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Pragmatics of MBE

Semantics define the structure and meaning of a model
I how to interpret it

Syntax defines the notation of a model
I how to visualize it

Pragmatics defines the interaction with a model
I how to edit it
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Pragmatics of MBE

Textual editing is well known

Advanced editors offer versatile assistance for editing and
formatting of text

I 1-dimensional representation: relatively simple problem

Graphical editing often limited to drag-and-drop

Little automated editing and formatting
I 2-dimensional representation: complex problem
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Resulting Problems

A lot of time spent on the notation of models
I Position new elements, arrange connections and surrounding

elements. . .

High cost of model maintenance

Solution: focus on the structure of models

Perform structural modification, then let the computer do the layout!
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Eclipse Integration
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Edit Parts
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Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).
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Graph Drawing Algorithms

Connect existing implementations to our layout interface:
I Graphviz, a widely used command line tool
I Zest, part of the Eclipse Graphical Editing Framework (GEF)
I OGDF, a C++ library developed at the TU Dortmund

Specialized algorithms for specific diagram types
I Developed a layouter for data flow diagrams, e. g. Simulink, SCADE,

Ptolemy
I OGDF has a special layouter for class diagrams
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Data Flow Diagram Layout

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 10 / 18



Outline

1 Pragmatics of MBE

2 Automatic Layout
Eclipse Integration
Algorithms

3 Structure-Based Editing
The Approach
Object Class Transformations

4 Conclusion

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 11 / 18



Structure-Based Editing

Use a model transformation language to specify operations
I E. g. Xtend (Eclipse M2T project)

Operate directly on the semantic model instead of the notation model

Perform automatic layout after each operation
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Xtend Operations

Create a successor action in an activity diagram

Void createSuccessor(Action action):

let newAction = new OpaqueAction:

newAction.setActivity(action.activity) ->

controlFlow(action, newAction);

Void controlFlow(Action action1, Action action2):

let flow = new ControlFlow:

flow.setActivity(action1.activity) ->

flow.setSource(action1) ->

flow.setTarget(action2);
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Object Class Transformations

The UML metamodel has many specializations
I E. g. OpaqueAction, CallBehaviorAction, CallOperationAction,

CreateObjectAction, AcceptEventAction, SendSignalAction. . .

To change an instance, remove it, add the new instance, and fix all
properties and connections

Structure-based editing can be used to simplify this

Write toggling operations that perform all these steps automatically
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Conclusion

Introduced a framework for automatic layout in Eclipse

Perform structural operations employing automatic layout
I Structure-based editing

Concepts can be applied with minimal effort to all GMF diagram
editors

I E. g. SyncCharts, a synchronous Statecharts dialect

Available in the open source project KIELER
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Future Work

Define a concrete set of transformations on the UML metamodel

Evaluate resulting operations in the context of actual development
projects

Synchronize graphical diagrams with textual representations

View management: dynamic creation of graphical views
I Display models with different levels of detail
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View Management: UML Metamodel
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