Model Engineering using
Multimodeling

Christopher Brooks (UC Berkeley)

Chih-Hong Cheng (UC Berkeley & TU Munich)

Thomas Huining Feng (UC Berkeley)

Edward A. Lee (UC Berkeley)

Reinhard von Hanxleden (Christian-Albrechts-Univ. Kiel)

1st International Workshop on Model Co-Evolution and Consistency
Management (MCCM 2008)

September 30, 2008
Toulouse, France

"-. =1 4% ) 1 :
LS TREM Y TR WY i e fach AN
suli ] aala LR :

i : i : . .

’?aff“."—‘ (3 1gkeaa

v : i

’



Summary: Model Engineering

This project is about “model engineering” for model-based design of
scalable systems of systems. Analogous to “software engineering,”
which enables scaling up software development efforts, “model
engineering” enables scaling up of model-based design.

Our approach focuses on technologies rather than design process.
Specifically, we are concerned with models of system dynamics
(such as actor models) more than with static structure (such as
UML class diagrams), with data ontologies (which associate data
structures with their meaning) more than data types (which
associate data structures with their layout in memory), and with
heterogeneous systems (such as hybrid systems and
multimodeling) more than homogenized systems.

Acknowledgement. This work is heavily influenced by our
colloboration with Lockheed Martin, particularly Trip Denton and
Edward Jones.

Lee, Berkeley 2



Our Premise:
Components are Actors rather than Objects

The established: Object-oriented:

class name
data What flows through
an object is
r methods 1 sequential control
call return Things happen to objects

The alternative: Actor oriented:

Actors make things happen
actor name

data (state) What flows through

s | omoters | ™™ an object is

evolving data

ports

Input data  Output data
Lee, Berkeley 3



Ptolemy II: Our Open-Source Laboratory for Experiments

with Actor-Oriented Design
http://ptolemy.org

Concurrency management supporting

dynamic model structure. Director from a library

@@I@Hbll\.\#h#%t’ﬁ&'ﬁO

defines component

~ | Utilities = 0 =
et || DEDirector Interaction semantics
RYaciors | - rd Assembler actor composes a
- J R a record token, which is then passed through a channel that
%) Genericources has random delay. The tokens arrive possibly in another
= J T.meds.;.urces order. The Record Disassembler actor separates the string
" clock from the sequence number. The strings are displayed as
CurrentTime received (possible out of order), and resequenced by the
PoissonClock Sequencer actor, which puts them back in order. This example
TimedSinewave demonstrates how types propagate through record composition
[ TriggeredClock and decomposition.
VariableClock
@ ]S ceSources Master Clock String Sequence Display As Received
[#-__] Sinks L4
-] Array > Record Assembler
EJ'“_I Conversion Sequence Count Channel Model R d
[+ ] FlowControl ¢ ooe ecor
Large, behaviorally- — Resequenced
polymorphic component ) T ey i
Ib . - ype system for
iorar
y sl transported data

"""'::j\.. S e M :;Z 3:322?2' ?er;;d::ﬁ:h J_» P
it "Im_ Visual editor supporting an abstract syntax

e i s
P

oo Sevouner AOUIOTS. COwarag /. cee ana 1 uniung ANy
AR Bl . L W0 Yo N

[ ]|Berkeley 4




Approach: Concurrent Composition of Software Components,
which are themselves designed with Conventional Languages
(Java, C, C++ MATLAB, Python)

