
Automatic Layout and Structure-Based Editing
of UML Diagrams

Miro Spönemann
Hauke Fuhrmann Michael Matzen Reinhard von Hanxleden

Real-Time and Embedded Systems Group, Department of Computer Science
Christian-Albrechts-Universität zu Kiel, Germany
{msp,haf,mim,rvh}@informatik.uni-kiel.de

M-BED 2010, March 12th

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 1 / 18

Outline

1 Pragmatics of MBE

2 Automatic Layout
Eclipse Integration
Algorithms

3 Structure-Based Editing
The Approach
Object Class Transformations

4 Conclusion

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 2 / 18

Pragmatics of MBE

Semantics define the structure and meaning of a model
I how to interpret it

Syntax defines the notation of a model
I how to visualize it

Pragmatics defines the interaction with a model
I how to edit it

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 3 / 18

Pragmatics of MBE

Semantics define the structure and meaning of a model
I how to interpret it

Syntax defines the notation of a model
I how to visualize it

Pragmatics defines the interaction with a model
I how to edit it

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 3 / 18

Pragmatics of MBE

Semantics define the structure and meaning of a model
I how to interpret it

Syntax defines the notation of a model
I how to visualize it

Pragmatics defines the interaction with a model
I how to edit it

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 3 / 18

Pragmatics of MBE

Textual editing is well known

Advanced editors offer versatile assistance for editing and
formatting of text

I 1-dimensional representation: relatively simple problem

Graphical editing often limited to drag-and-drop

Little automated editing and formatting
I 2-dimensional representation: complex problem

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 4 / 18

Pragmatics of MBE

Textual editing is well known

Advanced editors offer versatile assistance for editing and
formatting of text

I 1-dimensional representation: relatively simple problem

Graphical editing often limited to drag-and-drop

Little automated editing and formatting
I 2-dimensional representation: complex problem

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 4 / 18

Pragmatics of MBE

Textual editing is well known

Advanced editors offer versatile assistance for editing and
formatting of text

I 1-dimensional representation: relatively simple problem

Graphical editing often limited to drag-and-drop

Little automated editing and formatting
I 2-dimensional representation: complex problem

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 4 / 18

Pragmatics of MBE

Textual editing is well known

Advanced editors offer versatile assistance for editing and
formatting of text

I 1-dimensional representation: relatively simple problem

Graphical editing often limited to drag-and-drop

Little automated editing and formatting
I 2-dimensional representation: complex problem

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 4 / 18

Resulting Problems

A lot of time spent on the notation of models
I Position new elements, arrange connections and surrounding

elements. . .

High cost of model maintenance

Solution: focus on the structure of models

Perform structural modification, then let the computer do the layout!

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 5 / 18

Resulting Problems

A lot of time spent on the notation of models
I Position new elements, arrange connections and surrounding

elements. . .

High cost of model maintenance

Solution: focus on the structure of models

Perform structural modification, then let the computer do the layout!

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 5 / 18

Resulting Problems

A lot of time spent on the notation of models
I Position new elements, arrange connections and surrounding

elements. . .

High cost of model maintenance

Solution: focus on the structure of models

Perform structural modification, then let the computer do the layout!

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 5 / 18

Resulting Problems

A lot of time spent on the notation of models
I Position new elements, arrange connections and surrounding

elements. . .

High cost of model maintenance

Solution: focus on the structure of models

Perform structural modification, then let the computer do the layout!

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 5 / 18

Outline

1 Pragmatics of MBE

2 Automatic Layout
Eclipse Integration
Algorithms

3 Structure-Based Editing
The Approach
Object Class Transformations

4 Conclusion

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 6 / 18

Eclipse Integration

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

KLayoutData
 width: 20
 height: 20

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

Style
Annotation

KOption KLayoutData
 width: 20
 height: 20KOption

KOption

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

Style
Annotation

KOption KLayoutData
 width: 20
 height: 20KOption

KOption

Layout
Algorithm

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

Style
Annotation

KOption KLayoutData
 width: 20
 height: 20
 x: 324
 y: 117

KOption

KOption

Layout
Algorithm

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Eclipse Integration

Edit Parts

File System

Domain Model

Notation Model

KGraph

Style
Annotation

KOption KLayoutData
 width: 20
 height: 20
 x: 324
 y: 117

KOption

KOption

Layout
Algorithm

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 7 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Extension Points

Use Eclipse extension points to define an XML-based interface

Plug in new layout algorithms

Configure default layout options

Register structure-based operations (presented later)

The goal: offer the most suitable layout for
I each type of diagram
I each part of a structured diagram

Layout works without any adaptions for most editors of the Eclipse
Graphical Modeling Framework (GMF).

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 8 / 18

Graph Drawing Algorithms

Connect existing implementations to our layout interface:
I Graphviz, a widely used command line tool
I Zest, part of the Eclipse Graphical Editing Framework (GEF)
I OGDF, a C++ library developed at the TU Dortmund

Specialized algorithms for specific diagram types
I Developed a layouter for data flow diagrams, e. g. Simulink, SCADE,

Ptolemy
I OGDF has a special layouter for class diagrams

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 9 / 18

Graph Drawing Algorithms

Connect existing implementations to our layout interface:
I Graphviz, a widely used command line tool
I Zest, part of the Eclipse Graphical Editing Framework (GEF)
I OGDF, a C++ library developed at the TU Dortmund

Specialized algorithms for specific diagram types
I Developed a layouter for data flow diagrams, e. g. Simulink, SCADE,

