A versatile demonstrator for distributed real-time systems: Using a model-railway in education

ERCIM / DECOS Workshop

Christian-Albrechts Universität Kiel Faculty of Engineering Dept. of Computer Science and Applied Mathematics Real-Time Systems and Embedded Systems Group

Stephan Höhrmann Hauke Fuhrmann Steffen Prochnow Reinhard von Hanxleden

The Model Railway Installation

Periphery Hardware Periphery Controller

Controlling Controlling: PC104-Computers TTP Powernodes Networking

Advanced Laboratory Course in University Education

Lessons Learned

The Model Railway Installation

- Idea came up 1995 at research group of Prof. Kluge
- Based on a mountain pass in Canada: Kicking Horse Pass
- Originally to demonstrate on the management of resources (using Petri-Nets)
- Has been developed over three generations yet
- Scale H0, actually
 - 127 meters of railtrack
 - up to 8 trains concurrently
 - > 28 switch points, 56 semaphores, 80 reed-contacts
 - 24 lanterns

Periphery Hardware Periphery Controller

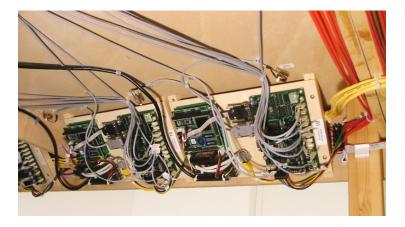
First Generation

The Model Railway Installation Controlling

Periphery Hardware Periphery Controller

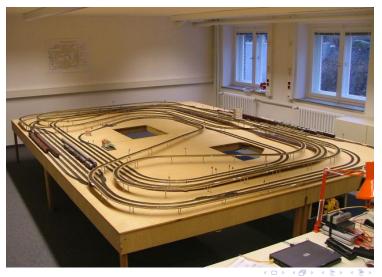
Controlling Advanced Laboratory Course in University Education Lessons Learned

Second Generation


Periphery Hardware Periphery Controller

A D > A A P >

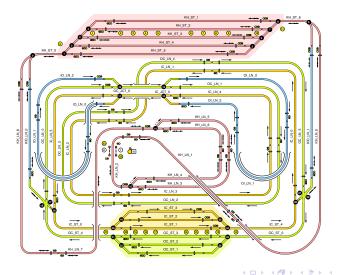
- - E - N


< E

Third Generation

Periphery Hardware Periphery Controller

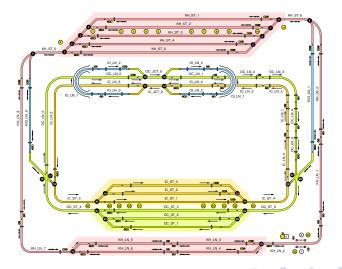
Third Generation


Third Generation

- Repair of damaged railway parts
- Complete replacement of controllers
 - Hardware Controller Circuits
 - Cabling
 - Network Bus Systems
 - Software
- Development of a new, modular and upgradeable controller system
 - CAN, TTP and Ethernet
- Multiple Programming Paradigms Possible
 - ► Standard C/C++ development with comfortable API
 - Model-Based System Design

The Model Railway Installation

Controlling Advanced Laboratory Course in University Education Lessons Learned Periphery Hardware Periphery Controller


Track Layout

Lessons Learned

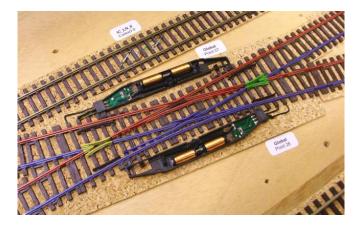
Periphery Hardware Periphery Controller

Simplified Track Scheme

CAU

Periphery: Motor Power

- Engines are driven by 12V DC
- Polarity controls direction, PWM controls speed
- Railway tracks are seperated into distinct blocks


Periphery: Switch Points

- Switch points enable to switch between main and side tracks
- The guides are actuated electronically by solenoids
- Induces strong interfering fields!

Periphery Hardware Periphery Controller

Periphery: Crossing Switch Points

Periphery: Contacts

- Reed-Contacts embedded in the tracks detect magnets
- Small magnets attached to front and back of each train
- ► Task: Follow train positions, stopping at exact location
- ▶ Redundancy: Recognize direction of train

Periphery: Semaphores

- Visualizing system states, realistic impression
- Main semaphores (red/green), block semaphores (+yellow)
- Controlled independently by software

Periphery: Lights

- Lanterns mark prominent locations (stations)
- Simply for neat looking
- Might be used for debugging (indicate some internal state)

Periphery Hardware Periphery Controller

Periphery: Railroad Crossing

- Railroad crossing with gates, semaphores, bell and gate sensors
- Freely programmable

