the screen. This can include, but is not limited to, hiding a
label altogether.

Musial and Jacobs follow a similar idea and apply filtering
concepts to UML diagrams [8]. They gradually reduce the
amount of details classes are visualized with as their graph-
theoretical distance increases to classes focussed on by the
user. While this does change the diagram’s layout to show
more classes to the user, labels are again either completely
shown or hidden, but do not have their level of detail changed.
Also, Musial and Jacobs concentrate on modifying node labels
based purely on focus and context information. In this paper,
we focus on edge labels and investigate ways to take layout
information into account when making label management



decisions.
Regarding the decision of how much detail an element

should be shown with, focus and context is an important
concept [9]. Herein, the diagram elements are divided into
the set of elements the user is currently focussing on and
surrounding elements that provide context for the focussed
elements. We show how label management decisions can be
made based on this method.

D. Outline

We start by introducing the visual language used as a case
study for label management in Sec. II. Sec. III introduces
strategies for reducing the detail of different kinds of labels,
which answers the question of how to shorten labels. We
will look at how to integrate these strategies into the view
generation process in Sec. IV, which answers the question
of when and how much to shorten labels. We evaluate the
presented ideas in Sec. V with a survey and a metrics-based
evaluation and conclude the paper with future work in Sec. VI.

II. PROBLEM SETTING

The concepts we introduce should be generally applicable
to all visual languages that employ textual elements and suffer
from the problems described above. However, to make things
concrete our main motivation for the purposes of this paper
are our experiences working with a visual language called
SCCharts [10], a synchronous language inspired by David
Harel’s statecharts [11].

At their most basic, SCCharts consist of states, displayed
as nodes, and transitions that transfer control between states,
displayed as edges (see Fig. 2 for an example). States can
contain further SCCharts to define what happens when they
are active, allowing their behavior to be arbitrarily complex.
Transitions can have a trigger condition that must be true
for a transition to become eligible. Trigger conditions are
expressions that usually depend on the presence, absence, or
value of signals (which can be thought of as variables). Since
more than one transition leaving an active state can be eligible
at a given time, transitions can be assigned priorities: the
eligibility of transitions is evaluated in order of their priority,
and the first eligible transition is taken. When that happens,
it can cause an action to be executed, which can change a
signal or execute host code calls that invoke externally defined
functions. The signals used in triggers and actions can be taken
from or made available to the state’s environment by declaring
them as input or output signals in the state’s interface.

State names, state interfaces, priorities, triggers, and actions
are all displayed as textual labels inside or next to the
respective graphical elements. As already hinted at in the
introduction, an SCChart thus derives much of its meaning
from its textual content.

SCCharts are actually not edited graphically, but through a
textual editor—again, see Fig. 2—complemented by a graph-
ical view of the SCChart as currently specified. Both are part
of an open-source Eclipse-based modeling environment.1 The

1http://rtsys.informatik.uni-kiel.de/kieler

graphical view is generated and kept up to date on the fly,
with all of its elements placed and routed by automatic layout
algorithms. The idea of this kind of editing environment is to
give developers the efficiency of textual editing they are used
to as well as the possibility to spot problems easily through the
graphical view. The latter can also be used to navigate through
the code by clicking on graphical elements, which causes the
editor to jump to the corresponding piece of code.

The graphical view’s usefulness as a support to the devel-
oper obviously hinges on whether what it displays is readable
and of any significance to the current editing task. This is
where view management—and with it label management—
become relevant. The trigger and action of a transition can
become quite long even in simple SCCharts, causing the
graphical view to quickly become unusable since the zoom
level is lowered to a point where details cease to be recogniz-
able. The methods introduced in this paper aim to dynamically
reduce the size of labels and thereby of the whole model to
keep it legible.

III. LABEL MANAGEMENT STRATEGIES

In this section, we examine ways for how to shorten labels
before we turn to the when and how much in the next section.
We start with basic label management strategies that should
be applicable to all visual languages and then concentrate on
more specialized strategies for SCCharts. Finally, we explore
ways to combine different strategies.

All of these strategies modify the text of labels. Of course it
would also be possible to for example change font sizes. While
that would work well towards reducing the area of a diagram,
it may even hamper legibility and not serve to reduce visual
clutter by hiding unnecessary details, which our strategies are
capable of.