B

e » ptole data De/demo 0 e 0 e File Help
File View Edit Graph Debug Help public class Gaussian extends RandomSource { 4
. —— /** Construct an actor with the given container and name.
‘ @ @ Q » II ‘. ‘ » - * w tb ¢ * [@param container The container.
: * [@param nawme The nawe of this actor.
z Utilities ~ . * [@exception IllegallctionException If the actor cannot be contained
X — DE Director This model . .
Directors by the proposed container.
-J Record AS * [@exception NameDuplicationException If the container already has an
T a record to * actor with this name.
= _ 4 Sources i
@] Generics has randor _ _ . _ _ _
: __| GenericSources public Gaussian(CompositeEntity container, String name)
(=)~ 4§ TimedSources order. The throws NameDuplicationException, IllegalldctionException {
Clock from the s super {container, nawe);
] CurrentTime received (N
7 ) output.setTypeEquals (BaseType.DOUBLE) ;
PoissonClock Sequencer
Timechinewa\’e demonstraf mean = new PortParameter (this, "mean"”, new DoubleToken(0.0)):
'] TriggeredCIock and decom mean.setTypeEcquals (BaseType.DOUBLE) ;
YariableClock
EI"';] SequenceSources Master Clock Smng Sequence standardDeviation = new PortParameter (this, "standardDeviation"):;
o Sinks standardDeviation.setExpression("1.0");
\;ﬂ —I n. — standardDeviation.setTypeEcquals (BaseType.DOUELE) ;
[+ ] Array > )
+)-__| Conversions
#-_ | FlowContral Sequence Count FEEEFEEERERFEFETEEREEFETETEE i ididadiiiiiidiiitiiiiiiitititiis
El_l HigherOrderactors I I ports and parameters Iy
H D /%% The mean of the random nurber.
v . - *oThis Mas type double, initially with wvalue 0.
~ Gausslan Customize s
Documentation » ‘tParameter mean;
S rcun . wich P Pars becs @ wrder. The eaurok Appearance P landard deviation of the random number.
T T S —" l | Save Actor In Library \as double, initially with value 1.
- Listen to Actor 't eter standardDeviation;
1 Set Breakpoints
kp ELEEEETTETEET i diididiidiiiiidiiiiidiidiiiiidiiiiiiiids
Convert to Class public methods 7
Authors: Edward Al Open Actor Chrl+L ) ) .

Open Instance

— |Berke|ey 5




Multimodeling

Simultaneous use of multiple modeling techniques.

o hierarchical multimodeling: hierarchical compositions of
distinct modeling styles, combined to take advantage of the
unique capabilities and expressiveness of each style.

o multi-view modeling: distinct and separate models of the
same system are constructed to model different aspects of
the system.

Lee, Berkeley 6



TrafficLight

DE Director
o Pred:* Sec Pred
Pgrn: (
o Ezr guard: Ok JePrecent Pgm|  Error.CarLight
O? ((normal ) Cerror ) (x, g:tapr:;:"gr:d =0; Cyel = 1; Cgm = 0 Cg*m
N Clock TrafiicLight » guard: Eror_isPresent Cyel Cyel
guard: Sec_isPresant
> output: Cyel =0 guard: Sec_isPresant *
Cgm Sec output: Cyel = 1 g
Normal - * *
mﬁ“ rrcs); Dirocor Normal.PedestrianLight
. PedestrianLight Pred i-i cam | bgo
Carligh . = = guard: true Pred
e pe—t el T D[ Eror  CarLight ‘ tp :'SE‘_; R e T ]
0? _‘ 5 P;n
Cred | [
sec 1 !:J > el
l Cred FedestianLight Pgm | Error.PedestrianLight
Error
- P,
Cyel @ Pred gﬂtaprzlz‘gr:d =0;Pgm=0 2
0‘ \ -
C —
qn Normal.CafLight ‘ h P;"
guard: true
output: Cred
Cred=1; guard: Sec_isPresent && count < 2 *
. . m:g. set: count = count + 1 Cyel
Hierarchical ECEN () >
. . guard: Sec_isPresent && count==2  Cgm The example
output: Cyel=1; Pslop=
Multimodeling SR Bl pore was
uard: go .
Hi hical " o | developed in a
ierarchical compositions oo 31 collaborative
of models of computation. Gana N — project with
. . . - output: Cred=0; Cyel=0; Cgm=1
Maintaining temporal St Lockheed-
: - Martin.
semantics across MoCs is a quard: Sec_isPresent && count < 1
@ count: 0 set: count = count + 1
key challenge. Sec

guard: Sec_isPresent && count == 1
output: Cyel=1; Cgm=0




Background on Hierarchical Multimodeling

O O 0O O O O O O O O O

Statecharts [Harel 87]

Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94]
SyncCharts [André 906]

*Charts [Girault, Lee, Lee 99]

Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01]
Metropolis [Goessler, Sangiovanni-Vincentelli 02]
Ptolemy Il [Eker, et. al. 03]

Safe State Machine (SSM) [André 03]

SCADE [Berry 03]

ForSyDe [Jantsch, Sander 05]

ModHelX [Jantsch, Sander 07]

