
Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

A Multi-Threaded Reactive Processor

Xin Li Marian Boldt Reinhard v. Hanxleden

Real-Time Systems and Embedded Systems Group
Department of Computer Science

Christian-Albrechts-Universität zu Kiel, Germany
www.informatik.uni-kiel.de/rtsys

ASPLOS’06
24 October 2006

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 1

www.informatik.uni-kiel.de/rtsys

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Reactive vs. Non-Reactive Systems

Transformational systems numerical computation programs,
compilers . . .

Interactive systems operating systems, databases . . .

Reactive systems process controllers, signal processors . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 2

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Reactive vs. Non-Reactive Systems

Transformational systems numerical computation programs,
compilers . . .

Interactive systems operating systems, databases . . .

Reactive systems process controllers, signal processors . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 2

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why “Reactive Processing”?

Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional processing
architectures and reactive control flow patterns

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 3

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why “Reactive Processing”?

Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional processing
architectures and reactive control flow patterns

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 3

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why “Reactive Processing”?

Control flow on traditional (non-embedded) computing systems:

I Jumps, conditional branches, loops

I Procedure/method calls

Control flow on embedded, reactive systems: all of the above, plus

I Concurrency

I Preemption

The problem: mismatch between traditional processing
architectures and reactive control flow patterns

I Processing overhead, e. g. due to OS involvement or need to
save thread states at application level

I Timing unpredictability

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 3

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Reactive Processing Part I: The Language
Have chosen Esterel:

I Created in the early 1980’s

I For programming control-dominated reactive systems

I Used as intermediate language for Statechart (Safe State
Machines)

I Textual imperative language with reactive control flow
constructs

I Concurrency
I Weak/strong abortion
I Exceptions
I Suspension

I A synchronous language

I Deterministic behavior, clean semantics

I Currently undergoing IEEE standardization

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 4

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Reactive Processing Part II: The Execution Platform

Hardware

Custom
Hardware

Environment

Software

COTS-μC

COTS Assembler

Environment

Co-design

COTS-
μC

COTS Assembler

Environment

Custom
Hardware

Patched Processor

Extended Assembler

Environment

PIC
Core Extension Esterel-μC

Esterel Assembler

Esterel Processor

Environment

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 5

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Reactive Processing Part II: The Execution Platform

Hardware

Custom
Hardware

Environment

Software

COTS-μC

COTS Assembler

Environment

Co-design

COTS-
μC

COTS Assembler

Environment

Custom
Hardware

Patched Processor

Extended Assembler

Environment

PIC
Core Extension Esterel-μC

Esterel Assembler

Esterel Processor

Environment

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 5

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why bother?

Reactive processing yields

I Low power requirements

I Deterministic control flow

I Predictable timing

I Short design cycle

Can use reactive processor

I in stand alone, small
reactive applications

I as building block in SoC
designs

Reactive
ProcessorDSP

Global
Memory

Communication Backplane

IPs

HW blk

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 6

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why bother?

Reactive processing yields

I Low power requirements

I Deterministic control flow

I Predictable timing

I Short design cycle

Can use reactive processor

I in stand alone, small
reactive applications

I as building block in SoC
designs

Reactive
ProcessorDSP

Global
Memory

Communication Backplane

IPs

HW blk

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 6

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Reactive Systems
Reactive Processing I: Language
Reactive Processing II: Execution Platform
Why bother?

Why bother?

Reactive processing yields

I Low power requirements

I Deterministic control flow

I Predictable timing

I Short design cycle

Can use reactive processor

I in stand alone, small
reactive applications

I as building block in SoC
designs

Reactive
ProcessorDSP

Global
Memory

Communication Backplane

IPs

HW blk

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 6

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Overview

Introduction

The Kiel Esterel Processor
The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Experimental Results

Summary and Outlook

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 7

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Esterel Language

Logical Ticks

I Execution is divided into ticks

I Synchrony hypothesis:
Outputs generated from given inputs
occur at the same tick

Signals

I Present or absent throughout a tick

I Used to communicate internally and
with the environment

module ABRO:

input A, B, R;

output O;

loop

abort

[await A

||

await B];

emit O

halt;

when R

end loop;

end module

Tick
-

A
B

O

R

A
B
R

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 8

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Candidates for the Instruction Set
Esterel kernel statements

I ||
I suspend ... when S
I trap T in ... exit T ... end trap
I pause
I signal S in ... end
I emit S
I present S then ... end
I nothing
I loop ... end loop
I ;

Derived statements
I [weak] abort ... when S
I await S
I ...

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 9

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Candidates for the Instruction Set
Esterel kernel statements

I ||
I suspend ... when S
I trap T in ... exit T ... end trap
I pause
I signal S in ... end
I emit S
I present S then ... end
I nothing
I loop ... end loop
I ;

Derived statements
I [weak] abort ... when S
I await S
I ...Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 9

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡ AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡ AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡

AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡ AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡ AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Instruction Set
I Includes all kernel statements
I In addition, some derived statements

This redundancy improves space/time efficiency

T0S: % trap T in

A0: % loop

PAUSE % pause;

PRESENT S,A1 % present S then

EXIT T0E , T0S % exit T

A1: % end present

GOTO A0 % end loop

T0E: % end trap;

≡ AWAIT S % await S

I Refined ISA to reduce HW usage
Example: abort can translate to

ABORT in the most general case
LABORT if no other [L]ABORTS are included in abort scope
TABORT if neither || nor other [L|T]ABORTS are included

I Furthermore: valued signals, pre, delay expressions, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 10

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Kiel Esterel Processor Architecture

Thread Block

Kiel Esterel Processor 3

In
ne

r b
us

(D
at

a/
A

dd
r)

Instruction Memory

Instruction
Fetch

Address
Multiplexer

 Tick, TickWarn
&

InstrClk

Reset

OscClk

Decoder
&

Controller

Reactive
Block

In
ne

r
Ti

ck
 a

nd

C
on

tro
l

S
ig

na
ls

Register
File

Interface
block

ALU

MUXMUX

Tick
Manager

Input/output
 Signals

Thread
Controller

subPC
Register

File

I Reactive Core
I Decoder & Controller, Reactive Block, Thread Block

I Interface Block
I Interface signals, Local signals, . . .