Before we start, note that many of the strategies we are
about to introduce implicitly assume knowledge about a target
width: how wide a given label should be in the diagram. For
the remainder of this section, we assume this value to be
magically known; as soon as we integrate the strategies into
the view generation process in the next section, we will turn
to the question of how to actually determine it.

A. Basic Label Management Strategies

In his PhD thesis, Fuhrmann suggested a number of basic
label management strategies that Table I summarizes based on
an SCChart transition label [4].

The first strategy, syntactical abbreviation, simply cuts the
label’s text off once the target width is reached and adds
and ellipsis as a visual hint of the abbreviation. This is
an easy to implement strategy which may work well for
natural language, but does have shortcomings when it comes
to formally structured text. In the example, the trigger con-
tains references to three signals, SignalA, SignalB, and
SignalC. Syntactical abbreviation removed the references to
all but the first signal, which may confuse users. Nevertheless,
depending on the visual language this may still be a viable
strategy.

http://rtsys.informatik.uni-kiel.de/kieler


Node labels are used to 
identify states and to 
declare the signals that 
constitute a state's 
external interface.

Center edge labels are 
used to define when 
transitions are triggered, 
what action to take upon 
triggering apart from 
transitioning to another 
state, and to define in 
which order transitions 
are evaluated if several 
transitions leave a given 
state.

Fig. 2. A typical small SCChart, currently being edited in our KIELER development environment. SCCharts are defined using a textual language. While
working in the textual editor (left), a dynamically generated graphical view of the SCChart (right) is always updated to reflect the chart’s current state (in
this case, its aspect ratio is about 4 to 3). The graphical representation uses different kinds of labels, as described in the picture. Note how the view provides
ways for the user to customize the visualization. Selecting an element in the graphical view selects its definition in the text editor.

TABLE I
BASIC LABEL SHORTENING STRATEGIES

Type Example

Abbreviate syntactical (not SignalA) xor (...

semantical SignalA, SignalB / SignalC

Wrap syntactical (hard) (not SignalA) xor (not
SignalB) / SignalC(cou
nter)

syntactical (soft) (not SignalA) xor (not
SignalB) / SignalC(
counter)

semantical (not SignalA) xor
(not SignalB) /
SignalC(counter)

The second strategy, semantical abbreviation, was devel-
oped to solve that problem. The strategy uses semantic in-
formation about the label’s content to reduce it to its most
important parts. The aim is to give users enough information
to find a particular label which they can then inspect in more
detail. In the example, the trigger is abbreviated to the list
of mentioned signals, which gives the user an idea of what
contributes to the trigger while hiding details about the exact
trigger expression. Note that this strategy may well result in
labels that exceed the target width.

The abbreviation strategies result in a smaller label size
solely by reducing a label’s width. Depending on the visual
language the width may indeed be the most critical part of
a label’s size; its height, however, may be much less of a
problem, to the point where it could even be increased. This is
the case for SCCharts, and can be dealt with not by shortening
labels, but by inserting line wraps instead.

The first line wrapping strategy, syntactical wrapping, in-

serts line wraps when a line of text is about to exceed
the target width. This can be either at the exact position
where this happens without regard to the text’s structure
(hard syntactical wrapping), or between the tokens the text
is composed of (soft syntactical wrapping). In the example,
hard syntactical wrapping does not make much sense since
the text is composed of tokens small enough to insert line
wraps between them.

In contrast to syntactical abbreviation, syntactical wrapping
fares fairly well with formally structured text. A second
strategy, however, offers an interesting alternative: semantical
wrapping restricts the token pairs between which line breaks
may be inserted in an attempt to visually preserve an expres-
sion’s structure. In the example, line breaks are inserted after
the two binary operators: xor and the division operator. Here,
it is important not to restrict possible line break locations too
much; otherwise, the target width may be exceeded too often.

B. Label Management Strategies Specific to SCCharts

The label management strategies just introduced are basic
enough to be applied to any visual language, regardless of
whether it employs natural-language labels or more formally
structured text. Knowledge about the latter’s semantics, how-
ever, may open up more possibilities for label management
that go beyond the basic strategies. As examples, we introduce
three such strategies we have developed for SCCharts, as
summarized in Table II.

The first strategy concerns transition priorities, which define
an ordering among all transitions leaving a given state and are
thus only of interest if the user’s focus is on that state or on
one of the transitions leaving it. If this is not the case, they
can usually be hidden altogether. While this will not reduce a
diagram’s overall size much, it will to a certain degree reduce
the amount of detail and thus the amount of visual clutter.