Periphery Hardware Periphery Controller

Periphery: Railroad Crossing

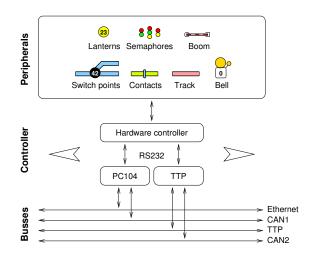
- Controlling by special interface circuits
- Generic interfaces allow connection of komplex sensors and actuator

Periphery Hardware Periphery Controller

Hardware Periphery Controller

Hardware Periphery Controller

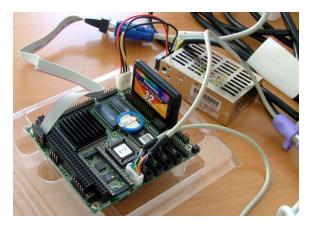
- Interface circuits controlls whole periphery of two blocks
- Connection to any bus systems possible
- Semaphores
 - ▶ 4 Outputs each for 3 LEDs (+ power supply)
- Contacts
 - 4 Inputs each for 2 Reed-Contacts (+ power supply)
 - complex filtering and evaluation, redundancy management
- Track Driver Units
 - 2 Outputs to the tracks, individual modes (off, fwd, rev, brake) and PWM, short-circuit safe
 - Integrated track occupied detector, measurement and controlling of engine speed


Periphery Hardware Periphery Controller

Hardware Periphery Controller

- Switch Point Drivers
 - 4 Outputs of switchable high power supply
 - Used for switch actuators, lights, gates, bell,...
 - Externel filters prevent influence of electrical interferences
- Serial Communication Interfaces
 - 4 Ports to connect up to 4 external computers
 - Controlling of circuit board by a serial protocol
 - Only one port active by a port choosing algorithm
 - 19200 Baud, 8N1, Fullduplex, Cycle-Time 10 ms max
- Error Protocol
 - EEPROM of Microcontroller saves faults of reed-contacts, short-circuits and other critical faults
- Integrated Display
 - 7-Segment-Display indicates state of the board

Controlling: PC104-Computers TTP Powernodes Networking


Controlling: Modular Concept

Controlling: PC104-Computers TTP Powernodes Networking

< 口 > < (型 >

Controlling: PC104-Computer

Controlling: PC104-Computers TTP Powernodes Networking

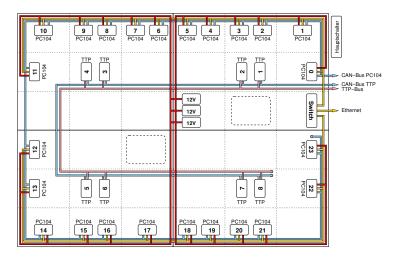
Controlling: PC104-Computers

- CPU 80386, 40 MHz, 4 MB RAM, 32 MB Flash-Disc
- ▶ 4 serial interfaces, Ethernet, CAN-Controller
- Boots and operates completely via network (Kernel, Root, Home, Swap)
- Custom compiled Linux and cross compilation toolchain
- Daemon railwayd is a router between Ethernet/CAN and the serial interface

Controlling: PC104-Computers TTP Powernodes Networking

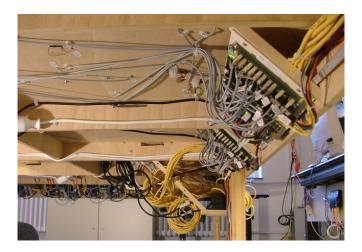
A D b 4 A b

Controlling: TTP Powernodes



Controlling: PC104-Computers TTP Powernodes Networking

Controlling: TTP-Powernodes


- Motorola MPC555 with 40 MHz, PowerPC-Architecture with floating point unit
- 1 MB RAM, 4 MB Flash
- Time Triggered Architecture
- Programming either directly in C or model-based design
- Three serial interfaces by custom port-extender
- Employed in education with model-based system design already

Controlling: Crosslinking the Components

Controlling: PC104-Computers TTP Powernodes Networking

Controlling: Cabling

- - E

Controlling: PC104-Computers TTP Powernodes Networking

A D > A A P >

Controlling: 12 Volt Power-Supply

Controlling: PC104-Computers TTP Powernodes Networking

A D > A A P >

Controlling: TTP-Powernodes

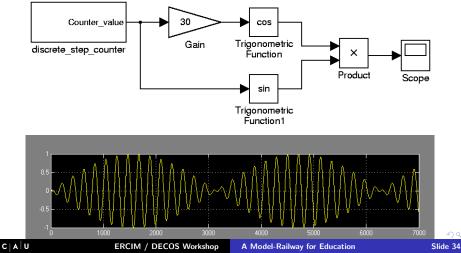
The Model Railway Installation Controlling: PC104-Computers TTP Powernodes Networking

