
Model Engineering using
Multimodeling

Christopher Brooks (UC Berkeley)
Chih-Hong Cheng (UC Berkeley & TU Munich)
Thomas Huining Feng (UC Berkeley)
Edward A. Lee (UC Berkeley)
Reinhard von Hanxleden (Christian-Albrechts-Univ. Kiel)

1st International Workshop on Model Co-Evolution and Consistency
Management (MCCM 2008)

September 30, 2008
Toulouse, France

Lee, Berkeley 2

Summary: Model Engineering
 This project is about “model engineering” for model-based design of
 scalable systems of systems. Analogous to “software engineering,”
 which enables scaling up software development efforts, “model
 engineering” enables scaling up of model-based design.

 Our approach focuses on technologies rather than design process.
 Specifically, we are concerned with models of system dynamics
 (such as actor models) more than with static structure (such as
 UML class diagrams), with data ontologies (which associate data
 structures with their meaning) more than data types (which
 associate data structures with their layout in memory), and with
 heterogeneous systems (such as hybrid systems and
 multimodeling) more than homogenized systems.

 Acknowledgement: This work is heavily influenced by our
 colloboration with Lockheed Martin, particularly Trip Denton and
 Edward Jones.

Lee, Berkeley 3

Our Premise:
Components are Actors rather than Objects

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 4

Ptolemy II: Our Open-Source Laboratory for Experiments
with Actor-Oriented Design
http://ptolemy.org

Director from a library
defines component
interaction semantics

Large, behaviorally-
polymorphic component
library.

Visual editor supporting an abstract syntax

Type system for
transported data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 5

Approach: Concurrent Composition of Software Components,
which are themselves designed with Conventional Languages
(Java, C, C++ MATLAB, Python)

Lee, Berkeley 6

Multimodeling

Simultaneous use of multiple modeling techniques.

  hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style.

  multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system.

Lee, Berkeley 7

 Hierarchical
 Multimodeling
 Hierarchical compositions
 of models of computation.
 Maintaining temporal
 semantics across MoCs is a
 key challenge.

The example
here was
developed in a
collaborative
project with
Lockheed-
Martin.

Lee, Berkeley 8

Background on Hierarchical Multimodeling

  Statecharts [Harel 87]
  Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94]
  SyncCharts [André 96]
  *Charts [Girault, Lee, Lee 99]
  Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01]
  Metropolis [Goessler, Sangiovanni-Vincentelli 02]
  Ptolemy II [Eker, et. al. 03]
  Safe State Machine (SSM) [André 03]
  SCADE [Berry 03]
  ForSyDe [Jantsch, Sander 05]
  ModHelX [Jantsch, Sander 07]

Lee, Berkeley 9

Simple Traffic Light Example in Statecharts

Case study

• Pred: pedestrian red signal
• Pgrn(0): turn pedestrian green off
• Cgrn: car green
• Sec: one second time
• 2 Sec: two seconds time
• Pgo/Pstop: pedestrian go/stop

Lee, Berkeley 10

Traffic Light Example
in Ptolemy II

Whereas
Statecharts
lumps together
the state machine
semantics and
the concurrency
model, Ptolemy II
separates these.

Here we have
chosen the SR
Director, which
realizes a true
synchronous
fixed point
semantics.

Lee, Berkeley 11

Concurrent State Machines in Ptolemy II
In Ptolemy II, we have
implemented an SR Director (for
synchronous concurrent models)
and an FSM Director (for
sequential decision logic). Rather
than combining them into one
language (like Statecharts),
Ptolemy II supports hierarchical
combinations of MoCs.

Lee, Berkeley 12

Stepping Outside Statecharts:
Modeling the Environment

The above model places the TrafficLight model in a discrete-event
testbench that clocks the light an injects faults according to a
stochastic model.

