
Strict Sequential Constructiveness

Alexander Schulz-Rosengarten

Master’s Thesis
2016

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
Dipl.-Inf. Steven Smyth

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Synchronous languages offer deterministic concurrency but often come with heavy restrictions
on the accepted programs. Classical synchronous languages such as Esterel use the concept of
signals which require a globally consistent value.
The Sequentially Constructive (SC) Model of Computation (MoC) overcomes this restriction
and enables the use of sequential programming paradigms with multivalued shared variables
while preserving determinism. It is designed as a conservative extension of the synchronous
MoC, including Esterel. However, in terms of speculation, the concept of constructiveness in
Esterel differs from constructiveness in the SC MoC. While constructive Esterel is based on
the idea of propagating facts about signals and controlflow, the SC MoC considers all possible
program traces under a restricted scheduling regime. This results in situations where the
SC MoC accepts programs whose execution traces are considered speculative in the sense of
Esterel’s constructiveness. This raises the problem that these programs do not translate into
delay-insensitive circuits, which is a strong property of constructive Esterel.
The topic of this thesis is about restricting the class of SC programs to those Strictly Sequentially
Constructive (SSC) programs which are considered constructive in the strictly non-speculative
sense of Esterel, while preserving the benefits of sequentiality in the SC MoC.
This thesis presents a practical approach to determine whether an SC program fulfills this
requirement by translating it into a semantically equivalent Esterel program and checking its
constructiveness. This requires an SC-specific Static Single Assignment (SSA) form to allow the
correct transformation of SC concurrency and shared variables into Esterel.

v

Contents

1 Introduction 1
1.1 Esterel . 1
1.2 Sequential Constructiveness . 2
1.3 Problem Statement . 3
1.4 Outline . 4

2 Foundations 5
2.1 Esterel . 6
2.2 Sequential Constructiveness . 9
2.3 Used Technologies . 13

2.3.1 Eclipse . 13
2.3.2 KIELER . 14

3 Related Work 17
3.1 Translations Regarding Esterel . 17

3.1.1 SyncCharts . 17
3.1.2 SCCharts . 18
3.1.3 SCL . 19

3.2 Static Single Assignment . 19
3.2.1 SSA in Hardware Synthesis . 20
3.2.2 SSA for Explicitly Parallel Programs . 20

4 Strict Sequential Constructiveness 23
4.1 Restricting Sequential Constructiveness . 23

4.1.1 Detecting Strict Sequential Constructiveness 24
4.2 SSA Form for Sequentially Constructive Programs 25

4.2.1 Regular SSA . 26
4.2.2 SC-specific SSA Form . 32
4.2.3 Constructing Seq-Conc-Expressions . 35
4.2.4 Pauses . 41
4.2.5 Loops . 44
4.2.6 Updates . 49
4.2.7 Interface Compliance . 58

vii

Contents

4.3 Translation into Esterel . 61
4.3.1 Structure . 61
4.3.2 Behavior . 63
4.3.3 Pure Signal Encoding . 65
4.3.4 Valued Signal Encoding . 71

5 Implementation 75
5.1 Integration into KIELER . 75
5.2 SSA Transformation . 76
5.3 Translation into Esterel . 78

6 Evaluation 81
6.1 Supported Programs . 81
6.2 Test Cases . 82

6.2.1 P10 . 83
6.2.2 ABO . 83
6.2.3 The Token Ring Arbiter . 88

6.3 Limitations . 92
6.3.1 Short-Circuit Evaluation . 92
6.3.2 Ineffective Writes . 92

7 Conclusion 95
7.1 Summary . 95
7.2 Future Work . 95

7.2.1 Compiler Advancement . 96
7.2.2 Sequential Optimization . 96
7.2.3 Reducing Restrictions . 97
7.2.4 Enhancing the Constructiveness Analysis 99

Bibliography 103

List of Acronyms 109

List of Listings 111

List of Figures 113

List of Tables 115

viii

Chapter 1

Introduction

Many computer systems are embedded into their environment. These embedded systems
range from digital watches over cars to aircrafts and most of them are reactive [HP85]. Such
systems maintain a continuous exchange of information with their environment. As a result,
these systems often use concurrency to interact with the simultaneously running real-world
processes. In a safty-critical context where malfunctions can easily endanger human lives, this
becomes a crucial aspect. Classical approaches for concurrency, such as threads, are prune to
non-deterministic behavior, especially race conditions [Lee06]. In safty-critical systems, such
behavior is dangerous threat and thus unacceptable. Synchronous languages represent a
solution for this problem. The synchronous Model of Computation (MoC) divides time into
discrete ticks, executing one finite reaction of the system in an instant. This facilitates the
definition of deterministic concurrency by reasoning about ticks [BCE+03].

1.1 Esterel

One prominent synchronous language is Esterel, developed by Gérard Berry [Ber02]. Esterel is
an imperative synchronous programming language especially designed for reactive systems,
providing built-in parallelism with deterministic semantics. The main data type in Esterel are
signals. Signals can either be present or absent and their state is globally consistent during an
entire tick. A signal is present in a tick iff it is emitted in this tick, otherwise it is absent.
Furthermore, the constructive semantics of Esterel, implements [. . .] the idea of propagating
facts about control flow and signal statuses [Ber02]. Constructive programs must determine the
state of a signal based on propagated facts before the state is further evaluated. If a statement
reads a signal, the state is determined based on preceding emissions and cannot not change
due to further execution of the program. This results in a write before read protocol for signal
accesses, and prevents speculation about the presence of a signal.
Listing 1.1 shows the program P12, which violates the concept of constructiveness and
consequently is rejected. The program has one output signal O which is first tested for its
presence state and then emitted in each of the branches. The reason for the rejection is the fact
that, when the output signal is read, the signal was not yet emitted and can be emitted in the
same tick by the subsequent statements. Thus, the controlflow does not allow to propagate
enough facts about the signal to determine its state. In this case O will always be emitted,
independent from branching. However, taking this fact into account when determining the
signal state would be speculation about subsequent effects.

1

1. Introduction

1 module P12:

2 output O;

3 present O then

4 emit O

5 else

6 emit O

7 end

8 end module

Listing 1.1. The Esterel program P12

which is not constructive in the sense of
Esterel [Ber02]

1 module P12

2 output bool O;

3 {

4 O = false;

5 present O then

6 O = true

7 else

8 O = true

9 end

10 }

Listing 1.2. The P12 program in SCL

1.2 Sequential Constructiveness

The Sequentially Constructive (SC) MoC developed by von Hanxlenden et al. [HMA+14]
conservatively extends the synchronous MoC. It allows multiple sequential read and write
accesses to variables during the same tick, resulting in multiple values which can be read
from the same variable. Nevertheless, the SC MoC provides deterministic concurrency.
Regarding the conservative extension, programs that are considered constructive in the
synchronous MoC are also considered SC. Thus, introducing a sequential concept for variable
values allows to accept the program P12 from Listing 1.1. An SCL version of the program is
presented in Listing 1.2. Naturally, the semantics of the program changes under the SC MoC.
Since signals are implicitly reset to absent in every tick, the variable O is initialized to false,
representing this behavior. When reading O, the current value is false and the else branch is
taken. After writing O to true all sequentially following statements will read this value from O.
Hence, the SC MoC does not require a globally consistent value for variables.
As mentioned before, unrestricted concurrent execution of program code can be nonde-
terministic. To assure the determinism of accepted programs, the SC MoC introduces the
initialize-update-read (iur) protocol for scheduling concurrent variable access. The SC MoC

considers a free scheduling and states a schedule as SC-admissible run if all statements comply
with their sequential ordering and the iur protocol. If at least one SC-admissible run exists
and all SC-admissible runs generate the same deterministic trace of finite macro ticks, the
program is accepted. Listing 1.3 shows the program P10 written in SCL, a minimal imperative
language created in the process of defining the semantics of SC.
The program first initializes y and then forks into two threads. One initializing the variable x

to 1 and initializing y with the value of x and the other initializing the variable x to 0 if y is 0.
Consequently, statement S2 has to read x before writing to y and S4 may write x if the read
value of y in S3 is 0. Figure 1.1 illustrates the SCG representation of the P10 program including
iur dependencies between the nodes. The green arrows are read-before-write dependencies
and the dependency in red points out a possible write-write conflict.

2

1.3. Problem Statement

1 module P10

2 int x, y;

3 {

4 y = 0; //S1

5 fork

6 x = 1; //S2

7 y = x //S3

8 par

9 if y == 0 then //S4

10 x = 0 //S5

11 end

12 join

13 }

Listing 1.3. The P10 program in SCL1

entry

y = 0

fork

join

exit

entry

x = 1

y = x

exit

entry

y == 0

x = 0

exit

true

Figure 1.1. SCG representation of pro-
gram P10 with dependencies

The program P10 is considered SC because only one SC-admissible run exists, generated by
the following schedule of statements:

S1Ñ S2Ñ S3Ñ S4

Any other trace is considered invalid because it violates the initialize-before-read rule of the
iur protocol.

1.3 Problem Statement

Comparing the two concepts of sequential constructiveness and the constructive semantics of
Esterel, the SC MoC does not follow the same idea of no speculation and propagating facts
when accepting programs. All execution traces of a program may result in SC-admissible runs,
regardless of whether they can be constructed by propagating facts about control flow and
variable values or not. The SC-admissible run of P10 illustrates this concept. Statement S3 is
scheduled before S4 because it reads y and S5 is explicitly ordered sequentially after S4. If in

1https://www.rtsys.informatik.uni-kiel.de/en/synchron-2015/Reinhard-von-Hanxleden.pdf

3

https://www.rtsys.informatik.uni-kiel.de/en/synchron-2015/Reinhard-von-Hanxleden.pdf

1. Introduction

S4 y is read without executing statement S5 beforehand which is not possible, then S5 will not
be executed because y is equals zero. The SC-admissibility of the schedule is based on the fact
that S5 is not executed in this schedule which justifies the ordering. However, this fact cannot
be constructively determined when scheduling S3 because statement S5 could influence the
value of x. Furthermore, programs which do not comply with the constructive semantics of
Esterel are not guaranteed to form delay-insensitive circuits.
Thus, establishing the non-speculative concept of Berry’s constructive semantics requires a
restriction of Sequential Constructiveness. This thesis presents a practical approach to detect
the Strictly Sequentially Constructive (SSC) programs which are considered constructive in
the sense of Esterel. The approach is based on a translation of SC programs into semantically
equivalent Esterel programs using an SC-specific Static Single Assignment (SSA) form to
transform scheduling constraints and variable accesses. Checking the constructiveness of the
resulting program allows to conclude the constructiveness of the source program.

1.4 Outline

Subsequently to this chapter, Chapter 2 presents the theoretical foundations of the constructive
semantics of Esterel and the SC MoC in more detail. Furthermore, Section 2.3 introduces
the technologies used in the implementation, especially the KIELER project which provides
the implementation for the SC MoC. Chapter 3 presents the related work. First, Section 3.1
describes related approaches to translate synchronous languages into Esterel or the other
way round. Secondly, Section 3.2 presents related work which use SSA in the context of
synchronous or explicitly parallel programming languages. The concept of Strict Sequential
Constructiveness is presented in Chapter 4. At first, Section 4.1 illustrates the concept of
restricting Sequential Constructiveness and the approach of translating SC programs into
Esterel to check their constructiveness. Afterwards, Section 4.2 presents the SSA form which
transforms the more complex sequential and concurrent aspects of the SC MoC such that
the semantics and language definition of Esterel can handle it. The final translation from
SC programs in SSA form into Esterel is described in Section 4.3. Chapter 5 presents the
implementation of the previously described concept and its integration into the KIELER project.
The concept of Strict Sequential Constructiveness is evaluated in Chapter 6 by investigating
Esterel constructiveness of characteristic SC programs. In the end, Chapter 7 summarizes the
ideas and results of this thesis and presents an outlook on potential future work.

4

Chapter 2

Foundations

The synchrony hypothesis emerged form the challenge of designing correct and efficient
programs for embedded reactive systems [PST05]. In principle, embedded reactive systems
are constantly interacting with their environment. They read inputs, compute their reaction
and convey outputs. The synchronous hypothesis presents a discretization of the physical
time based on this behavior. The computation is separated into single execution instants,
called ticks. Figure 2.1 illustrates this discretized lifecycle of an embedded reactive system.
Furthermore, this concept of instants requires the conceptual abstraction that such a reaction
is instantaneous, thus takes zero-time to compute. Consequently, outputs are generated at the
same time the inputs are read. Such a system is considered in perfect synchrony.
When signals are used to propagate information, the concept of perfect synchrony requires
that the signal state must be consistent for all read operations during an instant, especially
for concurrent components. Hence, it is a crucial task in synchronous program validation to
decide whether a signal is present or absent.
Nevertheless, the concept of zero-time computation is only a theoretical abstraction for the
MoC. In a tick, the system performs a macro step of the designed logic. The logic itself performs
a finite sequence of micro steps to compute the result of the reaction, for example the sequential
execution of statements in an active code segment. Figure 2.2 illustrates the abstraction of
micro steps and macro steps. The sequence of transitions may be as complex as the logic
requires, but must always be finite to coincide with the concept of zero duration.

An Instant / Tick

Read Input
Compute
Reaction

Write Output

Reactive System

Environment

Input Event Output Event

Figure 2.1. Embedded Reactive System, based on [MHH13]

5

2. Foundations

Figure 2.2. Synchrony Hypothesis (G. Luettgen, 2001)

From a practical point of view, it is sufficient that the computation is fast enough to prevent
overlapping of execution instants. The ticks are driven by a global clock according to timing
requirements of the physical environment. Consequently, this requires the use of Worst-Case
Execution Time (WCET) analyses to assure the correct timing behavior.
The synchronous MoC is especially suited for safety-critical systems since the discretization
of time allows reasoning about ticks to assure the correct and deterministic behavior of a
system.

2.1 Esterel

Esterel implements the synchronous MoC in an imperative programming language [BC84;
BS91; BG92; Ber02]. It is tailored for designing controllers for reactive systems driven by
input events. The controller programming benefits from the synchronous hypothesis by
reconciling concurrency and determinism. Furthermore, Esterel facilitates hardware software
co-design [MG97]. Esterel allows to compile programs into executables or circuits, both
providing the exact same behavior.
The Esterel language provides a wide set of programming constructs [Ber00], but most can be
seen as syntactic sugar since they can be derived from other statements. Hence, Esterel can be
reduced to a kernel language which provides the full semantical capability while requiring a
minimal set of statements for a semantical definition or a compiler implementation. Table 2.1
lists the statements available in the kernel language.
Esterel uses signals as primary communication mechanism. In addition to normal signals
denoted as pure signals, Esterel also provides valued signals. Valued signals have a state just
like pure signals, which is reset every tick. Additionally, they carry a value which is persisted
across ticks. Valued signals support multiple emissions with different values in the same tick,
if a combine function is assigned to handle the deterministic merge of all emitted values.
Moreover, Esterel provides variables. Variables can be assigned in the common manner,

6

2.1. Esterel

Statement Description

nothing no-op statement
emit S signal broadcasting
present S then p else q signal test
pause unit delay
suspend p when S suspension
p; q sequential composition
loop p end loop
p || q parallel composition
trap T in p end exception catch clause
exit T exception trigger
signal S in p end local signal declaration

Table 2.1. Esterel kernel language [Ber02]

Esterel SCL C

Pure Signals Valued Signals Variables

Syntax emit x emit x(v) x := y x = y x = y
present x if (?x) if (x) if (x) if (x)

Type present/absent arbitrary arbitrary arbitrary arbitrary
Initialized each tick yes (absent) no no no no
Persistence across ticks no yes yes yes yes
Multiple values per tick no no yes yes yes
Sequential scheduling first emit emits none none none
constraints Ñ reads Ñ reads
Concurrent scheduling first emit emits read only inits none
constraints Ñ reads Ñ reads Ñ updates

Ñ reads
Determinacy guaranteed yes yes yes yes no

Table 2.2. Comparison of data handling, based on [RSM+15]

including sequential overriding of values in the same tick. However, to provide deterministic
concurrency, variables are considered local to the writing thread. That means, either all
concurrent threads have read-only access to the variable, or only one thread can read and
write the variable and all other must neither read nor write. Table 2.2 presents the different
forms of data handling in Esterel and compares their behavior and properties with other
languages. The table lists the reset behavior and constraints of the different methods of
data handling. Especially the sequential and concurrent scheduling constrains affect the
applicability of the different types. Variables in C are the least restricted form, but do not
guarantee determinacy. Esterel variables allow similar data handling, independent from the

7

2. Foundations

Figure 2.3. P12 Circuit [Ber02]

globally consistent value required for signals. However, to achieve determinacy the concurrent
usage allows only read only access. A compromise is presented by SC variable handling,
providing multiple values per tick with a deterministic concurrent scheduling regime.
In Esterel, signals are the primary form of data handling. The main challenge in defining a
sound semantics for Esterel is coherence, the reasoning about presence or absence of a signal
in a tick.
A first intuitive attempt to define the semantics is logical correctness. A programs is considered
logically correct if for all input events, there exists only one global status for all signals that
satisfies the logical coherence law:

A signal S is present in an instant if and only if an emit S statement is executed in
this instant. [Ber02]

Performing an exhaustive case analysis can be used to analyze an Esterel program for
its logical correctness. The program P12 from Listing 1.1 on page 2 is considered logical
correct, since only OÐ present satisfies the logical coherence law. However, this semantics
is contradictory to the common programming intuition and sequential controlflow because
the value of O is accessible before it is written. Another important aspect is that the correct
behavior of the program cannot be guaranteed under all circumstances. The program P12

represents the following logic:
O = O_ O

Figure 2.3 illustrates the corresponding logic circuit of P12. This circuit is not guaranteed to
stabilize to the expected output value w.r.t. the wire initialization. For example the component
delays indicated by the numbers in the figure cause the wire representing O to oscillate.
These two problems inspired a more constructive approach which follows the sequential
intuition and produces sound circuits. The constructive semantics of Esterel is defined for
pure signals based on the kernel language [Ber02]. There are three equivalent definitions for
the constructiveness semantics.

Constructive Behavioral Semantics: The structural operational semantics [Plo81] of Esterel
provides formal rules for analyzing the behavior of an Esterel program. These rules allow to
constructively reason about whether a statement must or cannot be executed based on a given
environment. The constructive behavioral semantics extends the signal states by an unknown
value and defines a constructive coherence law:

8

2.2. Sequential Constructiveness

A signal is declared present if and only if it must be emitted.
A signal is declared absent if and only if it cannot be emitted. [Ber02]

The analysis starts with all non-input signals unknown and tries to constructively derive a
known value. The program P12 from Listing 1.1 on page 2 is rejected because O must not be
emitted since the must analysis is not allowed to speculatively execute branches and O can be
emitted in both branches.

Constructive Operational Semantics: The constructive operational semantics also uses the
concept of tree valued signals. However, instead of reasoning about whether a signal must
and cannot be emitted, the programs are simply simulated. The simulation executes the micro
steps of the program and requires the signals to monotonically reach an unique known state.

Constructive Circuit Semantics: Esterel defines rules to translate programs into boolean
digital circuits. The constructiveness of such circuits [SBT96] is tested with a monotonic ternary
analysis [Mal94] for all program states in the stable domain. A complicated problem arising
when translating programs into circuits is schizophrenia. There are constructive programs
that produce non-constructive cyclic circuits because some loops allow to execute the same
statement twice in the same tick, which is then considered schizophrenic.

2.2 Sequential Constructiveness

The data handling and constructiveness of Esterel provides deterministic concurrency but
come along with restrictions on the accepted programs. Especially the use of signals and
the restrictions on shared variables stand contrary to common programming paradigms, for
example known from C. Table 2.2 illustrates this fact by comparing the data handling of
Esterel with C.
The SC MoC overcomes this restriction and allows sequential and concurrent variable access
during tricks [HMA+14]. Additionally, the SC MoC conservatively extends the classical syn-
chronous MoC and preserves deterministic concurrency. This means that variables can be
read and written in any order and multiple times as long as the program can be scheduled
such that it provides a deterministic behavior. The SC MoC renounces the concept of signals
and only uses variables. Variables provide a more general form of data handling which
allows in combination with the SC scheduling regime to represent signals by variables. This
representation include explicit modeling of the emission and reset behavior. Table 2.2 also
illustrates SC variables and their properties. SCL represents a minimal definition for an SC

programming language and provides the same structural components as the SCG. The SCG is
a controlflow graph (CFG) extension for the SC MoC and provides the basic structure for the
semantics definition and compilation. Table 2.3 presents the structural components of SCL

and SCG.
The SC MoC provides deterministic concurrent variable access by introducing a restricted
scheduling regime. In general, the SC MoC uses a concept of free scheduling, considering the

9

2. Foundations

Thread Parallel Sequence Conditional Assignment Delay

SCL t fork t1 par t2 join s1; s2 if (c) s1 else s2 x = e pause

goto l

SCG

Table 2.3. Overview of scl and scg elements, based on [RSM+15]

sequential ordering of the statements and allowing arbitrary interleaving of threads. However,
for the concurrent access on variables the SC MoC dictates the use of the iur protocol. The
iur protocol adds dependencies between concurrent nodes in the SCG, accessing the same
variable. These dependencies state that all initializations must be scheduled before updates
and all writes before reads. Initializations are absolute writes in the form x = e, were e
is an expression independent from x. Since the iur protocol only dictates the order types
of writes, two concurrent initializations can still be the source of non-determinism and
consequently are considered a write-write conflict. Updates are relative writes in the form
x = f (x, e), were e is a sideeffect-free expression independent from x and f is a combine
function. The definition of a combine function requires that the result of multiple updates with
the same combine function must be independent from the order of application. Consequently,
concurrent updates with different combine functions, for example addition and multiplication,
are also considered a write-write conflict. However, write-write conflicts are only a potential
source for non-determinism. Two concurrent nodes are considered conflicting if they are
active in the same tick and the order of execution influences the result of the program. In the
absence of such a conflict the nodes are considered confluent. Thus, two initializations with a
write-write dependency can be non-conflicting, if they are never executed in the same tick or
both expressions are evaluated to the same value.
Listing 2.1 illustrates the iur protocol by presenting an SCL program IUR which performs
an initialization, two updates and a read in three concurrent threads. Figure 2.4 shows the
corresponding SCG including iur dependencies between the concurrent nodes.
A non-conflicting schedule for a single macro tick which complies with the iur protocol and
the sequential ordering is considered SC-admissible. If all macro ticks in a run for an SCG are
SC-admissible, it is denoted an SC-admissible run. A program is considered SC if at least one
SC-admissible run exists and all SC-admissible runs generate the same deterministic trace of
finite macro ticks.
To facilitate practical analysis, the class of SC programs can be restricted to Acyclic Sequentially
Constructive (ASC) programs. This approach abstracts from the dynamic nature of conflicts

10

2.2. Sequential Constructiveness

1 module IUR

2 int x, y;

3 {

4 fork

5 x = 0

6 par

7 x = x + 1;

8 x = x + 1

9 par

10 y = x

11 join

12 }

Listing 2.1. The IUR program in SCL

entry

fork

join

exit

entry

x = 0

exit

entry

x = x + 1

x = x + 1

exit

entry

y = x

exit

Figure 2.4. SCG representation of the IUR pro-
gram with dependencies

and statically analyzes the controlflow and iur relations between nodes in the SCG. If the
sequential order and the iur dependencies form an acyclic SC-schedule the SCG is considered
ASC.
An SCG which is ASC can be statically scheduled, resulting in a Sequentialized SCG using
guarded blocks. This dataflow approach uses the idea of creating a netlist for the program,
which facilitates hardware synthesis [HDM+14]. Another more dynamic compilation approach
is the priority-based scheduling. A priority is assigned to each node in the SCG representing
the scheduling order and a runtime environment pasted into the translated program handling
the dispatching between threads.
Alongside SCL and SCG, von Hanxleden et al. developed Sequentially Constructive Statecharts
(SCCharts), a graphical SC language with statechart notation, similar to SyncCharts [HDM+14].
The graphical syntax is incrementally defined to provide extended features based on a core set
of syntax elements, using the same concept as the Esterel kernel statements. All SCCharts can
be transformed into core SCCharts and further into SCGs. Figure 2.5 shows the ABO SCChart,
which only uses core language features. In the first tick O1 and O2 are initialized with false.
Afterwards, the two concurrent regions wait for the input variable to become true. HandleA
reacts immediately on the input event, sets O1 to true and communicates to the other region
that B is true. The reaction of HandleB is always delayed by one tick, thus the reaction to B

can occur at the earliest in the second tick. In the tick were both regions have reached their
final state, the macro state terminates and sets both O1 and O2 to true. Listing 2.2 presents the
equivalent SCL code for ABO.

11

2. Foundations

1 module ABO

2 input output bool A, B;

3 output bool O1, O2;

4 {

5 O1 = false;

6 O2 = false;

7 fork

8 HandleA:

9 if !A then

10 pause;

11 goto HandleA;

12 end;

13 B = true;

14 O1 = true;

15 par

16 HandleB:

17 pause;

18 if !B then

19 goto HandleB;

20 end;

21 O1 = true;

22 join;

23 O1 = false;

24 O2 = true;

25 }

Listing 2.2. The ABO program
in SCL [HDM+14]

ABO
input bool A
input bool B
output bool O1
output bool O2

Init

WaitAB

WaitA DoneAA / B = true; O1 = true
[-] HandleA

WaitB DoneBB / O1 = true
[-] HandleB

done

 / O1 = false; O2 = false

 / O1 = false; O2 = true

[-]

Figure 2.5. The ABO SCChart [HDM+14]

With the SC MoC conservatively extending the synchronous MoC, it allows programs considered
constructive in the semantics of Esterel to also be considered SC and to retain the same
semantics. Figure 2.6 illustrates the relations of program classes produced by the different
synchronous semantics. The class of constructive Esterel programs forms a subset of the SC

program class. Furthermore, the class of ASC programs restricts the class of SC program and
covers the acyclic constructive Esterel programs. The class of SC program only intersects with
the class of logically correct programs, since variables with multiple values per tick cannot
have one global logical coherent status. The same holds for the semantics defined by Pnueli
and Shalev [PS91], which checks the globally consistent signal state by speculation of the
absence of signals.

12

2.3. Used Technologies

Sequentially
Constructive (S)

Sequentially
Constructive (S)

Logically
Correct (L)
Logically

Correct (L)

Pnueli-Shalev
(P)

Pnueli-Shalev
(P)

Berry
Constructive (B)

Berry
Constructive (B)

Acyclic SC (A)Acyclic SC (A)

Speculate on
absence

Speculate on
absence or presence

Sequences
of values

Static cycles
Dynamic scheduling

Out-of-order
scheduling

Ineffective
writes

PP

PS

PAS

PAPS

PALPS

PALS

PABLPS

PBLPS

PPS PLS

PL

PLP

PLPS

P0

or concurrent
writes

Cycle of
concurrent
dependencies,

All
Programs

All
Programs

Figure 2.6. Relationships of synchronous program classes [HMA+13]

2.3 Used Technologies

The reference implementation of the SC MoC, all related languages, and compilation ap-
proaches are part of the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)
project. The project uses the Eclipse platform and various Eclipse-based technologies to
enhance graphical model-based design of complex systems.
The implementation presented in Chapter 5 is also part of the KIELER project. This section
gives a brief overview of technologies used in the context of this thesis.