Lee, Berkeley 8



Simple Traffic Light Example in Statecharts

Case study

* Pred: pedestrian red signal

* Pgrn(0): turn pedestrian green off
» Cgrn: car green

» Sec: one second time

» 2 Sec: two seconds time

» Pgo/Pstop: pedestrian go/stop

Module_ TRAFFIC LIGHT

ParallelStatementlList52state

N

Pred(1), Pgrn(0)

Pgo / Pred(0), Pgrn(1)

bec / Pgo

Cred(1), Cyel(0), Carn(0)

Sec [/ Cyel(1), Pslop

Ermrer

ParallelStatementList110state

Cred{0), Cyel(1), Cgrn{0)

Ok

Pred(0), Pgrn(0)

Sec/ Cred(0), Cyel{0}), Cgm(1)

2 Sec/ Cyel{1), Carn{0)




Traffic Light Example o erems
in Ptolemy Il

Error_isPresent

SR Director The NormalC actor generates the control signals Whereas
- for the car stoplights under normal operating conditions. Statecharts

The NormalP actor reacts to these controls to generate Iumps together

the control signals for the pedestrian lights. the state machine

Look inside each actor to see its implementation. semantics and

PedestrianLightNormal  preg tmhgdce()lnlgl#(glig nmC}}’ '

separates these.

Here we have
chosen the SR

The CarLightNormal and PedestrianLightNormal actors DlreCtOr, which

Error .

‘ Cyel her(taharefilnstal?ces of act:)hr-orietnted class.tlals defined rea“zes a true
in other files. If you open the actors, you will open

Ok ;- the other files. If you change the design, then all S_.ynchronous

‘ Cgm other instances of this class will see the change. fixed point

* In particular, the WirelessDeployment example uses SemantiCS
the same instances. )
Lee, Berkeley 10




Concurrent State Machines in Ptolemy |l

In Ptolemy Il, we have
implemented an SR Director (for
synchronous concurrent models)
and an FSM Director (for
sequential decision logic). Ra
than combining them into
language (like State
Ptolemy Il supports hierarchical
combinationsof MoCs.

PedestrianLightNormal

Sec_isPresent && count < 2
count = count + 1

@ count:

true

Cred=1; Cyel=0; Cgm=0; count = 0 Sec_isPresent && count == 2

Cyel=1; Pstop=1

Sec_isPresent
Cred=0; Cyel=0; Cgm=1; cou

Sec_isPresent
Pgo=1; Cred=1; Cyel=0; Cgm=0; count =0

Sec_isPresent && cour
count = count + 1

Sec_isPresent && count == 1

Pstop_isPresent
Pred=1; Pgm=0

true
Pred=1; Pgm=0

Pgo_isPresent
Pred=0; Pgm=1

This model turns the pedestrian lights
green when the car control lights go red.

Cyel=1; Cgm=0

Lee, Berkeley 11




Stepping Outside Statecharts:
Modeling the Environment

DE Director ePred:1 eCred: 1 Pedestrian Cars

oePgm:0 eCyel:0 . .
e Cgmn: 0 O O

SetVariable
O
SetVariable2 The colors of the lights above

are set when the SetVariable actors

at the left execute. This animates
SetVariable3 the execution.

SetVariable4

TimedDelay
yel
SetVariable5

The above model places the TrafficLight model in a discrete-event
testbench that clocks the light an injects faults according to a

stochastic model.

PoissonClock

Lee, Berkeley 12



What Makes This Possible:
The Ptolemy Il Actor Abstract Semantics

o Abstract Syntax

o Concrete Syntax

o Type System

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 13



Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that follow this:

* dataflow (several variants)
* process networks

\ / e distributed process networks
receiver.put(t)

execution control data transport

* Click (push/pull)

| send(0t)  get(0) « continuous-time
init() 6 E2 » CSP (rendezvous)
filee1() P1 R * discrete events
\ ’ N ioPort \_fokent ) « distributed discrete events
IOReIation\EReceiver « synchronous/reactive
\[Actor (inside port) * time-driven (several variants)

Lee, Berkeley 14



How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:

o Preinitialization
o Initialization

o Execution

o Finalization

Lee, Berkeley 15



How Does This Work?

