
Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Efficient Compilation
of Cyclic Esterel Programs

Jan Lukoschus
Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Faculty of Engineering

Dept. of Computer Science and Applied Mathematics
Real-Time Systems and Embedded Systems Group

www.informatik.uni-kiel.de/~{jlu|rvh}

SYNCHRON 2003, December 2003

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 1

www.informatik.uni-kiel.de/~{jlu|rvh}

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Overview

Classes of Cyclic Esterel Programs

Existing solutions

Proposal 1: Runtime solution

Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 2

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Classes of Cyclic Esterel Programs

Esterel programs with cyclic dependencies can be differentiated
into these categories:

I Non constructive programs
I Non-deterministic programs
I Non-reactive programs

I Constructive programs
I Statically schedulable programs
I Only dynamically schedulable programs

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 3

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Non Constructive Programs

present A then

emit A

end
=⇒

A

Two possible solutions → not deterministic

present A else

emit A

end
=⇒

A

No stable solution → not reactive

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 4

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Constructiveness may depend on environment

present [S or A] then

emit B

end

||

present [T or B] then

emit A

end

I Presence of A executes emit B which implies emit A

I Presence of B executes emit A which implies emit B

I If neither S or T is present then the presence of A and B is
undefined

This program is constructive only if we can assure that S or T is
present in each instant at runtime

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 5

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Cyclic Gate Representation

module cycle guarded:

present S then

present A then

emit B

end

else

present B then

emit A

end

end

=⇒

B

A

S

=⇒
B := S ∧ A

A := ¬S ∧ B

No fixed execution
order is valid for these
two assignments

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 6

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Cyclic Gate Representation

B := S ∧ A

A := ¬S ∧ B

State exploration of S results in static solution:

B := 0

A := 0

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 7

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Static Schedule for a Cyclic Program

present S then

present A then

emit B

end

else

present B then

emit A

end

end

=⇒

if (S) {

if (A) {

B = 1;

}

else {

if (B) {

A = 1;

}

}

If cyclic dependent blocks are mutually exclusively executed, a
static schedule is possible

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 8

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Non Constructive Programs
Conditionally constructive programs
Static cycles
Dynamic cycles

Cyclic program without a static schedule

present [S or A] then

emit B

end

||

present [not S or B] then

emit A

end

=⇒

B

A

S

I Presence of S executes emit B which enables emit A

I Absence of S executes emit A which enables emit B

If blocks can activate each other mutually, a static schedule may
not be derived directly

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 9

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Classic approaches
Other approaches

Existing solutions for constructive cyclic programs
Two main principles to compile Esterel programs:

I Automata code (Esterel v3)
I Execution of a flat automaton
I Fast
I Handles constructive cyclic programs
I State explosion may happen

I Netlist code (Esterel v5)
I Emulation of a logic circuit
I Slow
I Constructive cyclic programs require explicit synthetisation
I Linear in size to Esterel source
I Also used for hardware synthesis

Gerard Berry.
The Constructive Semantics of Pure Esterel.
Draft Book, 1999.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 10

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Classic approaches
Other approaches

Other Esterel Compilation Schemes

I EC (Stephen E. Edwards)
Based on traversing an control flow graph in each instant

I SAXO-RT (Weil, Bertin, Closse, Poize, Venier, Pulou)
Ordered execution of basic statement blocks controlled by
activation bit masks

Stephen A. Edwards.
An Esterel compiler for large control-dominated systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 21(2), February 2002.

Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil.
SAXO-RT: Interpreting esterel semantic on a sequential execution structure.
In Florence Maraninchi, Alain Girault, and Éric Rutten, editors, Electronic Notes
in Theoretical Computer Science, volume 65. Elsevier, July 2002.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 11

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Classic approaches
Other approaches

EC and SAXO-RT

Common properties of both compilers:

I Generated code size is nearly proportial to the size of Esterel
code (no state explosion like v3)

I Even big programs are compileable

I Program size has not much impact on execution speed (no
execution of inactive program parts like v5)

I No support for constructive cyclic programs because of fixed
order of execution for basic blocks

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 12

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Classic approaches
Other approaches

A Synchronous Block Diagram Language

Handles cyclic dependencies at runtime

I Three-valued signals

I Fixpoint iteration at runtime to determine signal values

I Elaborated scheme to minimize the number of iterations in
each instant

I Implemented in Ptolemy Classic

Stephen A. Edwards and Edward E. Lee.
The semantics and execution of a synchronous block-diagram language.
Science of Computer Programming, volume 48. Elsevier, 2003.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 13

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Outline
Implementation
Drawbacks

Proposal 1: Extend Static Approach with Dynamic
Scheduler for Cyclic Parts

Outline:

I Per default, use static scheduling approach (e. g., SAXO-RT)

I Identification of basic blocks wich are strongly connected via
cyclic signal and control dependencies (“Cycle”)

I Remaining blocks, which are not part of a cycle, are either
unrelated, predecessor, or successor of these cyclic blocks

I Execution of cyclic and remaining blocks in order of signal
dependency

I Execution of cycles enclosed in individual fixpoint iteration
loops

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 14

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Outline
Implementation
Drawbacks

Proposal 1: Static Approach + Selective Dynamic
Scheduling

Implementation:

I New bit map for signals which are part of a cyclic dependency

I Additional bit map indicates known presence/absence status
of signals

I Prepend each basic block with an additionally synthesized
predicate

I Predicate checks if excution of the block could deliver only
known signal statuses for the cyclic dependent signals

I Another bit map stores successful execution of blocks to
inhibit repeated execution in the same instant

I Iteration until all activated blocks of a cycle have been
executed

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 15

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Outline
Implementation
Drawbacks

Proposal 1: Static Approach + Selective Dynamic
Scheduling

Drawbacks:

I Slow
I Looping over all active blocks in the cycle
I Evaluation of the additional predicate

I Big
I Storage for additional bitmaps
I Control statements

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 16

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Pros and Cons

Proposal 2: Static Partial Evaluation of Cycles

Idea: Application of netlist synthetization from v5

I Determine the sets of blocks wich are strongly connected by
cyclic signal and control dependencies

I Consider all combinations of presence/absence for all input
signals relevant to one block

I Compute all signal emmissons by this set via fixpoint iteration
I If output signals with unknown presence status remain, perform

reachability analysis for respective input signal combinations
I If problematic input signal combinations are reachable, then

the program is not constructive and therefore rejected

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 17

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Pros and Cons

Proposal 2: Static Partial Evaluation of Cycles

I Compute netlist expressions for each signal in the cycle

I Each netlist expression contains only input signals

I Isolate one block in each strongly connected cycle

I Replace each cycle signal occurence inside that block with
netlist expressions for each output signal

I Now the cycle is cut and a static schedule is possible

A possible scheme for this task is described in:

Stephen A. Edwards.
Making Cyclic Circuits Acyclic.
In Proceedings of the 40th conference on Design automation, June 2003.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 18

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Pros and Cons

Pros and Cons of Proposal 2:

Benefits:

I Speed improvement: blocks in the cycles are are only executed
once in each instance

I Size: No additional bitmaps or predicates

Disadvantages:

I Implementation is compiler specific

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 19

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Proposal 3: Esterel preprocessing for cyclic signals

Idea: Cutting of cyclic dependencies at Esterel source code level

Such a preprocesor would:

I read an Esterel file

I identify cycles

I perform partial evaluation of cycles

I selective replacement of expressions

I write the result as an Esterel program

Now other compilers can read the new (now non-cyclic) program
to produce efficient C code

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 20

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Additional tasks for the preprocessor
Since a standalone prepocessor can not use the infrastructure of an
existing compiler, an implementation must provide:

I Scanner/parser for Esterel to interpret the tree structure of
the program

I Expansion of run modules

I Identification of signal and control dependencies between the
statements

I Identification of cyclic dependencies

I Fixpoint iteration for all input signals for that block including
reachability analysis

I Isolate one signal in the cycle and replace with respective
netlist expression

I Write modified Esterel file

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 21

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Esterel resynthesis for cyclic signals

Benefits:

I Compiler source code is not needed

I Solution is not compiler specific

Disadvantages:

I Duplication of effort for program analysis

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 22

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example: (Simplified) Token Ring Arbiter

module STATION:

input Request; output Grant;

input Pass; output PassNext;

input Token; output TokenNext;

loop

present [Token or Pass] then

present Request then

emit Grant

else

emit PassNext

end

end present ;

pause

end loop

||

loop

present Token then

pause ;

emit TokenNext

else

pause

end

end

=⇒

One station of the token
ring arbiter

PassNextPass

TokenNextToken

GrantRequest

Gerard Berry.
The Esterel v5 Language
Primer.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 23

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Token Ring Arbiter: Network Structure

T1

P1

G1R1

P2

T2

R2 G2

P3

T3

R3 G3

I The network stations are connected in a circle via their Token
(Tn) and Pass (Pn) input/output signals

I The Request (Rn) and Grant (Gn) signals are local on the
network stations

I One station gets the token (not shown here) at system startup

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 24

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Token Ring Arbiter: Network Structure in Esterel

module BUS:

input Request1, Request2, Request3;

output Grant1, Grant2, Grant3;

signal Pass1, Pass2, Pass3,

Token1, Token2, Token3

in

emit Token1

||

run Station1/STATION

[signal Request1 / Request,

Grant1 / Grant,

Pass1 / Pass,

Pass2 / PassNext,

Token1 / Token,

Token2 / TokenNext

]

||

run Station2/STATION

[signal Request2 / Request,

...

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 25

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Token Ring Arbiter: Expanded Run Modules

Before we can start the cycle analysis, the run modules must be
expanded

module BUS:

input Request1, Request2, Request3;

output Grant1, Grant2, Grant3;

signal Pass1, Pass2, Pass3,

Token1, Token2, Token3

in

emit Token1

|| % Station1

loop

present [Token1 or Pass1] then

present Request1 then

emit Grant1

else

emit Pass2

end

end;

pause

end

||

loop

present Token1 then

pause;

emit Token2

else

pause

end

end

|| % Station2

loop

present [Token2 or Pass2] then

present Request2 then

emit Grant2

else

emit Pass3

end

end;

pause

end

||

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 26

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Token Ring Arbiter: Cyclic Dependencies

present [Token1 or Pass1] then

present Request1 else

emit Pass2

end

end;

||

present [Token2 or Pass2] then

present Request2 else

emit Pass3

end

end;

||

present [Token3 or Pass3] then

present Request3 else

emit Pass1

end

end;

This is the cyclic depen-
dency found in the token
ring arbiter:

I Emission of Pass2
depends on Pass1

I Pass1 depends on
Pass3

I Pass3 depends on
Pass2

This non determinism will
be broken up by the pres-
ence of one of the Tokenn

signals

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 27

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Problem with static scheduling

I In the cycle one ”or” block gets a present token value which
sets its output value

I Now the following blocks can be executed in the order of the
cyclic dependency

I But this execution order cannot be done if the compiler only
supports a fixed schedule of execution

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 28

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Problem with static scheduling

Solution:

I Computation of all possible signal values in the cycle from the
input signals via fixpoint iteration

I Replacement of cyclic signals by their input signal expression

I Now a static schedule is possible

I Optimization: It is sufficient to replace only one cyclic signal
to break the cycle

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 29

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Fixpoint Iteration
Token Request Pass