Balance Sheet

- 50 weeks of work
- About 4000 working hours
- 15000 lines of code (Assembler and C)

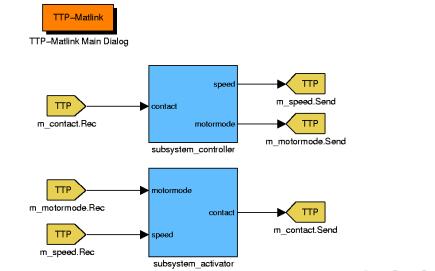
A D b 4 A b

Advanced Laboratory Course in University Education

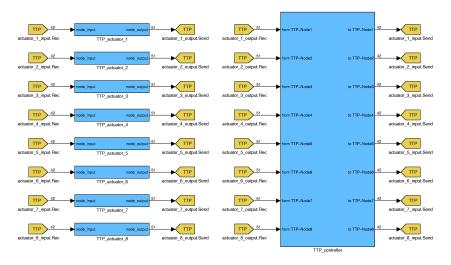

- ► Time Frame: About 4 Months, 4 or 8 semester periods a week
- Students: 8 Students, forming teams of 2
- Background:
 - General knowledge about model-based system design
 - Detailed knowledge about statecharts semantics
 - No experience with Matlab/Simulink/Stateflow
 - Little experience with C programming
- Goal: Independent working in a bigger project
 - Application specification
 - Time planning (dividing work into 4 milestones)
 - Problem solving and team interaction
 - Documentation
 - Presentation (internal milestone and final public presentations)

Application

- Introduction to the tools
- Control the trains!
 - Definition of concrete task defined by students according to time frame themselves
 - Simulation prior to testing on real hardware was required
- \Rightarrow
 - One Group: Modular, clear simulation model of whole installation
 - Other Groups: Controllers for the railway


Model-Based System Design: Matlab/Simulink/Stateflow

Graphical representations model system behaviour and can be executed in simulation.



Matlink (TTTech) to specify communication in Simulink

Communication Model for the Railway Application

A D b 4 A b

E

A 3 b

Lessons Learned

What did we learn from the project? Concerning...

- ... the application
- … the students
- ... the tools

Motivation

- Motivation of students very high.
- Presence of physical demonstrator increased motivation.
- Spent much more time (ca. double) than scheduled.

Time Planning

- Time plannings were too optimistic.
- All groups massively underestimated efforts for the individual tasks.
- Hardly able to finish tasks in time.
- Time efforts more than doubled.
- Some goals of milestones postponed or completely removed.

Preparation

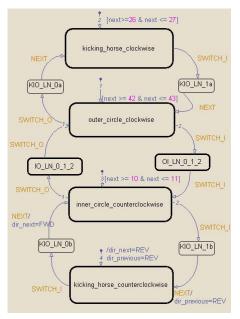
- Pressure of time lead to more unstructured process.
- Quick-and-dirty prefered to "time consuming" preparations.
- Prefered trial-and-error over tutorial usage and manual studies.
- Prefered debugging on real hardware to usage of simulation.

The Model Railway Installation Controlling Advanced Laboratory Course in University Education Lessons Learned

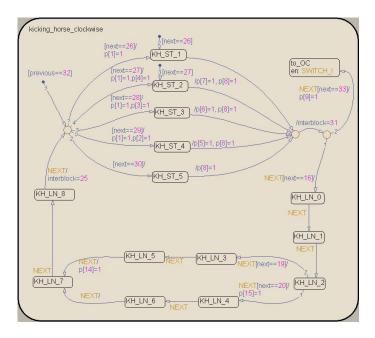
Application

- Closed loop controllers
- Simulation of railway

- Reactive Controllers
- Train management (Safety, Deadlock avoidance, Fairness)
- Graph algorithms
- Find shortest path

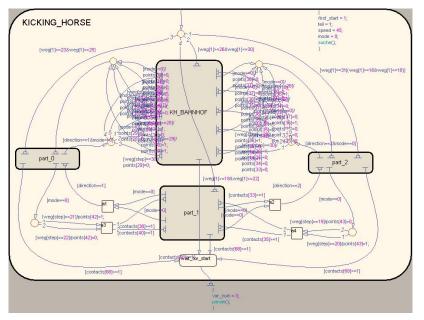

Simulation

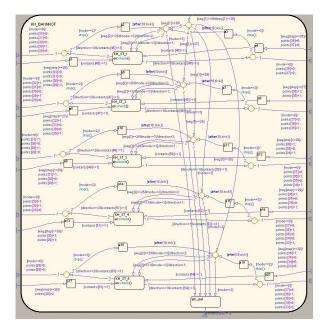
- Building Simulation Model very effort prone
- Development of controller without simulation hopeless
- Debugging of controller with simulation is comfortable
- Porting of controller from simulation to real hardware worked seamlessly
- Simulation for this scale of application mandatory