Execution of Ptolemy Il Actors

Flow of control:

o Preinitialization
o Initialization

o Execution

o Finalization

E.g., Partial evaluation (esp.
higher-order components),
set up type constraints, eftc.
Anything that needs to be
done prior to static analysis
(type inference, scheduling,

.2




How Does This Work?

Execution of Ptolemy Il Actors

Flow of control:
o Preinitialization

o
o Execution
o Finalization

true
Cred =0; Cyel =1, Cgm =0

YellowOn

Sec_isPresent
Cyel =0 Sec_isPresent

Cyel =1
YellowOff

E.g., Initialize actors, produce
initial outputs, efc.

E.qg., set the initial state of a state machine.
Initialization may be repeated during the run
(e.q. if the reset parameter of a transition is
set and the destination state has a
refinement).

Lee, Berkeley 17




How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:
o Preinitialization
o Initialization

o Execution
o Finalization &3 If (prefire()) {

Iterate fire();

& postfire();
}

In fire(), an FSM first fires the refinement of the current
state (if any), then evaluates guards, then produces
outputs specified on an enabled transition. In postfire(), it
postfires the current refinement (if any), executes set
actions on an enabled transition, and takes the transition.

guard: Sec_isPresent
output: Cred=0; Cyel=0; Cgm=1
set: count =0

guard: Sec_isPresent && count < 1
set: count = count + 1




How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:

o Preinitialization
o Initialization

o Execution

o Finalization

Lee, Berkeley 19



o Data polymorphism:

Add numbers (int, float, double, Complex)

Add strings (concatenation)

Add composite types (arrays, records, matrices)
Add user-defined types

o Behavioral polymorphism:

In dataflow, add when all connected inputs have data
In a synchronous/reactive model, add when the clock ticks

In discrete-event, add when any connected input has data, and add
in zero time

In process networks, execute an infinite loop in a thread that blocks
when reading empty inputs

In rendezvous, execute an infinite loop that performs rendezvous on
input or output

In push/pull, ports are push or pull (declared or inferred) and behave
accordingly

A Consequence of Our Abstract Semantics: Behavioral
Polymorphism

AddSubtract
bt +

AV

b —

By not choosing
among these
when defining
the component,
we get a huge
increment in
component re-
usability.
Abstract
semantics
ensures that the
component will
work in all these
circumstances.




More Interestingly, Hierarchical Models
are Also Behaviorally Polymorphic

DE Director

® Pred: 1
® Pgrn: 0

@ Cred: 1 Pedestrian Cars
e Cyel: 0 . .
o Cgm: 0

Ok _isPresent

Error_isPresent

Clock Traﬁic t )

D “_‘!' (he g
are-setWhen the Set
B . atthe left execute. Th
the execution.

PoissonC imedDelay

~ 1 .| delay of
SR Director

The NormalC actor generates the control

the control signa

r the pedestrian lights.
ach actor to see its implementation.

Sec_isPresent && count < 2
count = count + 1

e count: 0

true

Cred=1; Cyel=0; Cgm=0; count = 0 Sec_lsPresent && count == 2

Cyel=1; Pstop=1

Sec_isPresent
Cred=0; Cyel=0; Cgm=1; count = 0

Sec_isPresent
Pgo=1; Cred=1; Cyel=0; Cgm=0; count =0

PedestrianLightNormal  preq Sao_lPremnt 85 ccunt <1
count = count +
| pocgy] A0 [ oo it
@ Parn
m ‘ I

Sec The same FSM

Cred | . infrastructure works in
Error The CarLightNormal and PedestrianLightNormal actors '
’ Cyel here are instances of actor-oriented classes defined D E and S R (and aISO

in other files. If you open the actors, you will open . .
2 _- the other files. If you change the design, then all Contl NUOUS t' me,
‘ Cgm other instances of this class will see the change. dataﬂow etc )
’ .

In particular, the WirelessDeployment example uses
the same instances.