I Data Handling
I Register file, ALU, . . .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 11

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Architecture of the Reactive Core

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 12

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The Compilation Challenge: Thread Dependencies

module Example:

output O;

signal A,R in

[

weak abort

sustain R;

when immediate A;

emit O

||

await R;

emit A

];

end signal

end module

Tick
-

R R
A
O

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 13

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Compiler

Thread scheduling:

1. Construct Concurrent KEP Assembler Graph (CKAG)

2. Compute thread priorities/ids that respect dependencies

3. Generate PAR and PRIO statements accordingly

Other tasks:

I Analyze Watcher requirements

I Map Esterel statements to KEP refined ISA

Optimizations:

I Dead code elimination, based on CKAG

I “Undismantling” of kernel statements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 14

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Compiler

Thread scheduling:

1. Construct Concurrent KEP Assembler Graph (CKAG)

2. Compute thread priorities/ids that respect dependencies

3. Generate PAR and PRIO statements accordingly

Other tasks:

I Analyze Watcher requirements

I Map Esterel statements to KEP refined ISA

Optimizations:

I Dead code elimination, based on CKAG

I “Undismantling” of kernel statements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 14

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

The KEP Compiler

Thread scheduling:

1. Construct Concurrent KEP Assembler Graph (CKAG)

2. Compute thread priorities/ids that respect dependencies

3. Generate PAR and PRIO statements accordingly

Other tasks:

I Analyze Watcher requirements

I Map Esterel statements to KEP refined ISA

Optimizations:

I Dead code elimination, based on CKAG

I “Undismantling” of kernel statements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 14

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Example Compilation

module Example:

output O;

signal A,R in

[

weak abort

sustain R;

when immediate A;

emit O

||

await R;

emit A

];

end signal

end module

sustain S ≡
loop

emit S;

pause;

end loop

loop

p

end loop
≡

A:

p;

goto A

% module Example

OUTPUT O

[L00 ,T0] EMIT _TICKLEN ,#12

[L01 ,T0] SIGNAL A

[L02 ,T0] SIGNAL R

[L03 ,T0] PAR 2,A0 ,1

[L04 ,T0] PAR 1,A1 ,2

[L05 ,T0] PARE A2 ,2

[L06 ,T1] A0: WABORTI A,A3

[L07 ,T1] A4: EMIT R

[L08 ,T1] PRIO 1

[L09 ,T1] PRIO 2

[L10 ,T1] PAUSE

[L11 ,T1] GOTO A4

[L12 ,T1] A3: EMIT O

[L13 ,T2] A1:AWAIT R

[L14 ,T2] EMIT A

[L15 ,T0] A2:JOIN 0

[L16 ,T0] HALT

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 15

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

The Esterel Language
Instruction Set Architecture
Processor Architecture
Compiler

Example—Execution Trace

Scheduling criteria: 1. active, 2. highest priority, 3. highest id

module Example:

output O;

signal A,R in

[

weak abort

sustain R;

when immediate A;

emit O

||

await R;

emit A

];

end signal

end module

% module Example

OUTPUT O

[L00 ,T0] EMIT _TICKLEN ,#12

[L01 ,T0] SIGNAL A

[L02 ,T0] SIGNAL R

[L03 ,T0] PAR 2,A0 ,1

[L04 ,T0] PAR 1,A1 ,2

[L05 ,T0] PARE A2 ,2

[L06 ,T1] A0: WABORTI A,A3

[L07 ,T1] A4: EMIT R

[L08 ,T1] PRIO 1

[L09 ,T1] PRIO 2

[L10 ,T1] PAUSE

[L11 ,T1] GOTO A4

[L12 ,T1] A3: EMIT O

[L13 ,T2] A1:AWAIT R

[L14 ,T2] EMIT A

[L15 ,T0] A2:JOIN 0

[L16 ,T0] HALT

- Tick 1 -

! reset;

% In:

% Out: R

T0: L01, L02, L03, L04, L05

T1: L06, L07, L08

T2: L13

T1: L09, L10

T0: L15

- Tick 2 -

% In:

% Out: A R O

T1: L10, L11, L07, L08

T2: L13, L14

T1: L09, L10, L12

T0: L15, L16

- Tick 3 -

% In:

% Out:

T0: L16

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 16

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

Overview

Introduction

The Kiel Esterel Processor

Experimental Results
KEP Evaluation Platform
Performance
Scalability

Summary and Outlook

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 17

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

The KEP Evaluation Platform

FPGA BoardUser
strl2kasm

.log

.eso

.kokasm2ko

.strl

Output

.esi InputTickGen

ProtocolGen

Host
.kasm

EStudio

T
es

t D
ri

ve
r

KEP Assembler

Processor
Kiel Esterel

Environment

I Highly automated process, currently using 470+ benchmarks

I End to end validation of hardware and compiler against
“trusted” reference (Esterel Studio)

I Detailed performance measurements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 18

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

Performance
Memory usage

I Unoptimized: 25–94% (83% avg) reduction of memory usage
(Code+RAM)

I Optimized: Yield further 5% to 30+% improvements

Speed

I WCRT speedup: typically >4x

I ACRT speedup: typically >5x

I Optimizations yield further improvements

Power

I Peak energy usage reduction: 46–84% (75% avg)

I Idle (= no inputs) energy usage reduction: 58–97% (86% avg)

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 19

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

The worst-/average-case reaction times comparison
MicroBlaze KEP3a-Unoptimized KEP3a-optimized

