HW/SW Co-Design for a Reactive Processor

Sascha Gadtke, Xin Li, Marian Boldt, Reinhard von Hanxleden

Real-Time and Embedded Systems Group
Department of Comuter Science
Faculty Of Engineering
Christian-Albrechts-University Kiel, Germany

Student Poster Session, LCTES’06
Ottawa, June 14-16, 2006

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 1

Introduction

Introduction

Classical approach: Run an Esterel program on a reactive processor like
the Kiel Esterel Processor (KEP)
Drawback: Complex signal expressions have to be sequentialized
into a series of KEP assembler instructions
Our Approach: Accelerate reactive processing via external logic block

1 % module EXAMPLE
2 INPUT A
3 INPUT B
module EXAMPLE: 4 INPUT C
input A, B, C; 5 OUTPUT O
output O, P; 6 OUTPUT P
7 PRESENT A,A0
present (A and C) or (B and C) then 8 PRESENT C,A0
emit O 9 GOTO A1
end; 10 AO: PRESENT B,A2
present A or B then 11 PRESENT C,A2
emit P 12 Al: EMIT O
end 13 A2: PRESENT A,A3
end module 14 GOTO A4

15 A3: PRESENT B,A5
16 A4: EMIT P
17 A5: HALT

Figure: EXAMPLE Esterel program and resulting KEP assembler code

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 2

Approach

Approach

First Step: Source Code Transformation
Original Esterel program partitioned into three modules

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Approach

Approach
First Step: Source Code Transformation
Original Esterel program partitioned into three modules
» SW module
» Copy of the original program
» Complex signal expressions are replaced with auxiliary signals

module EXAMPLE_SW:
output O;

output P;

input A_and_C_or_B_and_C;
input A_or.B;

present A_and_C_or_B_and_C then
emit O

end present;

present A_or_B then
emit P

end present

end module

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Approach

Approach

First Step: Source Code Transformation
Original Esterel program partitioned into three modules

» SW module
» Copy of the original program
» Complex signal expressions are replaced with auxiliary signals

» HW module
» Computes complex signal expressions in parallel threads
> At any time a signal expression is TRUE, the auxiliary signal is

emitted

module EXAMPLE_SW: module EXAMPLE_HW:

output O; input A, C, B;

output P; tput A—and-C_or-B_and-C, A_or.B;
input A_and_C.or_B_and_C; euteu D
input A_or.B;

every immediate [A_or_B and C] do
emit A-and-C_or_B_and_C
end every
I
every immediate [B or A] do
emit A_or.B
end every

present A_and_C_or_B_and_C then
emit O

end present;

present A_or_B then
emit P

end present

end module

end module

HW/SW Co-Design for a Reactive Processor Slide 3

Approach

Approach

First Step: Source Code Transformation
Original Esterel program partitioned into three modules

» SW module

» Copy of the original program
» Complex signal expressions are replaced with auxiliary signals

» HW module

» Computes complex signal expressions in parallel threads
> At any time a signal expression is TRUE, the auxiliary signal is

emitted

» Main module runs SW- and HW module in parallel

module EXAMPLE_SW:
output O;

output P;

input A_and_C_or_B_and_C;
input A_or.B;

present A_and_C_or_B_and_C then
emit O

end present;

present A_or_B then
emit P

end present

end module

module EXAMPLE_HW:
input A, C, B;
output A-and-C.or-B.and-C, A_or_B;

every immediate [A_or_.B and C] do
emit A-and-C.or-B_and_C
end every
I
every immediate [B or A] do
emit A_or.B
end every

end module

module EXAMPLE:
input A, B, C;
output O, P;

signal A.and_C_or_B_and_C,
A_orB in
run EXAMPLE_SW
Il
run EXAMPLE_HW
end signal

end module

Sascha Gidtke et al.

HW/SW Co-Design for a Reactive Processor

Approach

Approach
Second Step: HW/SW Synthesis

» SW module is compiled to KEP assembler code and then executed
on the KEP

» HW module is transformed into a VHDL description of a
combinational logic

» KEP has to provide an interface to the logic block

A A ==
\
_B’ £ > = N
- c > L
i
A_or B |
H
|

A_and_C_or_B_and C

ot

Y

Logic Block

Figure: Schematic of the KEP with external logic block

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 4

Experimental Results

Experimental Results
Test conditions

» Benchmark: TCINT from the EstBench suite
Results

» KEP code already faster than the fastest MicroBlaze code generated
by the Esterel V7 compiler

» Maximum execution time of the co-design has reduced to less than
the half of the pure SW solution

Original program (SW) Partitioned program (SW) | HW+SW
MicroBlaze KEP MicroBlaze KEP KEP
V5 V7 CEC V5 V7 CEC
Memory (in bytes) 14860 11376 15340 | 3527 | 17308 11416 17460 | 4471 1894

Average 3488 1797 2121 | 261 | 4248 1826 2971 | 720 204
Clock cycles Maximum | 3580 1878 2350 | 729 | 4336 1907 3311 | 981 345
Empty input | 3476 1807 2101 | 237 | 4267 1838 2956 | 771 204

Table: Experimental results for the TCINT benchmark.

Sascha Gidtke et al. HW/SW Co-Design for a Reactive Processor Slide 5

	Introduction
	Approach
	Experimental Results