2.3.1 Eclipse

Eclipse1 is an open source Integrated Development Environment (IDE) managed by the Eclipse
Foundation. It was initially created for developing Java applications, but evolved to a highly
adaptable and expendable framework suitable for many domains of software development
and different programming languages. The architecture of Eclipse is based on plug-ins,
implementing the Open Services Gateway initiative (OSGi) specification and providing a very
flexible modular design. Plug-ins are designed to carry a modular fragment of functionality.
They can provide and use extension points which allow other plug-ins to contribute their
functionality, for example to integrate new menu entries into the user interface.

1http://www.eclipse.org

13

http://www.eclipse.org

2. Foundations

The Eclipse Rich Client Platform (RCP) provides the basic platform and infrastructure for the
IDE and allows to compose further plug-ins from the Eclipse Project and self-developed ones
into a domain-specific development environment. The KIELER project is such an RCP tailored
to allow graphical model-based system design.

EMF

The Eclipse Modeling Framework (EMF)2 is an Eclipse project contributing fundamental
functionality for model-driven development. EMF provides tools for meta-modeling, allowing
the user to design and specify the elements and structure of a model. Moreover, EMF has the
ability to generate Java code from meta-models. The generated interfaces and classes imple-
ment the different model elements and provide methods to correctly structure a model based
on the model element relation in the meta-model. In addition to that, the framework creates
factories and utilities for model instantiation, manipulation and persistence. Furthermore,
EMF allows to generate editors for end-users to create and edit model instances.
The structured data models used in the implementation of languages such as SCL, SCG,
SCCharts, and Esterel in the KIELER project, are based and generated from EMF meta-models.

Xtext

Xtext3 is a framework for developing programming languages and Domain Specific Languages
(DSLs). It provides a grammar definition language similar to the extended Backus-Naur form to
design new DSLs. Based on the DSL grammar, Xtext is able to generate a parser, serializer, and
a full-featured editor including code-completion, auto-formatting, and syntax-highlighting.
Furthermore, Xtext uses model-based data structures based on EMF for the implementation of
the DSLs.
The KIELER project uses Xtext for implementing languages such as SCL, Esterel, or a textual
representations for SCCharts.

2.3.2 KIELER

The KIELER4 project is an open source research project of the Real-Time and Embedded
Systems Group at Kiel University. KIELER itself is an Eclipse RCP providing the implemented
research results in the area of graphical model-based design of complex systems. The KIELER

project covers different aspects of this wide research area. Figure 2.7 presents an overview of
the sub-projects in KIELER.
One aspect of graphical model-based system design is layout. A graphical model benefits from
its intuitive reception in contrast to plain text. However, this requires that the model is well
structured and readable, thus having a useful layout. Since manual layout of graphical models

2http://www.eclipse.org/modeling/emf
3https://eclipse.org/Xtext
4http://rtsys.informatik.uni-kiel.de/kieler

14

http://www.eclipse.org/modeling/emf
https://eclipse.org/Xtext
http://rtsys.informatik.uni-kiel.de/kieler

2.3. Used Technologies

Kieler Semantics
SCCharts, SCL, KICo,

KIEM, KLOTS

Demonstrators
KGraph Text, Ptolemy
Browser, KLighDning

OpenKieler
DebuKViz, KlassViz,
EcoreViz, KLayJS-D3

Kieler Pragmatics
KLighD, KIVi, KSBase

Eclipse Layout Kernel
Layout infrastructure and algorithms

Figure 2.7. KIELER project overview6

takes notable amounts of time and manpower, the research of the KIELER project in the area of
modeling pragmatics [Fuh11] focuses on automatic layout. The Eclipse Layout Kernel (ELK)5

provides the infrastructure and algorithms to automatically layout graphs including hierarchy
and ports. ELK has recently become an official Eclipse project to feed back the results in the
area of automatic layout back into the Eclipse community.

Another part of KIELER pragmatics is the KIELER Lightweight Diagrams (KLighD) frame-
work [SSH13]. Based on the concept of transient views, KLighD features the synthesis of
diagrams from models using automatic layout. Furthermore, KLighD provides many diagram
exploration techniques such as collapsing or expanding areas or filtering diagram elements
based on the context.

The technology of lightweight diagrams and automatic layout are applied to different demon-
strators, for example the OpenKIELER project which uses automatically layouted diagrams for
visualizing class diagrams or debugging data relation in Eclipse.

The KIELER semantics project is focused on the semantics of systems, especially synchronous
semantics. KIELER provides implementations for different synchronous languages, such as
Esterel and most importantly the SC languages. Furthermore, KIELER offers a flexible compiler,
providing multiple compile chains. SCCharts are a convenient example for how the different
areas in the KIELER project come together. SCCharts are modeled side-by-side with a textual
language and a transient view of the model, automatically generated and updated by KLighD

and layouted by ELK. A resulting SCCharts diagram is presented in Figure 2.5 on page 12.

5http://www.eclipse.org/elk
6http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

15

http://www.eclipse.org/elk
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

2. Foundations

SCEst SCL

SCCharts

Esterel

SCG Seq. SCG

Seq. SSA-SCG Circuit

C

JavaSyncCharts

Figure 2.8. KIELER compilation overview

KIELER Compiler

The KIELER Compiler (KiCo) [MSH14] is a compilation framework for model-based programs,
implementing the Single-Pass Language-Driven Incremental Compilation (SLIC) approach.
KiCo is designed to flexibly compose transformations which handle a single feature or lan-
guage translation into a one-pass compilation chain to compile an input model. Additionally,
KiCo dynamically decides the necessity and ordering of transformations for a specific compila-
tion target based on the input requirements of each transformation. If a transformation cannot
handle a language feature contained in the input model, another transformation converting
this feature into a compatible from will be executed first.
Based on KiCo the KIELER semantics project provides different compilation approaches and
language translations. Figure 2.8 illustrates an abstract overview about the different source
and target languages the current compiler is capable of. The nodes represent the models
or languages, either in general or in special form, such as SSA or Sequentialized (Seq.). The
edges indicate which translations are available, but the actual transformations for compilation
between the models are not shown in the Figure. Note that the Seq. SCG represents the result
of the dataflow compilation approach, mentioned in Section 2.2.

16

Chapter 3

Related Work

The synchronous MoC inspired different synchronous languages following different program-
ming paradigms. Imperative languages such as Esterel or Quartz [Sch10], dataflow languages,
for example Lustre [HCR+91] and SIGNAL [GGB+91], and also graphical modeling languages
such as Synchronous Charts (SyncCharts) [And96].
This thesis mainly focuses on the constructiveness of Esterel and the SC MoC, but in the
context of synchronous languages there are further approaches to define constructiveness.
Pnueli and Shalev define a statecharts semantics with a globally consistent execution and
signal state [PS91]. The concept allows to speculate on the absence of a signal using enabling
functions. Another approach by Boussinot [Bou98] and as well Berry [Ber02] presents a
concept of logical coherence which allows speculation on both absence and presence of signals.
Some synchronous languages share similar semantic constructs or structures, which allows to
translate the languages into one another. Section 3.1 presents approaches which are related
to this thesis because they concern the translation of a synchronous languages from or into
Esterel.
Furthermore, some work referenced in Section 3.1 also state the SSA form as potentially
suitable for transforming the concept of multivalued variables into signals with a globally
consistent state per tick. The basic SSA form was developed only for sequential programs
without parallelism. Hence, Section 3.2 presents related work which uses or extends the
concept of SSA to programming languages with explicit parallelism or a synchronous MoC.

3.1 Translations Regarding Esterel

Translating other languages into Esterel requires rules to transform the syntax elements.
However, if the resulting Esterel program should be semantically equivalent, also the semantics
of the source program must be adapted to Esterel.

3.1.1 SyncCharts

Charles André developed the SyncCharts language to create a graphical modeling language
especially tailored to the synchronous paradigm [And96]. SyncCharts is inspired by Harel’s
StateCharts formalism [Har87] and provides hierarchical state machines with parallelism and
preemption mechanisms. Just like Esterel, SyncCharts facilitates the representation of reactive
systems by a well-defined process algebra with synchronous signals. The most important
aspect is that the formal semantics are fully compatible with the semantics of Esterel. André

17

3. Related Work

1 module ABRO:

2 input A, B, R;

3 output O;

4 loop

5 [await A || await B];

6 emit O

7 each R

8 end module

Listing 3.1. The ABRO program in
Esterel [Ber99]

ABRO

ABO

WaitAandB

wA wB

A B

dA dB

/ O

done

R

Figure 3.1. The ABRO program in
SyncCharts [And03]

presents rules which allow to translate every SyncCharts into a semantically equivalent Esterel
program. Listing 3.1 shows the ABRO program, the "Hello World!" of synchronous languages,
written in Esterel and Figure 3.1 illustrates the equivalent SyncChart. ABRO emits the output O
as soon as the two inputs A and B have occurred and resets this behavior each time the input
R occurs.
The other direction, translating Esterel to SyncCharts, was done by Kühl [Küh06] and imple-
mented by Rüegg [Rüe11], in the context of the KIELER project.
Since SyncCharts are designed to share the same semantics as Esterel, the translation pre-
sented by André has more structural than semantical challenges. In contrast to that, this thesis
focuses on the adaption of SC semantics into Esterel.

3.1.2 SCCharts

A transformation from SCCharts to Esterel is developed by Nasin [Nas15]. Since the graphical
syntax of SCCharts is inspired by SyncCharts, they share similar syntactic and semantic
constructs. Due to the equivalence to Esterel, SCCharts also shared these with Esterel. Nasin
presents translation rules for the different syntactic elements and proves of their behavioral
correctness based on the approach of André.
Due to the incremental definition of SCCharts based on a minimal set of core elements, any
SCChart can be translated into SCL. Consequently, a translation from SCL into Esterel indirectly
covers the translation of SCCharts. However, this approach is contrary to utilizing the more
advanced language features Esterel and SCCharts share. The most important aspect, for this
thesis, is that Nasin did not translate the concepts of SC. He restricts his approach and focuses
on SCCharts that comply with the synchronous MoC of Esterel.

18

3.2. Static Single Assignment

3.1.3 SCL

Another form of translating Esterel is done by Rathlev presenting a transformation from
Esterel into SCL [Rat15]. With the successful translation of the Esterel into SCL, he shows that
SCL is suitable represent any Esterel program. Furthermore, with SCL built with less statements
than the Esterel kernel language, SCL is capable of achieving at least the same expressiveness
as Esterel. Additionally, the translation to SCL enables the use of the SC compiler toolchain
implemented in KIELER. In his section about future work, Rathlev presents first thoughts
about the translation from SCL into Esterel.

Based on the successful translation, Rathlev et al. introduce Sequentially Constructive Esterel
(SCEst), enhancing Esterel with features from the SC MoC [RSM+15]. The Esterel language is
extended by a minimally invasive set of statements, alongside semantics definitions for SC

signals. This way SCEst allows to write SC programs in Esterel, which can be compiled into
executable code by first translating them into SCL.

Rathlev et al. also face the discrepancy between signals and variables in Esterel, when
representing multiple different values within a single tick. They present different approaches
for handling this problem, in particular the concept of SSA.

3.2 Static Single Assignment

The SSA form was developed by Wegman, Zadeck, Alpern, and Rosen for code optimization
such as global value numbering, dead code elimination, and constant propagation with
conditional branches [AWZ88; RWZ88; WZ91]. Cytron et al. describe the efficient computation
of SSA form using dominance frontiers [CFR+91].

In the SSA form each variable is split up into versions, such that each version is is assigned a
value only once in the program code. When reading a variable which is split up into versions,
a φ-function resolves the correct value from the eligible versions.

Since SSA performs by definition only one assignment per variable version, it seems predes-
tined for translating variables into signals.

C/C++ to SIGNAL using SSA

Kalla et al. present an automated translation process for C/C++ model into SIGNAL to enable
formal verification methods [KTB+06]. SIGNAL is a multi-clocked synchronous dataflow
language based on equations over signals. The automated translation process first creates
the SSA intermediate representation of the C/C++ components using the GNU Compiler
Collection (GCC). Subsequently, the SSA CFG is transformed into SIGNAL using a pattern-based
translation scheme.

19

3. Related Work

(a) Sequentialized SCG (b) SSA SCG

Figure 3.2. Transformation of Sequentialized SCG into SSA form without φ-functions [Ryb16]

Besnard et al. extend this concept to parallel C/C++ programs, supporting a small subset of
the SystemC library [BGM+09]. They encode a non-preemptive scheduler using the clocks of
the signals to handle parallel code. As a limiting factor they present that modeling a more
complex scheduler, allowing preemption or real parallelism is hard task.

3.2.1 SSA in Hardware Synthesis

SSA has an important role in hardware synthesis because the wires of a circuit can only
represent one value at a time. A general consideration of the challenges in hardware synthesis
from C-like languages was done by Edwards [Edw05].
Furthermore, SSA is also used and implemented in the context of hardware synthesis for
SCCharts [RSM+16]. Both Johannsen [Joh13] and Rybicki [Ryb16] used SSA to prepare a
Sequentialized SCG for their circuit representation. Figure 3.2 shows the transformation
of a Sequentialized SCG into SSA SCG. Note that the φ-function is already resolved into
two assignments, one in each branch. In the circuit, such assignments are merged with a
multiplexor.
The basic algorithms and the SSA form are well suited for this use case because the SSA

transformation is performed on the Sequentialized SCG. Consequently the SCG does not
contain any concurrency or feedback.

3.2.2 SSA for Explicitly Parallel Programs

The basic SSA concept is defined for sequential programs, Srinivasan et al. extend this concept
to programs with explicit parallelism [SHW93]. They use the parallel sections semantics to
define code blocks which are executed concurrently. These sections can have wait synchro-

20

3.2. Static Single Assignment

F
T

a = 0
b = 0

δ

Cobegin

tδ
a

aδ

a

δ

δtδ

oδ

Exit

Control flow

Conflict

print x, y

f == 0

x = a + x

y = b + y f = 1

Coend

a = z + 1

b = z + 1

t

x = 1
y = 1
f = 0
z = 2

a = z + 1

b = z + 1

Thread exit

Thread entry

Entry

➭

➃

➺

(a) CCFG

ψ

T

N

y1=φ(y0,y2)
x1=φ(x0,x2)

t1=π(a1,a2)

t0=π(f0,f1)

t2=π(b1,b2)

(b1,b2)b3=
ψ(a1,a2)a3=

M

F

a0 = 0
b0 = 0

f1 = 1

x2 = t1+x1

t0 == 0

y2 = t2+y1

print x1,y1

Entry

b1 = z0+1

a2 = z0+1

b2 = z0+1

x0 = 1
a1 = z0+1

y0 = 1
f0 = 0
z0 = 2

aδ

oδ

Cobegin

Coend

aδ

aδ

tδ

tδ

tδ

oδ

Exit

(b) CCFG in CSSA form

Figure 3.3. Transformation of a CCFG into CSSA form [Lee99]

nization clauses, but the transfer of control in or out of a parallel section is not supported.
When translating into SSA form, multiple CFGs are created for each parallel section and for
the surrounding program. Afterwards, a parallel dominance frontier analysis is performed to
place the φ-functions. Additionally, a ψ-function is introduced to merge write accesses from
different parallel sections.
However, the restriction to copy-in/copy-out semantics prevents the result of a parallel
execution from depending on a particular interleaving of statements. A more general ap-
proach is presented by Lee et al. [LMP98; Lee99]. They introduce a Concurrent Static Single
Assignment (CSSA) form which handles a more general form of parallel constructs with
interleaving semantics and post-wait synchronization. An additional π-function is defined to
handle the read access of concurrently written variables inside the threads. The definition
of the π-function is nondeterministic due to the interleaving semantics of the concurrent
threads. The algorithm for the CSSA also extends the concept of dominance frontiers defined
on a special concurrent controlflow graph (CCFG). Figure 3.3 shows the CCFG of an example
program in its normal and CSSA form. The CSSA form introduces φ-functions in block M

to merge the values of the loop iterations. The results of the shared variables are merged
by ψ-functions in block N at the end of concurrent sections. Additionally, π-functions are
introduced before each read access on a variable which is concurrently written. The dotted
lines marked with δ indicate concurrent write-read and write-write dependencies.

21

3. Related Work

Lee et al. also present an adapted algorithm for sparse conditional constant propagation
based on the CSSA.
In comparison to this thesis, Lee et al. present an SSA definition for relatively unrestricted
scheduling. However, regarding a synchronous context, deterministic scheduling is more
important than optimization based on SSA. Furthermore, when SSA is used to introduce
specifically controlled sequentiality into another language, such as Esterel, the definitions for
merge functions, such as φ-, π- or ψ-functions need to be executable in this language.

22

Chapter 4

Strict Sequential Constructiveness

Section 1.3 presents the problem of SC programs scheduled and accepted such that they
are deterministic but considered speculative in the sense of constructiveness in Esterel. This
chapter presents a solution for this problem by restricting SC.
Section 4.1 presents the problem of unrestricted SC programs. Additionally, the sections
describes the restriction of SC programs and the approach to detect them. The approach
presented in this thesis includes the translation of SC programs into Esterel to check their
constructiveness based on the constructive semantics of pure Esterel. The transformation
of shared variables and the SC scheduling regime into an Esterel-compatible form requires
an SC-specific SSA form, presented in Section 4.2. The section first analyzes and adapts the
regular SSA form to the SC domain. However, this approach cannot handle all kinds of SC

programs, thus secondly, an SC-specific SSA form is presented. The definition of this form is
separated into several subsections which handle the different aspects of SC programs and
gradually extend the capabilities of this SSA form. Subsequently, Section 4.3 defines the actual
translation of SC programs in SSA form into Esterel. This includes a structural transformation
and the encoding of variables into signals.

4.1 Restricting Sequential Constructiveness

In Chapter 1 the program P10 is presented in Listing 1.3 on page 3. It is a characteristic
example for a non-constructive program in the sense of Esterel accepted by the SC MoC. The
constructiveness in the sense of Esterel would guarantee that the program forms a constructive
circuit. However, this property does not hold in this case. Constructive boolean logic circuits
provide two properties for all input sequences in the care set [SBT96].

• They yield a unique boolean solution for each output.

• They guarantee electrical stabilization of all outputs, independent from any wire or gate
delays.

In other words, constructiveness ensures a predictable deterministic behavior on circuit level,
independent from the actual implementation in hardware. This is also a desired property for
the SC MoC.
In the example of P10 the variable x can be 0 or 1. More precisely, it must be both, if both
concurrent assignments are executed because no explicit override relation exists. The 1 is
always assigned, but the assignment to 0 depends on the value of y, and y has either value of

23

4. Strict Sequential Constructiveness

x or is 0. In a circuit the wire of y can have the value 0 depending on wire initializations and
gate delays. If y is 0, the wire representing x is supposed to have two different values at the
same time, which is not possible in a circuit. This is a sufficient reason to reject the program
P10.
The target of this thesis is to restrict the class of SC programs to those which can be considered
constructive in the sense of Esterel. These programs are denoted as Strictly Sequentially
Constructive (SSC).

4.1.1 Detecting Strict Sequential Constructiveness

The restriction to SSC requires the detection of constructive SC programs in the sense of
constructive circuits. The constructive semantics of pure Esterel provides one definition
by transforming programs into circuits and checking their constructiveness using Malik’s
procedure [SBT96; Ber02].
Therefore, one solution to detect SSC programs is to provide a similar translation and check the
constructiveness of the resulting circuit, using ternary values function evaluation. Another is
to extend the definition of the SC MoC by additional restrictions to comply with the constructive
concept.
However, this thesis presents a more practical approach. Instead of changing the MoC or
simulating circuits directly generated from SC programs, this approach uses the capabilities
already provided by Esterel. Translating SC programs into Esterel to check their constructive-
ness according to the constructive semantics of Esterel provides a well-defined foundation
for SSC programs. The Esterel compiler1 allows to perform a full-featured constructiveness
analysis for pure Esterel programs based on a circuit analysis. Hence, the Strict Sequential
Constructiveness provides a physical foundation for the SC semantics in the constructive
circuit semantics of Esterel.
Since the SC MoC extends the synchronous MoC including Esterel, it provides features not
present in Esterel. Especially deterministic shared variables with multiple values per tick raise
challenges when translating them into a more restricted language, such as Esterel. Hence, the
translation needs to transform variables with possibly multiple values per tick into signals
with one globally consistent value. To achieve this property the concept of SSA is used. It
ensures that variables which are assigned with multiple values are split up into copies of that
variable to perform only a single assignments per variable. This way the concept of variables
can comply with signals. Additionally, the resulting Esterel programs must be semantically
equivalent to their source programs in order to imply the constructiveness of the SC source
program based on the constructiveness of the Esterel program. Consequently, the translation
must consider and translate the SC semantics into Esterel, especially the iur protocol.
To summarize, this approach detects SSC programs by transforming SC programs into seman-
tically equivalent Esterel programs and test their constructiveness.

1http://www-sop.inria.fr/esterel-org/filesv5_92/home.htm

24

http://www-sop.inria.fr/esterel-org/filesv5_92/home.htm

4.2. SSA Form for Sequentially Constructive Programs

4.2 SSA Form for Sequentially Constructive Programs

This section presents the SSA transformation for SC programs. To separate the definition of the
transformation into modular steps, SC programs are divided by four orthogonal structural
features.

• Concurrency

• Delay

• Cycles

• Updates

The class of concurrent programs separates programs with both sequentially and concurrently
composed statements from strictly sequential programs. The class of delayed programs
contains programs with at least one pause, whereas the absence of this feature classifies
instantaneous programs. The cycles feature separates cyclic programs form acyclic. Note that
is program is both cyclic and delayed, it does not imply that all cycles are delayed loops,
because a pause must not necessarily occur inside the cycle. The class of programs with
updates, indicates whether the programs contains any relative writes considered updates or
not.

The following sections use these classifications to gradually define the SSA transformation. At
first, Section 4.2.1 presents the regular SSA form. Even if the transformation cannot handle
concurrent SC programs, the section illustrates the handling of delay, cycles and updates in
sequential programs. The features are used to incrementally extend the number of handled
program classes. Consequently, if the handling of cycles is described after delays, then the
considered input programs for handling this feature are both delayed and non-delayed
programs. The same strategy is used in the subsequent sections to present the SC-specific
SSA form. Section 4.2.2 presents the general concept of handling concurrent SC programs. In
Section 4.2.3 the rules for constructing merge expressions are defined. These rules handle
programs which can be concurrent but must be instantaneous, acyclic and do not contain
updates. Subsequently, the concept is extended to delayed (Section 4.2.4), cyclic (Section 4.2.5),
and programs using updates (Section 4.2.6). Disregarding some restrictions mentioned in
the corresponding sections, the concept handles all four SC program classes. Section 4.2.7
additionally presents a transformation ensuring the compliance of the SSA form with the
defined interface of the program.

All sections illustrate their concepts with example programs. Note that the source code is
mostly given in SCL, but sometimes a corresponding or processed SCG is presented for easier
perception of the relations between statements. However, both representations, SCL and SCG,
are fully equivalent, illustrated in Table 2.3 on page 10.

25

4. Strict Sequential Constructiveness

4.2.1 Regular SSA

The SSA form is developed to provide an intermediate representation for sequential programs
which exposes the direct links between the definitions and uses of variables. These def-
use chains facilitate many compiler optimizations, such as constant propagation or dead code
elimination. Since the SC MoC is designed in the sense of sequential programming paradigms
and based on an extended CFG formalism, the SCG, the SSA concept and algorithms are
applicable to the domain of SC programs. Section 3.2.1 presents that SSA is successfully used
with Sequentialized SCGs, which do not contain any concurrency, delay or cycles. Hence, it
needs to be evaluated how the regular form of SSA is applicable to general SCGs.
First of all, the SSA form ensures that each use of a variable, declared by the programmer, is
reached by exactly one assignment defining the value for that use. This property of single
reaching definition is achieved by two core aspects of SSA:

1. Separation of variables into versions

2. Value merge, using φ-functions

Each variable is split up into multiple versioned variables such that each version is defined
by exactly one assignment. This separates the different values assigned to a variable and
allows the distinction of the incoming definitions when using a variable. The next step is
to select the correct variable version for the use. In the face of branching controlflow, the
φ-function is introduced. This pseudo assignment function has the purpose of merging values
from different incoming controlflow paths. The φ-function has the form U Ð φ(V0, V1, . . . , Vn)

where U and Vi are versions of the same variable. U is the version to carry the merged value
and Vi are the incoming variable versions based on the controlflow predecessors of the point
where the specific φ-function is placed. The operands are in an arbitrary fixed order, where
the j-th operand corresponds to the j-th predecessor. If the controlflow reaches a φ-function
from its j-th predecessor, it assigns the value of j-th operand to U.
Another important aspect of SSA is the placement of φ-functions. In general it is sufficient
to place a φ-functions for every variable at every point where the controlflow joins, but this
easily produces many superfluous φ-functions. Cytron et al. [CFR+91] present an algorithm
for placing a minimal number of φ-functions based on dominance frontier analysis. According
to Tarjan [Tar74], a node n in a CFG dominates another node m, if n appears in every path from
the program’s entry node to m. For n ‰ m, n strictly dominates m. If n is the closest strict
dominator of m on any controlflow path to m, then n is denoted the immediate dominator of m.
A dominator tree contains the nodes of a CFG and edges based on their immediate dominator
relation. The dominance frontier DF(n) of a node n is the set of all nodes where n dominates
any predecessor, but does not strictly dominate the node itself. The procedure of Cytron et al.
is based on the fact that whenever node n assigns a variable, then any node in DF(n) requires
a φ-function for that variable.
When using SSA directly for the generated code and not only as an intermediate representation
for optimizations, the problem occurs that the φ-function itself is not directly executable.
The definition requires to detect the controlflow path used to reach φ-function to select the

26

4.2. SSA Form for Sequentially Constructive Programs

corresponding value. However, this is not possible for actual controlflow without explicitly
adding executed statements. Hence, one possible transformation into an executable form is
to create assignments to the variable, assigned by the φ-function, in each of the incoming
controlflow paths. This is the same procedure used for circuit translation, presented in
Section 3.2.1. Subsequent optimizations such as copy propagation can further reduce these
additional variables. Regarding the translation into Esterel code, the translation into multiple
assignments on the same variable version is acceptable, as long as only one of these is executed
in a tick. For example, this is the case for mutually exclusive conditional branches.
To illustrate the regular SSA transformation, Listing 4.1 presents the source code of the
AbsoluteValue program written in SCL. The program calculates for an input i its absolute
value and conveys the result in the output variable o. The sign of the input number is
determined in x and the input is multiplied such that the sign cancels out. Figure 4.2 shows
the corresponding SCG in 4.2a untransformed form, 4.2b SSA form and 4.2c SSA form with
transformed φ-functions. The φ-function is introduced to merge the values of the different
conditional branches. None of the statements in the branches dominate the reading statement
but all precede it. Thus, the reading statement is in their dominance frontier. The dominator
tree providing the underlying data structure for this analysis is depicted in Figure 4.1.