Module Name WCRT ACRT WCRT Ratio to ACRT Ratio to WCRTRatio to ACRT Ratio
V5 V7 CEC V5 V7 CEC best MB best MB Unopt to Unopt

abcd 1559 954 1476 1464 828 1057 135 0.14 87 0.11 135 1 84 0.97
abcdef 2281 1462 1714 2155 1297 1491 201 0.14 120 0.09 201 1 117 0.98

eight but 3001 1953 2259 2833 1730 1931 267 0.14 159 0.09 267 1 153 0.96
chan prot 754 375 623 683 324 435 117 0.31 60 0.19 117 1 54 0.90

reactor ctrl 487 230 397 456 214 266 54 0.23 45 0.21 51 0.94 39 0.87
runner 566 289 657 512 277 419 36 0.12 15 0.05 30 0.83 6 0.40
example 467 169 439 404 153 228 42 0.25 24 0.16 42 1 24 1
ww button 1185 578 979 1148 570 798 72 0.12 51 0.09 48 0.67 36 0.71

greycounter 1965 1013 2376 1851 928 1736 528 0.52 375 0.40 528 1 375 1
tcint 3580 1878 2350 3488 1797 2121 408 0.22 252 0.14 342 0.84 204 0.81
mca200 75488 29078 12497 73824 24056 11479 2862 0.23 1107 0.10 2862 1 1107 1

The worst-/average-case reaction times, in clock cycles, for the KEP3a and MicroBlaze

I WCRT speedup: typically >4x

I ACRT speedup: typically >5x

I Optimizations can yield further improvements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 20

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

Memory Usage

Esterel MicroBlaze KEP3a-Unopt. KEP3a-opt.
Module Name LOC Code+Data (byte) Code (word) Code+Data (byte) Code (word)

V5 V7 CEC abs. rel. abs. rel. abs. rel.
[1] [2] (best) [3] [3]/[1] [4] [4]/[2] [5] [5]/[3]

abcd 160 6680 7928 7212 168 1.05 756 0.11 164 0.93
abcdef 236 9352 9624 9220 252 1.07 1134 0.12 244 0.94

eight but 312 12016 11276 11948 336 1.08 1512 0.13 324 0.94
chan prot 42 3808 6204 3364 66 1.57 297 0.09 62 0.94

reactor ctrl 27 2668 5504 2460 38 1.41 171 0.07 34 0.89
runner 31 3140 5940 2824 39 1.22 175 0.06 27 0.69
example 20 2480 5196 2344 31 1.55 139 0.06 28 0.94
ww button 76 6112 7384 5980 129 1.7 580 0.10 95 0.74

greycounter 143 7612 7936 8688 347 2.43 1567 0.21 343 1
tcint 355 14860 11376 15340 437 1.23 1968 0.17 379 0.87
mca200 3090 104536 77112 52998 8650 2.79 39717 0.75 8650 1

I Unoptimized: 83% avg reduction of memory usage (Code+RAM)

I Optimized: May yield further 5% to 30+% improvements
Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 21

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

KEP Evaluation Platform
Performance
Scalability

Scalability

Synthesis results for Xilinx 3S1500-4fg-6761

Thread
Slices Gates (k)

Count
2 1295 295
10 1566 299
20 1871 311
40 2369 328
60 3235 346
80 4035 373
100 4569 389
120 5233 406

I 48 valued signals
up to 256 possible

I 2 Watchers, 8 Local Watchers
either up to 64 possible

I 1k (1024) instruction words
up to 16k possible

I 128 registers (in word)
up to 512 possible

I 16-bits (65536) max counter value

I Frequency is stable (around 60 MHz)

1For comparison, a MicroBlaze implementation requires around 1k slices
and 309k gates; a two threads EMPEROR platform requires around 2k slices

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 22

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Summary Reactive Processors

Processor supports reactive control flow directly, at hardware level

I “Watchers” monitor preemption signals
No need for polling, interrupts

I Support for concurrency
Multi-threading or multi-processing

I Synchronous model of computation
Perfectly deterministic, predictable timing

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 23

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Related Work/Contributions

RePIC [Roop et al.’04]/EMPEROR [Yoong et al.’06]

I Multi-processing patched reactive processor

I Three-valued signal logic + cyclic executive

Kiel Esterel Processor 1–3

I Multi-threading custom reactive processor

I Provides most Esterel primitives, but still incomplete

I No compilation scheme to support concurrency

KEP3a (this work)

I Provides all Esterel primitives

I Refined ISA

I Compiler exploits multi-threading

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 24

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Related Work/Contributions

RePIC [Roop et al.’04]/EMPEROR [Yoong et al.’06]

I Multi-processing patched reactive processor

I Three-valued signal logic + cyclic executive

Kiel Esterel Processor 1–3

I Multi-threading custom reactive processor

I Provides most Esterel primitives, but still incomplete

I No compilation scheme to support concurrency

KEP3a (this work)

I Provides all Esterel primitives

I Refined ISA

I Compiler exploits multi-threading

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 24

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Related Work/Contributions

RePIC [Roop et al.’04]/EMPEROR [Yoong et al.’06]

I Multi-processing patched reactive processor

I Three-valued signal logic + cyclic executive

Kiel Esterel Processor 1–3

I Multi-threading custom reactive processor

I Provides most Esterel primitives, but still incomplete

I No compilation scheme to support concurrency

KEP3a (this work)

I Provides all Esterel primitives

I Refined ISA

I Compiler exploits multi-threading

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 24

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Outlook

I Improve priority assignments

I Speedup signal expression computations with external logic
block

I WCRT analysis with concurrency

I Extend to Esterel v7

I KEP in Esterel—e. g., to produce Esterel virtual machine

I Combination with multi-core (for data handling)

I Adaptation to non-Esterel languages

Thanks!
Questions/Comments?

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 25

Introduction
The Kiel Esterel Processor

Experimental Results
Summary and Outlook

Summary Reactive Processors
Related Work/Contributions
Outlook

Outlook

I Improve priority assignments

I Speedup signal expression computations with external logic
block

I WCRT analysis with concurrency

I Extend to Esterel v7

I KEP in Esterel—e. g., to produce Esterel virtual machine

I Combination with multi-core (for data handling)

I Adaptation to non-Esterel languages

Thanks!
Questions/Comments?

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 25

Appendix
KEP3a Instruction Set + Architecture

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

The Compiler
Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Further Measurements
Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Summary
Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Instruction Set Summary 1/2

Mnemonic,
Operands Esterel Syntax Notes

PAR Prio, startAddr [, ID] [Fork and join.
An optional ID explicitly specifies the ID of
the created thread.