Lee, Berkeley 21




Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Type System

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 22



Concrete Models of Computation
Implemented in Ptolemy |l

O OO OO0 OO OO0OO0OO0OO0OO0ODO0OO0OO0OO

Cl — Push/pull component interaction

Click — Push/pull with method invocation
CSP — concurrent threads with rendezvous
Continuous — continuous-time modeling with fixed-point semantics
CT — continuous-time modeling
DDF — Dynamic dataflow

DE — discrete-event systems
DDE - distributed discrete events

FSMs can be embedded in all
of these (including FSMs).
Many of these (but not all) can

DPN — distributed process networks be embedded within state
FSM — finite state machines refinements of FSMs and/or
DT — discrete time (cycle driven) within composite actors. See
Giotto — synchronous periodic [Goderis, Brooks, Altintas, Lee,
GR - 3-D graphics Goble, 2007]

PN — process networks
Rendezvous — extension of CSP
SDF — synchronous dataflow
SR — synchronous/reactive

TM — timed multitasking Lee, Berkeley 23



Multimodeling

Simultaneous use of multiple modeling techniques.

o hierarchical multimodeling: hierarchical compositions of
distinct modeling styles, combined to take advantage of the
unique capabilities and expressiveness of each style.

o multi-view modeling: distinct and separate models of the
same system are constructed to model different aspects of
the system.

Lee, Berkeley 24



Multi-View Modeling:

Distinct and separate models of the same
system are constructed to model different
aspects of the system.

Module TRAFFIC LIGHT

ParallelStatementList52state

fogo 1 Pred(0), Pgmi)

Cred(1), Cyel(0), Cgm(0)

§ Sec/ Cyei(1), Pstop

oc  Cred(0), Cyol(0), Cgm(1)

28601 Cyei(1), Com(0)

ist110state

@)

Pred(0), Pgr(0).

@)

Functional model in Statecharts

TrafficLight

uard: Ok isProsent

guard: Emor TePresent Cyel

Pgm Error.CarLight

Corror) _Cred|

quard: e
output:Cred = 0; Cyel = 1; Com =0

cgm

cyel

ht—— pred

PedestrianLight

Error.P

s P, [t
St a1 Pamed

WirelessDirecior e

CarLight

PedestianLight|

10 meters

DEDirector

o Cred: 1

PoissonClock

® PgoCode: 0x01ub
@ PstopCode: 0x02ub
@ ErrorCode: 0x04ub
@ OKCode: 0x08ub

This model encodes a
radio signal to send
to the pedestrian light
in an unsigned byte
(actually using only
four bits in the byte).
The signal to send

is provided bythe
CarLight component.

AddSubtract

radio

‘quard: Ok isPrasent

guerd: Emor_isPressnt

Pgo Cyel

Pstop Cgm

C*rud

SR Director Pgo

CarlLight

us
out

Functional
model in
Ptolemy Il

Normal.CatLight

Ty =

output

Crodt; quard: Sec_isProsont 84 count <2
Cyel=0; set: count = count + 1
Com=0 oyl
i count=0 -
guaré: Sec_isrosent 88 count =2 Cgm
-t

Ptop:

quard: Sec_|remnt 84 count == 1
B Cu et cgm

ard: true
tput: Pred = 0; Pgm =0 Y

og) Sec

Cyel
Pred Error

Pk guard: tue
W output: Croa = 0; Oyol = 1: Cgm =0
Pstop Error

fSec  guard: Sec_isPresent
t: Cyel =0

Cred » outpul

Pgo

Cyel quard: Sec_iwPresent c;a

output: Cyel =1

Cgm

2
»

The example here
was developed in a
collaborative project
with Lockheed-Martin.

= Deployment

MODULE CarlightNormal( Sec_isPrasent )
VAR

state : {Cyel,Credyal,Cred,Cinit,Cgra};
comt : { 11,0,1,2,8% };

ASSICN
init(state)
naxt(stawe) :=

casa
state=Cinit & comnt=ls :{ Crod };

Cinit;

Soc_isProsamt & state=Crod
& coumt=1s :{ Cred };

1 : smava;
esac;
init(count) :
naxt(count) :=
case
state=Cinit & count=ls :{ 0 };

1sProsemt k state=Cred k coumt=ls :{ 1z };

1 I coumt;
esac;
DEFINE
Pstop_isPrasent := ( Sac_isProsant
& tate=Crod & coums=2 ) ;
Crod_isPresant
Cgrn_isProsant
Pgo_isPresant
1_tsProsant
MOOULE PadostrianlightSormal( Patop_isProsemt,Pgo_isPresant )
VAR

state : {Pinit,Pgrean,Prod};
AsSICY
init(state)
naxt (state)
Ccasa
state=Pinit :{ Pred };
Pgo_isProsant k stata=Pred :{ Pgreen };
Pstop_isPrasent & state=Pgrean :{ Pgraam };
1 I ETAa;
esac;