Concurrency

The major limitation of the regular SSA form is concurrency. As described in Section 3.2.2,
the SSA form and especially the φ-function is not capable of merging values from concurrent
threads or considering concurrent assignments based on thread interleaving.
Listing 4.2 presents the program ConcurrentWrites which concurrently assigns the variable
x to different values based on the inputs i and j. The corresponding SCG is shown in
Figure 4.3a, where the write-write dependency indicates a potential conflict between the
concurrent absolute writes. Figure 4.3b illustrates the SCG in regular SSA form. The critical and
especially incorrect part is the φ-function node after the join node. Even if the φ-function node
has only one incoming controlflow edge, it is introduced to merge the incoming controlflow
of the join node. The notation of placing the φ-function after the join corresponds to the
concepts of SSA for explicitly parallel programs, presented in Section 3.2.2. However, placing
a φ-function in this case is incorrect, because its definition is restricted to situations where
the φ-function is reached from exactly one of its predecessors. The CSSA form presented in
Section 3.2.2 would use the ψ-function for merging the result of the two threads. Additionally,
if the variable x would be read in any of the threads, a π-functions would be inserted before
the read access to resolve possible interleaving of concurrent statements. Figure 4.3c shows
the SCG in CSSA form.
However, the CSSA form may be sufficient as an intermediate representation for detecting def-
use chains, but translating a CSSA program directly into executable code arises the problem
that the ψ- and π-functions are not executable. They are defined to select the value based
on the dynamic and non-deterministic interleaving of the writing statements in concurrent
threads, which cannot simply detected at runtime. Moreover, the SC MoC defines specific

27

4. Strict Sequential Constructiveness

1 module AbsoluteValue

2 input int i;

3 output int o;

4 int x;

5 {

6 x = 0;

7 if i > x then

8 x = 1

9 else

10 if i < x then

11 x = -1

12 end

13 end;

14 o = i * x

15 }

Listing 4.1. The AbsoluteValue

program

entry

x = 0

i > x

x = 1
o = i * x

exit
i < x

x = -1

Figure 4.1. Dominator tree of the AbsoluteValue

program

entry

x = 0

i > x

x = 1i < x

x = -1

o = i * x

exit

true

true

(a) Original

entry

x0 = 0

i > x0

x1 = 1i < x0

x2 = -1

x3 = Φ(x0, x2, x1)

o = i * x3

exit

true

true

(b) SSA

entry

x0 = 0

i > x0

x1 = 1i < x0

x1 = -1x1 = x0

o = i * x1

exit

true

true

(c) SSA with transformed φ-
function

Figure 4.2. SCG representation of the AbsoluteValue program

28

4.2. SSA Form for Sequentially Constructive Programs

1 module ConcurrentWrites

2 input bool i, j;

3 int x, y;

4 {

5 x = 0;

6 fork

7 if i then

8 x = 1

9 end

10 par

11 if j then

12 x = 2

13 end

14 join;

15 y = x

16 }

Listing 4.2. The ConcurrentWrites

program

entry

x = 0

fork

join

y = x

exit

entry

i

x = 1

exit

true

entry

j

x = 2

exit

true

(a) Original

entry

x1 = 0

fork

join

x6 = Φ(x3, x5)

y = x6

exit

entry

i

x2 = 1

x3 = Φ(x1, x2)

exit

true

entry

j

x4 = 2

x5 = Φ(x1, x4)

exit

true

(b) SSA form with incorrect behavior

entry

x1 = 0

fork

join

x6 = ψ(x3, x5)

y = x6

exit

entry

i

x2 = 1

x3 = Φ(x1, x2)

exit

true

entry

j

x4 = 2

x5 = Φ(x1, x4)

exit

true

(c) CSSA form

Figure 4.3. SCG representation of the ConcurrentWrites program

29

4. Strict Sequential Constructiveness

i j y

false false 0
false true 2
true false 1
true true reject

Table 4.1. Expected results for y in the ConcurrentWrites program depending on the input values

scheduling restrictions for concurrent reads and writes on the same variable. Alongside these
scheduling constraints, a program can also be rejected as non-SC, if nodes are conflicting.
Thus, not only the current value of a variable matters, but also how and where in the program
it is assigned. Table 4.1 presents the values of the output variable y for different input values
with an SC-scheduling. Note that if both i and j are true, the program is rejected because of
the conflicting concurrent initializations. Only if this situation can never occur, the program is
accepted.
This example illustrates that the ψ- and π-functions cannot be used for SC programs which use
concurrency because they lack in expressiveness for these scheduling constraints. Furthermore,
the regular SSA form is only applicable for strictly sequential SC programs. Section 4.2.2
presents the SC-specific SSA form for programs using SC concurrency.

Delay

Variables in the SC MoC have a persistent value across ticks. Using pause statements in
concurrent programs might influence the time when assignments are executed, including
conflicting writes. In a strictly sequential program a pause does not affect the value of a
variable. However, there is one exception, input variables. Input variables are read from the
environment at the beginning of every tick. Consequently, each pause statement is an implicit
assignment to all input variables. This implicit behavior is specific to the synchronous domain
and not handled by the regular SSA definition.
Listing 4.3a presents the program SequentialIO that reads and writes an input output variable
x. If the input i is true in the first tick, the variable x is doubled in line 6, then the program is
paused and in the next tick x is divided by 2. Since x is an input output variable the value
divided in the second tick might not the same conveyed in the first tick. If the input i is false
in the first tick, x is incremented by 1 twice and the programs terminates in this instant.
If the input variable is only read by the program and never assigned, such as i, then input
behavior is uncritical because the SSA form does not merge the definitions of the variable.
However, if input variables are written by the program, such as x, then the local definition
overrides the value of the environment. Consequently, both definitions must be taken into
account.
A solution to this problem is to post-process the SSA form and insert assignments for each
input variable after each pause statement. These assignments move the input value into the

30

4.2. SSA Form for Sequentially Constructive Programs

1 module SequentialIO

2 input bool i;

3 input output int x;

4 {

5 if i then

6 x = x * 2;

7 pause;

8 x = x / 2

9 else

10 x = x + 1

11 x = x + 1

12 end;

13 }

(a) Original

1 module SequentialIO-SSA

2 input bool i;

3 input output int x;

4 int x0, x1, x2, x3, x4, x5;

5 {

6 x0 = x;

7 if i then

8 x1 = x0 * 2;

9 x = x1;

10 pause;

11 x1 = x;

12 x2 = x1 / 2

13 else

14 x3 = x0 + 1;

15 x4 = x3 + 1

16 end;

17 x5 = φ(x2, x4);

18 x = x5

19 }

(b) SSA form

Listing 4.3. The SequentialIO program

reaching variable version. As long as there are no pause statements concurrent to each other,
this solution is sufficient.
A similar problem occurs when using output variables, such as x. The environment expects
the program to convey the final value of an output variable at the end of every tick. To meet
this requirement, at the end of the program and before each pause statement, the value of the
local reaching definition of the output variable version is written into the output variable.
Both solutions require the separation of internally assigned variable versions from the interface
variables of the module. This is necessary for the environment to detect interface variables by
their name. Hence, the renaming of the variables must not affect the input or output variables
but create new definitions for local versions. Section 4.2.7 discusses this aspect in more detail.
Listing 4.3b illustrates the program SequentialIO in SSA form with correct handling of the
input output behavior, producing a semantically equivalent program. The output value for x

is conveyed in line 9 before the pause and when the programs terminates in line 18. The input
value of x is written into the currently reaching definition after the pause in line 11. Moreover,
the naming of the interface is retained by introducing local versions for the variable.

Jumps and Cycles

The regular SSA form is capable of handling all sequential CFG structures correctly, including
cycles. The entry of a loop has more than one incoming controlflow edge causing the
placement of a φ-function, which handles the value merge of the variable in each iteration.

31

4. Strict Sequential Constructiveness

1 module Factorial

2 input int i;

3 int n, f;

4 {

5 n = i;

6 f = 0;

7 if n >= 0 then

8 Loop:

9 f = f * n;

10 n = n - 1;

11 if n > 1 then

12 goto Loop

13 end

14 end

15 }

(a) Original

1 module Factorial-SSA

2 input int i;

3 int n0, n1, n2, f0, f1, f2;

4 {

5 n0 = i;

6 f0 = 0;

7 if n0 >= 0 then

8 Loop:

9 f1 = φ(f0, f2);

10 n1 = φ(n0, n2);

11 f2 = f1 * n1;

12 n2 = n1 - 1;

13 if n2 > 1 then

14 goto Loop

15 end

16 end

17 }

(b) SSA form

Listing 4.4. The Factorial program

Listing 4.4a shows a cyclic program computing the factorial of a positive input number. The
program performs i iterations to multiply the descending value of n into f. Listing 4.4b
presents the program in SSA form, introducing φ-functions in lines 9 and 10 to merge the
definitions of f and n in each iteration.
As long as the variables in the loop body are not accessed concurrently, this SSA form is
sufficient for merging the variable values. Regarding the translation into Esterel, there are
both structural and behavioral problems with cyclic CFGs, further described in Section 4.3.1
and Section 4.3.2.

Updates

Since the SC MoC does not restrict relative writes in a non-concurrent context, the regular SSA

form can handle them normally. Updates simply read the value of the referenced variable,
provided by the single reaching definition, apply their operation, and write back the result.
Hence, they are not handled differently form absolute writes, for example the assignment to
o depicted in Figure 4.2b.

4.2.2 SC-specific SSA Form

The previous section points out that the regular SSA form is not capable of handling the
deterministic concurrency of SC. Furthermore, the CSSA form presented in Section 3.2.2 lacks
in expressiveness considering the scheduling constrains of the SC MoC and more importantly
cannot simply translated into an executable form.

32

4.2. SSA Form for Sequentially Constructive Programs

An executable SC-specific SSA has to represent the sequential and concurrent relations between
assignments, including the distinction between initializations and updates to consider the
additional constraints for concurrent scheduling. Another important aspect when using the
SSA form to create executable code with SC semantics is that the definition of the function
performing a value merge has to detect conflicting writes. This means that the function
merging concurrent values has to detect if and how the value was written by the concurrent
threads to correctly merge the value or reject the whole program. Conflicts occur for example
when two concurrent nodes with writing different absolute values are active in the same tick.
Listing 4.2 on page 29 depicts a program with a potential conflict. If both i and j are true in
the same tick than both assignments, in the lines 8 and 12, are executed and assign conflicting
values to x.

To detect whether an assignment node is active in a tick, the variable value is augmented with
a signal. The signal is emitted when a value is assigned to that variable and according to the
classic signal semantics it is reset to absent at the beginning of every tick. Thus, each value
comes alongside an additional signal which indicates the presence or validity of the actual
value. The notation for a variable xi, renamed by SSA and carrying an augmented value, is
〈xp

i , xi〉, where xp
i is the presence signal and xi the actual variable value. If the signal is absent,

the value must not be read because the value is invalid with respect to current global value of
the variable.

Based on these augmented values the SC-specific SSA form has three merge functions: seq,
conc, and combine. These functions are composed to merge expressions, handling the merge
of all incoming variable versions.

Listing 4.5 presents the definition of the merge functions in a pseudocode notation similar
to Esterel. The present test checks a signal for its presence and if test evaluates a boolean
expressions. The reject statement indicates that the complete program should be rejected
immediately.

seq (Listing 4.5a) The function seq(xi, xj) handles the sequential overriding of two variable
values. The first parameter xi is considered ordered sequentially before the second xj.
Hence, if the signal of the xj indicates that the value is present in the current tick, the
function returns xj, otherwise xi if it is active. In the case that none of the values are
valid, the seq-function returns a neutral inactive value. This allows other merge function
to ignore the result of this function and facilitates nested merge expressions.

conc (Listing 4.5b) The function conc(xi, xj) handles the merge of concurrent absolute writes.
If only one of the concurrent threads executes its assignment, the corresponding value is
selected, determined by its signal. A conflict can occur, if both xi and xj are active in the
same tick. In this case their value is tested and if both writes produce the same value, they
are considered confluent. Consequently, any of them can be selected, in this definition xi.
If the values differ, then a conflict occurred and the programs must be rejected. In case
neither xi nor xj are active, the function returns a neutral inactive value.

33

4. Strict Sequential Constructiveness

1 seq(〈xp
i , xi〉, 〈x

p
j , xj〉) :=

2 present x
p
j then

3 return 〈xp
j , xj〉

4 else

5 present x
p
i then

6 return 〈xp
i , xi〉

7 else

8 return 〈absent, nil〉

(a) seq

1 conc(〈xp
i , xi〉, 〈x

p
j , xj〉) :=

2 present x
p
i then

3 present x
p
j then

4 if xi == xj then

5 return 〈xp
i , xi〉

6 else

7 reject

8 else

9 return 〈xp
i , xi〉

10 else

11 present x
p
j then

12 return 〈xp
j , xj〉

13 else

14 return 〈absent, nil〉

(b) conc

1 combine(f , 〈xp, x〉, 〈xp
up, xup〉) :=

2 present xp then

3 present x
p
up then

4 return 〈xp, f (x, xup)〉
5 else

6 return 〈xp, x〉
7 else

8 present x
p
up then

9 reject

10 else

11 return 〈absent, nil〉

(c) combine

Listing 4.5. The definition of merge functions

combine (Listing 4.5c) The function combine(f , x, xup) applies an update on a value x, where
xup is the absolute update value derived from the expression in the relative write and f
the combination function. If xup indicates that the relative write is active, then the value is
combined with x via f and returned. Otherwise the function returns x unmodified. In
case the update is performed without a valid value x to read, the program is rejected. This
case occurs when an update is performed on an uninitialized variable.

The merge functions are designed to be composed to expressions which represent the
scheduling relations and allow to resolve the effective value from the incoming definitions.
The presented definitions use two arguments for seq- and conc-functions and one update
argument for combine. This is a minimal definition with respect to the considered variable
versions. It allows to express the same relation between more than two variable versions by
nesting the functions into each other and thus iteratively merge the definitions. A definition
with more arguments to express such relations could also be possible, but it would increase
the size of the definition. For example a conc-function definition would have to check all
possible combinations of present variable version to compare their values. Thus, the two
arguments definition with nesting is used, also with a simpler implementation in Esterel in
mind.
Due to the greater number of reaching definitions and interleaving constraints in a concurrent
context, it is more complicated to maintain a single variable with the currently valid value, as
the regular SSA form does. Hence, the merge expressions are inserted into the program in
every read access. Future work may further optimize this procedure.
The program ConcurrentWrites presented in Listing 4.2 on page 29 can be translated into a
correct SSA form using a merge expression, depicted in Listing 4.6. In this form the value of
x is resolved by a merge expression in line 15. Based on the definition of the conc-function,

34

4.2. SSA Form for Sequentially Constructive Programs

1 module ConcurrentWrites-SSA

2 input bool i, j;

3 int x0, x1, x2, y;

4 {

5 x0 = 0;

6 fork

7 if i then

8 x1 = 1

9 end

10 par

11 if j then

12 x2 = 2

13 end

14 join;

15 y = seq(x0, conc(x1, x2))

16 }

Listing 4.6. The ConcurrentWrites program in SSA form using a merge expression

either x1 or x2 sequentially overrides the value of x0. If both writes are active the program is
rejected, and if none of them is executed the value of x0 is assigned to y by the seq-function.
This behavior complies with the expected output, presented in Table 4.1 on page 30.

4.2.3 Constructing Seq-Conc-Expressions

In the absence of updates and jumps, the merge expressions represent exactly the sequential
and concurrent composition of the related assignments. Thus, these expressions can be
generated by analyzing the program structure. Table 4.2 shows the recursive patterns for
composing merge expressions for a specific variable, based on the structural language
constructs in the program. Assignments to other variables are ignored and skipped in the
analysis process. Note that for the conditional structure the sequential order is arbitrary, since
both branches are mutually exclusive in the absence of loops. In this definition, the then
branch is ordered sequentially before the else branch. Furthermore, the pattern do not contain
any rule for unconditional jumps, such as gotos. The SC MoC prohibits jumps which have
targets outside their thread, but this still allows jumps to form structures which cannot easily
translated into Esterel, further discussed in Section 4.3.1. Hence, the composition ignores
jumps and supports only the given pattern. However, the special case of jumps forming loops
is supported and presented in Section 4.2.5.
The translation into SC-specific SSA form can be achieved by performing the following steps:

1. Split and rename variables

2. Insert a merge expression for each read access on a variable.

3. Reduce merge expressions to the locally incoming definitions.

4. Normalize merge expressions.

35

4. Strict Sequential Constructiveness

SCL Structure Expression

1 if (condition) then

2 // then-branch

3 else

4 // else-branch

5 end;

6 // next

seq(seq(then-branch, else-branch), next)

1 fork

2 // thread0

3 par

4 // thread1

5 par

6 // ...

7 join;

8 // next

seq(conc(thread0, thread1, . . .), next)

1 xi = e;
2 // next

seq(xi, next)

Table 4.2. Structural construction pattern for merge expressions

Listing 4.7 illustrates the structural composition of merge functions into expressions for a
more complex program. The program presented in Listing 4.7a performs various absolute
writes on the variable x, read by y at the end of the program. The first transformation step is
already performed on the program, splitting and renaming the variable. Listing 4.7b illustrates
creation of the merge expression for x in the assignment to y in line 21. The expression is
separated into corresponding lines, to illustrate the results of the matching pattern.
The result for the read access of x in line 21 is:

seq(conc(seq(x0), seq(x1, seq(conc(seq(seq(seq(x2), seq(x3)), seq(x4)), seq(x5)), seq(x6)))))

Reduction

The construction patterns in Table 4.2 are designed to recursively create an expression for a
complete program and consequently take all assignments to a variable into account. Thus,
depending on the position of the read access where the merge expression is inserted, it must
be reduced to contain only the reaching definitions affecting this read. Especially assignments
which are sequentially after the read access must be removed because they do not affect the
value.
Regarding the SCG representation of a program, this means that the expressions are reduced to
preceding variable versions. These are the variables assigned in nodes which are a sequential
predecessors of the reading node or have a concurrent write-read dependency to the reading
node.

36

4.2. SSA Form for Sequentially Constructive Programs

1 module ExpressionExample-SSA

2 input bool i;

3 int x0, x1, x2, x3, x4, x5, x6, y;

4 {

5 fork

6 x0 = 0;

7 par

8 x1 = 1;

9 fork

10 if i then

11 x2 = 2

12 else

13 x3 = 3

14 end;

15 x4 = 4

16 par

17 x5 = 5

18 join;

19 x6 = 6

20 join;

21 y = x?

22 }

(a) The ExpressionExample program

1

2

3

4

5 seq(conc(

6 seq(x0

7),

8 seq(x1,

9 seq(conc(

10 seq(seq(

11 seq(x2

12),

13 seq(x3

14)),

15 seq(x4

16)),

17 seq(x5

18)),

19 seq(x6

20))))

21

22)

(b) Construction of the merge expression

Listing 4.7. Example for creating a merge expression

Moreover, not all sequentially preceding definitions actually affect the read value. Considering
dominator relations between nodes, there may be sequentially preceding definitions which
strictly dominate the reading node. Of all nodes which dominate the reading node, only the
closest dominating definition affects the read value. This node is the immediate dominating
writer, all preceding definitions are always overridden by its value. Additionally, all definitions
succeeding immediate dominating writer and preceding the read node can also affect the
read value.

Another aspect when using dominator relations is the concurrent execution. The definition
of domination does not use a concept of concurrency and thus a fork is handled like an
if assuming that only one outgoing controlflow edge is used to leave the node. Hence,
domination is always a strictly sequential controlflow domination disregarding interleaving.
Consequently, the reduction must consider the iur dependencies in the SCG. Additionally, the
iur protocol allows, in some constellations, to remove the sequentially immediately dominating
writer from merge expression in a concurrent thread. Listing 4.8 shows a motivating example
program for such a constellation. x0 is the sequentially immediately dominating write, but
due to the iur protocol and the structure of the program x1 will always override the value of
x0. Consequently, the assignment in line 6 can be reduced to y = x1. The corresponding SCG is
depicted in Figure 4.4. In general, all definitions whether they are dominant or not, which are

37

4. Strict Sequential Constructiveness

1 module ConcurrentDominantWrite-SSA

2 int x0, x1, y;

3 {

4 x0 = 0;

5 fork

6 y = seq(x0,seq(conc(seq(x1))))

7 par

8 x1 = 1

9 join

10 }

Listing 4.8. The ConcurrentDominantWrite

program

entry

x0 = 0

fork

join

exit

entry

y = seq(x0, seq(conc(seq(x1))))

exit

entry

x1 = 1

exit

Figure 4.4. SCG representation of the
ConcurrentDominantWrite

predecessors of a fork node can be removed if any of its threads contains an instantaneous
concurrent immediate dominant write. Such a writing node must dominate the exit node of
its thread, to ensure that the assignment will always be executed. Furthermore, the node must
only be instantaneously reachable from the thread’s entry node, to ensure that the it will
always be executed in the same tick the thread is started. If there is any node matching these
requirements, such as the assignment to x1 in line 8 of Listing 4.8, then it will always override
the value of the definitions preceding the fork node. Additionally, due to the iur protocol this
writing node will always be scheduled before any node reading this variable and thus is the
more dominant write and the preceding definitions can be removed.
To summarize the process, the merge expressions are reduced, based on the position in the
program, to contain the following references.

• Concurrent definitions

• Immediate dominant definition either sequential or instantaneously concurrent

• Non-dominant sequentially preceding definitions, succeeding the sequentially immediate
dominant definition

Listing 4.9 shows an extended version of the program from Listing 4.7. It introduces additional
read accesses of x in lines 10, 16, 18, and 23. The program is in SSA form to illustrate the
context specific reduction of the expressions. Note that the expressions are the direct results of
the construction scheme, but simplified to a more compact form, eliminating ineffective merge
functions to improve the readability. The general procedure for this compaction is described

38

4.2. SSA Form for Sequentially Constructive Programs

in the following section about normalization. Figure 4.5 presents the SCG corresponding to
the original program without SSA. It shows write-read dependencies in green and additional
manually added cyan arrows to indicate the effectively sequential reaching definitions. The
SCG illustrates that for example the read access on x in line 10 is only reached by the definitions
of x0 and x1. Note that for the expression in line 18 the dominant write to x1 preceding to the
fork can be ignored because x5 is an instantaneously concurrent immediate dominant write.

Normalization

The patterns in Table 4.2 used for building the expressions create functions based on structural
program constructs, regardless of the actual usage of the variable in the specific structure
pattern. In addition to that, the reduction of the expressions only removes the variable
references, leaving the surrounding functions in the expression. Thus, merge expressions may
contain many superfluous merge functions. To eliminate superfluous functions and ensure
that each function is correctly parameterized according to their definition, expressions need
to be normalized.
The normalization includes the following transformation steps:

1. Remove functions without any arguments.

2. Replace functions with only one argument by their argument.

3. Convert functions with more than two arguments into nested functions with only two
arguments.

4. Fix nesting of functions such that first arguments are nested first.

Steps 1 and 2 remove the superfluous merge functions and step 3 ensures that the functions
comply with their definitions signature. For example the fork-par-join pattern can produce
conc-function with more than two arguments, if more than two threads are defined. Merge
functions with more than two arguments can be inductively nested using the definition
r(xi, xj, xk) = r(r(xi, xj), xk) where r is either seq, conc or combine for a fixed f . The structural
composition and the previous steps can produce nested functions which do not comply with
this definition, for example if a seq-function is nested in the second and not the first argument
of another seq-function. Hence, step 4 reorders the the nesting of functions, such that first
arguments are nested first.

r(xi, r(xj, xk))Ñ r(r(xi, xj), xk)

The normalization of the unreduced expression in the program in Listing 4.7 on page 37 has
the following effect:

seq(conc(seq(x0), seq(x1, seq(conc(seq(seq(seq(x2), seq(x3)), seq(x4)), seq(x5)) , seq(x6)))))ynormalization

conc(x0 , seq(seq(x1, conc(seq(seq(x2 , x3), x4), x5)), x6))

39

4. Strict Sequential Constructiveness

1 module ReducedExpressions-SSA

2 input bool i;

3 int x0, x1, x2, x3, x4, x5, x6;

4 int y0, y1, y2, y3, y4;

5 {

6 fork

7 x0 = 0;

8 par

9 x1 = 1;

10 y0 = conc(x0, x1)

11 fork

12 if i then

13 x2 = 2

14 else

15 x3 = 3;

16 y1 = conc(x0, conc(x3, x5))

17 end;

18 y2 = conc(x0, conc(seq(x2, x3), x5));

19 x4 = 4

20 par

21 x5 = 5

22 join;

23 y3 = conc(x0, conc(x4, x5));

24 x6 = 6

25 join;

26 y4 = conc(x0, x6)

27 }

Listing 4.9. The ReducedExpressions program
in SSA form

entry

fork

join

y = x

exit

entry

x = 0

exit

entry

x = 1

y = x

fork

join

y = x

x = 6

exit

entry

i

x = 2x = 3

y = x

y = x

x = 4

exit

true

entry

x = 5

exit

Figure 4.5. SCG representation of the
ReducedExpressions without SSA

40

4.2. SSA Form for Sequentially Constructive Programs

1 module NonConflictingWrites-SSA

2 int x0, x1, y, z

3 {

4 fork

5 x0 = 1;

6 y = conc(x0, x1)

7 par

8 pause;

9 x1 = 0;

10 z = conc(x0, x1)

11 join

12 }

Listing 4.10. The NonConflictingWrites

program in SSA form

1 module PauseProblem-SSA

2 input int i

3 int x0, x1, y;

4 {

5 x0 = 0

6 if i then

7 x1 = 1;

8 pause

9 end;

10 y = seq(x0, x1)

11 }

Listing 4.11. The PauseProblem program in
incomplete SSA form

The normalization eliminates superfluous functions, but it also introduces new functions to
comply with the two argument definition. To to create a more reader-friendly form, steps 3
and 4 of the normalization can be omitted and instead all nested functions of the same type
are joined into functions with more than two arguments. The resulting compact form uses a
minimal number of merge functions but requires implicit nesting semantics. The unreduced
expression from Listing 4.7 has the following compact form:

conc(x0, seq(x1, conc(seq(x2, x3, x4), x5), x6))

The reduced compact expression is illustrated in line 26 of Listing 4.9.

