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Summary: Model Engineering 
 This project is about “model engineering” for model-based design of
 scalable systems of systems. Analogous to “software engineering,”
 which enables scaling up software development efforts, “model
 engineering” enables scaling up of model-based design. 

 Our approach focuses on technologies rather than design process.
 Specifically, we are concerned with models of system dynamics
 (such as actor models) more than with static structure (such as
 UML class diagrams), with data ontologies (which associate data
 structures with their meaning) more than data types (which
 associate data structures with their layout in memory), and with
 heterogeneous systems (such as hybrid systems and
 multimodeling) more than homogenized systems. 

 Acknowledgement: This work is heavily influenced by our
 colloboration with Lockheed Martin, particularly Trip Denton and
 Edward Jones. 
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Our Premise:  
Components are Actors rather than Objects 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

   Output data 

What flows through 
an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 
an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Ptolemy II: Our Open-Source Laboratory for Experiments 
with Actor-Oriented Design 
http://ptolemy.org 

Director from a library 
defines component 
interaction semantics 

Large, behaviorally-
polymorphic component 
library. 

Visual editor supporting an abstract syntax 

Type system for 
transported data 

Concurrency management supporting 
dynamic model structure. 
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Approach: Concurrent Composition of Software Components, 
which are themselves designed with Conventional Languages 
(Java, C, C++ MATLAB, Python) 
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Multimodeling 

Simultaneous use of multiple modeling techniques. 

   hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style. 

   multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system. 
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 Hierarchical
 Multimodeling 
  Hierarchical compositions 
 of models of computation.
 Maintaining temporal
 semantics across MoCs is a
 key challenge. 

The example 
here was 
developed in a 
collaborative 
project with 
Lockheed-
Martin. 
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Background on Hierarchical Multimodeling 

  Statecharts [Harel 87] 
  Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94] 
  SyncCharts [André 96] 
  *Charts [Girault, Lee, Lee 99] 
  Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01] 
  Metropolis [Goessler, Sangiovanni-Vincentelli 02] 
  Ptolemy II [Eker, et. al. 03] 
  Safe State Machine (SSM) [André 03] 
  SCADE [Berry 03] 
  ForSyDe [Jantsch, Sander 05] 
  ModHelX [Jantsch, Sander 07] 
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Simple Traffic Light Example  in Statecharts 

Case study 

• Pred: pedestrian red signal 
• Pgrn(0): turn pedestrian green off 
• Cgrn: car green 
• Sec: one second time 
• 2 Sec: two seconds time 
• Pgo/Pstop: pedestrian go/stop 
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Traffic Light Example 
in Ptolemy II 

Whereas 
Statecharts 
lumps together 
the state machine 
semantics and 
the concurrency 
model, Ptolemy II 
separates these. 

Here we have 
chosen the SR 
Director, which 
realizes a true 
synchronous 
fixed point 
semantics. 



Lee, Berkeley 11 

Concurrent State Machines in Ptolemy II 
In Ptolemy II, we have 
implemented an SR Director (for 
synchronous concurrent models) 
and an FSM Director (for 
sequential decision logic). Rather 
than combining them into one 
language (like Statecharts), 
Ptolemy II supports hierarchical 
combinations of MoCs. 
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Stepping Outside Statecharts: 
Modeling the Environment 

The above model places the TrafficLight model in a discrete-event 
testbench that clocks the light an injects faults according to a 
stochastic model. 
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What Makes This Possible: 
The Ptolemy II Actor Abstract Semantics 

 Abstract Syntax 
 Concrete Syntax 
 Type System 
 Abstract Semantics 
 Concrete Semantics 
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Abstract Semantics (Informally) 
of Actor-Oriented Models of Computation 

Actor-Oriented Models of
 Computation that follow this: 

•  dataflow (several variants) 
•  process networks 
•  distributed process networks 
•  Click (push/pull) 
•  continuous-time 
•  CSP (rendezvous) 
•  discrete events 
•  distributed discrete events 
•  synchronous/reactive 
•  time-driven (several variants) 
•  … 

execution control data transport 

init() 
fire() 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Preinitialization 
  Initialization 
  Execution 
  Finalization 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Preinitialization 
  Initialization 
  Execution 
  Finalization 

E.g., Partial evaluation (esp. 
higher-order components), 
set up type constraints, etc. 
Anything that needs to be 
done prior to static analysis 
(type inference, scheduling, 
…) 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Preinitialization 
  Initialization 
  Execution 
  Finalization 

E.g., Initialize actors, produce 
initial outputs, etc. 

E.g., set the initial state of a state machine. 
Initialization may be repeated during the run 
(e.g. if the reset parameter of a transition is 
set and the destination state has a 
refinement). 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Preinitialization 
  Initialization 
  Execution 
  Finalization 

Iterate 
If (prefire()) { 
     fire(); 
     postfire(); 
} 

In fire(), an FSM first fires the refinement of the current 
state (if any), then evaluates guards, then produces 
outputs specified on an enabled transition. In postfire(), it 
postfires the current refinement (if any), executes set 
actions on an enabled transition, and takes the transition. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Preinitialization 
  Initialization 
  Execution 
  Finalization 
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A Consequence of Our Abstract Semantics: Behavioral 
Polymorphism 

  Data polymorphism: 
  Add numbers (int, float, double, Complex) 
  Add strings (concatenation) 
  Add composite types (arrays, records, matrices) 
  Add user-defined types 