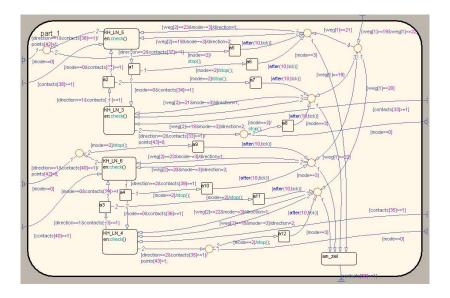

Experience at Modeling

- Models are easy to read but hard to write!
- Good modeling differs from good programming in textual languages
- Common design patterns are hardly applicable
- Quick-and-dirty prefered to "beautiful" models
- Abusing of mechanisms makes reading of models harder
- examples...

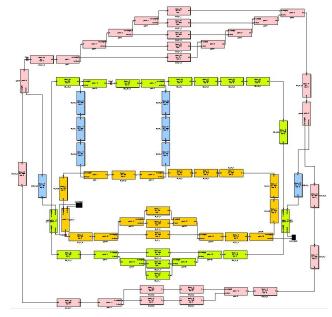
Well strucutured Statechart



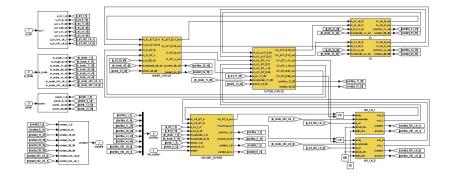

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

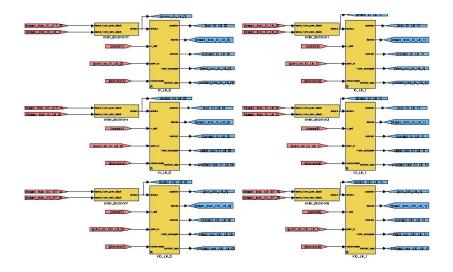
A tangled mess of wiring



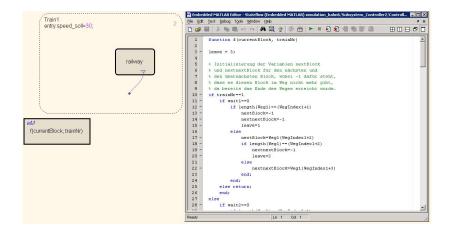
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣んで



Very well readable simulation model


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

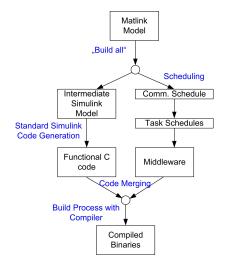
Long connections, many inputs and outputs


◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Abusing the goto and from mechanism

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 のへで

Abusing the embedded Matlab function mechanism

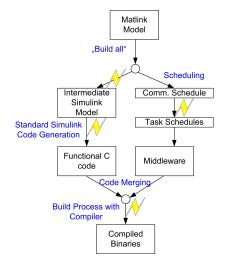


Interaction with tools

- Toolchains can comprise many hierarchy levels
- e. g. modeling, transforming, scheduling, code generation, building, deployment
- ► Most time consuming problems: Origin of error messages are not clear to the developer → effort prone debugging necessary
- Lower level error messages cannot be mapped to the higher levels

The Model Railway Installation Controlling Advanced Laboratory Course in University Education Lessons Learned

Overview: The build process of Matlink


- Matlink model is "terrain" of the developer
- Building process generates functional code and middleware
- Middleware requires scheduling with two external tools
- Simulink Code Generator is used with an "invisible" intermediate Simulink model

- - E - N

A D b 4 A b

The Model Railway Installation Controlling Advanced Laboratory Course in University Education Lessons Learned

Problems at error propagation

- Simulink error messages address Intermediate
 Simulink Model
- Error at task schedules but communication schedule is too tight
- Scheduler messages hardly relate to Matlink objects
- C "parse error near ;" due to wrong option in Matlink model

A D b 4 A b

4 E b

Perfect Process

- Developer can stay at the topmost hierarchy level
- Requirement: Good communication between levels
- Consistent error propagation from lower levels to each next higher level
- Requirement: Consistent mapping of objects in different toolchain levels

Summary

Versatile Demonstrator

- Multiple Bus Systems
- Multiple Programming Paradigms
- Scale of Model-Railway yields to challenging application
- Model-Based System Design employed
 - Graphically presents Functionality
 - ► Simulation possible ⇒ Enables Debugging
 - Easy to read but hard to write
 - Unclear error messages from tools
 - Uncommon Design Patterns
 - Difficult to right "beautiful" models

The Model Railway Installation Controlling Advanced Laboratory Course in University Education Lessons Learned

Thank you!

