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I Non-standard control flow in hard real-time systems:
I Concurrency
I Preemption
I Time critical

I Esterel: a synchronous reactive language
I Deterministic behavior
I Clean mathematical semantics
I Discrete timing model

I Implementation:
I Compilation to Software (e. g., C)
I Synthesize Hardware (VHDL)
I Execute on a reactive processor
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The Abro Example

module ABRO:

input A, B, R;

output O;

loop

abort

[await A || await B];

emit O;

halt

when R

end loop

end module

I Wait simultaneously for A and B

I When both have occurred, emit O

I Reset behavior by R

B A

O

R A
R

B A

O
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Signals

module example:

input A, B;

output O1;

input {D,E,F} := false : bool;

output O2: bool;

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

end module

I Communication
I with the environment
I internally

I Pure signals: present or absent

I Valued signals: carry an
additional value

I Status and value consistent
within one tick

I Can test for expression on
signals

I . . . or expression on signal
values
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The Kiel Esterel Processor
loop

abort

[await A || await B];

emit O;

halt

when R

end loop

⇓
EMIT _TICKLEN,#11

A0: ABORT R,A1

PAR 1,A2,1

PAR 1,A3,2

PARE A4,1

A2: AWAIT A

A3: AWAIT B

A4: JOIN 0

EMIT O

HALT

A1: GOTO A0

I ISA inspired by Esterel

I Direct execution of most
statements

I Implementation of
concurrency by multiple
threads

I Avoid jitter by stalling for
known time

I More flexible than hardware

I Faster than software on
general purpose processor
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Compiling Signal Expressions

Problem: Complex Signal Expressions are sequentialized into
multiple KEP Assembler instructions

present (A or B) and C then ⇒

PRESENT C, A0

PRESENT A, A2

GOTO A1

A2: PRESENT B, A0

Solution: Calculate Expressions in logic block connected to the
KEP

I Sequential logic much faster than execution of
one instruction

I Reduce total number of instructions
→ reduce Ticklength

→ Faster execution of every tick
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Overview

1. Identify expressions

2. Replace expressions by new signals

3. Define new modules to compute these

4. Synthesize modules to hardware

5. Compile remaining program to KEP assembler

6. Connect hardware to KEP

7. Power on
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Identify Expressions

module example:

input A, B;

output O1;

input {D,E,F} := false : bool;

output O2: bool;

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

end module

I Extract signal expressions

I Extract Boolean parts
from expressions

if (?D or ?E) and ?V>5 then

Claus Traulsen HW/SW Co-Design for Esterel Processing Slide 10



Introduction
HW/SW Co-Design

Results and Further Work

Partitioning
Hardware/Software Synthesis
Interface

Identify Expressions

module example:

input A, B;

output O1;

input {D,E,F} := false : bool;

output O2: bool;

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

end module

I Extract signal expressions

I Extract Boolean parts
from expressions

if (?D or ?E) and ?V>5 then

Claus Traulsen HW/SW Co-Design for Esterel Processing Slide 10



Introduction
HW/SW Co-Design

Results and Further Work

Partitioning
Hardware/Software Synthesis
Interface

Identify Expressions

module example:

input A, B;

output O1;

input {D,E,F} := false : bool;

output O2: bool;

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

end module

I Extract signal expressions

I Extract Boolean parts
from expressions

if (?D or ?E) and ?V>5 then

Claus Traulsen HW/SW Co-Design for Esterel Processing Slide 10



Introduction
HW/SW Co-Design

Results and Further Work

Partitioning
Hardware/Software Synthesis
Interface

Replace expressions

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

end module

⇒

...

signal C, A OR B AND C in

trap COSYN TRAP 0 in

run intro example hw 2

||

present A OR B AND C then

emit O1

end present;

if (?D_OR_E_AND_F) then

emit O2(true)

end if;

exit CONSYN TRAP 0

end trap;

end signal;

...
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Compute Signals in New Modules

signal C in

present (A or B) and C then

emit O1

end present;

if (?D or ?E) and ?F then

emit O2(?D)

end if

end signal

⇒

⇒

module example_hw_2:

input A, B, C;

output A_OR_B_AND_C

every immediate [(A or B) and C] do

emit A OR B AND C

end every

end module

module example_hw_1:

input {D,E,F} := false : bool;

output D_OR_E_AND_F : bool;

sustain D OR E AND F(?D or ?E and ?F)

end module
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Synthesize to Hardware

module example_hw_1:

input {D,E,F} := false : bool;

output D_OR_E_AND_F : bool;

sustain D OR E AND F(?D or ?E and ?F)

end module

module example_hw_2:

input A, B, C;

output A_OR_B_AND_C

every immediate [A or B and C] do

emit A OR B AND C

end every

end module

entity intro_example is

port(A: in std_logic;

D: in std_logic_vector(1 downto 0); ...

);

end intro_example

architecture intro_example_BEH of intro_example is

begin

D OR E AND F(1) <= (D(1) or (E(1) and F(1)));

A OR B AND C <= (A or B) and C;

end intro_example_BEH;
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Compile to KEP Assembler

signal C, A OR B AND C in

trap COSYN TRAP 0 in

run intro example hw 2

||

present A OR B AND C then

emit O1

end present;

if (?D_OR_E_AND_F) then

emit O2(true)

end if;

exit CONSYN TRAP 0

end trap;

end signal;

...

⇒

...

SIGNAL C

SIGNAL A OR B AND C

PRESENT A OR B AND C, A0

EMIT O1

A0: LOAD REG0, ?D_OR_E_AND_F

CMPS REG0, #1

JW EE, A1

EMIT 02, #1

I New signal is local

I No run

I No trap
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Interface to the Logic

Sinout

SDat

D
a

R
e

g
S

t

Interface Block

D
a

S
tB

o
o

le
a

n

i
o

tR
e

S
n

u
g

KEP Logic Block Environment

innerSinoutFlag
or

SDir

SDatID/SDatClk/SDatWR

tick 01

Interface block stores I/O and local signals
I Connect logic to SinotReg
I Direct access to signal status → change status within a tick
I External logic needn’t care about suspension
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Valued Expressions

Sinout

SDat

D
a

R
e
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Interface Block

D
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le
a

n

i
o

tR
e

S
n

u
g

KEP Logic Block Environment

innerSinoutFlag
or

SDir

SDatID/SDatClk/SDatWR

tick 01

I No arithmetic or comparison → too expensive

I SDatBoolean replicates last bit of value

I Access like pure signal
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Correctness

Complete Chain: I Tested on different benchmarks
I Checked executed behavior

Partitioning: I Verified partitioning by sequential
equivalence check

I Partitioning looks okay

Interface: I Computation faster than instruction clock
I No read/write conflict
I No reuse of interface signals
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Experimental Results

I No signal expression → no benefit

I Choose several Benchmarks, with reasonable number of signal
expressions

I Compute WCRT and measure actual execution times

I Need new local signals

I Number of additional slices small

I Power consumption per Tick proportional to Ticklength
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Experimental Results (cont)
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Conclusion

I Simple approach for HW/SW Co-Design

1. Partition on Esterel level
2. Implement some modules in HW, some in SW

I Esterel’s clear semantics makes partitioning easy

I Concurrency and preemption controll is executed efficiently on
the KEP
→ HW modules can be simple

I Actual benefit depends higly on program

I Fully Implemented (extendsion to CEC)
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Further Work

I Correctness
I KEP running on a faster clock

I Improved scheduling
I How to guarantee correctness?

I Beyond expressions

I Co-Processor

I . . .
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