Lee, Berkeley 13

What Makes This Possible:
The Ptolemy II Actor Abstract Semantics

 Abstract Syntax
 Concrete Syntax
 Type System
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 14

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of
 Computation that follow this:

•  dataflow (several variants)
•  process networks
•  distributed process networks
•  Click (push/pull)
•  continuous-time
•  CSP (rendezvous)
•  discrete events
•  distributed discrete events
•  synchronous/reactive
•  time-driven (several variants)
•  …

execution control data transport

init()
fire()

Lee, Berkeley 15

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Preinitialization
  Initialization
  Execution
  Finalization

Lee, Berkeley 16

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Preinitialization
  Initialization
  Execution
  Finalization

E.g., Partial evaluation (esp.
higher-order components),
set up type constraints, etc.
Anything that needs to be
done prior to static analysis
(type inference, scheduling,
…)

Lee, Berkeley 17

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Preinitialization
  Initialization
  Execution
  Finalization

E.g., Initialize actors, produce
initial outputs, etc.

E.g., set the initial state of a state machine.
Initialization may be repeated during the run
(e.g. if the reset parameter of a transition is
set and the destination state has a
refinement).

Lee, Berkeley 18

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Preinitialization
  Initialization
  Execution
  Finalization

Iterate
If (prefire()) {
 fire();
 postfire();
}

In fire(), an FSM first fires the refinement of the current
state (if any), then evaluates guards, then produces
outputs specified on an enabled transition. In postfire(), it
postfires the current refinement (if any), executes set
actions on an enabled transition, and takes the transition.

Lee, Berkeley 19

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Preinitialization
  Initialization
  Execution
  Finalization

Lee, Berkeley 20

A Consequence of Our Abstract Semantics: Behavioral
Polymorphism

  Data polymorphism:
  Add numbers (int, float, double, Complex)
  Add strings (concatenation)
  Add composite types (arrays, records, matrices)
  Add user-defined types

  Behavioral polymorphism:
  In dataflow, add when all connected inputs have data
  In a synchronous/reactive model, add when the clock ticks
  In discrete-event, add when any connected input has data, and add

in zero time
  In process networks, execute an infinite loop in a thread that blocks

when reading empty inputs
  In rendezvous, execute an infinite loop that performs rendezvous on

input or output
  In push/pull, ports are push or pull (declared or inferred) and behave

accordingly

By not choosing 
among these 
when defining 
the component, 
we get a huge 
increment in 
component re-
usability. 
Abstract 
semantics 
ensures that the 
component will 
work in all these 
circumstances. 

Lee, Berkeley 21

More Interestingly, Hierarchical Models
are Also Behaviorally Polymorphic

The same FSM
infrastructure works in
DE and SR! (and also
continuous time,
dataflow, etc.)

Lee, Berkeley 22

Separable Tool Archictecture

 Abstract Syntax
 Concrete Syntax
 Type System
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 23

Concrete Models of Computation
Implemented in Ptolemy II

  CI – Push/pull component interaction
  Click – Push/pull with method invocation
  CSP – concurrent threads with rendezvous
  Continuous – continuous-time modeling with fixed-point semantics
  CT – continuous-time modeling
  DDF – Dynamic dataflow
  DE – discrete-event systems
  DDE – distributed discrete events
  DPN – distributed process networks
  FSM – finite state machines
  DT – discrete time (cycle driven)
  Giotto – synchronous periodic
  GR – 3-D graphics
  PN – process networks
  Rendezvous – extension of CSP
  SDF – synchronous dataflow
  SR – synchronous/reactive
  TM – timed multitasking

FSMs can be embedded in all
of these (including FSMs).
Many of these (but not all) can
be embedded within state
refinements of FSMs and/or
within composite actors. See
[Goderis, Brooks, Altintas, Lee,
Goble, 2007]

Lee, Berkeley 24

Multimodeling

Simultaneous use of multiple modeling techniques.

  hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style.

  multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system.

Lee, Berkeley 25

Multi-View Modeling:
Distinct and separate models of the same
system are constructed to model different
aspects of the system.

