
Introduction
Approach

Experimental Results

HW/SW Co-Design for a Reactive Processor

Sascha Gädtke, Xin Li, Marian Boldt, Reinhard von Hanxleden

Real-Time and Embedded Systems Group
Department of Comuter Science

Faculty Of Engineering
Christian-Albrechts-University Kiel, Germany

Student Poster Session, LCTES’06
Ottawa, June 14-16, 2006

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 1

Introduction
Approach

Experimental Results

Introduction
Classical approach: Run an Esterel program on a reactive processor like

the Kiel Esterel Processor (KEP)
Drawback: Complex signal expressions have to be sequentialized

into a series of KEP assembler instructions
Our Approach: Accelerate reactive processing via external logic block

module EXAMPLE:

input A, B, C;

output O, P;

present (A and C) or (B and C) then

emit O

end;

present A or B then

emit P

end

end module

1 % module EXAMPLE

2 INPUT A

3 INPUT B

4 INPUT C

5 OUTPUT O

6 OUTPUT P

7 PRESENT A,A0

8 PRESENT C,A0

9 GOTO A1

10 A0: PRESENT B,A2

11 PRESENT C,A2

12 A1: EMIT O

13 A2: PRESENT A,A3

14 GOTO A4

15 A3: PRESENT B,A5

16 A4: EMIT P

17 A5: HALT

Figure: EXAMPLE Esterel program and resulting KEP assembler code

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 2

Introduction
Approach

Experimental Results

Approach
First Step: Source Code Transformation

Original Esterel program partitioned into three modules

I SW module
I Copy of the original program
I Complex signal expressions are replaced with auxiliary signals

I HW module
I Computes complex signal expressions in parallel threads
I At any time a signal expression is TRUE, the auxiliary signal is

emitted
I Main module runs SW- and HW module in parallel

module EXAMPLE SW:

output O;

output P;

input A and C or B and C;

input A or B;

present A and C or B and C then

emit O

end present ;

present A or B then

emit P

end present

end module

module EXAMPLE HW:

input A, C, B;

output A and C or B and C, A or B;

every immediate [A or B and C] do

emit A and C or B and C

end every

||
every immediate [B or A] do

emit A or B

end every

end module

module EXAMPLE:

input A, B, C;

output O, P;

signal A and C or B and C,

A or B in

run EXAMPLE SW

||
run EXAMPLE HW

end signal

end module

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Introduction
Approach

Experimental Results

Approach
First Step: Source Code Transformation

Original Esterel program partitioned into three modules
I SW module

I Copy of the original program
I Complex signal expressions are replaced with auxiliary signals

I HW module
I Computes complex signal expressions in parallel threads
I At any time a signal expression is TRUE, the auxiliary signal is

emitted
I Main module runs SW- and HW module in parallel

module EXAMPLE SW:

output O;

output P;

input A and C or B and C;

input A or B;

present A and C or B and C then

emit O

end present ;

present A or B then

emit P

end present

end module

module EXAMPLE HW:

input A, C, B;

output A and C or B and C, A or B;

every immediate [A or B and C] do

emit A and C or B and C

end every

||
every immediate [B or A] do

emit A or B

end every

end module

module EXAMPLE:

input A, B, C;

output O, P;

signal A and C or B and C,

A or B in

run EXAMPLE SW

||
run EXAMPLE HW

end signal

end module

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Introduction
Approach

Experimental Results

Approach
First Step: Source Code Transformation

Original Esterel program partitioned into three modules
I SW module

I Copy of the original program
I Complex signal expressions are replaced with auxiliary signals

I HW module
I Computes complex signal expressions in parallel threads
I At any time a signal expression is TRUE, the auxiliary signal is

emitted

I Main module runs SW- and HW module in parallel

module EXAMPLE SW:

output O;

output P;

input A and C or B and C;

input A or B;

present A and C or B and C then

emit O

end present ;

present A or B then

emit P

end present

end module

module EXAMPLE HW:

input A, C, B;

output A and C or B and C, A or B;

every immediate [A or B and C] do

emit A and C or B and C

end every

||
every immediate [B or A] do

emit A or B

end every

end module

module EXAMPLE:

input A, B, C;

output O, P;

signal A and C or B and C,

A or B in

run EXAMPLE SW

||
run EXAMPLE HW

end signal

end module

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Introduction
Approach

Experimental Results

Approach
First Step: Source Code Transformation

Original Esterel program partitioned into three modules
I SW module

I Copy of the original program
I Complex signal expressions are replaced with auxiliary signals

I HW module
I Computes complex signal expressions in parallel threads
I At any time a signal expression is TRUE, the auxiliary signal is

emitted
I Main module runs SW- and HW module in parallel

module EXAMPLE SW:

output O;

output P;

input A and C or B and C;

input A or B;

present A and C or B and C then

emit O

end present ;

present A or B then

emit P

end present

end module

module EXAMPLE HW:

input A, C, B;

output A and C or B and C, A or B;

every immediate [A or B and C] do

emit A and C or B and C

end every

||
every immediate [B or A] do

emit A or B

end every

end module

module EXAMPLE:

input A, B, C;

output O, P;

signal A and C or B and C,

A or B in

run EXAMPLE SW

||
run EXAMPLE HW

end signal

end module

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 3

Introduction
Approach

Experimental Results

Approach
Second Step: HW/SW Synthesis

I SW module is compiled to KEP assembler code and then executed
on the KEP

I HW module is transformed into a VHDL description of a
combinational logic

I KEP has to provide an interface to the logic block

Figure: Schematic of the KEP with external logic block

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 4

Introduction
Approach

Experimental Results

Experimental Results
Test conditions

I Benchmark: TCINT from the EstBench suite

Results

I KEP code already faster than the fastest MicroBlaze code generated
by the Esterel V7 compiler

I Maximum execution time of the co-design has reduced to less than
the half of the pure SW solution

Original program (SW) Partitioned program (SW) HW+SW
MicroBlaze KEP MicroBlaze KEP KEP

V5 V7 CEC V5 V7 CEC
Memory (in bytes) 14860 11376 15340 3527 17308 11416 17460 4471 1894

Average 3488 1797 2121 261 4248 1826 2971 720 204
Clock cycles Maximum 3580 1878 2350 729 4336 1907 3311 981 345

Empty input 3476 1807 2101 237 4267 1838 2956 771 204

Table: Experimental results for the TCINT benchmark.

Sascha Gädtke et al. HW/SW Co-Design for a Reactive Processor Slide 5

	Introduction
	Approach
	Experimental Results