1 2 3 1 2 3 1 2 3
0 0 0 X X X ⊥ ⊥ ⊥ Does not happen

1 0 0 0 0 0 1 1 1
0 1 0 0 0 0 1 1 1 No one wants the bus
0 0 1 0 0 0 1 1 1

1 0 0 1 X X 0 0 0
1 0 0 0 1 X 1 0 0 Station 1 carries the token
1 0 0 0 0 1 1 1 0

0 1 0 1 0 0 0 1 1
0 1 0 X 1 X 0 0 0 Station 2 carries the token
0 1 0 X 0 1 0 1 0

0 0 1 1 X 0 0 0 1
0 0 1 0 1 0 1 0 1 Station 3 carries the token
0 0 1 X X 1 0 0 0

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 30

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Synthesis of new netlists

State exploration for Token1 to Token3 delivers the unreachability
of 0, 2, or 3 tokens in the system. Therefore those input
assignments are ignored, when writing the netlists for the Pass
signal:

Pass1 := (R1 ∧ R2 ∧ R3∧) ∨ (T1 ∧ R1) ∨ (T3 ∧ R1 ∧ R3)
Pass2 := (R1 ∧ R2 ∧ R3∧) ∨ (T2 ∧ R2) ∨ (T1 ∧ R2 ∧ R1)
Pass3 := (R1 ∧ R2 ∧ R3∧) ∨ (T3 ∧ R3) ∨ (T2 ∧ R3 ∧ R1)

Now the cyclic Pass signals can be computed in every valid instant
without another cyclic signal on the right hand side

Thomas R. Shiple, Gerard Berry, and Herve Toutati.
Constructive Analysis of Cyclic Circuits.
In Proc. International Design and Test Conference ITDC 98, Paris, France,
March 1996.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 31

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Application of new netlists

|| % Station1

loop

present [Token1 or

((not Request1 and not Request2

and not Request3)

or (Token3 and not Request3)

or (Token2 and not Request3

and not Request2))

] then

present Request1 then

emit Grant1

else

emit Pass2

end

end;

pause

end

I Pass1 is replaced
by expression

I Pass2, Pass3 are
not changed

I Emission of Pass1
becomes
superfluous

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 32

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Summary

I Cyclic dependencies in Esterel programs should be handled at
compile time to save CPU and Memory resources

I There is no compelling reason to implement the cycle
transformation in the compiler

I Constructive cyclic Esterel programs could be transformed by
a preprocessor into acyclic ones

I This in effect extends the applicability of known, efficient
compilation approaches to the domain of cyclic Esterel
programs

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 33

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Addendum

This talk resulted in several fruitful comments and discussions.
In particular, it was noted that

I the concepts proposed here should be applicable to
synchronous languages in general (including, e. g., Lustre)

I it is not obvious how to apply the concept of partially
evaluating cycles in the presence of registers (pause
statements), for example in module pause1 (slide 38), as the
state of registers is not directly accessible from within the
Esterel program

Regarding the second point, one idea (Stephen Edwards) to make
the register state accessible was to augment a program with
auxiliary signals that would indicate the current state module, as in
module pause1a (slide 39)

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 34

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Addendum

In the following, we will

I illustrate the case of cycles broken by registers

I give an example of a program enhanced to make register state
accessible

I outline a more general scheme for dealing with cyclic Esterel
programs at the source code level

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 35

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Classification of cycles

1. True cycles

I All dependencies can be present at same instant
I Constructiveness may depend on inputs
I Example: Token Ring Arbiter (slide 23)

2. False cycles
I Not all dependencies are active at the same instant

2.1 Cycles are broken by guards
I Example: cycle guarded (slide 6)

2.2 Cycles broken by registers
I These correspond to pause statements
I Example: pause1 (slide 38)

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 36

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Classification of cycles

I In a certain sense, true cycles can be considered particularly
difficult:

I to prove their constructiveness one has to analyze the
reachable input space (e. g., the presence of a token in the
case of the bus arbiter)