:= Pinit;

DEFINE
Prod_tisProsant
Pgrn_tisProsant

CarLightorsal: Carlighthormal( 1);

Podostrianlight¥ormal: PedostriamLightNorsal(
CarLight¥oreal . Pstop_1sPrasant,
CarLight¥oreal .Pgo_isProsant );

! EF (CarLightloreal.state = G
& PodestrianLight¥orsal.state = Pgraan)

Verification
model in SMV

= model in
= Ptolemy Il

Project Name: Process Based ” N
Software Components for Embedded | pilestone | 2°°° Y““:‘P:l‘“ e
Systems Completinon support this support(e| H M
)
) oo milestone? (Y or N) e Ia I I y
7| b eemansine iy of propagating ww Y Prolemy I - hierar
8| Sigemonsene iy o ntegrate W |y Polemy I - muti1 d l -
e | e ] F1700€1 1N
7. Demonsicate abil to compose —
10| e v |y Prolemy Il - muli
4| & Demonstmteabiy o vertymiigle | yqpyy v Prolemy Il - simui] X C e
1y Task: Model Based Generadon Technalogy
| L e o r——

Lee, Berkeley 25



Background on Multi-View Modeling

Ptolemy Classic [Buck, Ha, Lee, Messerschmitt 94]

UML [Various, 90s]

Model-integrated computing [Sztipanovits, Karsai, Franke 96]
SyncCharts [André 906]

*Charts [Girault, Lee, Lee 99]

Colif [Cesario, Nicolescu, Guathier, Lyonnard, Jerraya 01]
Metropolis [Goessler, Sangiovanni-Vincentelli 02]

KIEL [Prochnow, von Hanxleden 07]

O O O O 0O 0O 0O O

Lee, Berkeley 26



Model synthesis is one way to maintain model
consistency

MODULE CarlightNormal( Sec_isPrasent )
VAR
state : {Cyel,Credyal,Cred,Cinit,Cgra};
count : { 15,0,1,2,8% };
ASSICN
init(state) := Cimit;
naxt(state) :=
DE Director UL 2 w“nau:canu & count=1s :{ Cred };
delay of s==
1 z’) Soc_1isProsamt &k stave=Crad
: rmal Pedestrian  Cars k coumt=1s :{ Cred };
Clock TimedDelay2 |t SetVariable2 . : mtata;
esac;
D delay of 1 . O init(count) := O;
D 10 naxt(count) :=
O] 10 =
SetVariable3 state=Cinit & count=1s :{ O };
. é&:_u?ram\: k state=Crod k coumt=1s :{ 13 };
SetVariable4 e Cred: 0 O“Cf : cowmt;
SMV CodeGenerator XYPlotter @ Pred: 1 o Cyel:0 — .
- ooo| P m: 0 Pnop_uProun: := ( Sac_isProsant
SetVariable5 Ll Feht ® Cgm: 1 & state=Crod & coume=2 ) ;
{Cgm él[ Crod_isPresent := ...
Cgrn_isPFresant :=
C — 4 o Contrary to TrafficLight.xml in ptolemy/domains/sr/demo/TrafficLight, Pgo_isPresant := .
. m{s L undAeswAed SRS lhe SimpleTrafficLight.xml is a simplified version of traffic control w hich - gﬁl ;::::::“‘a:ml( I saPramt: 3
car ig pedestrian ight green at the sams time. only simulates the behavior of normal situation. Another difference is that VAR “ grtlio - “ FEo-
This\w pad to accklents. To avoid this, we use SimpleTrafficLight-xml only uses FSMActors to represent extended state state : {Pinit,Pgroan,Prad};
UIEs Sl _ml sl machines rather than ModalModels (w hich are used in TrafficLight.xmi). An ‘ss“f:"("“o) R
Ll Io acceptable by model checker NuSMV. user may generate codes for both models using SMV code generator. BaxT(stata) = '
Casa
CTL §| ation (Copy the line below w hen double clicking the SMV CodeGenerator) state=Pinit :{ Prod };
1EF (S rafficLight. CarLightNormal-state = Cgrn & Simple TrafficLight. PedestrianLightNormal-state = Pgreen) Pgo_isPrasemt & stata=Pred -{ Fgreen };
Pstop_isPrasant & state=Pgrean :{ Pgrean };
Authors: Chihhong Patrick Cheng, Edward A. Lee, Christopher Brooks aac% : stave;
DEFINE '
Prod_isPresant :=
Pgrn_isFresant :=
MODULE main
VAR
CarLightNorzal: CarlLightNormal( 1);
V 'f' t' Podestrianlightiormal: PedestriamlightNorzal(
erl Ica Ion CarLightNorzal .Pstop_isPrasant,
. CarLightNorzal .Pgo_isProsamt );
model in SMV =
! EF (CarLightNormal.state = Cgm
& PodastrianLightNormal.state = Pgroan)