PARE endAddr p || q

JOIN]

PRIO Prio Set the priority of the current thread

[W]ABORT [n,] S, endAddr

[weak] abort

. . .
when [n] S

S can be one of the following:
1. S: signal status (present/absent)
2. PRE(S): previous status of signal
3. TICK: always present

n can be one of the following:
1. #data: immediate data
2. reg: register contents
3. ?S: value of a signal
4. PRE(?S): previous value of a signal

[W]ABORTI S, endAddr

[weak] abort

...

when immediate S

SUSPEND[I] S, endAddr

suspend

...

when [immediate] S

EXIT TrapEnd[,TrapStart]
trap T in

exit T

end trap

Exit from a trap, TrapStart and TrapEnd spec-
ify trap scope. Unlike GOTO, check for concur-
rent EXITs and terminate enclosing ||

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 27

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Instruction Set Summary 2/2

Mnemonic,
Operands Esterel Syntax Notes

PAUSE pause
Wait for a signal. AWAIT TICK is equivalent to
PAUSE

AWAIT [n,] S await [n] S

AWAIT[I] S await [immediate] S

CAWAITS await

wait for several signals in parallel
CAWAIT[I] S, addr

case [immediate]

S do

CAWAITE end

SIGNAL S signal S in ...end Initialize a local signal S
EMIT S [, {#data|reg}] emit S [(val)] Emit (valued) signal S
SUSTAIN S [, {#data|reg}] sustain S [(val)] Sustain (valued) signal S

PRESENT S, elseAddr
present S then

...end
Jump to elseAddr if S is absent

NOTHING nothing Do nothing
HALT halt Halt the program
GOTO addr loop ...end loop Jump to addr

CALL addr
call P

call a procedure,
and return from the procedureRETURN

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 28

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Handling Concurrency

Execution status of a single thread

The status of the whole program, as managed by the Thread Block

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 29

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Handling Concurrency

A thread has its

I thread id

I address range and independent program
counter

I priority value
I assigned when a thread is created
I dynamically changed via PRIO

instruction

I status flags
I ThreadEnable
I ThreadActive

% Esterel

[

p

||

q

];

⇓% KEP Assembler

PAR 1,A0,1

PAR 1,A1,2

PARE A2

A0: p

A1: q

A2: JOIN

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 30

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Handling Preemption

Watcher contains
Enable Watcher (EW)

I Watches the PC (Program
Counter)

I Compares PC

I Preemption enabled?

Trigger Watcher (TW)

I Watches the Signal

I Counts down the counter
(abortion)

I Preemption active?

% Esterel

abort

weak abort

p;

when S2;

q;

when S1;

⇓% KEP Assembler

ABORT S1,A1

WABORT S2,A0

p

A0: q

A1:

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 31

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Watcher Refinement

Thread Watcher

I belongs to a thread directly
I can neither include concurrent threads nor other

preemptions
I least powerful, but also cheapest

Local Watcher

I may include concurrent threads and also
preemptions handled by a Thread Watcher

I cannot include another Local Watcher

Watcher

I may include concurrent threads and any
preemptions

I most powerful, but also most expensive

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 32

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

Handling Exceptions

Exception

I has its address range
I sets an exitFlag

I cleared when reaching the
end of the trap scope

I effects control at the join
point

I can be overridden based on
the corresponding trap
scopes (address range)

% Esterel

trap T1 in

trap T2 in

[p;
exit T1;

||

q;
exit T2;];

end trap;

r;
end trap;

⇓% KEP Assembler

T1S: T2S:

PAR 1,A1,1

PAR 1,A2,2

PARE A3

A1: p
EXIT T1,T1S

A2: q
EXIT T2,T2E

A3: JOIN

T2E:r
T1E:

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 33

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Esterel-Type Instructions
Handling Concurrency
Handling Preemption
Handling Exceptions
WCRT Self-Monitoring

WCRT (Tick Length) Self-Monitoring

I OscClk: external clock; InstrClk: instructions; Tick: logical ticks

I Emitting special signal TICKLEN configures Tick Manager with WCRT

I TickWarn pin indicates WCRT timing violation

% KEP Assembler

% module OVERRUN

INPUT D

OUTPUT A,B,C

EMIT TICKLEN, #3

EMIT A

EMIT B

PAUSE
EMIT A

EMIT B

EMIT C

AWAIT D

(a) (b)

Figure 7: An example KEP2 assembler code illustrating the Tick Manager (a), and a
resulting timing diagram (b).

running on a KEP2 implemented on a Memec V2MB1000 Development Board at a rate

of Tosc = 41.67ns (24 MHz), the waveform was recorded by an Agilent 1683A Logic

Analyzer. In OVERRUN, the first EMIT statement sets TICKLEN to three; in other words,

the module claims that Vticklen, the maximal number of instructions executed within a

tick, is at most three. If TICKLEN is larger than Vticklen, it means that the ticks last longer

than is necessary to finish tick computations before the next tick starts; if TICKLEN is

smaller than Vticklen, this means that we run the risk of timing violations.

Setting TICKLEN to some value, in this case three, activates the Tick Manager, which

from then on will on the one hand ensure that ticks that complete in less than three

instructions will be padded until they are three instruction cycles long, and on the other

hand will signal a timing violation if a tick is not completed within three instructions. In

the example, the first logical tick lasts three instruction cycles. In the second tick, the

controller has to execute five instructions until the AWAIT statement is executed. Hence,

the TickWarn signal will be set high when the fourth instruction cycle arrives to indicate

the tick length timing violation.

The goal of the WCRT analysis presented here is to automatically deduce a value for

TICKLEN that is just large enough to never induce a timing violation; ideally, we achieve

TICKLEN = Vticklen.