4.2.4 Pauses

Extending the capabilities of the SC-specific SSA form to delayed programs is more complex
than in the regular SSA from. Variables are persisted across ticks, but the augmented value
notation used for the merge functions uses signals with reset semantics.
Resetting the signal value to absent at the start of every tick ensures that conflicts are correctly
detected by the conc-functions. Listing 4.10 shows the NonConflictingWrites program, where
x0 and x1 form a potential write-write conflict, but are not actually conflicting, because they
are never executed in the same tick due to the pause statement in line 8.
However, using a signal with reset behavior raises the problem that the augmented value can
only be correctly evaluated in same tick the assignment is executed. Listing 4.11 illustrates
this problem with a small delayed program. If i is true, then x1 should override x0, but the
assignment of y in line 10 where x is read is executed in the next tick. Hence, the signals were
reset to absent and neither x0 nor x1 indicate that their value should be assigned to y. If i is
false, the seq-function can resolve the correct value, because write and read occur in the same
tick.
To solve this problem the augmented values must always be merged in the same tick their
assignments are executed, regardless of any read access. Moreover, the value must correctly

41

4. Strict Sequential Constructiveness

influence the merge expression of later ticks. To provide a variable which represents the
merged overall value of a variable in the previous tick, a variable vreg is introduced for any
variable v. Then, all merge expressions e for a variable v are transformed into seq(pre(vreg), e),
where the pre-function indicates that the value from the previous tick is read and not any
value assigned in this tick. Thus, the pre-function is equivalent to the pre in Esterel. The
transformation ensures that the previous value is read with least sequential priority and
thus is only used if no assignment is active in the current tick. Furthermore, the register
variables also use an augmented value. On the one hand, this ensures that the register value
is not read in the first tick, because the signal will be absent. On the other hand, this again
raises the problem that the value is only valid in the same tick it is written. However, simply
writing the register variable in every tick solves this problem and supersedes any analysis
to detect whether the register must be written or not. It might be sufficient to write the
register variables before each pause. However, for the translation into Esterel, multiple writes
are problematic, and multiple pause statements can be reached the fact that in concurrent
threads. Therefore, it is better to write the register variables in a single assignment. These
assignments are placed in a delayed loop located in a concurrent thread surrounding the
complete program. Consequently, merge expressions are used which are not reduced and
include all variable versions to resolve an overall value. The loop is continued as long as
the actual program does not terminate. Due to the write-before-read regime and the use of
pre-functions, the write is performed at the end of every tick, storing the final value.
Listing 4.12 illustrates the transformation pattern applied to the PauseProblem program from
Listing 4.11. The original program is moved into a concurrent thread, starting at line 7. Its
termination is detected by the term variable to stop the pause handling loop. Note that the
term flag is intended to be directly translated into a single Esterel signal and thus excluded
from the SSA form. The body of the pause handling loop, starting at line 16, merges the value
of x and writes it into the register variable. The read accesses on xreg, in lines 12 and 17, use
the pre-function to refer to the value of the previous tick.

Reduction

Inserting pre-functions into merge expressions to read the value from the previous tick allows
further reductions of the definitions affecting the read value. All assignments which cannot be
executed in the same tick the read access is performed can be removed form the expressions.
This also affects the register variable itself. If a reading node has no preceding pause node
i. e., no surface or depth nodes in the SCG, then it is always executed in the first instant.
Consequently, the register variable can be removed form the expression. Furthermore, since
the pre-functions represent the value of the previous tick, the pause itself can be considered
a write to that register variable. Therefore, a pause node can be considered the immediate
dominating writer to a reading node and consequently override all preceding definitions
because they can only be executed in the prior to the pause. The corresponding variable
versions of those preceding definitions can be removed form the merge expressions.
This analysis only detects sequential preceding pauses and not concurrent ones, but a more

42

4.2. SSA Form for Sequentially Constructive Programs

1 module PauseProblem-SSA

2 int x0, x1, xreg, y;

3 bool term = false;

4 {

5 fork

6 // Original program

7 x0 = 0;

8 if i then

9 x1 = 1;

10 pause

11 end;

12 y = seq(pre(xreg), x0, x1);

13 // Termination

14 term = true

15 par

16 PauseLoop:

17 xreg = seq(pre(xreg), x0, x1);

18 if !term then

19 pause;

20 goto PauseLoop

21 end

22 join

23 }

Listing 4.12. The PauseProblem program
in correct SSA form

1 module PauseReducedExpressions-SSA

2 input bool i;

3 int x0, x1, xreg, y, z;

4 bool term = false;

5 {

6 fork

7 // Original Program

8 fork

9 x0 = 0;

10 pause;

11 y = seq(pre(xreg), x1)

12 par

13 x1 = 1;

14 if i then

15 pause;

16 end;

17 z = seq(pre(xreg), conc(x0, x1))

18 join;

19 // Termination

20 term = true

21 par

22 PauseLoop:

23 xreg = seq(pre(xreg), conc(x0, x1));

24 if !term then

25 pause;

26 goto PauseLoop

27 end

28 join

29 }

Listing 4.13. The PauseReducedExpressions program
in SSA form

advanced analysis might be able to eliminate more definitions, for example by analyzing
surface and depth relation between threads. However, further analysis approaches are not
part of this thesis.

Listing 4.13 shows the PauseReducedExpressions program to illustrates the reduction of merge
expressions by finding dominant pauses. The program performs two concurrent assignment
to x, one in line 9 and the other in line 13, both with different values. After the assignment
to x0, there is a pause statement in line 10. Hence, the subsequent read does not need to
read x0. In contrast to that, x1 is followed by a conditional pause in line 15 depending on i.
Consequently, the subsequent read in line 17 needs to check both x1 and x0, and will detect
the conflict if i is true. The concurrent loop starting at line 22 handles the preservation of the
variable value across ticks borders.

43

4. Strict Sequential Constructiveness

Inputs

Another aspect when handling pause statements is the input output interface of the program.
Variables marked as input are set by the environment every tick and thus the pause acts
a definition to each of the input variables, which must be correctly considered in the SSA

form. The regular SSA form, presented in Section 4.2.1, has the same problem and it was
solved by introducing explicit assignments after each pause. The SC-specific SSA form does
not need these additional assignments because each merge expression in a delayed program
already considers the pause statement as an assignment due to the pre-functions. Since input
variables are maintained by the environment they do not need a register variable. For an input
variable i the seq(pre(i), e) expressions is replaced by seq(i, e). This solution also correctly
handles the case that an input variable is locally assigned by the program, because the inner
merge expressions e consisting of local input variable versions is ordered sequentially after
the environment input value and thus overrides it.
Another important aspect regarding the interface is that splitting up and renaming variables
changes the interface of the program. It is necessary to transform input output variables
to comply with the SSA form. However, the resulting program is no longer equivalent to
the source program because it cannot communicate with the environment via the originally
defined interface. Section 4.2.7 discusses this problem in more detail and presents a solution
to retain semantical equivalence.

4.2.5 Loops

Allowing jumps in programs gives the programmer great freedom to create complex programs
structures, but at the same increases the demands on analyzing these structures. Jumps can
form cycles, but not every cycle is a loop structure compatible with Esterel, further discussed
in Section 4.3.1. To analyze loops for this SSA form, the SCGs representing the programs are
restricted to those which are reducible flowgraphs [HU72]. In a reducible flowgraph the nodes
can be collapsed into their ancestors, resulting in a graph with a single node. This especially
includes cyclic node structures where the entire loop body can be reduced to a single node.
As a result, reducible flowgraphs provide the property that each loop has a single loop entry
node, which can be determined using dominator relations [HU74]. This concept allows to
detect loops which are compatible to the Esterel loops structure.
The construction scheme for merge expression presented so far does not take jumps into
account. Performing the procedure ignoring any backward jumps results in expressions
which consider only a single iterations of a loops body. This is sufficient for expressing the
structural relation of the reaching definitions. However, the main problem is that executing
the loops will cause the actual controlflow to jump back to a position which it already passed.
In combination with the fixed sequential order encoded in the merge expressions this leads
to incorrectly determined values, if multiple assignment to the same variables are located in a
loop.

44

4.2. SSA Form for Sequentially Constructive Programs

1 module InstantaneousLoop

2 input int i, j;

3 int x, y;

4 {

5 x = 0;

6 Loop:

7 if i then

8 x = 1

9 end;

10 y = x;

11 if j then

12 x = 0

13 end;

14 goto Loop

15 }

(a) Original

1 module InstantaneousLoop-SSA

2 input int i, j;

3 int x0, x1, x2, y;

4 {

5 x0 = 0;

6 Loop:

7 if i then

8 x1 = 1

9 end;

10 y = seq(x0, x1, x2);

11 if j then

12 x2 = 0

13 end;

14 goto Loop

15 }

(b) Incorrect SSA form

Listing 4.14. The InstantaneousLoop program

Listing 4.14a presents the InstantaneousLoop program which performs such multiple writes in
a loop starting at line 6. Inside the loop body, x is assigned to 1 and afterwards to 0 depending
on i and j. In each iteration y reads the value of x in line 10. The current state of the SSA

transformation cannot create an expression resolving the correct value. Listing 4.14b shows
the result of the SSA transformation. The merge expression in line 10 considers all versions
of x and sequentially orders them based on the textual ordering in the source code. This
solution is incorrect for the case where i and j are true and both assignment are executed
in each iteration. On the one hand, the textual order is inverted due to the backward jump.
First x2 overrides x1, then the backward jump is performed and x1 overrides x2. On the other
hand, due to the loop the definition of x2 reaches y and is consequently included in the merge
function. However, reading the value of a variable which is assigned in the same tick but
sequentially after the read, violates the constructiveness in the sense of Esterel.
The regular SSA transformation handles cycles by introducing φ-functions at the entry node of
the loop, to merge definitions prior to the loop with the definitions of the iterations. However,
in a concurrent context this solution is insufficient because a variable in the loop might be
concurrently read and thus requires a merge expression including the sequential relation of
all assignments in the loop body.

Handling Restricted Loop Structures

The restriction to reducible flowgraph facilitates the detection of loops, but to solve the
problem of sequentiality inversion the supported loop structures must be further restricted.
In the SC MoC instantaneous loops are allowed, whereas in Esterel a loop cannot perform
multiple instantaneous iterations. The controlflow must not instantaneously reach the end

45

4. Strict Sequential Constructiveness

of the loop body when the body is entered at its head. Hence, requiring non-instantaneous
loops is a reasonable restriction. However, requiring delayed loop body is not sufficient for
the following approach to solve the problem of the sequential ordering. Loops structures are
further restricted to those which have at least one non-concurrent pause statement in the loop
body, which is executed in every iteration. Note that this restriction is only necessary to solve
the ordering problem of multiple assignments to the same variables located in a loop. If no
such statements exist the normally generated merge expressions are sufficient.

Based on this restriction, the sequential ordering of multiple writes can be fixed by reordering
the definitions in the merge expression according to the separation into different ticks. At
first, the first pause statement which dominates the end of the loops body must be detected.
The are delayed loops that do not contain such a pause statement which consequently limits
this approach, as presented at the end of this section. Moreover, the dominant pause must be
non-concurrent. A concurrent dominant pause could allow a reordering but may cause the
loop to contain schizophrenic statements. These are statements which are executed multiple
times in the same tick. However, handling schizophrenia is a complex task [TS04] and not
targeted by this thesis. Based on the fist non-concurrent pause statement which is executed
in each iteration, all nodes in the loop body are separated into two distinct sets. The surface
contains all nodes preceding the dominant pause and ignoring the loopback. All other nodes
are assigned to the depth. This separation allows to reorder definition of nodes in the surface
sequentially after the depth, in all merge expressions regarding the loop body. This results in
a new pattern for the expression construction. The rule applies only to labels indicating the
entry of a loop.

LoopEntryLabel:Ñ seq(loop-body-depth, loop-body-surface, loop-end)

The reordering can be made because the surface is always separated from the depth by the
domination pause. When the loop is entered, the surface is ordered sequentially after the
depth, but no assignment of the depth can be, by definition, executed in this tick. Hence, no
value of the depth is spuriously overridden in this situation. Due to the register introduced for
each variable to handle the delay, the value is correctly stored and can be read or overridden
in future ticks. The interesting part is, when assignments from both surface and depth are
active in the same tick. This situation occurs when the backward jump is performed. The
reordered merge expressions handles this situation correctly, because the surface can override
the depth. Additionally, the definition of the surface assures that no assignment of the depth
will be executed after the surface, if surface and depth are active in the same tick. The reason
is the dominant pause which is always executed before the depth is entered.

Listing 4.15a presents an extended delayed variant of the InstantaneousLoop program in
Listing 4.14a. A pause statement is inserted after the assignment to y in line 12 and an addi-
tional assignment to z is added in line 17, reading x. Listing 4.15b illustrates the transformed
program in SSA form with correct handling of the loop. Note that the presented SSA form
could use a loop pattern for the register assignments, without termination detection because
the original program cannot terminate.

46

4.2. SSA Form for Sequentially Constructive Programs

1 module DelayedLoop

2 input int i, j;

3 int x, y, z;

4 {

5 x = 0;

6 Loop:

7 if i then

8 x = 1

9 end;

10 y = x;

11 pause;

12 if j then

13 x = 0

14 end;

15 z = x;

16 goto Loop

17 }

(a) Original

1 module DelayedLoop-SSA

2 input int i, j;

3 int x0, x1, x2, xreg, y, z;

4 bool term = false;

5 {

6 fork

7 x0 = 0;

8 Loop:

9 if i then

10 x1 = 1

11 end;

12 y = seq(pre(xreg), x0, x2, x1);

13 pause;

14 if j then

15 x2 = 0

16 end;

17 z = seq(pre(xreg), x2);

18 goto Loop;

19 term = true

20 par

21 PauseLoop:

22 xreg = seq(pre(xreg), x0, x2, x1);

23 if !term then

24 pause;

25 goto PauseLoop

26 end

27 join

28 }

(b) SSA form

Listing 4.15. The DelayedLoop program

Compared to the original ordering in Listing 4.14b, the merge expression for the variable y

changes in the following way.

y = seq(pre(xreg), x0, x1, x2)

↓
y = seq(pre(xreg), x0, x2, x1)

Note that the reordering of the referenced variable versions is performed before the pause
transformation. This assures that the loop introduced for the register variable is not affected by
the loop handling, and the pre-function is not considered in the reordering. Additionally, the
expressions inside a loop body must be reduced with respect to pause statements. Otherwise
merge expression located in the depth before the backward jump may check the signal
of augmented values assigned in the sequentially preceding surface. This is illustrated by
the merge expression for the assignment of z in line 17 of Listing 4.15b. The reduction

47

4. Strict Sequential Constructiveness

1 module NestedLoops-SSA

2 int x0, x1, x2, x3, x4;

3 bool term = false;

4 {

5 fork

6 x0 = 0

7 Loop1:

8 if seq(pre(xreg), x0, x4) then

9 x1 = 1;

10 Loop2:

11 x2 = 0;

12 pause;

13 x3 = 1;

14 goto Loop2

15 end;

16 pause;

17 x4 = 0;

18 goto Loop1

19 term = true

20 par

21 PauseLoop:

22 xreg = seq(pre(xreg), x0, x4, x1, x3, x2);

23 if !term then

24 pause;

25 goto PauseLoop

26 end

27 join

28 }

Listing 4.16. The NestedLoops program in SSA form

1 module RejectedDelayedLoop

2 intput int i;

3 int x, y;

4 {

5 Loop:

6 if i then

7 pause

8 end;

9 x = 0;

10 if !i then

11 pause

12 end;

13 x = 1;

14 goto Loop

15 }

Listing 4.17. The RejectedDelayedLoop

program

is necessary, since reading x1 would be considered non-constructive in Esterel, because
even if x1 is sequentially preceding the reading statement, it is executed after it. Hence,
whether x1 is executed or not cannot be constructively determined in the assignments to z. To
prevent programs from being unnecessarily rejected, the dominant pause statement must be
considered to remove ineffective preceding references. Since the depth is always separated by
the dominant pause, the reduction of the expressions is always possible.

In programs where multiple loops are nested in each other, the reordering is performed in an
inside out manner. Consequently, the loops may have different dominant pause statements.
However, the surface will always be ordered sequentially after its depths. The NestedLoops

program presented in Listing 4.16 illustrates the handling of two nested loops. The Loop2

structure in nested inside Loop1 and both loops have different dominant pauses.

48

4.2. SSA Form for Sequentially Constructive Programs

At first, only the merge expressions for Loop2 is reordered.

seq(x2, x3)

↓
seq(x3, x2)

Afterwards, the surface depth analysis is performed for the Loop1 structure and the corre-
sponding part in the expression is reordered.

seq(x1, x3, x2, x4)

↓
seq(x4, x1, x3, x2)

Limitation

The presented solution uses a more restricted requirement for delayed loop structures than
Esterel. It requires a dominant pause statement which is executed in every iteration. This is
necessary to ensure clear separation of surface and depth. However, programs with valid
delayed loops, in the sense of Esterel, are rejected if they do not contain such a pause
statement. Listing 4.17 illustrates a rejected program, containing a valid delayed loop. The
Esterel constructiveness analysis detects that the loop body is delayed, because one of the
pauses is always executed in every tick. Yet there is no pause statement which is executed in
every iteration. In this example, both assignments are considered instantaneously reachable
and thus assigned to the surface. This again raises the sequentiality inversion problem because
depending on i, the sequential overriding of the two assignments changes.

4.2.6 Updates

In a strictly sequential program, updates are easy to handle. They just read the value of the pre-
ceding variable, apply their update, and write the new value into their variable version. This
is how the regular SSA form transforms relative writes, presented in Section 4.2.1. However,
if updates are executed in a concurrent context, the iur protocol defines additional schedul-
ing constrains. Hence, the merge expressions have to consider these additional constraints
which influence the variable value. The combine-function is defined to handle the application
updates in merge expressions. Creating a merge expressions with combine-functions uses a
different procedure than the solutions for absolute writes.

1. Transform all updates into combine-form

2. Create the merge expressions based on a scheduling analysis

3. Transform loops and pauses

49

4. Strict Sequential Constructiveness

1 module UpdateTransformation

2 input bool i, j, k;

3 int x, y;

4 {

5 fork

6 x = 0;

7 if i them

8 x = 1

9 end

10 par

11 if j then

12 x = x + 1

13 end

14 par

15 if k then

16 x = x + 1

17 end

18 par

19 y = x

20 join

21 }

(a) Original

1 module UpdateTransformation-SSA

2 input bool i, j, k;

3 int x0, x1, x2, x3, y;

4 {

5 fork

6 x0 = 0;

7 if i them

8 x1 = 1

9 end

10 par

11 if j then

12 x2 = conc(seq(x0, x1), x3) + 1

13 end

14 par

15 if k then

16 x3 = conc(seq(x0, x1), x2) + 1

17 end

18 par

19 y = conc(seq(x0, x1), x2, x3)

20 join

21 }

(b) Incorrect SSA form using only seq and conc-
functions

Listing 4.18. The UpdateTransformation program

Update Transformation

The SC MoC considers a relative write in the form x = f (x, e) an update, where x is a variable,
e an expressions independent from x, and f a valid combination function.
Without a combine-function, relative writes can be translated such that they are considered a
normal read on the variable and a subsequent write. Listing 4.18a shows a program which
performs two initialization, two updates and a read in four concurrent threads. Except the
first initialization, all write accesses depend on an input signal. Thus, the possible results for y
can be in the range from 0 to 3, depending on these inputs. Listing 4.18b illustrates the result
of a notional SSA transformation using only seq- and conc-functions to express updates. There
are two problems illustrated by this example. At first, reading the variable value in the update
statements requires a merge expressions in lines 12 and 16. These expressions consider all
reaching definitions including other updates. However, this leads to a program considered
not constructive in Esterel because the updates form a causality cycle. Moreover, handling
updates like normal reads introduces additional merge expressions. The second problems is
that the conc-function is not capable of correctly considering the scheduling order between
initializations and updates. The result of the update stands in conflict with the initializations,
but the iur protocol introduces clear ordering rules for the different types of concurrent writes.
Consequently, these rules should be encoded into the merge expressions.

50

4.2. SSA Form for Sequentially Constructive Programs

1 module UpdateTransformation-SSA

2 input bool i, j, k;

3 int x0, x1, x2up, x3up, y;

4 {

5 fork

6 x0 = 0;

7 if i them

8 x1 = 1

9 end

10 par

11 if j then

12 x2up = 1

13 end

14 par

15 if k then

16 x3up = 1

17 end

18 par

19 y = combine(+, seq(x0, x1), x2up, x3up)

20 join

21 }

Listing 4.19. The UpdateTransformation program in SSA form using combine-functions

To reduce the number of merge expressions, to prevent cycles due to reading variables in
the update statements, and to encode the update ordering in the merge expression, the
updates are transformed into combine-function form. Each update statement x = f (x, e) is
transformed into xup = e using an augmented value. Hence, each of the update modification
values e is stored in a variable and applied to the actual value when it is read. In the merge
expressions reading the variable x, including the update xup, the combine-functions is added
to apply the modification value, if the signal indicates that the update was executed. The
expression combine(f , eread, xup) represents the merging of the update xup, which is applied to
the incoming value resolved by the merge expression eread. Thus, the update result is not stored
in the variable written by the actual update statement but composed when the overall variable
value is read. Listing 4.19 illustrates the combine transformation on the previous program. x2

and x3 become x2up and x3up and no longer require additional merge functions. The merge
function in the assignment to y handles the application of the actual update modification
values. Note that the transformation into combine-functions does not solve the problem of the
correct ordering of writes. The merge expressions in the presented example simply orders
both updates after the initializations in the textual definition order. An equivalent expression
is combine(seq(x0, x1), x3up, x2up). For the given program both expressions are correct. However,
in general it is not sufficient to generate merge expressions only based on the textual order
but also requires an analysis of the scheduling constrains.

51

4. Strict Sequential Constructiveness

Algorithm 1 Construction of merge expressions based on static schedules
1: procedure Expression([S:s])
2: if S is empty then
3: return s
4: else if s is update of type f then
5: return combine(f , Expression(S), s)
6: else
7: return seq(Expression(S), s)
8: end if
9: end procedure

Scheduling

In general the SC MoC is based on an iur restricted free scheduling. Thus, the ordering of
statements is dynamically decided by an SC conformant scheduler. However, the merge
expressions have to encode the scheduling constraints and ordering rules, and they are
statically generated at compile time. The reason for the encoding into static expression is
the simple fact that the SC-specific SSA form is designed to generate programs which are
independent from an SC compiler and can be compiled with Esterel, which only requires a
constructive write-before-read regime. Consequently, in the presence of concurrent updates
only those programs can be handled by the SC-specific SSA transformation which provide
some static schedule for the variable definitions.

Static Scheduling

For SC programs which are structurally ASC, it is possible to determine a static SC schedule.
This schedule defines a fixed scheduling order for each node in the SCG. Based on such a
static SC schedule the merge expression are constructed using the recursive construction
procedure presented in Algorithm 1. The procedure receives a list of scheduled variable
versions influencing the read access of that value. In the algorithm, S is the list of statements
ordered by the static schedule, except its last element s. Note that due to the fixed scheduling
the resulting merge expressions only use combine- and seq-functions. Moreover, since the
variable read by the combine-functions is nested inside the function, the pattern for the
consideration of input and register variables, described in Section 4.2.4 does not work
correctly. For merge expressions without combine-functions the expression is surrounded by
a seq-function considering the input or register with the lower sequential order. In case of
merge expressions for variables written by updates, this would prevent the combine-functions
from reading and updating the input or register value. Hence, if a merge expressions must
consider an input or register variables, it must be added to the end of the schedule. This
way, the algorithm will place the variable in a position with the least sequential priority but
available to be read by the combine-functions.

52

4.2. SSA Form for Sequentially Constructive Programs

1 module UpdateOrder

2 input bool i, j, k;

3 int x, y;

4 {

5 x = 0;

6 fork

7 if i then

8 x = x + 1

9 end;

10 if j then

11 x = 5

12 end;

13 y = x

14 par

15 if k then

16 x = x + 1

17 end

18 join

19 }

(a) Original

1 module UpdateOrder-SSA

2 input bool i, j, k;

3 int x0, x1up, x2, x3up, y;

4 {

5 x0 = 0;

6 fork

7 if i then

8 x1up = 1

9 end;

10 if j then

11 x2 = 5

12 end;

13 y = combine(+, seq(combine(+, x0, x1up), x2), x3up)

14 par

15 if k then

16 x3up = 1

17 end

18 join

19 }

(b) SSA form with scheduled updates

Listing 4.20. The UpdateOrder program

For the program in Listing 4.19 the order of x0 and x1 is explicitly defined by the sequential
ordering in the program. According to the initialize-before-update dependencies x3up and
x2up are ordered after the initializations. Based on the definition of combination functions, the
order of x3up and x2up does not affect the final value of the overall variable, thus it is up to
the scheduler do decide any ordering between the two updates. The UpdateTransformation

program in Listing 4.19 is a very simple scheduling problem, where all updates are scheduled
after the initializations. In general, the ordering of updates after initializations does not always
hold, as the following example illustrates.

Listing 4.20a presents the more challenging program UpdateOrder, illustrating the requirement
for a full scheduling analysis rather than simple structural patterns such as those used for
programs without updates. The program initializes x with 0 and forks into two threads.
The first thread performs an increment by 1 depending on i and then initializes x with 5
depending on j. The second thread performs another increment of x by 1 depending on k.
Table 4.3 shows the expected output behavior of the program for all possible inputs. The
iur regime only extends the sequential ordering by additional dependencies, and thus the
initialization of x2 in line 11 is expected to sequentially override the update result of x1up.
Since no cycles including concurrent dependencies exist, the program is considered ASC.

53

4. Strict Sequential Constructiveness

i j k y

false false false 0
false false true 1
false true false 5
false true true 6
true false false 1
true false true 2
true true false 5
true true true 6

Table 4.3. Expected results for y in
the UpdateOrder program depend-
ing on the input values

entry

x = 0

fork

join

exit

entry

i

x = x + 1

j

x = 5

y = x

exit

true

true

entry

k

x = x + 1

exit

true

Figure 4.6. SCG representation of the
UpdateOrder program with dependencies and
static scheduling path

Regarding the two threads the following sequential and concurrent dependency relations are
determined.

x2 Ñiu x3up

x3up Ñur y

x0 Ñseq x1up Ñseq x2 Ñseq y

x0 Ñseq x3up

⇓
x0 Ñ x1up Ñ x2 Ñ x3up Ñ y

54

4.2. SSA Form for Sequentially Constructive Programs

1 module NotASC

2 input bool i;

3 int x, y;

4 {

5 fork

6 if i then

7 y = 0

8 end;

9 x = 0

10 par

11 if !i then

12 y = 1

13 end;

14 x = x + 1

15 join

16 }

Listing 4.21. The NotASC program

entry

fork

join

exit

entry

i

y = 0

x = 0

a = y

exit

true

entry

!i

y = 1

x = x + 1

b = x

exit

true

Figure 4.7. SCG representation of the NotASC

program with dependencies

As illustrated it is possible to deduce an acyclic partial order for all statements which
complies with the dependencies. This ordering is also depicted by the scheduling path in the
corresponding SCG in Figure 4.6. For the given schedule the algorithm produces the following
merge expression for reading x in the assignment to y:

y = combine(+, seq(combine(+, x0, x1up), x2), x3up)

Listing 4.20b shows the UpdateOrder translated into SSA form using this merge expression.

However, requiring a static schedule to handle updates would unnecessarily restrict the
number of programs which can be translated, disregarding their constructiveness in Esterel.
All programs which contain a static cyclic dependency and updates would be rejected. A
classic example of a cyclic, yet constructive program is the Token Ring Arbiter [Pan02],
described in more detail in Section 6.2.3. Moreover, every write-write dependency prevents
a static schedule because such dependencies are symmetrical and form a cycle themselves.
Hence, even if this situation can be handled dynamically by the conc-function, updates in
such programs could not be transformed if a global static schedule would be required.