TABLE II
SCCHART-SPECIFIC LABEL SHORTENING STRATEGIES

Type Example

Transition priorities max(carCount, trainCount) > 1

Host code calls 2: max(...) > 1

Signal abbreviation 2: max(car..., tra...) > 1

The inverse is also possible: reducing transition labels to their
priority. We do feel, however, that this does not leave enough
relevant information.

The second strategy concerns host code calls, which are
invocations of externally defined functions. Host code calls
use a notation similar to that of the C programming language,
with the called function’s name followed by a list of arguments
surrounded by parentheses. When trying to reduce detail,
the most important information contained in a host code
call may not be the exact arguments, but the name of the
called function and perhaps the mere presence of arguments.
A call such as areWobblersSynchronized(tick,
wobbler1ID, wobbler2ID, 0.42) can be shortened
to areWobblersSynchronized(...).

The third strategy is based on the observation that signal
names can become quite long, especially in more complex
SCCharts. This complicates matters for the basic strategies,
which will have a hard time to achieve good results. A possible
strategy to solve this problem is to shorten the names of the
signals themselves, both in a state’s interface declaration and
in all transition labels the signals appear in. This is a more
radical intrusion with the potential to confuse users and should
thus probably be applied conservatively. An example of where
this strategy may work is if multiple signals share the same
prefix. Shortening the prefix properly could still keep the signal
names recognizable while keeping them shorter at the same
time, although this may make it harder for users to visually
scan for signal names. A simpler variant that does not suffer
from this problem is to simply apply syntactic abbreviation to
signal names.

C. Combined Label Management Strategies

The strategies introduced so far prompt two observations.
First, whether a label should have its details reduced at all
may be subject to certain conditions, as in the case of the
strategy that hides transition numbers if they are not of interest.
Second, strategies may end up not meeting the target width, as
in the case of semantic abbreviation. The following combined
strategies are intended to address these observations.

The first combined strategy is the filter strategy, which
will execute another strategy if a given condition is true and
will otherwise leave the label’s text untouched. Such a filter
strategy can be used to encapsulate the logic required to check
if a transition priority should be shortened or not, thereby
keeping the when of label shortening separate from the how as
implemented in the actual transition priority label management
strategy.

View Model Generation

Automatic Layout

Preprocessing

Feedback Loop

Label Management

Fig. 3. The view generation process can be divided into two stages. Label
management can be integrated into either stage or even into both stages,
influencing the information available for making label management decisions.

The second combined strategy is the list strategy, which
keeps an ordered list of shortening strategies and operates
in one of two modes. The first mode simply executes all
shortening strategies in order, with each strategy building on
the result of its predecessor. This mode can be thought of as
a processing pipeline. An example would be to first execute
semantic abbreviation and then apply soft word wrapping to
the result, thereby ensuring that the label does not exceed
the target width. The second mode executes the strategies in
order until one of them actually changes the label’s text, at
which point it stops. The idea is for this mode to be used
with strategies wrapped in filters, to dynamically select from
a number of possible strategies.

IV. INTEGRATING LABEL MANAGEMENT

For label management to be effective and helpful, the strate-
gies introduced in the previous section have to be properly
integrated into the development workflow. In this section, we
will explore both the technical and the user experience aspects
of this integration, thereby turning to the when and how much
of label management.

A. Label Management and Automatic Layout

In our SCChart editing scenario, the generation of the
graphical view can conceptually be divided into two stages
(see Fig. 3):

1) View model generation. This stage generates represen-
tations of each element of the model to be displayed
in terms of nodes and edges and determines how they
will be drawn on the screen. For SCCharts, this basically
means generating a node for each state and an edge for
each transition as well as defining how they are rendered
exactly.

2) Automatic layout. In this stage the automatic layout
algorithm decides which coordinates each node will end
up in and how the edges are routed between them.
Traditionally, automatic layout does not change what is
displayed, only where it is displayed.

It is not a hard requirement that view model generation
should produce a representation for each of the model’s
elements. Instead, filtering techniques such as label manage-
ment may well be integrated into this stage to reduce the



detail of a model element’s representation or leave it out of
the view model completely. We call this the preprocessing
approach: filtering decisions are made before automatic layout
is invoked. The decisions made here can be based on a variety
of conditions: what elements are currently selected, what mode
the user has put the tool in, and what task the user is currently
trying to accomplish are three obvious ones.