19

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 34

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Step 1: Construct Concurrent KEP Assembler Graph
 module: Example

[L0,T0-2] EMIT _TICKLEN,#10

[L1,T0-2] SIGNAL A

[L2,T0-2] SIGNAL R

[L5,T0-2/2] PAR*

[L6,T1-2] A0: WABORTI A,A3

 2

[L13,T2-1/1] A1: AWAIT R

 1

[L7,T1-2] A4: EMIT R
i

[L8,T1] PRIO 1

[L10,T1-1/2] PAUSE

[L11,T1-2] GOTO A4[L12,T1-1] A3: EMIT O

A
w

[L15,T0-1] JOIN 0

[L14,T2-1] EMIT A
i

[L16,T0-1/1] HALT

[L9,T1] PRIO 2

⇒

% module Example

OUTPUT O

[L00 ,T0] EMIT _TICKLEN ,#12

[L01 ,T0] SIGNAL A

[L02 ,T0] SIGNAL R

[L03 ,T0] PAR 2,A0 ,1

[L04 ,T0] PAR 1,A1 ,2

[L05 ,T0] PARE A2 ,2

[L06 ,T1] A0: WABORTI A,A3

[L07 ,T1] A4: EMIT R

[L08 ,T1] PRIO 1

[L09 ,T1] PRIO 2

[L10 ,T1] PAUSE

[L11 ,T1] GOTO A4

[L12 ,T1] A3: EMIT O

[L13 ,T2] A1:AWAIT R

[L14 ,T2] EMIT A

[L15 ,T0] A2:JOIN 0

[L16 ,T0] HALT

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 35

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Step 2: Compute Thread Priorities/ids

I Compute priority for current tick at each node

I Compute priority for next tick at tick boundaries

I Priority within tick must not increase

I Initialize tick boundaries with lowest priority, compute priorites
backwards

I Judicious traversal of CKAG allows to compute each priority
just once

I Facilitates correctness argument
I Complexity linear in CKAG size

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 36

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Step 2: Compute Thread Priorities/ids

I Compute priority for current tick at each node

I Compute priority for next tick at tick boundaries

I Priority within tick must not increase

I Initialize tick boundaries with lowest priority, compute priorites
backwards

I Judicious traversal of CKAG allows to compute each priority
just once

I Facilitates correctness argument
I Complexity linear in CKAG size

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 36

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Step 2: Compute Thread Priorities/ids

I Compute priority for current tick at each node

I Compute priority for next tick at tick boundaries

I Priority within tick must not increase

I Initialize tick boundaries with lowest priority, compute priorites
backwards

I Judicious traversal of CKAG allows to compute each priority
just once

I Facilitates correctness argument
I Complexity linear in CKAG size

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 36

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Step 3: Generate PAR/PRIO Statements

I Enforce that a statement is always executed with same
priority, irrespective of control flow

I Must consider priorities for current and for next tick

I Again linear complexity

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 37

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

CKAG Node Types

The CKAG distinguishes the following sets of nodes:

D: Delay nodes (octagons)

I PAUSE, AWAIT, HALT, SUSTAIN

F: Fork nodes (triangles)

I PAR/PARE

T: Transient nodes (rectangles/inverted triangles)

I EMIT, PRESENT, etc. (rectangles)
I JOIN nodes (inverted triangles)

N: Set of all nodes, N = D ∪ F ∪ T

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 38

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

The Concurrent KEP Assembler Graph (CKAG)
Define

I for each fork node n:
n.join: the JOIN statement corresponding to n,
n.sub: the transitive closure of nodes in threads

generated by n.
I for abort nodes n ([L|T][W]ABORT[I], SUSPEND[I]):

n.end: the end of the abort scope opened by n,
n.scope: the nodes within n’s abort scope.

I for all nodes n:
n.prio: the priority that the thread executing n should

be running with
I for n ∈ D ∪ F ,

n.prionext: the priority that the thread executing n should
be resumed with in the subsequent tick.

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 39

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

CKAG Dependency Types

Define dependencies

n.depi: the dependency sinks with respect to n at the current
tick (the immediate dependencies)

n.depd: the dependency sinks with respect to n at the next
tick (the delayed dependencies)
Induced by emissions of strong abort trigger signals and
corresponding delay nodes within the abort scope

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 40

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

CKAG Successor Types

Define following types of successors for each n:

n.succ: the control successors.

n.sucw: the weak abort successors

n.sucs: the strong abort successors

n.sucf : the flow successors
the set n.succ ∪ n.sucw ∪ n.sucs

For n ∈ F we also define the following fork abort successors

n.sucwf : the weak fork abort successors

n.sucsf : the strong fork abort successors

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 41

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Program Cycle

An Esterel program is considered cyclic iff the corresponding CKAG
contains a path from a node to itself, where for all nodes n and
their successors along that path, n′ and n′′, the following holds:

n ∈ D ∧ n′ ∈ n.sucw

∨ n ∈ F ∧ n′ ∈ n.succ ∪ n.sucwf

∨ n ∈ T ∧ n′ ∈ n.succ ∪ n.depi

∨ n ∈ T ∧ n′ ∈ n.depd ∧ n′′ ∈ n′.succ ∪ n′.sucs ∪ n′.sucsf .

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 42

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Constraints

A correct priority assignment must fulfill the following constraints,
where m, n are arbitrary nodes in the CKAG

Constraint (Dependencies)

I For m ∈ n.depi : n.prio > m.prio

I For m ∈ n.depd : n.prio > m.prionext

Constraint (Intra-Tick Priority)

I For n ∈ D and m ∈ n.sucw , or n ∈ F and
m ∈ n.succ ∪ n.sucwf , or n ∈ T and m ∈ n.succ :
n.prio ≥ m.prio

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 43

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Computing Thread Priorities

Constraint (Inter-Tick Priority for Delay Nodes)

I For all m ∈ n.succ ∪ n.sucs : n.prionext ≥ m.prio

Constraint (Inter-Tick Priority for Fork Nodes)

I n.prionext ≥ n.join.prio

I For all m ∈ n.sucsf : n.prionext ≥ m.prio

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 44

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Computing Thread Priorities
module Edwards02:

input S, I;

output O;

signal A,R in

every S do

await I;

weak abort

sustain R;

when immediate A;

emit O;

||

loop

pause;

pause;

present R then

emit A;

end present

end loop

end every

end signal

end module

⇒

module Edwards02-dism:

input S,I;

output O;

signal A, R in

abort

loop

pause

end loop

when S;

loop

abort

[abort

loop

pause

end loop

when I;

weak abort

loop

emit R;

pause

end loop

when immediate A;

emit O

||

% cont...