Listing 4.21 illustrates the program NotASC with a write-write dependency between the
initializations of y. Independent from y, there is an initialization and an update on x. The

55

4. Strict Sequential Constructiveness

1 module NotSC

2 int x, y, a, b;

3 {

4 fork

5 y = y + 1;

6 x = 0

7 par

8 x = x + 1;

9 y = 0

10 par

11 a = x;

12 b = y

13 join

14 }

(a) Original

1 module NotSC-SSA

2 int x0, x1up, y0up, y1, a, b;

3 {

4 fork

5 y0up = 1;

6 x0 = 0

7 par

8 x1up = 1;

9 y1 = 0

10 par

11 a = combine(+, x0, x1up);

12 b = combine(+, y1, y0up)

13 join

14 }

(b) SSA form with scheduled up-
dates based on partial scheduling

Listing 4.22. The NotSC program

entry

fork

join

exit

entry

y = y + 1

x = 0

exit

entry

x = x + 1

y = 0

exit

entry

a = x

b = y

exit

Figure 4.8. SCG representation of the
NotSC program with dependencies

two initializations are not conflicting due to the surrounding mutual exclusive conditions.
Figure 4.7 depicts the corresponding SCG with dependencies. For the two reading assignments
to a and b, there are obvious merge expressions, a = conc(y0, y1) and b = combine(+, x0, x1up).
However, this is not possible to generate using the approach presented so far.
To solve situations where the scheduling of updates is hindered by cycles without any data
relation to the actual variable, the scheduling is simplified. To produce a static schedule for
a specific variable, only those parts of the program are included in the scheduling process
which access the variable. In this example, the schedule is created only for the two concurrent
assignments of x and the correct merge expression can be generated. For the creation of the
merge expression for y the usual patterns can be used because no update on y is present. This
will result in the expected usage of the conc-function.
One important aspect when reducing the program to create a partial schedule is that de-
pendencies of other statements in the program can no longer influence the ordering of the
statements of the analyzed variable. Nevertheless, such dependencies cannot affect the order
of initializations, because it is either explicitly defined by the sequential order or form a
concurrent write-write dependency. Also, the order of updates is not influenced because by
definition of the allowed combination functions in the SC MoC updates are always confluent.
However, surrounding statements may require to schedule an update before the initialization.
Such a program would be reject by the SC MoC because the iur protocol would be violated.
Listing 4.22a shows the program NotSC which is not SC. The updates and initializations on x

and y form a cycle including the initialize-before-update dependencies. None of the updates
can be executed, because both require the initialization to be scheduled beforehand, but

56

4.2. SSA Form for Sequentially Constructive Programs

the initializations are ordered sequentially after the other update. Figure 4.7 depicts the
corresponding SCG with dependencies. However, the partial scheduling yields a result for
both variables, resulting in merge expressions for a and b. Hence, even if the program is
not SC, it can be translated into SSA form, presented in Listing 4.22b. Moreover, the program
is considered constructive in the sense of Esterel because each variable in the SSA form is
written before read. Thus, the program is accepted as SSC without being SC. Nevertheless,
this is reasonable regarding the concept of SC+. SC+ is an extension of SC, allowing out of
order execution of statements without data dependencies. It weakens the role of sequential
ordering and only considers sequential data dependencies and iur dependencies when it
comes to scheduling. This is akin to out-of-order execution on modern processors and focuses
more on data-dependencies than sequential controlflow [Wei15]. The program NotSC is an
example for a valid SC+ program because x and y do not share any relation and thus the
sequential ordering between the initialization and updates can be ignored. Reducing the
program when creating a schedule to only those statements accessing a variable results in the
same dissolution of unrelated sequential orderings. Especially the motivation of constructive
circuit representations justifies this solution, because independent calculations in a circuit are
always parallel within one instance.
The process of creating merge expressions including combine-function replaces the procedure
described in Section 4.2.3 for all variables which are written using updates. Hence, pause
statements and loops are also handled subsequently.

Limitations of Static Scheduling

Using static schedules for constructing merge expressions restricts the transformable pro-
grams. Even the expansion to partial schedules still requires that the remaining statements
are iur-acyclic. Thus, all programs containing assignments with write-write dependencies
and updates of that variable cannot be transformed. The same holds for non-confluent up-
dates, using incompatible combinations functions. Even if the updates are dynamically not
conflicting, the ordering still requires a static schedule.
Such programs are directly rejected by the SSA transformation.

Valued Signals Approach

Another approach for handling updates is inspired by valued signals of Esterel. Valued signals
support multiple emission with different values, if a combine function with commutative and
associative property is defined to merge the values. The constructive reading of the value is
only allowed if all reachable emits were executed.
At first glance, this regime seems similar to the handling of updates of the same type in the
SC MoC. A possible translation could directly translate all updates of a variable into multiple
emission of a valued signal. When the variable is read the combined update value is merged
with the initialization. Listing 4.23a shows the program ValuedSignalUpdates with multiple

57

4. Strict Sequential Constructiveness

1 module ValuedSignalUpdates

2 int x, y;

3 {

4 x = 0

5 fork

6 x = x + 1

7 par

8 x = x + 1

9 par

10 y = x

11 join

12 }

(a) Original in SCL

1 module ValuedSignalUpdates:

2 signal x0 : interger in

3 signal xup : combine interger with + in

4 signal y : interger in

5

6 emit x0(0)

7 [

8 emit xup(1)

9 ||

10 emit xup(1)

11 ||

12 emit y(?x0 + ?xup)

13]

14 end end end signal

15 end module

(b) Esterel program using a single valued sig-
nal for updates

Listing 4.23. The ValuedSignalUpdates program

concurrent updates on the variable x. Listing 4.23b illustrates a possible SSA form directly
translated into Esterel.
Apart from the fact that this solution requires valued signals in SCL to create a similar form as
Esterel, this approach has one major problem. The updates are not separated from each other.
Consequently, programs which require a schedule such that initializations interleave between
updates are handled incorrectly by this approach. The program in Listing 4.20a is a clear
example for a program that requires separation between update values. Furthermore, the
accumulation of all update values in a single valued signal does not allow to read intermediate
results of the update. In an SC a reading statement can be placed between two sequential
updates to read the intermediate result. However, with a single valued signal such a read
is considered non-constructive in Esterel because the value of the signal is accessed before
the last reachable emit is executed. Hence, this approach is not capable of handling updates
sufficiently.

4.2.7 Interface Compliance

The interface of an SC programs explicitly specifies the communications with the environment.
The conveyed output variables at the end of a tick in relation to the input variables define the
reaction of a program. Two programs are considered equivalent, if both produce the same
output streams for all possible input streams.
The SC-specific SSA transformation is designed to produce equivalent programs in SSA form,
which are executable. However, due to the renaming of variable into SSA versions, which also
affects input and output variables, the original interface is altered. Consequently, the resulting

58

4.2. SSA Form for Sequentially Constructive Programs

program is no longer equivalent to the source model because the environments cannot match
the interface variables.
The effect of input variables on the merge expressions is already handled for delayed programs,
presented in Section 4.2.4, because the definitions of input values by the environment influence
the semantics of SSA itself. However, handling the implicit environment definition in a pause
differently from local definitions when assigning another value to input variables requires
the separation of the input variable and local versions.
Output variables have a similar problem, multiple assignments in a program may assign
the output variable, resulting in multiple variable versions, but the environment expects one
value for the output variable every tick.
To achieve this separation, variables marked as input or output are not renamed itself. All
assignments resulting in new versions of the variable will be declared locally. Hence, the
handling of inputs can refer to the original input value and merge the value with local
definitions. Assignments to the output variable also assign local variable versions. Since
inputs must be considered when creating correct merge expressions they are handled together
with pauses. However, output variables require an additional transformation to provide the
environment with the correct value in each tick. First, each program must convey the outputs
in the tick it terminates, consequently an assignment to the output variable assigning the
value based on the different variable versions is added. This is only required for instantaneous
programs, because in delayed programs the pause handling introduced a concurrent loop
and register variables, which can be used for that purpose. The register variable can also be
used to convey the final output value in every tick. Variables defined as input and output
require both transformations, including the merge expression for the register variable
Listing 4.24a shows the program ConcurrentIO which uses input, output, and input output
variables. The first thread sets the input output variable x to 1, if it is equal 0. This prevents a
division by zero error in the subsequent assignment to o, where i is divided by x. Based on
the condition x contains either the actual input value or 1. Additionally, the value is conveyed
to the environment. In the second thread the input i is set to 0, if it is negative. Consequently,
the expression in line 10 also refers either to this new value or the original input value. In the
second tick, the second threads performs an assignment to x multiplying o and i. In this case
o has the value of the previous instant and i is has the value provided by the environment,
ignoring possible assignments of the previous tick. Listing 4.24b illustrates that the result of
the SSA transformations correctly considers the input and output behavior and produces an
equivalent program. The value of o is persisted every tick in oreg and the final value of both o

and x is merged and conveyed at end of every tick. The expressions reading the inputs in line
15 consider both the value form the environment and the local assignments. The assignment
in line 21 only considers the input value of i because the local assignment is located before a
dominant pause.

59

4. Strict Sequential Constructiveness

1 module ConcurrentIO

2 input int i;

3 output int o;

4 input output int x;

5 {

6 fork

7 if x == 0 then

8 x = 1

9 end;

10 o = i / x

11 par

12 if i < 0 then

13 i = 0

14 end;

15 pause;

16 x = o * i

17 join

18 }

(a) Original

1 module ConcurrentIO-SSA

2 input int i;

3 int i0;

4 output int o;

5 int o0, oreg;

6 input output int x;

7 int x0, x1;

8 bool term = false;

9 {

10 fork

11 fork

12 if seq(x, x1) == 0 then

13 x0 = 1

14 end;

15 o0 = seq(i, i0) / seq(x, conc(x0, x1));

16 par

17 if i < 0 then

18 i0 = 0

19 end;

20 pause;

21 x1 = pre(oreg) * i;

22 join;

23 term = true

24 par

25 term = false;

26 PauseLoop:

27 oreg = seq(pre(oreg), o0);

28 o = oreg;

29 x = seq(x, conc(x0, x1));

30 if !term then

31 pause;

32 goto PauseLoop

33 end

34 join

35 }

(b) SSA form

Listing 4.24. The ConcurrentIO program

60

4.3. Translation into Esterel

4.3 Translation into Esterel

This section describes the translation of SC programs into Esterel. At first, Section 4.3.1
discusses the challenges of translating the structural syntax form SCL or the SCG into Esterel,
which are mainly caused by the goto statement. The section presents general structural
translation patterns. Another challenging aspect is the transformation of SC variables into
Esterel. Regarding the definition of the constructive semantics, Esterel uses signals as primary
data type. This collides with the usage of shared variables in SC programs, even in the absence
of an iur protocol compilation due to the SSA form. Section 2.1 on page 6 illustrates data
types of Esterel and compares it with variables in the SC MoC. Section 4.3.2 first discusses
behavioral challenges due to the different semantics in Esterel. Considering these aspects
the following sections present two solutions for encoding SC variables in Esterel. The first,
presented in Section 4.3.3, uses pure signals for boolean variables. The second, in Section 4.3.4,
presents an encoding using valued signals which are not fully supported by the implemented
constructiveness analysis of Esterel but handles non-boolean data types more easily.
Furthermore, in the absence of concurrent programs, Esterel variables provide a suitable
translation for SC variables. However, since Esterel variables cannot be sufficiently used as
shared variables between threads or analyzed when determining constructiveness, this section
does not consider them in the presented solutions. Moreover, in the following sections, SC

variables are denoted as variables disregarding Esterel variables.

4.3.1 Structure

When comparing the language definition of SCL, presented in Table 2.3 on page 10, with the
Esterel kernel language, shown in Table 2.1 on page 7, the languages share similar structures.
The sequential and concurrent composition of statements can be directly adapted into Esterel.
The present test can be used to translate if-then-else structures, but the condition depends on
the variable encoding. The translation of assignments is also based on the chosen encoding
strategy. The delay statement pause can be directly adopted to Esterel. The most challenging
construct is the goto statement.
There is no explicit jump statement in regular Esterel. However, there is a thread-safe jump
statement for extending Esterel proposed by Tardieu [Tar04]. Nevertheless, jumps can be
separated into forward and backward jumps. The only statement which allows similar forward
jump behavior is the trap construct. However, the structure of Esterel is always hierarchical.
That means, all structural statement are paired and the included statements form a nested
program. When translating forward jumps with traps, the goto can be replaced by an exit t
and the target label by end trap. Due to the hierarchical structuring, the trap t must be placed
on the same level as the end trap and this is not always the case with jumps. Hence, jumps into
nested structures of other statements such as conditional branches or loops cannot directly
translated into Esterel. Listing 4.25 shows the JumpIntoBranch program which performs a
jump into the then branch of conditional structure. The target label of the goto in line 7 is
inside the then branch of the conditional in line 11. Figure 4.9 depicts the corresponding SCG.

61

4. Strict Sequential Constructiveness

1 module JumpIntoBranch

2 input bool i, j;

3 int x;

4 {

5 if i then

6 x = 1;

7 goto Branch

8 else

9 x = 2

10 end;

11 if j then

12 x = 3;

13 Branch:

14 x = 4

15 else

16 x = 5

17 end

18 }

Listing 4.25. The JumpIntoBranch

program

entry

i

x = 1x = 2

j

x = 3

x = 4

x = 5

exit

true

true

Figure 4.9. SCG representation of the
JumpIntoBranch program

The future work section of Rathlev [Rat15] also points out this problem when discussing the
translation from SCL into Esterel. He presents a solution which includes code duplication to
recreate a translatable structure. However, this thesis focuses on the semantical translation in
combination with SSA and thus excludes all jump structures which cannot translated using
if-then-else structures. This restriction is also made in Section 4.2.3, when analyzing the
program structure to create merge expressions.

Another case are backward jumps forming loops, which are more common to SC programs
than complex forward jump structures. Backward jumps may lead to irreducible flowgraphs
whose structure cannot be translated into Esterel and thus are permitted. This is the same
restriction made in loop handling of the SSA form, presented in Section 4.2.5. The reducibility
property assures that the cycle has only one entry point and does not overlap with other
cycles. This allows to encapsulate the loop body in the Esterel loop structure. All jumps to
the entry label of the loop are transformed into traps resulting in the continuation of the loop.
The jumps targeting a point outside the loop result in traps leaving the loop body.

Table 4.4 illustrates the translation of loop structures. The essential part is the jump to the
LoopEntry forming the actual loop. The condition around the backward jump is optional, to
form infinite loops. Moreover, the jump exiting loop is also optional and the subprograms P1,
P2, and P3 can contain further jumps to the LoopExit.

62

4.3. Translation into Esterel

SCL Esterel

1 LoopEntry:

2 // Subprogram P1

3 if condition then

4 goto LoopExit

5 end

6 // Subprogram P2

7 if condition then

8 goto LoopEntry

9 end

10 // Subprogram P3

11 LoopExit:

1 trap LoopExit

2 loop

3 trap LoopEntry

4 % Subprogram P1

5 present condition then

6 exit LoopExit

7 end;

8 % Subprogram P2

9 present condition then

10 exit LoopEntry

11 end;

12 % Subprogram P3

13 exit LoopExit

14 end trap

15 end loop

16 end trap

Table 4.4. Translation pattern for loops

4.3.2 Behavior

Besides the structural aspects in the translation into Esterel, there are also semantical aspects
which must be considered. The main difference is the use of signals instead of variables. The
SC MoC extends the semantics of Esterel and consequently provides a scheme for handling
signals with variables, but translating the other way around raises some challenges.

Interface

The semantics of signals allow only one globally consistent state per tick. This is the initial
motivation for using the SSA form to assure this semantics while supporting multiple values
per tick. However, there is one situation where the SSA form is not able to assure this property
and that is the case of input output variables. A variable marked as input and output is not
renamed by the SSA transformation, to retain the interface. Since the program can assign
this variable, the conveyed value can differ from the input value given by the environment.
Assuming boolean variables encoded as single signals, an SC programs can read a true value,
respectively present and convey false, respectively absent. This behavior is considered an
unemit and is not supported by an Esterel environment communicating with the program via
its interface. Due to the different semantics of signals in comparison to variables in Esterel,
programs may be not semantically equivalent or non-constructive.
A solution is to split the input output variable into two different variables, one input and one
output variable, with appropriate names. Consequently, this alters the interface and rules out
an equivalent behavior based on the same interface. However, this is tolerable since in the
translation into Esterel, the variables are changed to signals anyway, resulting in an interface

63

4. Strict Sequential Constructiveness

with different types. Hence, when comparing the behavior of the source program with the
generated Esterel program, the environment always has to adapt to the new interface.
Another aspect are augmented input variables. The definition of augmented variables includes
the introduction of an additional signal to indicate the presence of a written value. This
signal is also checked by the merge functions. However, since a input variable is set by the
environment in each tick, there is no assignment emitting the corresponding presence signal.
One solution is the explicit emission of the presence signals of each input in every tick.
However, to reduce the number of signals and presence test, this thesis prefers the approach
of having no additional presence signal for inputs.

Initialization

Regarding the definition of signals, they are always considered absent, if not emitted. Con-
sequently, they always have a defined value and can be considered initialized to absent. In
contrast, the SC MoC does not define such an implicit initialization for variables. If a variable
is read before any write has defined its value, the value is undefined. The SC MoC expects the
programmer to explicitly initialize all variables correctly.
When a program with uninitialized reads is translated into Esterel and executed with initial-
ized signals, the program may behave different to other environments. Hence, the situation of
uninitialized reads must be detected and the programs needs to be rejected, to assure that
accepted programs behave correctly independent from initializations in the environment.
Every assignment reading a variable, which is not dominated by an initialization of that
variable, must be additionally checked for a possible uninitialized read. Using augmented
values, the presence flag indicates an active write. Consequently, in the translation rule for
merge functions, the case where none of the read definitions are executed must be detected
and the program must be rejected. This also works for the usage of pre(s) for a signal s in the
initial tick, because all signals are considered absent prior to the first tick [Ber99].

Delayed Loops

Another considerable aspect are loops. In Esterel a loop must not instantaneously reach the
end of the loop body from its head. Thus, Esterel cannot perform multiple iterations in the
same tick. Nevertheless, the loop may be left and reentered in the same tick, but since the
loop body must be delayed this loop instance cannot terminate instantaneously. Hence, there
are instantaneous loops which can be structurally translated into Esterel but are rejected by
the Esterel compiler. However, the handling of loops in the SSA transformation, presented in
Section 4.2.5, is restricted to an even stronger from of delayed loops if multiple assignments
to the same variable are present in the loop body.
Furthermore, loops are known to cause the problem of schizophrenia in some situations.
That means statements are executed more than once in the same tick. In combination with
the globally consistent state of signals, this may cause unexpected behavior. The SSA form
only assures the single assignment statically and consequently does not prevent multiple

64

4.3. Translation into Esterel

xi \ not_xi present absent

present illegal true
absent false undef

Table 4.5. Pure signal encoding inspired by
unemit

x
p
i \ xi present absent

present true false
absent undef undef

Table 4.6. Pure signal encoding separating
presence flag and value

execution of statements due to loops in the actual controlflow. Curing schizophrenia is a
complex task [TS04] and not targeted by this thesis.
Alternatively there is Dynamic Single Assignment (DSA) which is an SSA variant ensuring that
variables are are written at most once [VJB+07]. DSA is primarily designed for scalars and
arrays, manipulated in loops.

4.3.3 Pure Signal Encoding

The available Esterel compiler supports a complete constructiveness analysis only for pro-
grams using pure signals. The values of valued signals are conservatively not evaluated even
if this would be possible [PEB07]. Hence, a pure signal encoding for variables is required to
check the constructiveness of SC programs with Esterel.
Encoding variables with signals includes the translation of variables, their values, and
expressions using variables. This includes merge expressions. Additionally, conditions in if
statements need to be translated into present tests, comparing the corresponding signals.
Signals represent the value set {absent, present}. This is sufficient to encode a boolean variable
in a single signal. Furthermore, C-like boolean variables, using an integer with the effective
value set {0, 1}, can also represented by a signal. Larger value ranges and arbitrary data
types can be represented by multiple signals using binary or one-hot encoding. The solution
for pure signal encoding in this section only presents rules and patterns for the handling of
boolean variables and integers restricted accordingly.

Value Encoding

A single signal can encode one boolean variable, but the merge functions of the SSA form use
augmented values, requiring an additional signal which is emitted when the value is assigned
to a variable. There are two different variants to represent an augmented boolean value.
Table 4.5 shows an encoding inspired by emit and unemit states. Each augmented boolean
variable xi is encoded by two signals xi and not_xi. The presence of the signal xi indicates
that the variable is written with a true value in this tick, and the not_xi that it is set to
false. The two signals represent an emit and unemit operation on the variable. If none of the
signals is present, the variable was not written at all, indicating the absence of any value.
The presence of both signals is considered an illegal state, which must not occur because the
value cannot be true and false at the same time. The advantage of this encoding is that in
case of assignments using constants, the assigned variable can be represented by only one of

65

4. Strict Sequential Constructiveness

the signals indicating the value. Moreover, a one-hot encoding can be used to encode more
non-boolean data types. However, checking the absence of any write action always requires a
test on both signals, because each signal indicates both the value and a partial presence of the
write. Since the constructiveness analysis of Esterel uses a three valued logic, it is desired to
provide information about a write independent from the actual value to facilitate speculation
on absence.
The other encoding variant presented in Table 4.6, is directly derived from the notation for
augmented values. For a variable xi two signals x

p
i and xi are created, where x

p
i indicates

the presence of the value, respectively the execution of a write, and xi the actual boolean
value. Consequently, both signal must always be appropriately set when a variable is written.
However, the separation of presence and value allows binary encoding for more complex
data types. More importantly it enables the encoding of the merge function such that the con-
structiveness analysis can speculate on the absence of write independent from the computed
value. Hence, the latter variant is used to defined the following encoding rules.

Assignments and Conditionals

Table 4.7 shows the translation rules for assignments and conditionals. Constant assignments
are translated by simply emitting the corresponding signals. If the value of an expressions is
assigned, for example the result of a merge expression, then the expressions is first dismantled
and assigned to a new unique intermediate variable v. vÐ e indicates the evaluation of an
expression using the rules defined in the following section. Afterwards, the intermediate
variable v is used to assign the correct value to xi. If the expression only consists of a single
variable, for example xi = xj, then no additional intermediate variable v is needed. The same
goes for the translations of conditionals. Note that the error signal activates a non-constructive
program section and indicates that a variable was read without having a valid value. The
initialization check can be omitted if the reading statement is dominated by an initialization.
Moreover, if a read variable is an input the presence test of its presence signal is omitted.

Expressions

Expressions in the SCL source code can consist of constants, variables, operations including
compare operations and merge expressions. They can be hierarchically nested using prece-
dence and parentheses. The merge expressions are nested as well but only contain merge
functions and variables. Using augmented values with such expressions requires a disman-
tling to translate each component. Table 4.8 illustrates the pattern for dismantling expressions
with introducing new variables for intermediate results. All boolean operators in SCL have
equivalent counterparts in Esterel evaluating signals. Consequently, all operations can be
translated using a general pattern, shown in Table 4.9. The equals and not-equals comparison
operation requires a more complex representation in boolean logic. Note that the operations
are only performed when both input variables are present. Hence, if any referenced variable
is not correctly initialized, the operation result is absent. This propagates through the entire

66

4.3. Translation into Esterel

SCL Esterel

1 xi = true
1 emit x

p
i

2 emit xi

1 xi = false 1 emit x
p
i

1 xi = e

1 v Ð e;
2 present vp then

3 emit x
p
i

4 present v then

5 emit xi
6 end

7 else

8 emit error

9 end

1 if (e) then

2 //then-block

3 else

4 //else-block

5 end

1 v Ð e;
2 present vp then

3 present v then

4 % then-block

5 else

6 % else-block

7 end

8 else

9 emit error

10 end

with: e expression

Table 4.7. Translation patterns for assignments and conditionals using pure signals

expression and the assignment or conditional reading the result of the expression will fail
with the not-initialized error. If an operand is a constant, the general pattern can be statically
evaluated removing the corresponding signals. Hence, an equality check with zero will result
in a negation of the signal state. Monadic operations can be directly included into the signal
expression of the present test determining the value. The same holds for the pre-function
when a register variable is read. This expression neither requires dismantling. Furthermore, if
a read variable is an input the presence test of its presence signal is omitted.
The implementation of the merge functions can be directly derived form their definitions,
since they are designed with Esterel in mind. Table 4.10 presents the Esterel implementation
of the three merge functions. Note that again the error signal activates a non-constructive
program section to reject the program.

67

4. Strict Sequential Constructiveness

Composed Expression Decomposed Expression

1 e op xi
1 v Ð e;
2 v op xi

1 r op xi
1 v Ð r;
2 v op xi

1 f (xi, r) 1 v Ð r;
2 f (xi, v)

1 f (r, xi)
1 v Ð r;
2 f (v, xi)

1 f (r0, r1)
1 v0 Ð r0;

2 v1 Ð r1;

3 f (v0, v1)

1 combine(op, r, xup)
1 v Ð r;
2 combine(op, v, xup)

with: e expression, op operator, f P {seq, conc}, r resolve expression

Table 4.8. Translation patterns for dismantling expressions using pure signals

Expression Esterel

1 v Ð xi opbin xj

1 present x
p
i and x

p
j then

2 emit vp;

3 present xi opbin xj then

4 emit v

5 end

6 end

1 v Ð xi == xj

1 present x
p
i and x

p
j then

2 emit vp;

3 present (xi and xj) or (not xi and not xj)

then

4 emit v

5 end

6 end

1 v Ð xi != xj

1 present x
p
i and x

p
j then

2 emit vp;

3 present (xj and not xj) or (not xj and xj)

then

4 emit v

5 end

6 end

with: opbin binary operator

Table 4.9. Translation patterns for single operator expressions using pure signals

68

4.3. Translation into Esterel

Resolve Function Esterel

1 v Ð seq(xi, xj)

1 present x
p
j then

2 emit vp;

3 present xj then

4 emit v

5 end

6 else

7 present x
p
i then

8 emit vp;

9 present xi then

10 emit v

11 end

12 end

1 v Ð conc(xi, xj)

1 present x
p
i and x

p
j then

2 present (xi and not xj) or (xi and not xj)

then

3 emit error

4 else

5 emit vp;

6 present xi then

7 emit v

8 end

9 else

10 present x
p
i or x

p
j then

11 emit vp;

12 present xi or xj then

13 emit v;

14 end

15 end

16 end

1 v Ð combine(opbin, x, xup)

1 present xp then

2 emit vp;

3 present x
p
up then

4 present x opbin xup then

5 emit v

6 end

7 else

8 present x then

9 emit v

10 end

11 end

12 else

13 present x
p
up then

14 emit error

15 end

16 end

with: opbin binary operator

Table 4.10. Translation patterns for merge functions using pure signals
69

4. Strict Sequential Constructiveness

1 if x == (seq(y0, y1) | z) then

2 // then-branch

3 end

(a) Truncated source program in SCL

1 temp0 Ð seq(y0, y1)

2 temp1 Ð temp0 | z

3 temp2 Ð x == temp1

4 present temp2p then

5 present temp2 then

6 % then-block

7 end

8 else

9 emit error

10 end

(b) Intermediate result after disman-
tling the expressions

1 present y1p then

2 emit temp0p;

3 present y1 then

4 emit temp0

5 end

6 else

7 present y0p then

8 emit temp0p;

9 present y0 then

10 emit temp0

11 end

12 end;

13 present temp0p and zp then

14 emit temp1p;

15 present temp0 or z then

16 emit temp1

17 end

18 end;

19 present xp and temp1p then

20 emit temp2p;

21 present (x and temp1) or (not x and not temp1)

then

22 emit temp2

23 end

24 end;

25 present temp2p then

26 present temp2 then

27 % then-block

28 end

29 else

30 emit error

31 end

(c) Resulting Esterel program

Listing 4.26. Truncated example program for expressions translation

Listing 4.26 illustrates the translation of a conditional expression into Esterel. Listing 4.26a
shows the source statement which is translated. The surrounding program is ignored in
this example to focus on the expression itself. Listing 4.26b presents an intermediate step in
the transformation. The conditional expression is dismantled using the same intermediate
notation as presented in the corresponding patterns. Each operation is performed separately
and the result is subsequently evaluated by the surrounding operation. The introduced
intermediate variables are named temp. Each variable is represented by two signals, the one
with appended p is considered the signal indicating the presence of the value, the other is the
value. The conditional is translated using the corresponding pattern, starting at line 4. The
first present test checks the signal indicating if the conditional expression yields a valid result.