An example for a filtering method that fits the preprocessing
approach perfectly is focus and context [9]. Focus and context
is based on the assumptions that the user requires both, details
and an overview of a model, and that both can be provided
in a single view. This can be done by showing focussed
elements with more details than their context or surroundings,
which is a principle that label management fits well. Different
label management strategies can be assigned to the elements
in the focus and to the elements in the context. Similar to
what Musial and Jacobs did [8], it is also possible to assign
different label management strategies to different elements in
the context to reduce their level of detail as their distance to
focussed elements increases.

The decision of whether an element is in the focus or in the
context can be made based on different criteria. Two obvious
ones are which elements the user selected, or which elements
are currently active in a simulation [2]. All of these criteria are
based on information available at the view generation stage.

There are, however, other conditions that filtering decisions
could be based on that are not available at this stage. For
example, the size of a diagram may stay the same regardless
of whether a given element has its detail level reduced or
not because it is not that element which is the cause for the
diagram’s size. Information can thus end up being filtered out
unnecessarily because information about the diagram’s layout
are not taken into account.

Traditionally, automatic layout algorithms have the respon-
sibility of computing coordinates for nodes and of determining
the routing of edges. But it is in this stage that information
becomes available that may well be used for filtering decisions.
We call this the feedback loop approach: information obtained
during layout is used to adjust the previously generated view
model. This changes the role automatic layout plays in the
view generation process as well as the impact it has on the
result.

As an example, let us take a look at how layouts are
computed for SCCharts. We use a layout algorithm called
KLay Layered [12] that implements the layer-based method
introduced by Sugiyama et al. [13]: the set of nodes is
partitioned into an ordered set of layers, with edges only
running from lower to higher layers. The nodes in each layer
are placed below one another, and the layers are placed in
order from left to right. Each layer is conceptually as wide
as its widest node, and since during layout we represent edge
labels as dummy nodes, it is often the case that the widest
node represents a label (see Fig. 4). Since we cannot shorten
regular nodes, the widest regular node imposes a lower bound
on a layer’s width. It is this lower bound that is fed back to
label management as the desired target width to shorten the

triggerWobblerSynchronization(id1, id2, 0.42)

Maximum node width

Maximum label width

Fig. 4. Edge labels are represented as dummy nodes in our layout algorithm
(white box). The maximum width of regular nodes they end up with in a layer
(blue boxes) define a lower bound on the layer’s width (gray background). It
is this lower bound that the automatic layout algorithm uses as a target width
to shorten the label’s text to.

label to. Depending on how wide regular nodes usually are,
it may be necessary to impose a lower bound on the target
width to keep labels from getting too short.

For SCCharts drawn in a left-to-right direction this approach
works well. As Fig. 2 shows, however, parts of SCCharts can
also be drawn in a top-down direction, either upon the user’s
request or based on the aspect ratio of the viewing area. The
method based on layer widths then ceases to work since there
are not vertical layers anymore to derive a target width from.
In such cases, we currently resort to a default width to shorten
labels to. However, for future research it seems worthwile to
develop ways of deriving more meaningful target widths not
based on layers, but on other aspects of the diagram.

It is worth noting that the preprocessing approach and
the feedback loop approach are not mutually exclusive. The
information obtained in both can rather be combined to reach
filtering decisions. For example, preprocessing can determine
how much an element’s information can at most be filtered
given the user’s current task. Automatic layout can then decide
whether and how much of the filtering is actually applied.

B. Presenting Label Management to the User

As already hinted at before, presenting changing views bears
the risk of the user losing their mental map of the model.
The concepts presented thus far therefore have to be carefully
integrated into the user interface.

If a label was shortened or filtered out, a visual hint as to that
fact may help the user recognize that there is more information
available than is currently displayed. Visual hints may be as
simple as adding an ellipsis to the end of an abbreviated label,
or may be more complex changes to the visual appearance
of the label or the element it is annotating. Whether a hint
is necessary depends on the context: for SCCharts, it makes
sense to indicate that a transition label was shortened because
of the importance of its content to the overall model. It may be
perfectly fine, however, to simply filter out transition priority
labels since they are of lesser importance and it is obvious
that they exist if more than one transition leaves a state.