% cont...

||

loop

pause;

pause;

present R then

emit A

end present

end loop];

loop

pause

end loop

when S

end loop

end signal

end module

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 45

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

 module: Edwards02

[L0,T0-1] EMIT _TICKLEN,#10

[L1,T0-1] SIGNAL A

[L2,T0-1] SIGNAL R

[L3,T0-1/1] AWAIT S

[L4,T0-1] A2: LABORT S,A3

[L7,T0-1] PAR*

[L8,T1-1] A4: TABORT I,A7

 1

[L20,T2-1/1] A5:A11: PAUSE

 1

[L28,T0-1] A3: GOTO A2

sf

[L9,T1] A8: PRIO 3

[L10,T1-1/3] PAUSE

[L13,T1-3] A7: TWABORTI A,A9

I
s

S

s

[L11,T1] PRIO 1

[L12,T1-1] GOTO A8[L14,T1-3] A10: EMIT R

[L23,T2-2] PRESENT R,A12

i

[L15,T1] PRIO 1

[L17,T1-1/3] PAUSE

[L18,T1-3] GOTO A10 [L19,T1-1] A9: EMIT O

A
w

S

s

[L27,T0-1] JOIN

S

s

[L21,T2] PRIO 2

[L22,T2-1/2] PAUSE

S
s

[L24,T2-2] EMIT A

t

[L25,T2] A12: PRIO 1

f
i

[L26,T2-1] GOTO A11

[L16,T1] PRIO 3

⇒

INPUT S,I
OUTPUT O

[L00,T0] EMIT _TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10:EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11: PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12:PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 46

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Three Compilation Steps
The Concurrent KEP Assembler Graph
Cyclicity
Constraints

Optimized Priority Assignment
INPUT S,I
OUTPUT O

[L00,T0] EMIT _TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10:EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11: PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12:PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

⇒

INPUT S,I
OUTPUT O

[L00,T0] EMIT _TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 3,A4,1
[L06,T0] PAR 2,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: AWAIT I
[L09,T1] A7: TWABORTI A,A9
[L10,T1] A10:EMIT R
[L11,T1] PRIO 1
[L12,T1] PRIO 3
[L13,T1] PAUSE
[L14,T1] GOTO A10
[L15,T1] A9: EMIT O
[L16,T2] A5:A11: PAUSE
[L17,T2] PAUSE
[L18,T2] PRESENT R,A12
[L19,T2] EMIT A
[L20,T2] A12:GOTO A11
[L21,T0] A6: JOIN
[L22,T0] A3: GOTO A2

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 47

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Code Characteristics and Compilation Times

Esterel KEP3a (Unoptimized|optimized) MicroBlaze
Module Threads Preemptions CKAG Preemption handled by Compiling Compiling
Name Cnt Max Max Cnt Max NodesDep. Max PRIO Local Thread Time Time (Sec)

DepthConc Depth NumPriority Instr WatcherWatcherWatcher (Sec) (V5/V7/CEC)
abcd 4 2 4 20 2 211 36 3 30 0 4|3 16|11 0.15 0.12 0.09 0.30

abcdef 6 2 6 30 2 313 90 3 48 0 6|5 24|17 0.21 0.71 0.46 0.96
eight but 8 2 8 40 2 415 168 3 66 0 8|7 32|23 0.26 0.99 0.54 1.25
chan prot 5 3 4 6 1 80 4 2 10 0 0 6|4 0.07 0.35 0.35 0.43

reactor ctrl 3 2 3 5 1 51 5 1 0 0 1|0 4 0.06 0.29 0.31 0.36
runner 2 2 2 9 3 61 0 1 0 3|2 1 5|3 0.05 0.30 0.34 0.40
example 2 2 2 4 2 36 2 3 6 0 1 3|2 0.05 0.28 0.31 0.31
ww button 13 3 4 27 2 194 0 1 0 0 5 22|10 0.10 0.44 0.40 0.64

greycounter 17 3 13 19 2 414 53 6 58 0 4 15 0.34 0.57 0.43 0.75
tcint 39 5 17 18 2 583 65 3 20 0 1 17|10 0.34 0.41 0.52 1.11
mca200 59 5 49 64 4 11219 129 11 190 2 14 48 11.25 69.81 12.99 7.37

Note: In the mca200, the watcher refinement reduces the hardware

requirements from 4033 slices (if all preemptions were handled by general

purpose Watchers) to 3265 slices (19% reduction).

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 48

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Worst-/Average-Case Reaction Times
MicroBlaze KEP3a-Unoptimized KEP3a-optimized

Module Name WCRT ACRT WCRT Ratio to ACRT Ratio to WCRTRatio to ACRT Ratio
V5 V7 CEC V5 V7 CEC best MB best MB Unopt to Unopt

abcd 1559 954 1476 1464 828 1057 135 0.14 87 0.11 135 1 84 0.97
abcdef 2281 1462 1714 2155 1297 1491 201 0.14 120 0.09 201 1 117 0.98

eight but 3001 1953 2259 2833 1730 1931 267 0.14 159 0.09 267 1 153 0.96
chan prot 754 375 623 683 324 435 117 0.31 60 0.19 117 1 54 0.90

reactor ctrl 487 230 397 456 214 266 54 0.23 45 0.21 51 0.94 39 0.87
runner 566 289 657 512 277 419 36 0.12 15 0.05 30 0.83 6 0.40
example 467 169 439 404 153 228 42 0.25 24 0.16 42 1 24 1
ww button 1185 578 979 1148 570 798 72 0.12 51 0.09 48 0.67 36 0.71

greycounter 1965 1013 2376 1851 928 1736 528 0.52 375 0.40 528 1 375 1
tcint 3580 1878 2350 3488 1797 2121 408 0.22 252 0.14 342 0.84 204 0.81
mca200 75488 29078 12497 73824 24056 11479 2862 0.23 1107 0.10 2862 1 1107 1

The worst-/average-case reaction times, in clock cycles, for the KEP3a and MicroBlaze