70

4.3. Translation into Esterel

If this signal is not set, some variable is not correctly initialized and the program is rejected
by emitting the error signal in line 9. The second present test performs the actual branching
based on the boolean result of the condition. Listing 4.26c shows the final resulting Esterel
program, separately evaluating each operator and merge function. Lines 1 to 12 represent the
seq-function, lines 13 to 18 the logical or, and lines 19 to 24 the equals comparison. The result
is evaluated by the translated if pattern.

Rejecting Programs

The error signal is used to dynamically reject programs in the process of the Esterel construc-
tiveness analysis. The signal itself is declared global to the programs and can be used by all
conc-functions and initialization checks. If the signal is emitted, it activates a non-constructive
program section which runs concurrent to the source program. For delayed programs the
section is encapsulated in a loop or placed directly into the loop handling the registers of the
SSA form. Listing 4.27 illustrates the general pattern for inserting the error section. The original
program will be inserted at line 4 and the subsequently emitted term signal terminates the
loop handling the error signal. The non-constructive section starts at line 12, it emits the
errorhelper based on its own state. The error signal activates this section, which will cause
the Esterel constructiveness analysis to reject the program iff the error signal can be present.

4.3.4 Valued Signal Encoding

Another approach for encoding variables is to use valued signals. Valued signals carry in
addition to their signal state a value which is persistent across ticks. Hence, this encoding
is well suited to represent augmented values, especially with more complex data types
than boolean. However, valued signals are not part of the kernel language and evaluating
signal values is not part of the implemented Esterel constructiveness analysis. Consequently,
the valued signal encoding can only be used for creating equivalent programs and not for
checking constructiveness with the Esterel compiler.
The translation of assignments and conditionals requires the same dismantling as the pure
signal encoding, presented in Section 4.3.3. Table 4.11 shows the pattern for transforming
assignments and conditionals including the general pattern for operations and Table 4.12
presents the implementation of the merge functions.

71

4. Strict Sequential Constructiveness

1 module ErrorPattern:

2 signal error, term in

3 [

4 % Original program here

5 emit term

6 ||

7 trap termError

8 loop

9 % Error handling

10 signal errorhelper in

11 present error then

12 present errorhelper else

13 emit errorhelper

14 end

15 end

16 end signal;

17 % Exiting loop when original program terminates

18 present term then

19 exit termError

20 end;

21 pause

22 end loop

23 end trap

24]

25 end signal

26 end module

Listing 4.27. Pattern for rejecting programs

72

4.3. Translation into Esterel

SCL Esterel

1 xi = c 1 emit xi(c)

1 xi = e

1 v Ð e;
2 present v then

3 emit xi(?v)

4 else

5 emit error

6 end

1 if (e) then

2 //then-block

3 else

4 //else-block

5 end

1 v Ð e;
2 present v then

3 if ?v then

4 % then-block

5 else

6 % else-block

7 end

8 else

9 emit error

10 end

1 v Ð xi op xj

1 present xi and xj then

2 emit v(?xi op ?xj)

3 end

with: c constant value, e expression, op operator

Table 4.11. Translation patterns for assignments, conditionals, and operations using valued signals

73

4. Strict Sequential Constructiveness

Resolve Function Esterel

1 v Ð seq(xi, xj)

1 present xj then

2 emit v(?xj)

3 else

4 present xi then

5 emit v(?xi)

6 end

7 end

1 v Ð conc(xi, xj)

1 present xi and xj then

2 if ?xi <> ?xj then

3 emit error

4 else

5 emit v(?xi)

6 else

7 present xj then

8 emit v(?xj)

9 else

10 present xi then

11 emit v(?xi)

12 end

13 end

14 end

1 v Ð combine(op, x, xup)

1 present x then

2 present xup then

3 emit v(?x op ?xup)

4 else

5 emit v(?x)

6 end

7 else

8 present xup then

9 emit error

10 end

11 end

with: op operator

Table 4.12. Translation patterns for merge functions using valued signals

74

Chapter 5

Implementation

This chapter describes the implementation of the concept presented in Chapter 4. The im-
plementation is part of the KIELER project, which provides a programming environment and
compiler for the languages related to the SC MoC. The KIELER project already contains EMF

meta-models or Xtext grammars for SCL, SCG, Esterel, and more, implemented in previous
work [Smy13; Rüe11]. This facilitates the implementation of an SSA transformation and trans-
lation into Esterel. At first, Section 5.1 describes the integration of these two transformations
into the KIELER project. Secondly, Section 5.2 presents the SSA transformation based on SCGs.
Subsequently, the translation into Esterel is presented in Section 5.3. Both sections illustrate
their transformation on the example program P10 from Listing 1.3 on page 3.

5.1 Integration into KIELER

The KIELER project with its generic compiler infrastructure KiCo provides multiple translations
between different synchronous and SC languages. Figure 2.8 on page 16 illustrates the
language translations available before this thesis. Figure 5.1 shows the diagram extended by
the SSA form, presented in this thesis. The node highlighted in red represents the SSA form
based on an SCG, and the red arrow starting at the general SCG illustrates the transformation
into this form. The implementation of the SSA form is based on an SCG, because it is a
general and basic form of representing an arbitrary SC program. With respect to SCCharts,
SyncCharts, and Esterel the SCG is the lowest common basis in the current compile chain. An
SCG representation is fully equivalent to its SCL program, but is based on a different meta-
model allowing the integration of dependencies, basic blocks and scheduling information.
The red arrow from SSA-SCG to Esterel represents the translation into Esterel, facilitated by the
SSA form.
Nevertheless, Figure 5.1 presents only an abstract view on the available translations. The
actual transformations implemented for the KiCo infrastructure are usually smaller modular

SCEst SCL

SCCharts

Esterel

SCG Seq. SCG

Seq. SSA-SCG Circuit

C

JavaSyncCharts

SSA-SCG

Figure 5.1. KIELER compilation overview with new SSA form for genral SCGs

75

5. Implementation

 Strict Sequential Constructiveness

[-]

 SSA Esterel SSA SSA SCL

 SCGraph

[-]

 Scheduling Sequentialize BasicBlock Dependency SCG Guard

 Code Generation

[+]

Figure 5.2. SCG compile chains with new compilation path into Esterel

compilation steps. Figure 5.2 shows a screenshot of the transformations presented by KiCo

available for the SCG, including the new compile chain to produce Esterel code. The surround-
ing nodes categorize and bundle the contained transformations. The transformations inside
SCGraph are the implementation of the dataflow compilation approach, mentioned in Sec-
tion 2.2. They result in a Sequentialized SCG, which can be further translated into for example
C code. The Esterel compile chain includes some of the more general transformation of the
dataflow chain, which are highlighted in blue. This way the existing dependency analysis
and basic block separation can be re-used. The remaining transformations are skipped and
the SSA transformation is performed next, processing an SCG with dependencies and basic
blocks. Section 5.2 presents the details of this transformation. Subsequently, the SCG in SSA

form is translated into an intermediate SCL representation and finally translated into Esterel,
further described in Section 5.3.

5.2 SSA Transformation

The SSA transformation implements the concept presented in Section 4.2. At first, the SCG

is traversed to find variable references in assignment and conditional nodes. Each reference
is replaced by a merge expression based on all assignments to the corresponding variable.
Afterwards, the SSA variable versions are created and each assigned variable is renamed
accordingly. Figure 5.3 shows the result of the SSA transformation applied on the SCG rep-
resentation of the P10 program from Listing 1.3 on page 3. The assigned variables x and y

are split up into versions and the assignment to y1 uses a merge expression to resolve the
correct definition of x. Since the variable is not written by an update, the implementation
of the patterns in Table 4.2 is used to create the expression. Furthermore, the expression is
reduced to its context and transformed into the compact form, according to Section 4.2.3. The
reduction requires dominator relations between the nodes in the SCG. Hence, a dominator
analysis is implemented based on the book about compiler implementation by Appel and
Palsberg [AP02]. The actual algorithm is developed by Lengauer and Tarjan [LT79]. To reduce
the number of nodes processed by the algorithm and thus the runtime, it is applied to the
basic blocks structure of the SCG. This allows to determine the dominator relation between the
actual nodes. A diagram synthesis is implemented using the KLighD framework, to visualize
and inspect the generated dominator tree. Figure 5.4 illustrates the dominator tree for the

76

5.2. SSA Transformation

entry

y0 = 0

fork

join

exit

entry

x0 = 1

y1 = conc(x0, x1)

exit

entry

y1 == 0

x1 = 0

exit

true

Figure 5.3. SCG representaion of the P10 pro-
gram in SSA form

entry

y = 0

fork

entry

x = 1

y = x

exit

entry

y == 0

x = 0 exit

join

exit

Figure 5.4. Dominator tree of basic blocks in
the P10 SCG

basic blocks of the original P10 SCG. To enable this analysis the SSA transformation requires
a previous basic block transformation. The combination of dependencies in the SCG and
dominator relations allows the reduction of the merge expression to their context in the SCG.
This way, the merge expression initially introduced for reading the correct value of x in the
conditional of the second thread of P10 is reduced to just y1. This can be made, because
y1 fulfills the requirement for an instantaneously concurrent dominant definition and thus
always overrides y0, described in Section 4.2.3.

Furthermore, the implementation allows the creation of merge expressions for variables
written by updates. In such situations, the SCG is copied and all nodes which assign variables
other than the analyzed one are removed. Afterwards, the SCG is compiled with KiCo using the
dataflow compile chain, illustrated in Figure 5.2, until a static scheduling is generated. Since
the copying of an EMF model and the compilation in KiCo allows the tracing of model elements,
the scheduled nodes can be associated with the nodes in the original SCG. Hence, the schedule
is used to generated a merge expression based on the implementation of Algorithm 1 on
page 52.

In an SCG which contains surface and depth nodes, an additional thread is created to handle
the persistence of merged variable values. The SCG is restructured to fork the thread before

77

5. Implementation

1 module P10-SSA

2 bool x0, x1;

3 bool y0, y1;

4 bool temp0;

5 {

6 y0 = false;

7 fork

8 x0 = true;

9 y1 = <conc(x0, x1)>;

10 par

11 temp0 = y1 == false;

12 if temp0 then

13 x1 = false;

14 end;

15 join;

16 }

Listing 5.1. The P10 program in intermediate
SSA form

entry

y0 = false

fork

join

exit

entry

x0 = true

y1 = conc(x0, x1)

exit

entry

temp0 = y1 == false

temp0

x1 = false

exit

true

Figure 5.5. SCG representation of program P10

in intermediate SSA form

the actual program starts and the register variables are created and assigned using generated
merge expressions. Since all definitions in the original program are concurrent to this new
thread the expressions are not reduced. Moreover, the register variables would be considered
in the creation of the merge expressions in the original program.
The reordering of definitions which are located in a loop to prevent sequentiality inversion
could not be implemented in the limited time frame of this thesis. Hence, the implementation
cannot correctly handle multiple assignments to the same variable in a loop. However, all
SCGs without such assignments are correctly translated. The same holds for forward jump
structures, as mentioned in Section 4.3.1.

5.3 Translation into Esterel

The translation into Esterel, described in Section 4.3, is split up into two separate transforma-
tions. The first is a translation into an intermediate SCL representation. The reason for using
SCL as intermediate language is the structure of the implemented meta-model. Similar to
Esterel, the statements in SCL are hierarchically nested, whereas an SCG has a flat structure of
nodes and edges. Hence, the translation into SCL is used to pre-process the structure of the SCG

78

5.3. Translation into Esterel

and to facilitate the translation into Esterel. Moreover, a translation from SCG to SCL is already
implemented in the KIELER project and is re-used in this transformation. Another aspect
is the dismantling of expressions, described in Section 4.3.3. It is reasonable to dismantle
nested expressions in SCL and to introduce new intermediate variables, since the variables
are not yet represented by multiple signals. Prior to this dismantling the merge expressions
are normalized, according to Section 4.2.3, to facilitate their dismantling. Furthermore, this
transformations translates the interface of variables declared as input and output into separate
variables, according to Section 4.3.2.
Listing 5.1 shows the resulting intermediate representation in SCL for the P10 program. The
conditional expression is dismantled, resulting in an assignment to an intermediate variable
temp0 in line 11. The assignment to y1 does not require a dismantling because it contains only
a single merge function. The pointy brackets around the conc-function indicate a function
call in the SCL grammar. Figure 5.5 illustrates the SCG representation of this intermediate
representation to ease the visual relation to Figure 5.3.
The second transformation is the actual translation into Esterel, implementing the patterns
presented in Section 4.3.3. Listing 5.2 shows the result of this transformation for the program
P10. The assignment of y0 is represented in line 7, emitting the presence signal to indicate
that the assignment is active and leaving the value signal unemitted to encode the false value
by absent. Lines 11 to 27 show the translated conc-function assigned to y1, including the
conflict check and the emission of the error signal in such situations. The test for equality
to zero is represented by the lines 29 to 34. The constant value in the expression is statically
resolved to a negation of the value of y1, storing the result in temp0. The subsequent code
checks this result and performs the branching with the then branch in line 37. Additionally,
the translation introduces a code section reacting on the emission of the error signal. In this
case a new thread is created containing the error pattern in lines 44 to 50.
If the program were delayed, i. e., would contain a pause statement, this section would be
directly inserted into the concurrent thread handling the register variables. Similar to the
implemented SSA transformation, the implementation of the translation into Esterel does
not handle loops. This does not mean that the transformation fails for such programs, but
it does not take the backward jumps into account. The code is generated such that the
gotos and labels are not translated. This allows to manually insert the necessary loop and
trap statements afterwards. A future implementation may contain this translation, but in
the limited time frame of this thesis it was not possible to implement an analysis which
automatically determines the statements contained in a loop body.

79

5. Implementation

1 module P10:

2 signal x0p, x0, x1p, x1 in

3 signal y0p, y0, y1p, y1 in

4 signal temp0p, temp0 in

5 signal error in

6 [

7 emit y0p;

8 [

9 emit x0p;

10 emit x0;

11 present x0p and x1p then

12 present (not x0 and x1) or (x0 and not x1) then

13 emit error

14 else

15 emit y1p;

16 present x0p then

17 emit y1

18 end

19 end

20 else

21 present x0p or x1p then

22 emit y1p;

23 present x0 or x1 then

24 emit y1

25 end

26 end

27 end

28 ||

29 present y1p then

30 emit temp0p;

31 present not y1 then

32 emit temp0

33 end

34 end;

35 present temp0p then

36 present temp0 then

37 emit x1p

38 end

39 else

40 emit error

41 end

42]

43 ||

44 signal errorhelper in

45 present error then

46 present errorhelper else

47 emit errorhelper

48 end

49 end

50 end signal

51]

52 end signal

53 end signal

54 end signal

55 end signal

56 end module

Listing 5.2. The P10 program translated into Esterel

80

Chapter 6

Evaluation

This chapter evaluates the concept of checking the Esterel constructiveness of SC programs by
performing an SSA transformation and a subsequent translation into Esterel. First, Section 6.1
summarizes the different restrictions to the SC programs introduced in Chapter 4 to evaluate
the number of programs supported by the presented approach. Secondly, Section 6.2 presents
some characteristic programs and tests their compliance with the class of SSC programs.
The programs are checked for their constructiveness in Esterel and tested for a semantically
equivalent behavior. Finally, Section 6.3 presents limitations to the Esterel constructiveness
analysis caused by the presented SSA definition and translation into Esterel.

6.1 Supported Programs

The concepts for the SC-specific SSA transformation and the translation into Esterel in Chapter 4
introduce some restrictions to the supported programs. Restrictions such as prohibiting
complex forward jump structures are made to be able to handle more important structures and
aspects without providing a general solution. This explicitly limits the number of programs
which can be tested for SSC, disregarding their actual compliance with constructiveness in
Esterel.
Figure 6.1 shows the supported SC program classes. The classification is based on the language
features presented in Section 4.2, illustrated by a Venn diagram. It shows all possible combi-
nations of concurrent, delayed, cyclic, and programs with updates. Moreover, the diagram
illustrates the restricted subsets of these classes. The gray areas indicate not supported classes
of programs, based on the explicit restrictions in Chapter 4.
Sections 4.2.3 and 4.3.1 describe that forward jumps which cannot directly expressed by if-
then-else constructs without gotos are not supported. This is done to simplify the analysis and
to prevent the problem of jumps targeting into other structures, such as loops or conditional
branches. Since this limitation restricts the general structure, it affects all SC program classes
and is represented by the gray bar in the middle of the diagram intersecting with all classes.
Additionally, Section 4.3.1 restricts the class cyclic SC programs to those which form reducible
flowgraphs. This is done to comply with the loop structures in Esterel. Moreover, Esterel itself
is restricted to non-instantaneous loops. Hence, the class of cyclic programs supported by
the concept lies within the class of delayed programs. Another restriction concerning loop
structures is introduced in Section 4.2.5. The concept of reordering variable versions in merge
expressions which consists of multiple definitions located in a loop requires at least one

81

6. Evaluation

Concurrency

Delay

Cycles

Updates

Forward Jumps

Instataneous
Loops

No Partial
Schedules for
Updated
Variables

Figure 6.1. Supported SC program classes

pause statement which is reached in every iteration. In the diagram, the unsupported class of
instantaneous cycles also covers loops which do not contain such a pause statement.
The last restriction is made in Section 4.2.6. This section uses partial static schedules to
create merge expressions for variables written by updates. Consequently, this requires that a
program reduced to that variable is statically schedulable. The separated area inside the class
of programs using updates indicates this class of programs with have cyclic dependencies
between statements including a variable which is written by updates. Since such dependency
cycles can only occur in concurrent programs the area does not intersect with the class of
non-concurrent programs.
Section 7.2.3 describes possible approaches to overcome these restrictions in future work.

6.2 Test Cases

This section presents some characteristic SC programs to evaluate the capabilities of detecting
SSC programs. The programs are translated into SSA form and subsequently into Esterel
using the implementation in the KIELER project, presented in Chapter 5. The concepts which
could not be implemented in the scope of this thesis were additionally transformed manually
according to their definition in Chapter 4. For the constructiveness analysis, the Esterel
compiler in version V5_921 is used. The analysis is invoked using the following options:

esterel -Icheck <file>

The -Icheck options causes the compiler to perform a complete constructiveness analysis and
additional checks for single emission of single signals. No executable code is generated in this
process, but the analysis is based on a translation into a circuit representation of the program.

1http://www-sop.inria.fr/esterel-org/filesv5_92/home.htm

82

http://www-sop.inria.fr/esterel-org/filesv5_92/home.htm

6.2. Test Cases

6.2.1 P10

The program P10 is the motivating example of this thesis. Section 1.2 presents the program
in Listing 1.3 on page 3. It is considered SC but cannot considered constructive in the sense
of Esterel. Hence, it should be rejected as non-SSC. In Chapter 5 the program P10 is used to
illustrate the translation into SSA form and subsequently into Esterel code. Listing 5.2 on
page 80 shows the translated program in Esterel.
This program can be analyzed for its constructiveness using the Esterel compiler. As expected
the compiler yields the result that the program, particularly the analyzed circuit, is not
considered constructive in the sense of Esterel. Figure 6.2 illustrates the reasoning provided by
the compiler. The highlighting in the program represents the point where the constructiveness
analysis stopped because no further values could be constructively determined. In the signal
declaration at the top of the program, the green highlighting indicates that the signal state
is present. The red highlighting marks signals which state is unknown. In the program
code, statements highlighted in green were executed in the presented tick and statements
highlighted in red cannot be executed because they depend on signals which state could
not be constructively determined. In the case of P10 the reasoning points out that the causal
dependency between y and x is the reason for the classification as non-constructive in Esterel.
In the second thread, x1 is written based on the evaluation of y1 in the conditional. The present
test for the y

p
1 signal indicates that the value of y is required and merged for the conditional

expression. However, yp
1 is emitted in the first thread, but requires the merged value of x. This

includes the value potentially assigned in the second thread, indicated by the presence test of
x

p
1 . Hence, the program is rejected because of this causality cycle between the write and read

accesses on y and x.

6.2.2 ABO

Another program which is characteristic for the SC MoC is ABO, shown in Listing 2.2 on page 12.
The program uses shared variables and assignments to multiple different values in the same
tick. Especially the variable O1 is interesting in this context, because both threads set the value
to true in the same tick. However, since both assigned values are the same, the writes are
not conflicting. Moreover, when the last of the concurrent threads terminates, it sets O1 to
true and after the join it is assigned to false. Assuming a similar Esterel program with signals
instead of variables, this behavior is considered as an unemit in the sense of SCEst.
To check the Esterel constructiveness of the ABO program, it is translated into SSA form.
Listing 6.1 shows the resulting program. The loop starting at line 31 handles the definitions of
the variables in each tick and calculates the output values. It is constructed using the concepts
described in Sections 4.2.4 and 4.2.7. First the definitions of O1 and O2 are merged and stored
in their corresponding register variables to preserve the current value for the next tick. Then
the outputs are conveyed. The assignment of A might seem superfluous but since it is an input
and output variable, the input value is convey as output. The assignment of B is a similar case
but with an additional definition inside the program influencing the value of B, illustrating

83

6. Evaluation

Figure 6.2. Screenshot of the Esterel compiler reasoning on the constructiveness of the P10 program

84

6.2. Test Cases

1 module ABO-SSA

2 input output bool A, B;

3 bool B0;

4 bool O1reg, O1_0, O1_1, O1_2, O1_3;

5 bool O2reg, O2_0, O2_1;

6 bool term = false;

7 {

8 fork

9 O1_0 = false;

10 O2_0 = false;

11 fork

12 HandleA:

13 if !A then

14 pause;

15 goto HandleA

16 end;

17 B0 = true;

18 O1_1 = true

19 par

20 HandleB:

21 pause;

22 if !seq(B, B0) then

23 goto HandleB

24 end;

25 O1_2 = true

26 join;

27 O1_3 = false;

28 O2_1 = true;

29 term = true

30 par

31 Loop:

32 O1reg = seq(seq(seq(pre(O1reg), O1_0),

conc(O1_1, O1_2)) O1_3);

33 O2reg = seq(seq(pre(O2reg), O2_0), O2_1);

34 A = A;

35 B = seq(B, B0);

36 O1 = O1reg;

37 O2 = O2reg;

38 if !term then

39 pause;

40 goto Loop

41 end

42 join

43 }

Listing 6.1. The ABO program in SSA form

the necessity of these assignments. The outputs O1 and O2 are written using the merged value
of the register.
Subsequently, the program in SSA form is translated into Esterel. The current implementation
does not translate loops, but still produces appropriate code ignoring the loop. Therefore, the
resulting Esterel program in Listing 6.2 contains manually added loop and trap statements.
According to the pattern in Table 4.4, loop and trap statements are inserted in lines 18 to 20,
34 to 36, 42 to 44, 71 to 73, 82 & 83, and 218 & 219. Additional exit statements are added in
lines 28, 33, 65, 70, and 215.
Performing the constructiveness analysis with the Esterel compiler yields the result that ABO
is constructive. Additionally, a simulation of the program using test traces shows that the
behavior is equivalent to the original SCL program. Thus, ABO can be considered SSC.
This example shows that SC programs using multiple sequential and concurrent writes can be
correctly translated into Esterel and analyzed for their compliance with the constructiveness
in Esterel. This includes the correct dynamic detection of non-conflicting concurrent writes
using the conc-function. It also shows that the original SCL program is significantly more
compact than the generated equivalent Esterel code.

85

6. Evaluation

1 module ABO:

2 output Ao;

3 output Bo;

4 input Ai;

5 input Bi;

6 output O1;

7 output O2;

8 signal Aregp, Areg in

9 signal Bregp, Breg, B0p, B0

in

10 signal O1regp, O1reg, O1_0p,

O1_0, O1_1p, O1_1,

O1_2p, O1_2, O1_3p, O1_3

in

11 signal O2regp, O2reg, O2_0p,

O2_0, O2_1p, O2_1 in

12 signal temp0p, temp0, temp1p,

temp1, temp2p, temp2,

temp3p, temp3, temp4p,

temp4, temp5p, temp5,

temp6p, temp6 in

13 signal error, term in

14 [

15 emit O1_0p;

16 emit O2_0p;

17 [

18 trap loop0Exit in

19 loop

20 trap loop0Entry in

21 pause;

22 emit temp0p;

23 present not Ai then

24 emit temp0

25 end;

26 present temp0p then

27 present temp0 then

28 exit loop0Entry

29 end

30 else

31 emit error

32 end;

33 exit loop0Exit

34 end trap

35 end loop

36 end trap;

37 emit B0p;

38 emit B0;

39 emit O1_1p;

40 emit O1_1

41 ||

42 trap loop1Exit in

43 loop

44 trap loop1Entry in

45 pause;

46 present B0p then

47 emit temp2p;

48 present B0 then

49 emit temp2

50 end

51 else

52 emit temp2p;

53 present Bi then

54 emit temp2

55 end

56 end;

57 present temp2p then

58 emit temp1p;

59 present not temp2 then

60 emit temp1

61 end

62 end;

63 present temp1p then

64 present temp1 then

65 exit loop1Entry

66 end

67 else

68 emit error

69 end;

70 exit loop1Exit

71 end trap

72 end loop

73 end trap;

74 emit O1_2p;

75 emit O1_2

76];

77 emit O1_3p;

78 emit O2_1p;

79 emit O2_1;

80 emit term

81 ||

82 trap loop2Exit in

83 loop

84 present B0p then

85 emit Bregp;

86 present B0 then

87 emit Breg

88 end

89 else

90 emit Bregp;

91 present Bi then

92 emit Breg

93 end

94 end;

95 present O1_0p then

96 emit temp4p;

97 present O1_0 then

98 emit temp4

99 end

100 else

101 present pre(O1regp) then

102 emit temp4p;

103 present pre(O1reg)

then

104 emit temp4

105 end

106 end

107 end;

108 present O1_1p and O1_2p

then

Listing 6.2. (1/2) The ABO program translated into Esterel

86

6.2. Test Cases

109 present (not O1_1 and

O1_2) or (O1_1 and

not O1_2) then

110 emit error

111 else

112 emit temp5p;

113 present O1_1 then

114 emit temp5

115 end

116 end

117 else

118 present O1_1p or O1_2p

then

119 emit temp5p;

120 present O1_1 or O1_2

then

121 emit temp5

122 end

123 end

124 end;

125 present temp5p then

126 emit temp3p;

127 present temp5 then

128 emit temp3

129 end

130 else

131 present temp4p then

132 emit temp3p;

133 present temp4 then

134 emit temp3

135 end

136 end

137 end;

138 present O1_3p then

139 emit O1regp;

140 present O1_3 then

141 emit O1reg

142 end

143 else

144 present temp3p then

145 emit O1regp;

146 present temp3 then

147 emit O1reg

148 end

149 else

150 emit error

151 end

152 end;

153 present O2_0p then

154 emit temp6p;

155 present O2_0 then

156 emit temp6

157 end

158 else

159 present pre(O2regp) then

160 emit temp6p;

161 present pre(O2reg)

then

162 emit temp6

163 end

164 end

165 end;

166 present O2_1p then

167 emit O2regp;

168 present O2_1 then

169 emit O2reg

170 end

171 else

172 present temp6p then

173 emit O2regp;

174 present temp6 then

175 emit O2reg

176 end

177 else

178 emit error

179 end

180 end;

181 present Ai then

182 emit Ao

183 end;

184 present B0p then

185 present B0 then

186 emit Bo

187 end

188 else

189 present Bi then

190 emit Bo

191 end

192 end;

193 present O1regp then

194 present O1reg then

195 emit O1

196 end

197 else

198 emit error

199 end;

200 present O2regp then

201 present O2reg then

202 emit O2

203 end

204 else

205 emit error

206 end;

207 signal errorhelper in

208 present error then

209 present errorhelper else

210 emit errorhelper

211 end

212 end

213 end signal;

214 present term then

215 exit loop2Exit

216 end;

217 pause;

218 end loop

219 end trap

220]

221 end signal

222 end signal

223 end signal

224 end signal

225 end signal

226 end signal

227 end module

Listing 6.2 (2/2) The ABO program translated into Esterel

87

6. Evaluation

6.2.3 The Token Ring Arbiter

The Token Ring Arbiter is mentioned in Section 4.2.6. It is a constructive program containing
a static cyclic dependency [Pan02]. An Esterel implementation of the stations in the Token
Ring is given in the Esterel Primer [Ber99]. Listing 6.3 shows the TokenRingArbiter program
with three stations implemented in SCL. The program uses variables initialized to false in
every tick and updates which combine the value with true using a logical or, to model the
reset and emit behavior of signals.
The idea of the Token Ring Arbiter is that each station can request the token in each tick
using an input R. A station gets the token indicated by G, if the token starts in this tick at this
station or a previous station passes the token to it. If a station could get the token but does
not request it, the token is immediately passed to the next station, indicated by P. Moreover,
in each tick the starting point for the token indicated by T will move to the next station. In the
given Token Ring Arbiter three stations are connected to each other and the stations form a
static cycle because each of them listens for the previous one if the token is passed to them.