I there does not exist a fixed order for evaluating the cycle (e. g.,
for the bus arbiter the required order of evaluation depends on
which station has the token)

I However, even false cycles pose a problem for compilers that
try to construct a statical evaluation order by ordering the
signal dependencies, without taking into account guards or
registers (which would in fact make the evaluation order
irrelevant)

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 37

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

False cycle broken by register

module pause1:

input A, B;

present A then

emit B

end;

pause;

present B then

emit A

end

I This example contains a cycle
involving signals A and B

I Both blocks are executed in
different instances separated with a
“pause” statement, hence this is a
false cycle, broken by a register

I Question: how to apply partial
evaluation to remove the cycle?

I One apparant problem: State of
registers is not accessible as input
value to computed function

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 38

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Accessing register states

Idea: Make register states visible by extra signals

module pause1a:

input A, B;

signal E, F in

emit E;

present A then

emit B

end;

pause;

emit F;

present B then

emit A

end

end signal

I The emission of signals E and F
takes place before and after the
“pause” statement

I So we found a way to access the
state—but are not finished yet

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 39

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Partial evaluation of cycle

Try to remove dependency on signal A to break cycle, analogous to
Token Ring Arbiter:

module pause1b:

input A, B;

signal E, F in

emit E;

present F and B then

emit B

end;

pause;

emit F;

present B then

emit A

end

end signal

I A is emitted when F is emitted and
B is present—hence replace test on
A by test on F and B

I However, there is still a static
cycle, on signal B!

I It does not appear obvious how to
apply the partial evaluation
concept here

I In the following, will provide
alternative scheme

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 40

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Break cycles

Other idea: Break cycles with auxiliary signals

1. Identify cyclic dependency broken by register;
assume signal B carries this dependency

2. Within cycle, replace “emit B” by “emit B ”
(B is a new signal)

3. Outside of the cycle, replace all tests for B by tests for
“(B or B)”

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 41

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example for auxiliary signal
To illustrate, modify pause1 by adding some usage of B outside of
the cycle, resulting in pause2

module pause2: % Cyclic

input A, B;

present A then

emit B

end;

pause;

present B then

emit A

end

||

present B then

something

end

=⇒

module pause2a: % Acyclic

input A, B;

signal B in

present A then

emit B

end;

pause;

present B then

emit A

end

||

present [B or B] then

something

end

end signal

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 42

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

A General Code Transformation Scheme (for pure signals)

1. Select a dependency (edge) in the cycle, carried by some signal S;
the dependency has the form

emit S % dependency source

...

present f(S) then ... % dependency sink

where f(S) is an expression involving S

2. Replace dependency source with “emit S ”, where S is a fresh
signal

3. Replace dependency sink with “present f(S or expr)”,

where “expr” is the result of evaluating the dependency (emission of
S by dependency source in the untransformed program) at the
current instant

4. Replace other tests for S by tests for “(S or S)”

5. If S is an output signal, add S to list of output signals

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 43

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

General Code Transformation—Notes

1. Instead of being tested by a present statement at the dependency
sink, S might also be tested by a suspend statement (or any
derived statement)

2. Evaluating the cycle at the current instant implies the detection of
false cycles, for example, by tracing the inputs back to a register

3. If the dependency is a (false) dependency, broken by a register or a
guard, “expr” becomes empty (as in pause2a)

4. If S in the current instant is not tested by any statement other than
the dependency sink, do not need to emit the auxiliary replacement
signal S (as in Token Ring Arbiter)

5. If S in the current instant is not emitted by any statement other
than the dependency source (before transformation), can set S to
false (absent) in f(S) in the dependency sink—which may lead to
f(S) becoming empty (as in Token Ring Arbiter)

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 44

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Application to Token Ring Arbiter

The first 3 steps of the general code transformation:

1. The cycle involves signals Pass1, Pass2, and Pass3
Select arbitrarily the dependency carried by Pass1 to be
broken
f(Pass1) is “Token1 or Pass1”

2. As Pass1 is not tested by any statement other than the
dependency sink, do not need auxiliary signal (see Note 4)

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 45

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Application to Token Ring Arbiter

3. As Pass1 is not emitted by any statement other than the
dependency source, can set Pass1 to absent in
f(Pass1)—which then simplifies to Token1 (see Note 5)
The replacement expression “expr” for the signal Pass1 is:

((not Request1 and not Request2 and not Request3)

or (Token3 and not Request3)

or (Token2 and not Request3 and not Request 2)

)

As there is no auxiliary signal, steps 4 and 5 of the general
transformation become superfluous

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 46

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

General Code Transformation—An Optimization

To avoid the need to always test for two signals (S and S) as
prescribed in Step 4, one may use another auxiliary signal:

I Introduce fresh auxiliary signal S

I Modify step 4: Instead of replacing other tests for S by
“(S or S)”, replace them by solely S

I Add globally parallel statement:
“every [S or S] do emit S end”

Note: This is akin to Common Subexpression Elimination (CSE),
which does not necessarily need to be done at the source code
level, but may also be performed during compilation/synthesis

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 47

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of Optimization

module pause2b:

input A, B;

signal B_, B in

present A then

emit B_

end;

pause;

present B then

emit A

end

||

present B then

something

end

||

every [B or B] do

emit B

end

end signal

I The new signal B is present if B
or B are present

I Outside the cycle the test for
“(B or B)” is replaced by a
simple test for B

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 48

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle on output signal

module pause3: % Cyclic

inputoutput A, B;

loop

present A then

emit B

end;

pause;

present B then

emit A

end;

pause;

end

I This example models a simple
line repeater. The direction of
information flow changes every
clock tick

I Depending on the clock state,
signal A depends on signal B or
vice versa

I That static cycle is not
removable by any means
without changing the interface,
since that cyclic dependency is
specified as the interface
behaviour

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 49

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle on output signal

module pause3a: % Acyclic

inputoutput A;

input B;

output B ;

loop

present A then

emit B ;

end;

pause;

present B then

emit A

end;

pause;

end

I Have added auxiliary signal B

I As B is not emitted by this
module any more, changed it
from inputoutput to just
input

I Users of this module must
replace tests for B by tests for
(B or B)

I If there is no other module that
can still emit B, these tests
simplify to just B

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 50

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle on output signal

module pause3b: % Acyclic

inputoutput A;

input B; output B ;

signal B in

loop

present A then

emit B_;

end;

pause;

present B then

emit A

end;

pause;

end

||

every [B or B] then

emit B end

end signal

I Module pause3a after
application of CSE optimization

I Have added auxiliary signals B
and B

I Users of this module must
replace tests for B by tests for
B

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 51

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle broken by guard

module reg1:

input A, B, S;

output X, Y;

present S then

present A then

emit B % dependency source

end

else

present B then % dependency sink

emit A

end

end;

present A then emit X end;

present B then emit Y end

I Module contains
(false) dependencies,
broken by guard S

I Select dependency
carried by B to break

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 52

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle broken by guard

module reg1 acyclic:

input A, B, S;

output X, Y;

present S

% Now empty then-branch

else

present B then

emit A

end

end;

present A then emit X end;

present [B or (S and A)]
then emit Y end

I As B is not used elsewhere in
module and is not output,
do not need auxiliary signal

I Emission of B becomes
superflous, hence the
then-branch disappears

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 53

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle broken by guard

module reg1 acyclic opt:

input A, B, S;

output X, Y;