Ptolemy
I OGDF has a special layouter for class diagrams

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 9 / 18

Data Flow Diagram Layout

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 10 / 18

Outline

1 Pragmatics of MBE

2 Automatic Layout
Eclipse Integration
Algorithms

3 Structure-Based Editing
The Approach
Object Class Transformations

4 Conclusion

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 11 / 18

Structure-Based Editing

Use a model transformation language to specify operations
I E. g. Xtend (Eclipse M2T project)

Operate directly on the semantic model instead of the notation model

Perform automatic layout after each operation

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 12 / 18

Structure-Based Editing

Use a model transformation language to specify operations
I E. g. Xtend (Eclipse M2T project)

Operate directly on the semantic model instead of the notation model

Perform automatic layout after each operation

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 12 / 18

Structure-Based Editing

Use a model transformation language to specify operations
I E. g. Xtend (Eclipse M2T project)

Operate directly on the semantic model instead of the notation model

Perform automatic layout after each operation

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 12 / 18

Xtend Operations

Create a successor action in an activity diagram

Void createSuccessor(Action action):

let newAction = new OpaqueAction:

newAction.setActivity(action.activity) ->

controlFlow(action, newAction);

Void controlFlow(Action action1, Action action2):

let flow = new ControlFlow:

flow.setActivity(action1.activity) ->

flow.setSource(action1) ->

flow.setTarget(action2);

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 13 / 18

Object Class Transformations

The UML metamodel has many specializations
I E. g. OpaqueAction, CallBehaviorAction, CallOperationAction,

CreateObjectAction, AcceptEventAction, SendSignalAction. . .

To change an instance, remove it, add the new instance, and fix all
properties and connections

Structure-based editing can be used to simplify this

Write toggling operations that perform all these steps automatically

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 14 / 18

Object Class Transformations

The UML metamodel has many specializations
I E. g. OpaqueAction, CallBehaviorAction, CallOperationAction,

CreateObjectAction, AcceptEventAction, SendSignalAction. . .

To change an instance, remove it, add the new instance, and fix all
properties and connections

Structure-based editing can be used to simplify this

Write toggling operations that perform all these steps automatically

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 14 / 18

Object Class Transformations

The UML metamodel has many specializations
I E. g. OpaqueAction, CallBehaviorAction, CallOperationAction,

CreateObjectAction, AcceptEventAction, SendSignalAction. . .

To change an instance, remove it, add the new instance, and fix all
properties and connections

Structure-based editing can be used to simplify this

Write toggling operations that perform all these steps automatically

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 14 / 18

Object Class Transformations

The UML metamodel has many specializations
I E. g. OpaqueAction, CallBehaviorAction, CallOperationAction,

CreateObjectAction, AcceptEventAction, SendSignalAction. . .

To change an instance, remove it, add the new instance, and fix all
properties and connections

Structure-based editing can be used to simplify this

Write toggling operations that perform all these steps automatically

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 14 / 18

Conclusion

Introduced a framework for automatic layout in Eclipse

Perform structural operations employing automatic layout
I Structure-based editing

Concepts can be applied with minimal effort to all GMF diagram
editors

I E. g. SyncCharts, a synchronous Statecharts dialect

Available in the open source project KIELER

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 15 / 18

Conclusion

Introduced a framework for automatic layout in Eclipse

Perform structural operations employing automatic layout
I Structure-based editing

Concepts can be applied with minimal effort to all GMF diagram
editors

I E. g. SyncCharts, a synchronous Statecharts dialect

Available in the open source project KIELER

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 15 / 18

Conclusion

Introduced a framework for automatic layout in Eclipse

Perform structural operations employing automatic layout
I Structure-based editing

Concepts can be applied with minimal effort to all GMF diagram
editors

I E. g. SyncCharts, a synchronous Statecharts dialect

Available in the open source project KIELER

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 15 / 18

Conclusion

Introduced a framework for automatic layout in Eclipse

Perform structural operations employing automatic layout
I Structure-based editing

Concepts can be applied with minimal effort to all GMF diagram
editors

I E. g. SyncCharts, a synchronous Statecharts dialect

Available in the open source project KIELER

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 15 / 18

Future Work

Define a concrete set of transformations on the UML metamodel

Evaluate resulting operations in the context of actual development
projects

Synchronize graphical diagrams with textual representations

View management: dynamic creation of graphical views
I Display models with different levels of detail

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 16 / 18

Future Work

Define a concrete set of transformations on the UML metamodel

Evaluate resulting operations in the context of actual development
projects

Synchronize graphical diagrams with textual representations

View management: dynamic creation of graphical views
I Display models with different levels of detail

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 16 / 18

Future Work

Define a concrete set of transformations on the UML metamodel

Evaluate resulting operations in the context of actual development
projects

Synchronize graphical diagrams with textual representations

View management: dynamic creation of graphical views
I Display models with different levels of detail

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 16 / 18

Future Work

Define a concrete set of transformations on the UML metamodel

Evaluate resulting operations in the context of actual development
projects

Synchronize graphical diagrams with textual representations

View management: dynamic creation of graphical views
I Display models with different levels of detail

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 16 / 18

View Management: UML Metamodel

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 17 / 18

View Management: UML Metamodel

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 17 / 18

Contact

www.informatik.uni-kiel.de/rtsys

Miro Spönemann (University of Kiel) Layout and Editing for UML M-BED 2010 18 / 18

	Pragmatics of MBE
	Automatic Layout
	Eclipse Integration
	Algorithms

	Structure-Based Editing
	The Approach
	Object Class Transformations

	Conclusion