1 module TokenRingArbiter

2 input bool R1, R2, R3;

3 output bool G1, G2, G3;

4 bool P1, P2, P3, T1, T2, T3;

5 {

6 fork

7 T1 = T1 | true

8 par

9 Loop1_1: // Station 1

10 if T1 | P1 then

11 if R1 then

12 G1 = G1 | true

13 else

14 P2 = P2 | true

15 end

16 end;

17 pause;

18 goto Loop1_1

19 par

20 Loop1_2:

21 if T1 then

22 pause;

23 T2 = T2 | true

24 else

25 pause

26 end;

27 goto Loop1_2

28 par

29 Loop2_1: // Station 2

30 if T2 | P2 then

31 if R2 then

32 G2 = G2 | true

33 else

34 P3 = P3 | true

35 end

36 end;

37 pause;

38 goto Loop2_1

39 par

40 Loop2_2:

41 if T2 then

42 pause;

43 T3 = T3 | true

44 else

45 pause

46 end;

47 goto Loop2_2

48 par

49 Loop3_1: // Station 3

50 if T3 | P3 then

51 if R3 then

52 G3 = G3 | true

53 else

54 P1 = P1 | true

55 end

56 end;

57 pause;

58 goto Loop3_1

59 par

60 Loop3_2:

61 if T3 then

62 pause;

63 T1 = T1 | true

64 else

65 pause

66 end;

67 goto Loop3_2

68 par

69 SignalReset:

70 G1 = false;

71 G2 = false;

72 G3 = false;

73 P1 = false;

74 P2 = false;

75 P3 = false;

76 T1 = false;

77 T2 = false;

78 T3 = false;

79 pause;

80 goto SignalReset

81 join

82 }

Listing 6.3. The TokenRingArbiter program with three stations

88

6.2. Test Cases

Nevertheless, the program is constructive in Esterel because the token is initialized to some
station and will always start at any of the stations, dynamically breaking the cycle.
This program allows to evaluate whether the presented approach is capable of handling such
programs and allows to detect Esterel constructiveness in the presence of static cycles. Due
to the usage of updates in the program the SSA form requires a static schedule to create the
merge expression for these variables. In combination with the static cyclic dependency in
the program it requires a partial scheduling of the program. Section 5.2 describes that the
implementation can create merge expression based on such partial schedules using the static
scheduling approach implemented in the compile chain for the SC MoC in KIELER. Listing 6.4
shows the generated intermediate SCL program in SSA form with dismantled expressions.
Further translating the program into Esterel and analyzing its constructiveness yields that the
generated program is not constructive.

1 module TokenRingArbiter-SSA

2 input bool R1, R2, R3;

3 output bool G1, G2, G3;

4 bool G1reg, G1_0up, G1_1;

5 bool G2reg, G2_0up, G2_1;

6 bool G3reg, G3_0up, G3_1;

7 bool P1reg, P1_0up, P1_1;

8 bool P2reg, P2_0up, P2_1;

9 bool P3reg, P3_0up, P3_1;

10 bool T1reg, T1_0up, T1_1up, T1_2;

11 bool T2reg, T2_0up, T2_1;

12 bool T3reg, T3_0up, T3_1;

13 pure term;

14 bool temp0, temp1, temp2, temp3, temp4, temp5,

temp6, temp7, temp8, temp9, temp10,

temp11, temp12, temp13, temp14, temp15,

temp16, temp17, temp18, temp19, temp20,

temp21, temp22, temp23, temp24, temp25,

temp26, temp27, temp28, temp29, temp30,

temp31, temp32;

15 {

16 fork

17 fork

18 T1_0up = true;

19 par

20 loop0:

21 temp3 = <seq(pre(T1reg), T1_2)>;

22 temp2 = <combine("OR", temp3, T1_0up)>;

23 temp1 = <combine("OR", temp2, T1_1up)>;

24 temp5 = <seq(pre(P1reg), P1_1)>;

25 temp4 = <combine("OR", temp5, P1_0up)>;

26 temp0 = temp1 | temp4;

27 if temp0 then

28 if R1 then

29 G1_0up = true;

30 else

31 P2_0up = true;

32 end;

33 end;

34 pause;

35 goto loop0;

36 par

37 loop6:

38 temp8 = <seq(pre(T1reg), T1_2)>;

39 temp7 = <combine("OR", temp8, T1_0up)>;

40 temp6 = <combine("OR", temp7, T1_1up)>;

41 if temp6 then

42 pause;

43 T2_0up = true;

44 else

45 pause;

46 end;

47 goto loop6;

48 par

49 loop7:

50 temp11 = <seq(pre(T2reg), T2_1)>;

51 temp10 = <combine("OR", temp11, T2_0up)>;

52 temp13 = <seq(pre(P2reg), P2_1)>;

53 temp12 = <combine("OR", temp13, P2_0up)>;

54 temp9 = temp10 | temp12;

55 if temp9 then

56 if R2 then

Listing 6.4. (1/2) The TokenRingArbiter in SSA form with dismantled expressions

89

6. Evaluation

57 G2_0up = true;

58 else

59 P3_0up = true;

60 end;

61 end;

62 pause;

63 goto loop7;

64 par

65 loop13:

66 temp15 = <seq(pre(T2reg), T2_1)>;

67 temp14 = <combine("OR", temp15, T2_0up)>;

68 if temp14 then

69 pause;

70 T3_0up = true;

71 else

72 pause;

73 end;

74 goto loop13;

75 par

76 loop14:

77 temp18 = <seq(pre(T3reg), T3_1)>;

78 temp17 = <combine("OR", temp18, T3_0up)>;

79 temp20 = <seq(pre(P3reg), P3_1)>;

80 temp19 = <combine("OR", temp20, P3_0up)>;

81 temp16 = temp17 | temp19;

82 if temp16 then

83 if R3 then

84 G3_0up = true;

85 else

86 P1_0up = true;

87 end;

88 end;

89 pause;

90 goto loop14;

91 par

92 loop20:

93 temp22 = <seq(pre(T3reg), T3_1)>;

94 temp21 = <combine("OR", temp22, T3_0up)>;

95 if temp21 then

96 pause;

97 T1_1up = true;

98 else

99 pause;

100 end;

101 goto loop20;

102 par

103 loop21:

104 G1_1 = false;

105 G2_1 = false;

106 G3_1 = false;

107 P1_1 = false;

108 P2_1 = false;

109 P3_1 = false;

110 T1_2 = false;

111 T2_1 = false;

112 T3_1 = false;

113 pause;

114 goto loop21;

115 join;

116 term = true;

117 par

118 loop22:

119 temp23 = <seq(pre(G1reg), G1_1)>;

120 G1reg = <combine("OR", temp23, G1_0up)>;

121 temp24 = <seq(pre(G2reg), G2_1)>;

122 G2reg = <combine("OR", temp24, G2_0up)>;

123 temp25 = <seq(pre(G3reg), G3_1)>;

124 G3reg = <combine("OR", temp25, G3_0up)>;

125 temp26 = <seq(pre(P1reg), P1_1)>;

126 P1reg = <combine("OR", temp26, P1_0up)>;

127 temp27 = <seq(pre(P2reg), P2_1)>;

128 P2reg = <combine("OR", temp27, P2_0up)>;

129 temp28 = <seq(pre(P3reg), P3_1)>;

130 P3reg = <combine("OR", temp28, P3_0up)>;

131 temp30 = <seq(pre(T1reg), T1_2)>;

132 temp29 = <combine("OR", temp30, T1_0up)>;

133 T1reg = <combine("OR", temp29, T1_1up)>;

134 temp31 = <seq(pre(T2reg), T2_1)>;

135 T2reg = <combine("OR", temp31, T2_0up)>;

136 temp32 = <seq(pre(T3reg), T3_1)>;

137 T3reg = <combine("OR", temp32, T3_0up)>;

138 G1 = G1reg;

139 G2 = G2reg;

140 G3 = G3reg;

141 if ! term then

142 pause;

143 goto loop22;

144 end;

145 join;

146 }

Listing 6.4 (2/2) The TokenRingArbiter in SSA form with dismantled expressions

90

6.2. Test Cases

Analyzing the reason for this result reveals that the static cycle could not be dynamically
resolved because the dismantling of conditional expressions and their translation into Esterel
introduced additional constraints to the analysis. The static cycle is formed by the test for an
already present or passed token in each station. In Listing 6.3, Station 1 performs this test
in line 10. Listing 6.5a also shows this line to illustrate the problem. Listing 6.5b presents
the line in SSA form. Since both T1 and P3 have multiple assignments in the program, they
require merge expressions. According to the rules for translating composed expressions,
presented in Section 4.3.3, the expression is dismantled before each part is translated into
Esterel. Listing 6.5c shows the dismantled conditional expression of intermediate SSA code
present in lines 21 to 27 of Listing 6.4. This dismantling places all sub-expression sequentially
before the their surrounding expression and before the conditional. Consequently, both merge
expression must be completely evaluated before the or compares the two results. Since the Pi
variables form the static cycle, their value cannot be constructively determined at this point
using the Esterel analysis. However, the T variable normally allows to dynamically break this
cycle. The analysis uses three valued function evaluation and allows short-circuit evaluation
of expression such as or. Hence, even if the value for P is unknown, the or expression could
be constructively evaluated to true if T is true. This is the reason why the Token Ring Arbiter
in Esterel is constructive. However, the dismantling explicitly demands that all sub-expression
must be evaluated to a known value sequentially before the or can be evaluated. Thus, the
concept of translating programs into Esterel as described here limits the capabilities of the
constructiveness analysis in Esterel. The following section describes such limitations more
generally.

1 if T1 | P1 then

(a) Conditional in the original program

1 if combine("OR", combine("OR", seq(pre(T1reg), T1_2), T1_0up), T1_1up) | combine("OR", seq(

pre(P1reg), P1_1), P1_0up) then

(b) Conditional in SSA form

1 temp3 = <seq(pre(T1reg), T1_2)>;

2 temp2 = <combine("OR", temp3, T1_0up)>;

3 temp1 = <combine("OR", temp2, T1_1up)>;

4 temp5 = <seq(pre(P1reg), P1_1)>;

5 temp4 = <combine("OR", temp5, P1_0up)>;

6 temp0 = temp1 | temp4;

7 if temp0 then

(c) Conditional in SSA form with dismantled expression

Listing 6.5. Conditional expression in the first station of the TokenRingArbiter program

91

6. Evaluation

A_ B
B

F U T
F F F
F U U
F U T

A
F
U
T

(a) AND

A_ B
B

F U T
F U T
U U T
T T T

A
F
U
T

(b) OR

A A

F T
U U
T F

(c) NOT

Table 6.1. Truth tables for boolean and, or, and not operations

6.3 Limitations

The presented concept for the SSA form and translation into Esterel explicitly mentions
restrictions of the supported programs, presented in Section 6.1. Moreover, this concept
causes further limitations to the programs tested for their constructiveness in Esterel.

6.3.1 Short-Circuit Evaluation

The example of the Token Ring Arbiter illustrates that the current rules for dismantling
expressions and their translation into Esterel restricts the analysis capabilities. The construc-
tiveness analysis in Esterel uses three valued logic to determine a known value for each
output wire. This allows short-circuit evaluation of boolean logical expressions even if one
part is still unknown. Table 6.1 shows the truth tables for basic operations in this logic.
However, if sub-expressions are present in an expression, the current rules define that they
are dismantled, illustrated in Listing 6.5 for the TokenRingAbiter. This is done because merge
expressions, which may be contained in other expressions, are defined using nested present
tests and emit for example the error signal. Ordering these sub-expressions sequentially
before the surrounding expression forces the Esterel constructiveness analysis to determine
these sub-expressions before the surrounding expression is evaluated. Hence, it prevents
the short-circuit evaluation. Section 7.2.4 presents ideas for a translations allowing such
short-circuit evaluation in composed expressions.

6.3.2 Ineffective Writes

Another aspect concerning the Esterel constructiveness analysis are ineffective writes. In
Esterel a signal is present iff it is emitted and its state is globally consistent along the entire
tick. Hence, even if a signal is emitted multiple times in the same tick, its state is fixed if the
analysis determines that some first emit is executed. Listing 6.6a shows the IneffectiveWrite

program in Esterel. The signal x is emitted in the first statement then two thread start. The
first thread emits y if x is present and the second emits x if y is present. Hence, both threads
form a static causal cycle with x and y. However, since x is always present due to the initial
emit, the presence test for x can be evaluated in the Esterel constructiveness analysis and the
cycle dissolves. Consequently, the program is considered constructive in the sense of Esterel.

92

6.3. Limitations

1 module IneffectiveWrite:

2 signal x, y in

3 emit x;

4 [

5 present x then

6 emit y

7 end

8 ||

9 present y then

10 emit x

11 end

12]

13 end signal

14 end module

(a) Written in Esterel

1 module IneffectiveWrite

2 int x, y;

3 {

4 x = 1;

5 fork

6 if x then

7 y = 1

8 end

9 par

10 if y then

11 x = 1

12 end

13 join

14 }

(b) Written in SCL

1 module IneffectiveWrite-SSA

2 int x0, x1, y;

3 {

4 x0 = 1;

5 fork

6 if seq(x0, x1) then

7 y = 1

8 end

9 par

10 if y then

11 x1 = 1

12 end

13 join

14 }

(c) Written in SCL and trans-
formed into SSA form

Listing 6.6. The IneffectiveWrite program

Listing 6.6b shows the IneffectiveWrite program implemented in SCL. The same behavior is
modeled using integers and should yield the same result as the Esterel programs with respect
to the variable values. Listing 6.6c illustrates the program in SSA form. Since both definitions
of x reach the conditional statement, a seq-function is introduced to merge them. According
to the definition of the seq-function, first x1 is checked whether it is active. If it is active, then
its value will be returned, otherwise x0 will be checked and returned. However, this first
check of the presence signal of x1 causes this program to be considered non-constructive
in Esterel, because it forms a causality cycle with y. The essence of this problem is that a
merge expressions may check the presence of all reaching definitions before it yields a result,
independent from the actual value of these definitions. In this case the assignment to x1

does not change the value available from x0, but is still checked leading to a rejection of
the program as non-constructive in Esterel. Translating this program into Esterel using the
provided implementation and performing the Esterel constructiveness analysis confirms this.
Section 7.2.4 presents a possible approach to solve this problem.

93

Chapter 7

Conclusion

This final chapter summarizes the presented approach for detecting Esterel constructiveness
in SC programs in Section 7.1. Section 7.2 closes with ideas for extending and continuing this
approach in possible future work.

7.1 Summary

This thesis presented the concept of Strict Sequential Constructiveness and described a practi-
cal approach to detect programs of this class. The approach includes the translation of SCL

programs into semantically equivalent Esterel programs and a check of their constructiveness
by performing an analysis using an Esterel compiler which implies whether the source
program is considered SSC.
First of all, an SSA form is used to transform the sequential and concurrent variable accesses
into an Esterel compatible form according to the SC MoC. Afterwards, the program can be
translated into Esterel, encoding shared variables by signals. Then a subsequent construc-
tiveness analysis with an Esterel compiler yields the result whether an Esterel program is
considered constructive in the sense of Esterel. SC program which form constructive Esterel
programs are classified as SSC. This provides a physical foundation for Strict Sequential
Constructiveness based on the constructive circuit semantics of Esterel.
This concept was partially implemented in the context of the KIELER project, providing a
transformation based on SCGs. This translation from SCGs into Esterel not only allows to check
the Esterel constructiveness, but also closes a gap between Esterel and SC languages. It allows
to utilize an Esterel compiler for code generation of SC programs. Especially in case of SCEst it
provides the possibility of compiling this extended form of Esterel back into pure Esterel.
The evaluation showed that the presented translation has restrictions limiting the constructive-
ness analysis in Esterel, but is capable of correctly accepting or rejecting some SC programs.
However, the implementation and evaluation did not cover the complete range possible SC

classes, consequently this requires further extensive testing and future work.

7.2 Future Work

The main focus of this thesis is to develop an SSA form for the SC MoC to detect SSC programs.
In the limited time frame, not all arisen ideas and concepts could be evaluated or pursued.
Hence, a few ideas for future development and enhancements are given here.

95

7. Conclusion

7.2.1 Compiler Advancement

The approach of utilizing an Esterel compiler for analyzing the constructiveness of an SC

program is only one possible solution. It is also possible to implement a Must/Can analysis,
similar to the constructive behavioral semantics of Esterel, direly for SCGs. However, the usage
of variables may require to handle large value ranges when analyzing all possible input
combinations. Another approach for programs restricted to boolean variables is an analysis
based on circuits. The current compile chain provided for the SC MoC supports hardware
synthesis, mentioned in Section 3.2.1. Such a boolean circuit could be used to apply Malik’s
procedure and determine the constructiveness of the circuit.
Another advancement of the currently provided compilation chain could be the compilation
of cyclic programs using the dataflow approach which is typically restricted to acyclic
programs. However, Lukoschus presents the removal of cycles in Esterel programs [Luk06].
The requirement for his procedure is Esterel constructiveness. Hence, an adaptation of this
approach for SSC programs could also remove cycles in these programs and enable them for
the acyclic compilation approach.
Furthermore, the presence of a complete SSA form for SC programs, especially SCGs, allows the
implementation of compiler optimizations based on this form. Since the initial motivations
for SSA were code optimization techniques for compilers, it facilitates many optimizations.
Examples are global value numbering, register allocation, dead code elimination, and constant
propagation with conditional branches [WZ91]. Lee et al. show that in the presence of explicit
concurrency, a classical algorithm for sparse conditional constant propagation can be extended
to handle such programs [LMP98]. Such an adapted algorithm could enhance the current
SC compiler and improve the quality of compilation results with respect to code size and
execution time.

7.2.2 Sequential Optimization

The SC-specific SSA form conservatively introduces merge expressions on every read access to
a variable. Even if these expressions are reduced using domination relations, they are more
extensively added than the minimal placement of φ-functions in regular SSA. As Section 4.2.1
describes, the regular SSA form requires additional adjustment to fit into the SC domain.
However, despite these additions, the regular SSA form might be capable of introducing fewer
merge functions because it facilitates the sequential re-usage of the results of merged reaching
definitions. Hence, a mixture of the concepts of regular SSA with the SC-specific form to enable
correct handling of concurrency could create a more efficient form of SSA for SC programs.
A promising starting point could be the seq-function. Since both the seq-function and the
φ-function handle the merge of definitions with a sequential relation, it might be possible
to appropriately replace seq- by φ-functions. This especially when the φ-functions is further
replaced by an assignment to the merged variable in each incoming branch, as described in
Section 4.2.1. This form also complies with a single emission in Esterel under restriction to
mutual exclusive branches and non-instantaneous non-schizophrenic loops.

96

7.2. Future Work

1 module NoStaticSchedule

2 input bool i;

3 int x, y;

4 {

5 fork

6 if i then

7 x = 0

8 end

9 par

10 if !i then

11 x = 1

12 end

13 par

14 x = x + 1;

15 y = x

16 join

17 }

Listing 7.1. The NoStaticSchedule

program

entry

fork

join

exit

entry

i

x = 0

exit

true

entry

!i

x = 1

exit

true

entry

x = x + 1

y = x

exit

Figure 7.1. SCG representation of the
NoStaticSchedule program with dependencies

7.2.3 Reducing Restrictions

Section 6.1 evaluates the capabilities of the SC-specific SSA form. The presented approaches for
handling the different aspects and structures often introduce restrictions to enable or facilitate
the presented solutions. To increase the number of supported programs and further expand
the capabilities of this SSA form, it is necessary to overcome these restrictions.

Non-Static Update Handling

The approach for handling updates, presented in Section 4.2.6, requires a partial static
schedule to create merge expressions for variables which are used in updates. Consequently,
if a write-write dependency exists in the program, no static schedule is possible even if the
actual conflict never occurs. Listing 7.1 shows the NoStaticSchedule programs which contains
two concurrent initialization of x depending on i. The assignment in line 7 is executed if
i is true and the one in line 11 if i is false. Since i is an input and never assigned in the
program, the assignments are mutually exclusive and they cannot conflict. Additionally, there
is a concurrent update and read access on x. Figure 7.1 depicts the SCG representation of
the program including dependencies. Due to the static write-write dependency, the SCG is
considered non-ASC and the current scheduling approach cannot generate a static schedule.
Hence, no merge expression can be created and the programs needs to be rejected by the
current approach. A more advanced static scheduling analysis could detect that the two
initialization cannot conflict, but testing all possible situations would be very similar to
performing an Esterel constructiveness analysis.

97

7. Conclusion

However, regarding the definition of the merge functions there is a trivial merge expression
for the assignment in line 15:

y = combine(+, conc(x0, x1), x2up)

One possible approach to create such an expression would be the assumption that no conflict
can occur. Then the static scheduler could ignore the write-write dependency and create a
schedule. Consequently, the resulting merge expression needs to be post-processed to include
conc-functions to assure the actual confluence or reject the program dynamically in case of a
conflict.

A similar process could also handle potential conflicts between updates with different
combination functions. The merge expression might not be extended by conc-functions,
because the updates are handled by combine-functions. However, in addition to the merge
expression a dynamic assertion could be introduced in the program checking the two updates
for their confluence if both are present in the same tick. The implementation would be similar
to the conc-function but without returning the selected value.

Instantaneous Loops

Another restriction introduced in Section 4.2.5 is the exclusion of instantaneous loops. More-
over, the reordering requires a dominant pause which is executed in each iteration. A more
advanced analysis could also reorder the statements for programs with delayed loops but
without such a pause. Independent form this reordering, Esterel prohibits instantaneous
loops. To support instantaneous loops which are generally allowed in the SC MoC, they could
be statically unrolled if they are finitely bounded. This way, the backward jump would be
eliminated and the SSA form would rename and order the assignments sequentially. The
only requirement for this procedure is that a finite bound for each instantaneous loop can be
statically determined. This is not possible in general. Another problem is that the program
size will significantly grow when unrolling loops.

However, assuming some analyses detects that the loop present in Listing 7.2a will always be
executed five times, then it is possible to fully unroll this loop. Listing 7.2b shows the result
of such an unrolling. The loop structure is removed and the loop body is pasted five times
into the program.

In general, an exact number of iterations is unusual for loops, but sometimes a maximum can
be determined. The unrolling would be similar, but each of the unrolled iterations would be
guarded by the loop condition, such that the calculations would be skipped if the original
loop would have been exited.

In addition to the use case of constructiveness in Esterel, also the dataflow compilation
approach could benefit from an unrolling of instantaneous loops to support more input
programs.

98

7.2. Future Work

1 module LoopUnrolling

2 int x, y;

3 {

4 x = 0;

5 y = 5;

6 LoopBegin:

7 x = x + 1;

8 if x < y then

9 goto LoopBegin

10 end

11 }

(a) Original

1 module LoopUnrolling

2 int x, y;

3 {

4 x = 0;

5 y = 5;

6 x = x + 1;

7 x = x + 1;

8 x = x + 1;

9 x = x + 1;

10 x = x + 1;

11 }

(b) With unrolled loop

Listing 7.2. The LoopUnrolling program

Structural Restrictions

Another restriction is made on forward jumps. The SSA form and translation into Esterel only
handle forward jumps which are equivalent to if-then-else structures. This restriction is made
to facilitate the analysis and translation of the programs. A solution for translating forward
jumps is proposed by Rathlev in his future work section [Rat15]. However, his approach
includes code duplication when jumps target into nested structures. Section 4.3.1 presents
a program with such a structure. Incorporating the proposed approach into the concept of
this thesis should consider possible effects of the code duplication on the SSA form and the
analysis in the SSA transformation.

7.2.4 Enhancing the Constructiveness Analysis

Section 6.3 presents some limitation caused by the presented SSA definition and translation
into Esterel. This section presents ideas how the presented concept can be extended to enhance
the constructiveness analysis in Esterel. This could allow to accept more programs which
are constructive in the sense of Esterel, but are rejected due to limitations introduced by the
concept presented here.

Short-Circuit Evaluation

The problem of inhibiting short-circuit evaluation in expressions is caused by the sequential
dismantling such expressions. Consequently, a possible approach could be to not dismantle
them. For conditionals, the expression could be translated into a single boolean expression.
However, this requires to encode merge expressions into boolean signal expression with the
same merging behavior. In the case of conc-function this includes the possible emission of the
error signal, which is not possible in a signal expression in Esterel. Hence, some additional
code could be inserted outside the presence test, which asserts that no conflict occurs or the
error is emitted.