% Deleted check altogether

present [A or ((not S) and B)]
then emit X end;

present [B or (S and A)]
then emit Y end

I Applied forward substitution
again, now on signal A

I Net benefit depends on
subsequent
compilation/synthesis
process

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 54

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle with suspend

module suspend cyclic:

output T1, T2;

output P1, P2;

suspend

sustain P2

when immediate [not (T1 or P1)]

||

suspend

sustain P1

when immediate [not (T2 or P2)]

||

loop

emit T1; pause;

emit T2; pause

end

I The signals P1 and P2 are
connected cyclically because
the “suspend” would cut
the emission of each signal if
the other one is not present

I The cycle is dynamicallly
resolved by the signals T1
and T2

I Select dependency carried by
P1 to break the cycle
statically

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 55

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle with suspend

module suspend acyclic:

output T1, T2;

output P1, P2;

output P1 ;

suspend

sustain P2

when immediate [not (T1 or 1)]

||

suspend

sustain P1

when immediate [not (T2 or P2)]

||

loop

emit T1; pause;

emit T2; pause

end

I Replace P1 by P1 in the
dependency source

I Compute partial evaluation
“expr” for P1

I Here it results in P1 always
present (symbolized by “1”)

I Replace P1 by “expr”

I Add P1 to output

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 56

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example of cycle with suspend

module suspend acyclic:

output T1, T2;

output P2; % P1 eliminated

output P1 ;

% suspend ... eliminated

sustain P2

||

suspend

sustain P1

when immediate [not (T2 or P2)]

||

loop

emit T1; pause;

emit T2; pause

end

I Propagation of “always
present” leads to elimination
of the “suspend” wrapper
of the “sustain P2”

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 57

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example with cyclic valued signals

module reg value:

input S;

input A : integer, B : integer;

output X : integer, Y : integer;

present S then

present A then

emit B(?A) % dependency source

end

else

present B then % dependency sink

emit A(?B)

end

end;

present A then emit X(?A) end;

present B then emit Y(?B) end

I This program is a copy
of “reg1” (slide 52) but
with valued signals

I If signals A and B can
both be present on the
input then a combine
function is needed

I Select dependency
carried by B to break

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 58

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Example with cyclic valued signals

module reg value acyclic:

input S;

input A : integer, B : integer;

output X : integer, Y : integer;

signal B :integer, B :integer in

present S then

present A then emit B (?A) end

else

present B then emit A(?B) end

end;

present A then emit X(?A) end;

present B then emit Y(?B) end

||

every B emit B (?B)

||

every B emit B (?B)

end signal

I Added local auxiliary
signals B to break the
cycle via B

I Additional parallel
statements transfer the
values from B and B to
B

I Can construct other
programs with
dependencies on values
of signals where partial
evaluation is not obvious.

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 59

Classes of Cyclic Esterel Programs
Existing solutions

Proposal 1: Runtime solution
Proposal 2: Static Partial Evaluation

Proposal 3: Esterel preprocessing for cyclic signals

Idea
Additional tasks for the preprocessor
Example: Token Ring Arbiter
Addendum

Conclusions

I Have proposed a general scheme for eliminating (true and
false) cycles from Esterel programs

Remaining issues:

I Validate general applicability of translation scheme

I How to choose the dependencies to break (could look for,
e. g., minimal resulting expressions)

I How to compute efficient replacement expressions for signals
carrying dependencies at current instant

I Extending this to full Esterel, including valued signals

I Implementation and experimental evaluation

Jan Lukoschus, Reinhard von Hanxleden Efficient Compilation of Cyclic Esterel Programs Slide 60

	Classes of Cyclic Esterel Programs
	Non Constructive Programs
	Conditionally constructive programs
	Static cycles
	Dynamic cycles

	Existing solutions
	Classic approaches
	Other approaches

	Proposal 1: Runtime solution
	Outline
	Implementation
	Drawbacks

	Proposal 2: Static Partial Evaluation
	Idea
	Pros and Cons

	Proposal 3: Esterel preprocessing for cyclic signals
	Idea
	Additional tasks for the preprocessor
	Example: Token Ring Arbiter
	Addendum