Lee, Berkeley 27




But Model Synthesis is not always possible.
Constructing a Deployment Model

WirelessDirector ) The CarlLight and PedestrianLight actors
RadioChannel have custom icons that contain circles that
“1"’ change color in response to changes in the

values of their parameters. Look inside these
models to see how the parameter values are

CarLight St

PedestrianLight

400 meters

This is the top level of a deployment model, which maps the car
light and pedestrian light logic into two distinct compute platforms
that communicate via a wireless link. The same models are used for
the functional logic, leveraging actor-oriented classes in Ptolemy II.

Lee, Berkeley 28



Inside The Car Light Model

DEDirector

WirelessD)éctor

/

Avi

PoissonClock

N

e Cred: 0
e Cyel: 0
e Cgrn: 1

CarLight

Const

Const2

> PstopCode *—

SetVariable3

SetVariable4

SetVariable5

TimedDelay

Const4

¢ ErrorCode )

\—fcmy

Const3

e PgoCode: 0x01ub
e PstopCode: 0x02ub
® ErrorCode: 0x04ub
® OKCode: 0x08ub

This model encodes a
radio signal to send

to the pedestrian light
in an unsigned byte
(actually using only
four bits in the byte).
The signal to send

is provided by the
CarLight component.

— AddSubtract

g | radio
D._

The above model shows the construction of a radio packet for transmission on the
wireless link. Inside, it eventually uses the same behavioral model of the traffic light, so
changing the behavior in one model is automatically reflected in the other.

Lee, Berkeley 29




Actor-Oriented Classes
[Lee, Liu, Neuendorffer 07]

A class definition (right) has instances in
multiple models. Changes to the class
definition automatically propagate to the
instances.

SR Director The NormalC actor generates the control signals

for the car stoplights under normal operating conditions.

The NormalP actor reacts to these controls to gen
the control signals for the pedestrian li
Look inside each actor plementation.

e count: 0
guard: true
output:
Cred=1; guard: Sec_isPresent && count < 2
Cyel=0; set: count = count + 1
Cgrn=0

set: count = 0

guard: Sec_isPresent && count == 2
output: Cyel=1; Pstop=1
set: count =0

guard:
Sec_isPresent

output:
Pgo=1,
Cred=1;
Cyel=0;
Cgrn=0

set: count = 0

quard: Sec_isPresent
output: Cred=0; Cyel=0; Cgrn=1
set: count = 0

guard: Sec_isPresent && count < 1
set: count = count + 1

guard: Sec_isPresent && count == 1
output: Cyel=1; Cgrn=0

edestrianLightNormal

Pred

Pred

Sec
Error The CarlLightNormal and PedestrianLightNormal 4
» Cyel here are instances of actor-oriented classes defin
in other files. If you open the actors, you will open
Ok ;- the other files. If you change the design, then all
» Cgmn other instances of this class will see the change.
h- In particular, the WirelessDeployment example us

the same instances.

In the functional model above, an instance
communicates directly with the pedestrian light. The
deployment model (right) constructs a radio packet
and models wireless communication.

SR Director

The CarLightNormal actor generates the control signals
for the car stoplights under normal operating conditions.
Itis an instance of a class defined in a separate file.
When that instance is modified, all instances of the class
are modified.