99

7. Conclusion

The conditional expression in Listing 6.5 on page 91 could be represented by the following
logical signal expression in Esterel.

temp3 : ((T1
p
2 and T12) or (not T1

p
2 and (T1

p
reg and T1reg)))

temp2 : ((T1
p
0up and T10up) or temp3)

temp1 : ((T1
p
1up and T11up) or temp2)

temp5 : (P1
p
1 and P11) or (not P1

p
1 and(P1

p
reg and P1reg)))

temp4 : ((P1
p
0up and P10up) or temp5)

temp0 : (temp1 or temp4)

⇓

(((T1
p
1up and T11up) or ((T1

p
0up and T10up) or ((T1

p
2 and T12) or (not T1

p
2 and (T1

p
reg and T1reg)))))

or ((P1
p
0up and P10up) or (P1

p
1 and P11) or (not P1

p
1 and(P1

p
reg and P1reg)))))

The upper part shows the expressions for each of the intermediate variables in Listing 6.5c.
The lower part presents the composition of these sub-expressions into one single expression,
which can be used in a presence test to represent the if statement in Listing 6.5b. Note that
this expression assumes that some value is always present to read and does not check the
variables for uninitialized reads, because this would involve an emission of the error signal.
This approach also allows to translate assignments, for example using merge expressions, with
fewer presence tests. Listing 7.3a shows the assignment of O2reg in line 33 of the ABO program
in SSA form from Listing 6.1 on page 85. Listing 7.3b illustrates an optimized translation into
Esterel. The merge expression is represented by two presence test, merging all definitions
of O2. The use of boolean logic for the entire merge expressions without dismantling the
expression, allows the Esterel constructiveness analysis to perform short-circuit evaluation for
this merge expression.

1 O2reg = seq(seq(pre(O2reg), O2_0), O2_1)

(a) Original

1 present O2_1p or O2_0p or pre(O2regp) then

2 emit O2regp;

3 present (O2_1p and O2_1) or

4 (not O2_1p and ((O2_0p and O2_0) or

5 (not O2_0p and pre(O2_reg))))

6 emit O2reg

7 end

8 end

(b) Translated into Esterel using optimized present tests

Listing 7.3. Assignment of O2reg in the ABO program

100

7.2. Future Work

Expression Esterel

1 v Ð xi and xj

1 present (x
p
i and not xi) or (x

p
j and not xj) then

2 emit vp;

3 else

4 present (x
p
i and xi) and (x

p
j and xj) then

5 emit vp;

6 emit v

7 end

8 end

1 v Ð xi or xj

1 present (x
p
i and xi) or (x

p
j and xj) then

2 emit vp;

3 emit v

4 else

5 present xi or xj then

6 emit vp

7 end

8 end

Table 7.1. Possible translation pattern for non-strict operator expressions using pure signals

Another approach could be the elimination of the sequential ordering between the dismantled
sub-expressions. For example by moving the evaluation of each sub-expressions in its own
thread, parallel to the original program. When the controlflow of the program reaches a
present test with a dismantled expression it activates the calculation of each sub-expression.
Since the evaluation is performed concurrently, the sub-expressions can constructively perform
their operations if the necessary values have reached a known state. Hence, only data-
dependencies restrict the Esterel constructive analysis of each sub-expression and no explicit
sequential ordering. However, such an approach should assure that the concurrent threads
are able to terminate correctly and do not raise new restrictions to the Esterel constructiveness
analysis. Furthermore, the definitions of the Esterel operator expressions using augmented
signals should be non-strict, to allow short-circuit evaluation. Table 7.1 presents possible
translation patterns for a non-strict and and or operation.

Ineffective Writes

Ineffective writes are not taken into account when executing merge functions. Each reaching
definition is checked if it can affect the merged value disregarding whether it actually changes
the value. This testing of the presence of signals may introduce causality cycles which are
unnecessary if the assignments performing the ineffective write could be ignored. In the case
of signals the state is either absent or present and cannot change from present to absent in the
same tick. In contrast to that, variables can be assigned to any valid value. Moreover, the value
can be the result of an arbitrarily complex expression. Hence, in general it is not possible to

101

7. Conclusion

determine whether an assignment is ineffective. However, in the case of constant assignments
a constant propagation can detect ineffective writes. For example in the IneffectiveWrite

program in Listing 6.6c on page 93, both definitions of x are constant. Since both are written
to true the seq-function can be replaced in the following way.

seq(x0, x1)Ñ x
p
0 or x

p
1

The same holds for conc-functions which are in this case no longer required to check for
a conflict. In combination with the short-circuit evaluation of the used or expressions this
would allow the Esterel constructiveness analysis to accept the translated program and results
in a classification as SSC. Furthermore, this approach would be more permissive than Esterel,
because it allows reads before writes.

102

Bibliography

[And03] Charles André. Semantics of SyncCharts. Tech. rep. ISRN I3S/RR–2003–24–FR.
Sophia-Antipolis, France: I3S Laboratory, Apr. 2003.

[And96] Charles André. SyncCharts: A visual representation of reactive behaviors. Tech. rep.
RR 95–52, rev. RR 96–56. Sophia-Antipolis, France: I3S, Rev. April 1996.

[AP02] Andrew W. Appel and Jens Palsberg. Modern compiler implementation in java, 2nd
edition. Cambridge University Press, 2002. isbn: 0-521-82060-X.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. “Detecting equality of variables
in programs”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’88. San Diego, California, USA: ACM,
1988, pp. 1–11. isbn: 0-89791-252-7. doi: 10.1145/73560.73561. url: http://doi.acm.org/10.
1145/73560.73561.

[BC84] Gérard Berry and Laurent Cosserat. “The ESTEREL Synchronous Programming
Language and its Mathematical Semantics”. In: Seminar on Concurrency, Carnegie-
Mellon University. Vol. 197. LNCS. Springer-Verlag, 1984, pp. 389–448. isbn:
3-540-15670-4.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. “The Synchronous Languages Twelve Years
Later”. In: Proc. IEEE, Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ,
USA: IEEE, Jan. 2003, pp. 64–83.

[Ber00] Gérard Berry. The Esterel v5 language primer, version v5_91. ftp://ftp-sop.inria.

fr/esterel/pub/papers/primer.pdf. Centre de Mathématiques Appliquées Ecole des
Mines and INRIA. 06565 Sophia-Antipolis, 2000.

[Ber02] Gérard Berry. The constructive semantics of pure Esterel. Centre de Mathématiques
Appliqées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902
Sophia-Antipolis CDX, France: Draft Book, Version 3.0, Dec. 2002.

[Ber99] Gérard Berry. The Esterel v5 language primer. ftp://ftp-sop.inria.fr/meije/esterel/

papers/primer.ps. 1999.

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous programming lan-
guage: Design, semantics, implementation”. In: Science of Computer Programming
19.2 (1992), pp. 87–152.

[BGM+09] Loïc Besnard, Thierry Gautier, Matthieu Moy, Jean-Pierre Talpin, Kenneth John-
son, and Florence Maraninchi. “Automatic translation of C/C++ parallel code
into synchronous formalism using an SSA intermediate form”. In: Electronic
Communications of the EASST 23 (2009).

103

http://dx.doi.org/10.1145/73560.73561
http://doi.acm.org/10.1145/73560.73561
http://doi.acm.org/10.1145/73560.73561
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps

Bibliography

[Bou98] Frédéric Boussinot. SugarCubes implementation of causality. Research Report RR-
3487. INRIA, Sept. 1998.

[BS91] Frédéric Boussinot and Robert de Simone. “The ESTEREL language. another
look at real time programming”. In: Proceedings of the IEEE 79.9 (Sept. 1991),
pp. 1293–1304.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. “Efficiently computing static single assignment form and the control
dependence graph”. In: ACM Transactions on Programming Languages and Systems
13.4 (Oct. 1991), pp. 451–490.

[Edw05] Stephen A. Edwards. “The challenges of hardware synthesis from C-like lan-
guages”. In: Proceedings of the conference on Design, Automation and Test in Europe
- Volume 1. DATE ’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 66–67. isbn: 0-7695-2288-2. doi: 10.1109/DATE.2005.307. url: http://dx.doi.org/10.

1109/DATE.2005.307.

[Fuh11] Hauke Fuhrmann. “On the pragmatics of graphical modeling”. Dissertation.
Kiel: Christian-Albrechts-Universität zu Kiel, Faculty of Engineering, 2011.

[GGB+91] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire.
“Programming real time applications with SIGNAL”. In: Proceedings of the IEEE
79.9 (Sept. 1991), pp. 1321–1336.

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science
of Computer Programming 8.3 (June 1987), pp. 231–274.

[HCR+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The
synchronous data-flow programming language LUSTRE”. In: Proceedings of the
IEEE 79.9 (Sept. 1991), pp. 1305–1320.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications”. In: Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’14). Edinburgh, UK: ACM, June 2014.

[HMA+13] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duder-
stadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and
Partha Roop. Sequentially Constructive Concurrency—A conservative extension of
the synchronous model of computation. Technical Report 1308. ISSN 2192-6247.
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Aug.
2013.

104

http://dx.doi.org/10.1109/DATE.2005.307
http://dx.doi.org/10.1109/DATE.2005.307
http://dx.doi.org/10.1109/DATE.2005.307

Bibliography

[HMA+14] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha
Roop. “Sequentially Constructive Concurrency—A conservative extension of
the synchronous model of computation”. In: ACM Transactions on Embedded
Computing Systems, Special Issue on Applications of Concurrency to System Design
13.4s (July 2014), 144:1–144:26.

[HP85] David Harel and Amir Pnueli. “On the development of reactive systems”. In:
Logics and models of concurrent systems (1985), pp. 477–498.

[HU72] Matthew S. Hecht and Jeffrey D. Ullman. “Flow graph reducibility”. In: SIAM J.
Comput. 1.2 (1972), pp. 188–202. doi: 10.1137/0201014. url: http://dx.doi.org/10.1137/

0201014.

[HU74] Matthew S. Hecht and Jeffrey D. Ullman. “Characterizations of reducible flow
graphs”. In: J. ACM 21.3 (1974), pp. 367–375. doi: 10.1145/321832.321835. url: http:

//doi.acm.org/10.1145/321832.321835.

[Joh13] Gunnar Johannsen. “Hardwaresynthese aus SCCharts”. http://rtsys.informatik.

uni- kiel.de/~biblio/downloads/theses/gjo- mt.pdf. Master thesis. Kiel University,
Department of Computer Science, Oct. 2013.

[KTB+06] Hamoudi Kalla, Jean-Pierre Talpin, David Berner, and Loïc Besnard. “Automated
translation of C/C++ models into a synchronous formalism”. In: 13th Annual
IEEE International Symposium and Workshop on Engineering of Computer-Based
Systems (ECBS’06). Mar. 2006, pages. doi: 10.1109/ECBS.2006.27.

[Küh06] Lars Kühl. “Transformation von Esterel nach SyncCharts”. http://rtsys.informatik.
uni- kiel.de/~biblio/downloads/theses/lku- dt.pdf. Diploma thesis. Kiel University,
Department of Computer Science, Feb. 2006.

[Lee06] Edward A. Lee. “The problem with threads”. In: IEEE Computer 39.5 (2006),
pp. 33–42.

[Lee99] Jaejin Lee. “Compilation Techniques for Explicitly Parallel Programs”. PhD
thesis. University of Illinois at Urbana-Champaign, Oct. 1999. url: http://www.cse.
msu.edu/~jlee/Papers/thesis.pdf.

[LMP98] Jaejin Lee, Samuel P. Midkiff, and David A. Padua. “Concurrent static single
assignment form and constant propagation for explicitly parallel programs”.
In: Languages and Compilers for Parallel Computing: 10th International Workshop,
LCPC’97 Minneapolis, Minnesota, USA, August 7–9, 1997 Proceedings. 1998, pp. 114–
130. isbn: 978-3-540-69788-6. doi: 10.1007/BFb0032687. url: http://dx.doi.org/10.1007/

BFb0032687.

[LT79] Thomas Lengauer and Robert Endre Tarjan. “A fast algorithm for finding dom-
inators in a flowgraph”. In: ACM Transactions on Programming Languages and
Systems 1.1 (1979), pp. 121–141. doi: 10.1145/357062.357071. url: http://doi.acm.org/10.

1145/357062.357071.

105

http://dx.doi.org/10.1137/0201014
http://dx.doi.org/10.1137/0201014
http://dx.doi.org/10.1137/0201014
http://dx.doi.org/10.1145/321832.321835
http://doi.acm.org/10.1145/321832.321835
http://doi.acm.org/10.1145/321832.321835
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/gjo-mt.pdf
http://dx.doi.org/10.1109/ECBS.2006.27
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lku-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lku-dt.pdf
http://www.cse.msu.edu/~jlee/Papers/thesis.pdf
http://www.cse.msu.edu/~jlee/Papers/thesis.pdf
http://dx.doi.org/10.1007/BFb0032687
http://dx.doi.org/10.1007/BFb0032687
http://dx.doi.org/10.1007/BFb0032687
http://dx.doi.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071
http://doi.acm.org/10.1145/357062.357071

Bibliography

[Luk06] Jan Lukoschus. “Removing cycles in Esterel programs”. http://eldiss.uni-kiel.de/
macau/receive/dissertation_diss_2015. PhD thesis. Christian-Albrechts-Universität zu
Kiel, Faculty of Engineering, July 2006.

[Mal94] Sharad Malik. “Analysis of cyclic combinational circuits”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13.7 (July 1994), pp. 950–
956.

[MG97] Giovanni De Micheli and Rajesh K. Gupta. “Hardware/software co-design”. In:
Proceedings of the IEEE 85.3 (Mar. 1997), pp. 349–365.

[MHH13] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. “Program-
ming deterministice reactive systems with Synchronous Java (invited paper)”.
In: Proceedings of the 9th Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS 2013). IEEE Proceedings. Paderborn, Germany,
17/18 06 2013.

[MSH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. “Compiling
SCCharts—A case-study on interactive model-based compilation”. In: Proceedings
of the 6th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2014). Vol. 8802. LNCS. Corfu, Greece, Oct. 2014,
pp. 443–462. doi: 10.1007/978-3-662-45234-9.

[Nas15] Stanislaw Nasin. “Transformaion from sccharts to esterel”. http://rtsys.informatik.
uni- kiel.de/~biblio/downloads/theses/sna- mt.pdf. Master Thesis. Kiel University,
Department of Computer Science, Oct. 2015.

[Pan02] Paritosh Pandya. “The saga of synchronous bus arbiter: on model checking
quantitative timing properties of synchronous programs”. In: Electronic Notes
in Theoretical Computer Science. Ed. by Florence Maraninchi, Alain Girault, and
Éric Rutten. Vol. 65. Elsevier, 2002.

[PEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling
Esterel. Springer, May 2007.

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical Re-
port DAIMI FN-19. http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps. University
of Aarhus, Denmark, 1981.

[PS91] Amir Pnueli and M. Shalev. “What is in a step: on the semantics of Statecharts”.
In: Proc. Int. Conf. on Theoretical Aspects of Computer Software (TACS’91). London,
UK: Springer, 1991, pp. 244–264.

[PST05] D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. “The synchronous hypothesis
and synchronous languages”. In: Embedded Systems Handbook. Ed. by R. Zurawski.
CRC Press, 2005.

[Rat15] Karsten Rathlev. “From Esterel to SCL”. http://rtsys.informatik.uni- kiel.de/

~biblio/downloads/theses/krat-mt.pdf. Master thesis. Kiel University, Department of
Computer Science, Mar. 2015.

106

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015
http://dx.doi.org/10.1007/978-3-662-45234-9
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sna-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sna-mt.pdf
http://homepages.inf.ed.ac.uk/gdp/publications/SOS.ps
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/krat-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/krat-mt.pdf

Bibliography

[RSM+15] Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von Hanxleden, and
Michael Mendler. “SCEst: Sequentially Constructive Esterel”. In: Proceedings
of the 13th ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE’15). Austin, TX, USA, Sept. 2015.

[RSM+16] Francesca Rybicki, Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten,
and Reinhard von Hanxleden. “Interactive model-based compilation continued –
interactive incremental hardware synthesis for SCCharts”. In: Proceedings of the
7th International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA 2016). LNCS. Accepted. 2016.

[Rüe11] Ulf Rüegg. “Interactive transformations for visual models”. Bachelor Thesis. Kiel
University, Department of Computer Science, Mar. 2011.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Numbers and
Redundant Computations”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’88. San Diego, Califor-
nia, USA: ACM, 1988, pp. 12–27. isbn: 0-89791-252-7. doi: 10.1145/73560.73562. url:
http://doi.acm.org/10.1145/73560.73562.

[Ryb16] Francesca Rybicki. “Interactive incremental hardware synthesis for SCCharts”.
http://rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/fry- bt.pdf. Bachelor
Thesis. Kiel University, Department of Computer Science, Mar. 2016.

[SBT96] Thomas R. Shiple, Gérard Berry, and Hervé Touati. “Constructive Analysis of
Cyclic Circuits”. In: Proc. European Design and Test Conference (ED&TC’96), Paris,
France. Paris, France: IEEE Computer Society Press, Mar. 1996, pp. 328–333.

[Sch10] Klaus Schneider. The synchronous programming language Quartz. Internal Re-
port. Kaiserslautern, Germany: Department of Computer Science, University of
Kaiserslautern, 2010.

[SHW93] Harini Srinivasan, James Hook, and Michael Wolfe. “Static single assignment
form for explicitly parallel programs”. In: In Proceedings of the 20th ACM Sympo-
sium on Principles of Programming Languages. Jan. 1993, pp. 260–272.

[Smy13] Steven Smyth. “Code generation for sequential constructiveness”. http://rtsys.

informatik.uni- kiel.de/~biblio/downloads/theses/ssm- dt.pdf. Diploma thesis. Kiel
University, Department of Computer Science, July 2013.

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just
model! – Putting automatic synthesis of node-link-diagrams into practice”.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’13). San Jose, CA, USA, Sept. 2013, pp. 75–82. doi: 10.1109/

VLHCC.2013.6645246.

[Tar04] Olivier Tardieu. “Goto and concurrency—introducing safe jumps in Esterel”. In:
Proceedings of Synchronous Languages, Applications, and Programming (SLAP’04).
Barcelona, Spain, Mar. 2004.

107

http://dx.doi.org/10.1145/73560.73562
http://doi.acm.org/10.1145/73560.73562
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/fry-bt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ssm-dt.pdf
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1109/VLHCC.2013.6645246

Bibliography

[Tar74] Robert Tarjan. “Finding dominators in directed graphs”. In: SIAM Journal on
Computing 3.1 (1974), pp. 62–89.

[TS04] Olivier Tardieu and Robert de Simone. “Curing schizophrenia by program
rewriting in Esterel”. In: Proceedings of the Second ACM-IEEE International Con-
ference on Formal Methods and Models for Codesign (MEMOCODE’04). San Diego,
CA, USA, 2004.

[VJB+07] Peter Vanbroekhoven, Gerda Janssens, Maurice Bruynooghe, and Francky Catthoor.
“A practical dynamic single assignment transformation”. In: ACM Trans. Design
Autom. Electr. Syst. 12.4 (2007). doi: 10.1145/1278349.1278353. url: http://doi.acm.org/10.
1145/1278349.1278353.

[Wei15] Tibor Weiß. “Von nebenläufigkeit zur parallelität in sccharts”. Bachelor thesis.
Kiel University, Department of Computer Science, 2015.

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. “Constant Propagation with Condi-
tional Branches”. In: ACM Trans. Program. Lang. Syst. 13.2 (Apr. 1991), pp. 181–210.
issn: 0164-0925. doi: 10.1145/103135.103136. url: http://doi.acm.org/10.1145/103135.103136.

108

http://dx.doi.org/10.1145/1278349.1278353
http://doi.acm.org/10.1145/1278349.1278353
http://doi.acm.org/10.1145/1278349.1278353
http://dx.doi.org/10.1145/103135.103136
http://doi.acm.org/10.1145/103135.103136

List of Acronyms

ASC Acyclic Sequentially Constructive

CCFG concurrent controlflow graph

CFG controlflow graph

CSSA Concurrent Static Single Assignment

DSA Dynamic Single Assignment

DSL Domain Specific Language

ELK Eclipse Layout Kernel

EMF Eclipse Modeling Framework

GCC GNU Compiler Collection

IDE Integrated Development Environment

iur initialize-update-read

KiCo KIELER Compiler

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KLighD KIELER Lightweight Diagrams

MoC Model of Computation

OSGi Open Services Gateway initiative

RCP Rich Client Platform

SC Sequentially Constructive

SCCharts Sequentially Constructive Statecharts

SCEst Sequentially Constructive Esterel

SCG Sequentially Constructive Graph

SCL Sequentially Constructive Language

SLIC Single-Pass Language-Driven Incremental Compilation

109

7. List of Acronyms

SSA Static Single Assignment

SSC Strictly Sequentially Constructive

SyncCharts Synchronous Charts

WCET Worst-Case Execution Time

110

List of Listings

1.1 The Esterel program P12 which is not constructive in the sense of Esterel [Ber02] 2
1.2 The P12 program in SCL . 2
1.3 The P10 program in SCL . 3

2.1 The IUR program in SCL . 11
2.2 The ABO program in SCL [HDM+14] . 12

3.1 The ABRO program in Esterel [Ber99] . 18

4.1 The AbsoluteValue program . 28
4.2 The ConcurrentWrites program . 29
4.3 The SequentialIO program . 31
4.4 The Factorial program . 32
4.5 The definition of merge functions . 34
4.6 The ConcurrentWrites program in SSA form using a merge expression 35
4.7 Example for creating a merge expression . 37
4.8 The ConcurrentDominantWrite program . 38
4.9 The ReducedExpressions program in SSA form 40
4.10 The NonConflictingWrites program in SSA form 41
4.11 The PauseProblem program in incomplete SSA form 41
4.12 The PauseProblem program in correct SSA form 43
4.13 The PauseReducedExpressions program in SSA form 43
4.14 The InstantaneousLoop program . 45
4.15 The DelayedLoop program . 47
4.16 The NestedLoops program in SSA form . 48
4.17 The RejectedDelayedLoop program . 48
4.18 The UpdateTransformation program . 50
4.19 The UpdateTransformation program in SSA form using combine-functions 51
4.20 The UpdateOrder program . 53
4.21 The NotASC program . 55
4.22 The NotSC program . 56
4.23 The ValuedSignalUpdates program . 58
4.24 The ConcurrentIO program . 60
4.25 The JumpIntoBranch program . 62
4.26 Truncated example program for expressions translation 70
4.27 Pattern for rejecting programs . 72

111

List of Listings

5.1 The P10 program in intermediate SSA form . 78
5.2 The P10 program translated into Esterel . 80

6.1 The ABO program in SSA form . 85
6.2 The ABO program translated into Esterel . 86
6.3 The TokenRingArbiter program with three stations 88
6.4 The TokenRingArbiter in SSA form with dismantled expressions 89
6.5 Conditional expression in the first station of the TokenRingArbiter program . . 91
6.6 The IneffectiveWrite program . 93

7.1 The NoStaticSchedule program . 97
7.2 The LoopUnrolling program . 99
7.3 Assignment of O2reg in the ABO program . 100

112

List of Figures

1.1 SCG representation of program P10 with dependencies 3

2.1 Embedded Reactive System, based on [MHH13] 5
2.2 Synchrony Hypothesis (G. Luettgen, 2001) . 6
2.3 P12 Circuit [Ber02] . 8
2.4 SCG representation of the IUR program with dependencies 11
2.5 The ABO SCChart [HDM+14] . 12
2.6 Relationships of synchronous program classes [HMA+13] 13
2.7 KIELER project overview . 15
2.8 KIELER compilation overview . 16

3.1 The ABRO program in SyncCharts [And03] . 18
3.2 Transformation of Sequentialized SCG into SSA form without φ-functions [Ryb16] 20
3.3 Transformation of a CCFG into CSSA form [Lee99] 21

4.1 Dominator tree of the AbsoluteValue program 28
4.2 SCG representation of the AbsoluteValue program 28
4.3 SCG representation of the ConcurrentWrites program 29
4.4 SCG representation of the ConcurrentDominantWrite 38
4.5 SCG representation of the ReducedExpressions without SSA 40
4.6 SCG representation of the UpdateOrder program with dependencies and static

scheduling path . 54
4.7 SCG representation of the NotASC program with dependencies 55
4.8 SCG representation of the NotSC program with dependencies 56
4.9 SCG representation of the JumpIntoBranch program 62

5.1 KIELER compilation overview with new SSA form for genral SCGs 75
5.2 SCG compile chains with new compilation path into Esterel 76
5.3 SCG representaion of the P10 program in SSA form 77
5.4 Dominator tree of basic blocks in the P10 SCG . 77
5.5 SCG representation of program P10 in intermediate SSA form 78

6.1 Supported SC program classes . 82
6.2 Screenshot of the Esterel compiler reasoning on the constructiveness of the P10

program . 84

7.1 SCG representation of the NoStaticSchedule program with dependencies 97

113

List of Tables

2.1 Esterel kernel language [Ber02] . 7
2.2 Comparison of data handling, based on [RSM+15] 7
2.3 Overview of scl and scg elements, based on [RSM+15] 10

4.1 Expected results for y in the ConcurrentWrites program depending on the input
values . 30

4.2 Structural construction pattern for merge expressions 36
4.3 Expected results for y in the UpdateOrder program depending on the input values 54
4.4 Translation pattern for loops . 63
4.5 Pure signal encoding inspired by unemit . 65
4.6 Pure signal encoding separating presence flag and value 65
4.7 Translation patterns for assignments and conditionals using pure signals . . . 67
4.8 Translation patterns for dismantling expressions using pure signals 68
4.9 Translation patterns for single operator expressions using pure signals 68
4.10 Translation patterns for merge functions using pure signals 69
4.11 Translation patterns for assignments, conditionals, and operations using valued

signals . 73
4.12 Translation patterns for merge functions using valued signals 74

6.1 Truth tables for boolean and, or, and not operations 92

7.1 Possible translation pattern for non-strict operator expressions using pure signals101

115

	Introduction
	Esterel
	Sequential Constructiveness
	Problem Statement
	Outline

	Foundations
	Esterel
	Sequential Constructiveness
	Used Technologies
	Eclipse
	KIELER

	Related Work
	Translations Regarding Esterel
	SyncCharts
	SCCharts
	SCL

	Static Single Assignment
	SSA in Hardware Synthesis
	SSA for Explicitly Parallel Programs

	Strict Sequential Constructiveness
	Restricting Sequential Constructiveness
	Detecting Strict Sequential Constructiveness

	SSA Form for Sequentially Constructive Programs
	Regular SSA
	SC-specific SSA Form
	Constructing Seq-Conc-Expressions
	Pauses
	Loops
	Updates
	Interface Compliance

	Translation into Esterel
	Structure
	Behavior
	Pure Signal Encoding
	Valued Signal Encoding

	Implementation
	Integration into KIELER
	SSA Transformation
	Translation into Esterel

	Evaluation
	Supported Programs
	Test Cases
	P10
	ABO
	The Token Ring Arbiter

	Limitations
	Short-Circuit Evaluation
	Ineffective Writes

	Conclusion
	Summary
	Future Work
	Compiler Advancement
	Sequential Optimization
	Reducing Restrictions
	Enhancing the Constructiveness Analysis

	Bibliography
	List of Acronyms
	List of Listings
	List of Figures
	List of Tables