Whenever we speak of filtering out information, this actu-
ally pertains only to what is immediately visible on screen.
Filtered information can be made available through standard
user interface techniques such as tool tips.

Since the amount of filtering should be adapted to the
task the user is trying to accomplish, the environment has to
determine what that task is. There are several ways for doing
so:

1) Provide separate views, each designed to support a
specific task. This can require the user to switch between
views, but can also allows for having multiple views
visible at once.

2) Allow the user to put the environment into modes tai-
lored for specific tasks. The active mode then configures
label management appropriately.

3) Allow the user to switch between different label man-
agement strategies to customize their view of the model.
This can be either direct (the user is given the choice
between, say, semantic abbreviation and semantic wrap-
ping) or indirect (the user is given the choice between
little, medium, and much shortening).

We adopted the second concept for SCCharts and provided
users with rather direct choices between different label man-
agement strategies, but also supplied an option to directly
control the target width of labels.

Approaches such as focus and context are more dynamic.
Changing the selection in the model may also update the focus
and the context and thus cause label management decisions
to be revisited, resulting in view updates. For the user to
keep their mental map of the model, it is necessary for these
updates to keep the layout as stable as possible and to make it
obvious what has changed. The former influences the choice
of automatic layout algorithms; the latter can be done by
animating changes over a short amount of time.

V. EVALUATION

As a first evaluation of the ideas put forth in this paper,
we have performed an informal survey among users of the
SCCharts language and have analyzed the effectiveness of
label management techniques in terms of objective aesthetics
criteria.

A. Informal Survey

The survey was conducted among 35 students of a class on
real-time systems. The students were asked to develop soft-
ware for Lego Mindstorms-based robots using the SCCharts
language with the development environment shown in Fig. 2.
Label management was not explicitly advertised, but several
label management strategies were readily available through
the diagram options in the diagram view. At the end of the
semester, the students participated in a survey on the SCCharts
language and its usability that included two questions related
to label management:

1) Did you have problems with long labels?
2) Did you use label management?

Regarding the first question, twelve students stated that they
had problems with long labels. Several wrote that they have
ignored the graphical view completely because they found long
labels to make it unusable. Other students kept their models
as small as possible to work around these problems. It is these
kinds of statements that in our opinion indicate how important
it is to find solutions to the problem of too detailed views.

Regarding the second question, six students stated to have
used label management (five of which had said that they
had problems with long labels in the first question). To our
surprise, simple syntactical abbreviation was most popular.
Most students stated that they either needed full details of
a transition or a good overview of the whole model and thus
mostly swiched between full details and heavy abbreviation.

B. Aesthetics Criteria

For a more objective, quantitative evaluation, we measured
the effects different label management strategies had on dia-
grams in terms of different aesthetics criteria. We used two sets
of models for this. The first consisted of models produced by
the students the survey was conducted with. They submitted a
total of 76 SCCharts that contained 2046 states (237 of which
contained child states) and 3198 transition labels. The second
set of models contained an additional 17 SCCharts that are
part of a complex piece of software that controls about 10
trains on a model railway installation. The diagrams contain a
total of 2058 states (120 of which contained child states) and
3032 transition labels.

We measured each diagram’s width and height, the resulting
aspect ratio (width divided by height), the width and height
of each label, and the length of each edge. Since one of the
ultimate goals of label management is to be able to increase
the zoom level a diagram is displayed with, we calculated the
zoom level required to fit each diagram into an 800 by 600
pixel area (note that the area’s actual size is less important than
its aspect ratio). The higher the zoom level, the more legible
the labels (and other diagram features) are for the user.

We performed all of these measurements without label
management as well as for a subset of the label management
strategies summarized in Table I and in Table II: syntactical
abbreviation, a form of semantical abbreviation that only lists
the signals involved in a transition’s trigger or action, a form
of semantical wrapping where syntactical soft wrapping was
applied to trigger and action independently, with a line break
inserted between the two, and the removal of arguments to
host code calls. For this evaluation, we concentrated on the
feedback loop approach to label management integration and
thus always had the layout computed in a left-to-right direc-
tion. It can be argued that this makes the unfiltered diagrams
very wide compared to applying different layout directions
to different parts of the diagrams, as is the case in Fig. 2.
However, we think that this kind of evaluation does provide
a solid indication as to how effective label management can
be. We shortened every label that was wider than the nodes
in its layer, which applied to 97% of all labels. However, we