Pgo
CarlLightNormal ' Pstop The CarlLightNormal actor here is an
10 instance of an actor-oriented class
@ defined in another file. If you open
o the actor, you will open the other
) file. If you change the design, then
all other instances of this class will
see the change.
Cred
Cyel
Cgrn




Multimodeling

Simultaneous use of multiple modeling techniques.

o hierarchical multimodeling: hierarchical compositions of
distinct modeling styles, combined to take advantage of the
unique capabilities and expressiveness of each style.

o multi-view modeling: distinct and separate models of the
same system are constructed to model different aspects of
the system.

o multi-specialization: a single model is used to synthesize
multiple distinct specialized models.

Lee, Berkeley 31



To support multi-specialization, we have built an
extensible type system for model ontologies that
performs “property inference”.

In the system at
the right, green
indicates that a
port is inferred or
declared to be
“constant”

Thanks to Thomas
Mandl, Research
& Technology
Center, Bosch,
Palo Alto.

BOSCH

SDF Director

Author: Thomas Huining Feng, Edward A. Lee, Jackie Mankit Leung, Thomas Mandl

Tr

= >

»

= >

Tr

>

Multiply3

>
1]

Add3

LogicalAND_Forward

false Double click to
Resolve Properties
T PropertyRemover
Double click to
true Remove Properties

This property lattice has two elements, and the solver
finds the least fixed point. To see the default
constraints, Alt-Double Click on the blue box above.
To solve for the fixed point, Double Click on it.

Blue indicates "false" and green indicates "true".

Display

Max
e
—
rLE

The properties for this example may be interepreted
as true = nonconstant, false = constant. Replace one
of the Const actors with a Ramp, and watch how its
nonconstant output affects the resolution of properties
downstream.

Lee, Berkeley 32



Demo: Model Properties as a Type Inference

Problem

In the system at
the right, one of
the constant
sources has been
replaced with a
non-constant
source. This
affects the inferred
properties
downstream.
Thanks to Thomas
Mandl, Research
& Technology

Center, Bosch,
Palo Alto.

BOSCH

SDF Director

c5
7 1 Add

Author: Thomas Huining Feng, Edward A. Lee, Jackie Mankit Leung, Thomas Mandl

Multiply3

LogicalAND_Forward

false Double click to
T Resolve Properties

PropertyRemover

Double click to
true Remove Properties

This property lattice has two elements, and the solver
finds the least fixed point. To see the default
constraints, Alt-Double Click on the blue box above.
To solve for the fixed point, Double Click on it.

Blue indicates "false" and green indicates "true".

Max Display
B )= g ) g
> e
The properties for this example may be interepreted
as true = nonconstant, false = constant. Replace one
of the Const actors with a Ramp, and watch how its

nonconstant output affects the resolution of properties
downstream.

Lee, Berkeley 33



Conclusion

o Multimodeling takes distinct forms.

o An abstract semantics can support this rigorously

This is not the same as just being noncommittal about
the semantics!

o Tool support still needs a lot of work...

Lee, Berkeley 34



Syntax Comparisons

The Ptolemy Il model and the Statecharts model differ
In syntax. Some issues to consider when evaluating a
syntax:

Rendering on a page
Showing dependencies in concurrent models

Scalability to complex models
Reusability (e.g. with other concurrency models)

Special notations (e.g. “3 Sec”).

Lee, Berkeley 35



Simple Traffic Light Example in
Statecharts, from Reinhard
von Hanxleden, Kiel University

Case study for Ptolemy Il Design

In StateCharts, the communication
between concurrent components is
not represented graphically, but is
rather represented by name
matching. Can you tell whether there
is feedback?

Module_TRAFFIC LIGHT

.

ParallelStatementList52state

~

A

! Cred(1), Cyel(0). Camn(0)

8 Sec / Cyel(1), Pstop

Errer

ParallelStatementList110state

[ Cred{0), Cyel(1), Cgrn{0)

Ok

Pred(0), Pgrn{0)




Syntax comparisons

Now can you tell whether there is feedback?

CarnghtNo aI

m

PedestrlannghtNormal

Lee, Berkeley 37



Semantics Comparisons

The Ptolemy Il model and the Statecharts model have
similar semantics, but combined in different ways.
Some issues to consider:

Separation of concurrency from state machines
Nesting of distinct models of computation

Expanding beyond synchronous + FSM to model the
(stochastic) environment and deployment to hardware.

Styles of synchronous semantics (Ptolemy Il realizes a
true fixed-point constructive semantics).

Lee, Berkeley 38