I WCRT speedup: typically >4x

I ACRT speedup: typically >5x

I Optimizations yield further improvements

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 49

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Memory Usage

Esterel MicroBlaze KEP3a-Unopt. KEP3a-opt.
Module Name LOC Code+Data (byte) Code (word) Code+Data (byte) Code (word)

V5 V7 CEC abs. rel. abs. rel. abs. rel.
[1] [2] (best) [3] [3]/[1] [4] [4]/[2] [5] [5]/[3]

abcd 160 6680 7928 7212 168 1.05 756 0.11 164 0.93
abcdef 236 9352 9624 9220 252 1.07 1134 0.12 244 0.94

eight but 312 12016 11276 11948 336 1.08 1512 0.13 324 0.94
chan prot 42 3808 6204 3364 66 1.57 297 0.09 62 0.94

reactor ctrl 27 2668 5504 2460 38 1.41 171 0.07 34 0.89
runner 31 3140 5940 2824 39 1.22 175 0.06 27 0.69
example 20 2480 5196 2344 31 1.55 139 0.06 28 0.94
ww button 76 6112 7384 5980 129 1.7 580 0.10 95 0.74

greycounter 143 7612 7936 8688 347 2.43 1567 0.21 343 1
tcint 355 14860 11376 15340 437 1.23 1968 0.17 379 0.87
mca200 3090 104536 77112 52998 8650 2.79 39717 0.75 8650 1

I Unoptimized: 83% avg reduction of memory usage (Code+RAM)

I Optimized: May yield further 5% to 30+% improvements
Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 50

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Power Consumption

MicroBlaze KEP3a 2 Ratio
Module (82mW@50MHz) (mW) (KEP to MB)
Name Idle Peak Idle Peak Idle
abcd 69 13 8 0.16 0.12

abcdef 74 13 7 0.16 0.09
eight but 74 13 7 0.16 0.09
chan prot 70 28 12 0.34 0.17

reactor ctrl 76 20 13 0.24 0.17
runner 78 14 2 0.17 0.03
example 77 25 9 0.30 0.12
ww button 81 13 4 0.16 0.05

greycounter 78 44 33 0.54 0.42
tcint 80 18 10 0.22 0.13

I Peak energy usage reduction: 75% avg

I Idle (= no inputs) energy usage reduction: 86% avg

2
Based on Xilinx 3S200-4ft256, requires an additional 37mW as quiescent power for the chip itself

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 51

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Scalability
Synthesis results for Xilinx 3S1500-4fg-6763

Thread
Slices Gates (k)

Count
2 1295 295
10 1566 299
20 1871 311
40 2369 328
60 3235 346
80 4035 373
100 4569 389
120 5233 406

I 48 valued signals
up to 256 possible

I 2 Watchers, 8 Local Watchers
either up to 64 possible

I 1k (1024) instruction words
up to 64k possible

I 128 registers (in word)
up to 512 possible

I 16-bits (65536) max counter value

I Frequency is stable (around 60 MHz)

Note: In the mca200, the watcher refinement reduces the hardware
requirements from 4033 slices (if all preemptions were handled by general
purpose Watchers) to 3265 slices (19% reduction).

3For comparison, a MicroBlaze implementation requires around 1k slices
and 309k gates; a two threads EMPEROR platform requires around 2k slicesXin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 52

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Analysis of Context Switches

Instr’s CSs CSs at same PRIOs CSs due to
Module total total priority total PRIO

Name abs. abs. ratio abs. rel. abs. rel. abs. rel. rel.
[1] [2] [1]/[2] [3] [3]/[2] [4] [4]/[1] [5] [5]/[2][5]/[4]

abcd 16513 3787 4.36 1521 0.40 3082 0.19 1243 0.33 0.40
abcdef 29531 7246 4.08 3302 0.46 6043 0.20 2519 0.35 0.42

eight but 39048 10073 3.88 5356 0.53 8292 0.21 3698 0.37 0.45
chan prot 5119 1740 2.94 707 0.41 990 0.19 438 0.25 0.44

reactor ctrl 151 48 3.15 29 0.60 0 0 0 0 -
runner 5052 704 7.18 307 0.44 0 0 0 0 -
example 208 60 3.47 2 0.30 26 0.13 9 0.15 0.35
ww button 292 156 1.87 92 0.59 0 0 0 0 -

greycounter 160052 34560 4.63 14043 0.41 26507 0.17 12725 0.37 0.48
tcint 80689 33610 2.4 16769 0.50 5116 0.06 2129 0.06 0.42
mca200 982417256988 3.82 125055 0.49 242457 0.25 105258 0.41 0.43

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 53

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Edwards02: Esterel to KEP
module Edwards02:

input S, I;

output O;

signal A,R in

every S do

await I;

weak abort

sustain R;

when immediate A;

emit O;

||

loop

pause;

pause;

present R then

emit A;

end present

end loop

end every

end signal

end module

every S do

p

end
≡

await S;

loop

abort

p;

halt

when S

end loop

sustain S ≡
loop

emit S;

pause;

end loop

loop

p

end loop
≡

A:

p;

goto A

INPUT S,I
OUTPUT O

[L00,T0] EMIT _TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10:EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11: PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12:PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 54

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

Edwards02: a Possible Execution Trace
module Edwards02:

input S, I;

output O;

signal A,R in

every S do

await I;

weak abort

sustain R;

when immediate A;

emit O;

||

loop

pause;

pause;

present R then

emit A;

end present

end loop

end every

end signal

end module

every S do

p

end
≡

await S;

loop

abort

p;

halt

when S

end loop

sustain S ≡
loop

emit S;

pause;

end loop

loop

p

end loop
≡

A:

p;

goto A

Tick
-

S I

R R
A
O

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 55

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Code Characteristics and Compilation Times
Speed, Size, Power, Scalability
Analysis of context switches
Another Example

module Edwards02:

input S, I;

output O;

signal A,R in

every S do

await I;

weak abort

sustain R;

when immediate A;

emit O;

||

loop

pause;

pause;

present R then

emit A;