TABLE III
DIAGRAM METRICS (AVERAGES)

Metric Label Management
Inactive Syntactical Abbreviation Semantical Abbreviation Semantical wrapping Host code calls

Diagram width (pixel) 7322.4 3807.7 4970.5 3900.8 6932.8
Diagram height (pixel) 644.5 637.3 642.0 1481.8 645.0
Aspect ratio 12.8 6.2 8.5 3.2 12.1

Label width (pixel) 281.6 95.6 159.4 94.8 266.1
Label height (pixel) 13.0 13.0 13.0 53.6 13.0

Edge length (pixel) 653.9 291.4 432.6 419.1 627.8

limited labels to a minimum width of 100 pixels to keep them
from becoming too short.

Table III shows the basic results for diagrams produced
without label management, with syntactical abbreviation, with
semantical abbreviation, and with wrapping. As we would
expect, the width of the diagrams is decreased when switching
label management on. Depending on whether the strategy can
increase the height of labels, the height of the diagrams either
increases or stays constant. Note that syntactical abbreviation
defines a lower bound on how narrow diagrams can become
since it always meets the target width. Wrapping also seems to
be good at reaching the target width, but increases the average
label height by a factor of four. Since SCCharts are usually
very wide, this is not a problem and in fact makes them more
suitable for common screen aspect ratios. Note that the average
aspect ratios can only be seen as a rough guide since the actual
aspect ratios vary considerably between the diagrams.

As Fig. 5 shows, the different label management strategies
hat quite different effects on the achievable zoom level in-
crease. Syntactical abbreviation had the largest effect, which
makes sense in that it is the only strategy that will always
achieve the desired target width without increasing the height
of labels. However, the wrapping strategy came close even
though it does increase label height and is the only strategy
that does not reduce the amount of information in a label.
Again, we attribute this to the fact that SCCharts tend to
be rather wide in terms of their aspect ratio. Making them
narrower but higher makes them more suitable for displayal
on a computer screen. Replacing transition labels by the
names of the involved signals has a noticeable effect as well.
Only removing the arguments of host code calls is not very
effective as the sole label management strategy and should
thus probably be combined with other strategies.

VI. CONCLUSION

Building upon work by Fuhrmann [4], we have introduced
label management, different strategies for its implementation,
as well as ways to integrate it into the overall view genera-
tion process. We evaluated the performance of the different
strategies both in an informal survey as well as with more
objective aesthetics criteria. We found that label management
indeed helps to increase the zoom level at which diagrams can
be displayed, thereby increasing legibility if the full diagram
is fit on the screen.

To us, the most surprising result is that while syntactical
abbreviation was able to achieve the best results in terms of
diagram size, the wrapping strategy came close and has the
potential advantage of not hiding any information. However,
lossy strategies remain valid as label management not only
helps to reduce diagram size, but can also help to hide
information not relevant to the user’s current task.

Of course, there are several things left to be done. First, we
have limited our discussions to edge labels, mainly due to the
nature of the automatic layout algorithm we use. Of course,
node labels and port labels could be shortened too and it would
be interesting to investigate which shortening strategies best
to apply to them. The same point can be made about comment
boxes in diagrams, which can become quite large and may be
prime candidates for shortening.

Second, more advanced shortening strategies should be
evaluated. Interesting options here would be to investigate
dictionary-based strategies that could be used for hyphenation
or proper abbreviation of words, and to integrate more knowl-
edge about the semantics of a label.

Third, while we have mentioned focus and context and
graphical fisheye techniques and have described how they fit
into label management (or vice versa), we have not investi-
gated the full potential of their combination yet.

And finally, our main evaluation was based on objective
layout aesthetics criteria as well as on an informal survey. A
full user study is necessary to properly evaluate how label
management helps users accomplish different tasks. This is
especially true since the evaluation shortened all labels equally.
It thus did not capture how diagram size changes if different
label management strategies are applied to different labels, as
would usually be the case in focus and context scenarios.

Host Code Calls
Semantical Wrapping

Semantical Abbreviation
Syntactical Abbreviation

Inactive

0 1 2

Fig. 5. Increase of the zoom factor we achieved for our set of evaluation
models with different label management strategies as compared to without
label management.
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