Visual Comparison of Graphical Models

Arne Schipper Hauke Fuhrmann Reinhard von Hanxleden

Real-Time Systems and Embedded Systems Group, Department of Computer Science, Christian-Albrechts-Universität zu Kiel {ars,haf,rvh}@informatik.uni-kiel.de

UML&AADL'09

Outline

Problem:

Graphical models very often used, quite easy to create and browse, but pain to compare.

Problem:

Graphical models very often used, quite easy to create and browse, but pain to compare.

Screenshot of a real model from a project, Version 1

Problem:

Graphical models very often used, quite easy to create and browse, but pain to compare.

Screenshot of a real model from a project, Version 2

Problem:

► Graphical models very often used, quite easy to create and browse, but pain to compare.

Screenshot of a real model from a project, Version 1

Screenshot of a real model from a project, Version 2

Problem cont'd:

- ▶ Means exist to compare graphical models textually, but ...
- User has to switch between different abstraction levels.

Problem cont'd:

- Means exist to compare graphical models textually, but ...
- User has to switch between different abstraction levels.

Solution:

- Develop means to aid the user in performing a real visual comparison of graphical models.
- Some tools exist, but have drawbacks.

Problem cont'd:

- Means exist to compare graphical models textually, but ...
- User has to switch between different abstraction levels.

Solution:

- Develop means to aid the user in performing a real visual comparison of graphical models.
- ▶ Some tools exist, but have drawbacks.

Method:

- Identify and improve those drawbacks.
- Implement as Eclipse plug-in using existing techniques where appropriate.
- Use generic approach to cope with various graphical languages.

Outline

Textual diff/comparison:

- ▶ Known to everyone, compare texts side by side.
- ▶ One-dimensional or linear arrangement with *holes* in the texts.

Textual diff/comparison:

- Known to everyone, compare texts side by side.
- One-dimensional or linear arrangement with holes in the texts.

Figure: Two article versions in Wikipedia

Common comparison of graphical models:

- Generate a textual description of the changes.
- Is sometimes structured, but ...
- User has to find these changes in the graphical representation.

Common comparison of graphical models:

- Generate a textual description of the changes.
- Is sometimes structured, but ...
- User has to find these changes in the graphical representation.

Figure: Model diff of Expert Control

Visual comparison:

- Show the changes in the graphical model itself.
- Prevents the user from switching between text and graphical model.

Visual comparison:

- Show the changes in the graphical model itself.
- Prevents the user from switching between text and graphical model.

Figure: Scade model diff

Challenges:

▶ Graphical models at least two-dimensional, in contrast to text.

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.

- ▶ Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- ▶ Some models have information which is not shown visually.

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.

- Graphical models at least two-dimensional, in contrast to text.
- No trivial solution for holes like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation

Questions:

Use just the structure of the graphical model or also the layout information of the elements?

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- Difference detection. However, solved by an existing engine and we focus on graphical presentation

- Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- Large models.
- Mental map of the user.
- ▶ Difference detection. However, solved by an existing engine and we focus on graphical presentation

- ▶ Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?
- Alter the layout or leave it intact?

Challenges:

- Graphical models at least two-dimensional, in contrast to text.
- ▶ No trivial solution for *holes* like in textual diff.
- Some models have information which is not shown visually.
- ► Large models.
- Mental map of the user.
- ▶ Difference detection. However, solved by an existing engine and we focus on graphical presentation

- ▶ Use just the structure of the graphical model or also the layout information of the elements?
- Use one model or both versions to display the changes?
- Alter the layout or leave it intact?
- Does a readable automatic layout help?

The two versions of the model:

Figure: The two original versions of the example diagram.

Possible representation of the changes 1:

Figure: Plain visual diff. Color legend: green/additions, red/deletions, blue/changes.

Possible representation of the changes 3:

Figure: Freely merged visual diff.

Which representation?

▶ Manual tests showed that *plain* visual diff is best.

- ▶ Manual tests showed that *plain* visual diff is best.
- ▶ Additional textual description of changes is also given.

- ▶ Manual tests showed that *plain* visual diff is best.
- ▶ Additional textual description of changes is also given.
- ▶ No problems with/recomputation of layout, but a good layout of the original models is helpful.

- Manual tests showed that plain visual diff is best.
- ▶ Additional textual description of changes is also given.
- ▶ No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.

- Manual tests showed that plain visual diff is best.
- ▶ Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.

Which representation?

- Manual tests showed that plain visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.

Other issues:

The diff is performed just against the structural/domain model.

Which representation?

- Manual tests showed that plain visual diff is best.
- Additional textual description of changes is also given.
- No problems with/recomputation of layout, but a good layout of the original models is helpful.
- Mental map of user is preserved.
- Additional means like panning, zooming and folding needed to cope with large models.

Other issues:

- ➤ The diff is performed just against the structural/domain model.
- Non graphical changes (e.g. of properties) are also displayed; blue in the previous slides.

Outline

Developed as Eclipse plug-in within a project called KIELER (Kiel Integrated Environment for Layout, for Eclipse RCP).

▶ EMF to create the domain models.

- EMF to create the domain models.
- GMF to build the corresponding graphical editor.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - ▶ Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- ► **KiViK** (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).
 - ▶ Equip the comparison view with means to navigate and zoom.

- EMF to create the domain models.
- ▶ GMF to build the corresponding graphical editor.
- ▶ EMF Compare to compute the differences of the EMF model.
- KiViK (Kieler Visual Comparison) to get EMF Compare output into GMF.
 - ▶ Use original layout of diagrams and display them side by side.
 - Annotate the structural changes with different colors.
 - Use third panel on top to display just the structural changes textually (like EMF Compare).
 - Equip the comparison view with means to navigate and zoom.
 - Collapse composite items with no changes inside (a layout algorithm is needed then).

General implementation:

Example of collapsing:

Example of automatic zoom:

Comparison of Dataflow models:

Outline

Summary and Outlook

Feedback:

- Students and professionals gave an overall positive feeback for this approach.
- Representation directly in the diagram seen as benefit.
- Visualization of small (or invisible) changes very useful.
- User interface with collapsing, panning and zooming intuitive.
- Generic approach enables support for various diagrams with none or little adaption.

Summary and Outlook

Outlook:

- Large models are still challenging; time for comparison as well as navigation.
- Next step would be to support merging graphically.
- Maybe implement also the other approaches presented to see how they perform.

Visual Comparison of Graphical Models

Visual Comparison of Graphical Models Thanks!