end present

end loop

end every

end signal

end module

INPUT S,I
OUTPUT O

[L00,T0] EMIT _TICKLEN,#20
[L01,T0] SIGNAL A
[L02,T0] SIGNAL R
[L03,T0] AWAIT S
[L04,T0] A2: LABORT S,A3
[L05,T0] PAR 1,A4,1
[L06,T0] PAR 1,A5,2
[L07,T0] PARE A6,1
[L08,T1] A4: TABORT I,A7
[L09,T1] A8: PRIO 3
[L10,T1] PAUSE
[L11,T1] PRIO 1
[L12,T1] GOTO A8
[L13,T1] A7: TWABORTI A,A9
[L14,T1] A10:EMIT R
[L15,T1] PRIO 1
[L16,T1] PRIO 3
[L17,T1] PAUSE
[L18,T1] GOTO A10
[L19,T1] A9: EMIT O
[L20,T2] A5:A11: PAUSE
[L21,T2] PRIO 2
[L22,T2] PAUSE
[L23,T2] PRESENT R,A12
[L24,T2] EMIT A
[L25,T2] A12:PRIO 1
[L26,T2] GOTO A11
[L27,T0] A6: JOIN
[L28,T0] A3: GOTO A2

- Tick 1 -
! reset;
% In:
% Out:
[L01,T0] [L02,T0] [L03,T0]
- Tick 2 -
% In: S
% Out:
[L03,T0] [L04,T0] [L05,T0]
[L06,T0] [L07,T0]
[L20,T2] [L08,T1]
[L09,T1] [L10,T1]
[L27,T0]
- Tick 3 -
% In: I
% Out: R
[L10,T1] [L13,T1]
[L14,T1] [L15,T1]
[L20,T2] [L21,T2] [L22,T2]
[L16,T1] [L17,T1] [L27,T0]
- Tick 4 -
% In:
% Out: A R O
[L17,T1] [L18,T1]
[L14,T1] [L15,T1]
[L22,T2] [L23,T2] [L24,T2]
[L25,T2] [L26,T2] [L20,T2]
[L16,T1] [L17,T1] [L19,T1]
[L27,T0]

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 56

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Multi-processing vs. Multi-threading

PIC
Core Extension PIC

Core Extension

Environment

PIC
Core Extension

Thread Control Unit

Extended AssemblerExtended Assembler Extended Assembler

Multi-processing (EMPEROR/RePIC)

I Esterel thread ≈ one independent RePIC
processor

I Thread Control Unit handles the
synchronization and communication

I Three-valued signal representation

I sync command to synchronize threads

Environment

KEP Assembler

Interface Block

 Reactive Kernel

Reactive
Block

D
at

ap
at

h
B

lo
ck

Thread
BlockDecoder

&
Controller

Multi-threading (KEP)
I Esterel thread ≈ several

registers

I priority-based scheduler

I PRIO command to
synchronize threads

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 57

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Comparison of Synthesis Options

HW SW Co-design Reactive Processor
Multi-processing Multi-threading

Speed ++ – + + +
Flexibility – – ++ – +/– +
Scalability + ++ + – – +

Logic Area ++/– + + – – +/–
Cost Memory ++ – – – + +

Power Usage ++ – – – – +
Appl. Design Cycle – – ++ +/– ++ ++

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 58

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Scenario I: DSP + Reactive Processor

Reactive
ProcessorDSP

Global
Memory

Communication Backplane

IPs

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 59

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Scenario II: DSP + HW Block + Reactive Processor

Reactive
ProcessorDSP

Global
Memory

Communication Backplane

IPs

HW blk

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 60

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Scenario III: HW Block + Reactive Processor

Reactive
Processor

Global
Memory

Communication Backplane

IPs

HW blk

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 61

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Possible Co-Design Development Flow

Application Description
(Esterel + e.g. Lustre/Simulink)

Reactive Proc.
 Impl.

Co-simulation/verif.

Mapping

Reactive Processor
Synthesis

HW
Synthesis

Implementation of App.

HW Block
 Impl.

System Constraints
(e.g. WCET, area, etc.)

Opt. Lib.

Reactive processing . . .

I permits a simple
mapping strategy

I allows optimizations
on high-level

I can meet stricter
constraints than
classical
architectures

I permits a better
tradeoff between all
cost factors

Thanks/Comments?

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 62

KEP3a Instruction Set + Architecture
The Compiler

Further Measurements
Summary

Multi-processing vs. Multi-threading
Comparison of Synthesis Options
Application Scenarios

Possible Co-Design Development Flow

Application Description
(Esterel + e.g. Lustre/Simulink)

Reactive Proc.
 Impl.

Co-simulation/verif.

Mapping

Reactive Processor
Synthesis

HW
Synthesis

Implementation of App.

HW Block
 Impl.

System Constraints
(e.g. WCET, area, etc.)

Opt. Lib.

Reactive processing . . .

I permits a simple
mapping strategy

I allows optimizations
on high-level

I can meet stricter
constraints than
classical
architectures

I permits a better
tradeoff between all
cost factors

Thanks/Comments?

Xin Li, Marian Boldt, Reinhard v. Hanxleden A Multi-Threaded Reactive Processor Slide 62

	Introduction
	Reactive Systems
	Reactive Processing I: Language
	Reactive Processing II: Execution Platform
	Why bother?

	The Kiel Esterel Processor
	The Esterel Language
	Instruction Set Architecture
	Processor Architecture
	Compiler

	Experimental Results
	KEP Evaluation Platform
	Performance
	Scalability

	Summary and Outlook
	Summary Reactive Processors
	Related Work/Contributions
	Outlook

	Appendix
	KEP3a Instruction Set + Architecture
	Esterel-Type Instructions
	Handling Concurrency
	Handling Preemption
	Handling Exceptions
	WCRT Self-Monitoring

	The Compiler
	Three Compilation Steps
	The Concurrent KEP Assembler Graph
	Cyclicity
	Constraints

	Further Measurements
	Code Characteristics and Compilation Times
	Speed, Size, Power, Scalability
	Analysis of context switches
	Another Example

	Summary
	Multi-processing vs. Multi-threading
	Comparison of Synthesis Options
	Application Scenarios