Functional model in Statecharts

Functional
model in
Ptolemy II

Deployment
model in
Ptolemy II

Verification
model in SMV

Reliability
model in
Excel

The example here
was developed in a
collaborative project
with Lockheed-Martin.

Lee, Berkeley 26

Background on Multi-View Modeling

  Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94]
  UML [Various, 90s]
  Model-integrated computing [Sztipanovits, Karsai, Franke 96]
  SyncCharts [André 96]
  *Charts [Girault, Lee, Lee 99]
  Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01]
  Metropolis [Goessler, Sangiovanni-Vincentelli 02]
  KIEL [Prochnow, von Hanxleden 07]

Lee, Berkeley 27

 Model synthesis is one way to maintain model
 consistency

Verification
model in SMV

Lee, Berkeley 28

But Model Synthesis is not always possible.
Constructing a Deployment Model

This is the top level of a deployment model, which maps the car
light and pedestrian light logic into two distinct compute platforms
that communicate via a wireless link. The same models are used for
the functional logic, leveraging actor-oriented classes in Ptolemy II.

Lee, Berkeley 29

Inside The Car Light Model

The above model shows the construction of a radio packet for transmission on the
wireless link. Inside, it eventually uses the same behavioral model of the traffic light, so
changing the behavior in one model is automatically reflected in the other.

Lee, Berkeley 30

Actor-Oriented Classes
[Lee, Liu, Neuendorffer 07]

In the functional model above, an instance
communicates directly with the pedestrian light. The
deployment model (right) constructs a radio packet
and models wireless communication.

A class definition (right) has instances in
multiple models. Changes to the class
definition automatically propagate to the
instances.

Lee, Berkeley 31

Multimodeling

Simultaneous use of multiple modeling techniques.

  hierarchical multimodeling: hierarchical compositions of
 distinct modeling styles, combined to take advantage of the
 unique capabilities and expressiveness of each style.

  multi-view modeling: distinct and separate models of the
 same system are constructed to model different aspects of
 the system.

  multi-specialization: a single model is used to synthesize
 multiple distinct specialized models.

Lee, Berkeley 32

To support multi-specialization, we have built an
extensible type system for model ontologies that
performs “property inference”.
In the system at
the right, green
indicates that a
port is inferred or
declared to be
“constant”

Thanks to Thomas
Mandl, Research
& Technology
Center, Bosch,
Palo Alto.

Lee, Berkeley 33

Demo: Model Properties as a Type Inference
Problem

In the system at
the right, one of
the constant
sources has been
replaced with a
non-constant
source. This
affects the inferred
properties
downstream.
Thanks to Thomas
Mandl, Research
& Technology
Center, Bosch,
Palo Alto.

Lee, Berkeley 34

Conclusion

  Multimodeling takes distinct forms.
  An abstract semantics can support this rigorously

  This is not the same as just being noncommittal about
 the semantics!

  Tool support still needs a lot of work…

Lee, Berkeley 35

Syntax Comparisons

 The Ptolemy II model and the Statecharts model differ
in syntax. Some issues to consider when evaluating a
syntax:
  Rendering on a page
  Showing dependencies in concurrent models
  Scalability to complex models
  Reusability (e.g. with other concurrency models)
  Special notations (e.g. “3 Sec”).

Lee, Berkeley 36

Simple Traffic Light Example in
Statecharts, from Reinhard
von Hanxleden, Kiel University

Case study for Ptolemy II Design

In StateCharts, the communication
between concurrent components is
not represented graphically, but is
rather represented by name
matching. Can you tell whether there
is feedback?

Lee, Berkeley 37

Syntax comparisons

Now can you tell whether there is feedback?

Lee, Berkeley 38

Semantics Comparisons

 The Ptolemy II model and the Statecharts model have
similar semantics, but combined in different ways.
Some issues to consider:
  Separation of concurrency from state machines
  Nesting of distinct models of computation
  Expanding beyond synchronous + FSM to model the

(stochastic) environment and deployment to hardware.
  Styles of synchronous semantics (Ptolemy II realizes a

true fixed-point constructive semantics).