  Behavioral polymorphism: 
  In dataflow, add when all connected inputs have data 
  In a synchronous/reactive model, add when the clock ticks 
  In discrete-event, add when any connected input has data, and add 

in zero time 
  In process networks, execute an infinite loop in a thread that blocks 

when reading empty inputs 
  In rendezvous, execute an infinite loop that performs rendezvous on 

input or output 
  In push/pull, ports are push or pull (declared or inferred) and behave 

accordingly 

By not choosing 
among these 
when defining 
the component, 
we get a huge 
increment in 
component re-
usability. 
Abstract 
semantics 
ensures that the 
component will 
work in all these 
circumstances. 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More Interestingly, Hierarchical Models 
are Also Behaviorally Polymorphic 

The same FSM 
infrastructure works in 
DE and SR! (and also 
continuous time, 
dataflow, etc.) 
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Separable Tool Archictecture 

 Abstract Syntax 
 Concrete Syntax 
 Type System 
 Abstract Semantics 
 Concrete Semantics 
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Concrete Models of Computation 
Implemented in Ptolemy II 

  CI – Push/pull component interaction 
  Click – Push/pull with method invocation 
  CSP – concurrent threads with rendezvous 
  Continuous – continuous-time modeling with fixed-point semantics 
  CT – continuous-time modeling 
  DDF – Dynamic dataflow 
  DE – discrete-event systems 
  DDE – distributed discrete events 
  DPN – distributed process networks 
  FSM – finite state machines 
  DT – discrete time (cycle driven)  
  Giotto – synchronous periodic 
  GR – 3-D graphics 
  PN – process networks 
  Rendezvous – extension of CSP 
  SDF – synchronous dataflow 
  SR – synchronous/reactive 
  TM – timed multitasking 

FSMs can be embedded in all 
of these (including FSMs). 
Many of these (but not all) can 
be embedded within state 
refinements of FSMs and/or 
within composite actors. See 
[Goderis, Brooks, Altintas, Lee, 
Goble, 2007] 
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Multimodeling 

Simultaneous use of multiple modeling techniques. 

   hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style. 

   multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system. 
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Multi-View Modeling: 
Distinct and separate models of the same  
system are constructed to model different  
aspects of the system. 

Functional model in Statecharts 

Functional  
model in  
Ptolemy II 

Deployment  
model in  
Ptolemy II 

Verification  
model in SMV 

Reliability  
model in  
Excel 

The example here 
was developed in a 
collaborative project 
with Lockheed-Martin. 



Lee, Berkeley 26 

Background on Multi-View Modeling 

  Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94] 
  UML [Various, 90s] 
  Model-integrated computing [Sztipanovits, Karsai, Franke 96] 
  SyncCharts [André 96] 
  *Charts [Girault, Lee, Lee 99] 
  Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01] 
  Metropolis [Goessler, Sangiovanni-Vincentelli 02] 
  KIEL [Prochnow, von Hanxleden 07] 
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 Model synthesis is one way to maintain model
 consistency 

Verification  
model in SMV 
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But Model Synthesis is not always possible. 
Constructing a Deployment Model 

This is the top level of a deployment model, which maps the car 
light and pedestrian light logic into two distinct compute platforms 
that communicate via a wireless link. The same models are used for 
the functional logic, leveraging actor-oriented classes in Ptolemy II. 
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Inside The Car Light Model 

The above model shows the construction of a radio packet for transmission on the 
wireless link. Inside, it eventually uses the same behavioral model of the traffic light, so 
changing the behavior in one model is automatically reflected in the other. 
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Actor-Oriented Classes 
[Lee, Liu, Neuendorffer 07] 

In the functional model above, an instance 
communicates directly with the pedestrian light. The 
deployment model (right) constructs a radio packet 
and models wireless communication. 

A class definition (right) has instances in 
multiple models. Changes to the class 
definition automatically propagate to the 
instances. 
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Multimodeling 

Simultaneous use of multiple modeling techniques. 

   hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style. 

   multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system. 

   multi-specialization: a single model is used to synthesize
 multiple distinct specialized models. 
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To support multi-specialization, we have built an 
extensible type system for model ontologies that 
performs “property inference”. 
In the system at 
the right, green 
indicates that a 
port is inferred or 
declared to be 
“constant” 

Thanks to Thomas 
Mandl, Research 
& Technology 
Center, Bosch, 
Palo Alto.  
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Demo: Model Properties as a Type Inference 
Problem 

In the system at 
the right, one of 
the constant 
sources has been 
replaced with a 
non-constant 
source. This 
affects the inferred 
properties 
downstream. 
Thanks to Thomas 
Mandl, Research 
& Technology 
Center, Bosch, 
Palo Alto.  
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Conclusion 

   Multimodeling takes distinct forms. 
   An abstract semantics can support this rigorously 

   This is not the same as just being noncommittal about
 the semantics! 

   Tool support still needs a lot of work… 
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Syntax Comparisons 

 The Ptolemy II model and the Statecharts model differ 
in syntax. Some issues to consider when evaluating a 
syntax: 
  Rendering on a page 
  Showing dependencies in concurrent models 
  Scalability to complex models 
  Reusability (e.g. with other concurrency models) 
  Special notations (e.g. “3 Sec”). 
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Simple Traffic Light Example  in  
Statecharts, from Reinhard 
von Hanxleden, Kiel University 

Case study for Ptolemy II Design 

In StateCharts, the communication 
between concurrent components is 
not represented graphically, but is 
rather represented by name 
matching. Can you tell whether there 
is feedback? 
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Syntax comparisons 

Now can you tell whether there is feedback? 
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Semantics Comparisons 

 The Ptolemy II model and the Statecharts model have 
similar semantics, but combined in different ways. 
Some issues to consider: 
  Separation of concurrency from state machines 
  Nesting of distinct models of computation 
  Expanding beyond synchronous + FSM to model the 

(stochastic) environment and deployment to hardware. 
  Styles of synchronous semantics (Ptolemy II realizes a 

true fixed-point constructive semantics). 


