
Semantics and Execution of
Domain Speci�c Models

KlePto and an Execution Framework

Diploma Thesis of Christian Motika

KIEL
ER

Christian-Albrechts-Universität zu Kiel

Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

19th December 2009

Advised by: Dipl.-Inf. Hauke Fuhrmann

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

In this diploma thesis a two-level approach is presented that allows to extend the
abstract syntax of models in a way to provide simulations with low e�ort. On a
�rst level, a generic strategy for implementing simulation engines of behavior models
is illustrated by two case studies. Semantic model speci�cations and a runtime
interfacing to the Ptolemy II tool suite used as a simulation back-end is shown in
detail. This is done by combining already existing technologies while not introducing
any new kind of language or notation.
On a second level, a light-weight execution framework for iterable models with a

generic user interface allows the tool smith to provide and use arbitrary execution and
visualization engine implementations for his or her Domain Speci�c Language (DSL).
Various reusable implementation examples are given.
All parts of this project are contributions to the Kiel Integrated Environment for

Layout Eclipse Rich Client (KIELER) project. Hence they are open source extensions
to the Eclipse modeling projects.

Key words modeling language, domain speci�c, DSL, semantics, execution, simulation,

Eclipse, KIELER, Ptolemy II

vi

Contents

1 Introduction 1

1.1 KIELER Framework . 2

1.2 Problem Statement . 3

1.3 Outline of this Document . 4

2 Related Work 5

2.1 Simulation Frameworks . 5

2.1.1 Esterel Studio . 5

2.1.2 Ptolemy II . 6

2.1.3 SCADE . 6

2.1.4 Matlab/Simulink/State�ow 7

2.1.5 Topcased . 8

2.1.6 Modelica . 8

2.1.7 Kiel Integrated Environment for Layout (KIEL) 9

2.2 Execution Semantics . 9

2.2.1 Simulation Tools . 10

2.2.2 Di�erent Approaches . 11

2.2.3 Model Transformations . 12

2.2.4 Simulation High-Level Architecture 13

3 Used Technologies 15

3.1 Eclipse . 15

3.1.1 Plug-ins . 15

3.1.2 Rich Client Platform and Workbench 16

3.1.3 The Eclipse Modeling Framework (EMF) 17

3.1.4 The Graphical Modeling Framework (GMF) 20

3.1.5 Xpand . 21

3.1.6 Xtend . 22

3.2 Ptolemy . 25

3.2.1 Domains . 27

3.2.2 A Heterogeneous Model Example 27

3.2.3 Simulations . 28

3.2.4 Technical Details . 29

3.2.5 Ptolemy EMF Model . 29

3.3 The Java Script Object Notation (JSON) 30

3.3.1 Implementations . 31

vii

Contents

3.3.2 Structure . 31

4 Semantics 33

4.1 Model Railway Controller Language 33

4.1.1 Model Railway Installation 34

4.1.2 Domain Speci�c Language . 35

4.1.3 Domain Speci�c Editor . 37

4.1.4 Transformation . 38

4.1.5 Xtend model-to-model (M2M) Transformation 38

4.1.6 Xpand model-to-text (M2T) Transformation 43

4.2 SyncCharts . 45

4.2.1 Domain Speci�c Language . 45

4.2.2 Domain Speci�c Editor . 48

4.2.3 Transformation . 48

4.2.4 Xtend M2M Transformation 56

4.2.5 Constructiveness . 59

4.2.6 The Token Ring Arbiter . 62

4.2.7 Ptolemy Extensions . 64

4.3 KIELER leveraging Ptolemy Simulation Component 70

4.4 Visualization Simulation Component 73

5 Execution Framework 77

5.1 Motivation . 77

5.2 Framework Overview . 78

5.2.1 DataComponents . 78

5.2.2 User Interface . 79

5.2.3 Data Pool . 82

5.2.4 Linear Scheduling . 84

5.2.5 Further Concepts . 87

5.3 Implementation Details . 88

5.3.1 Extension Point . 89

5.3.2 The Abstract Class AbstractDataComponent 92

5.3.3 DataComponent Properties 92

5.3.4 Scheduling and Concurrency Handling 95

5.3.5 Synchronous Signals . 98

5.3.6 Example 1: ABRO in Java . 100

5.3.7 Example 2: Data Table . 103

5.3.8 Example 3: Mobile Data Table 104

6 Conclusions 107

6.1 Results . 107

6.1.1 Semantics . 107

6.1.2 Execution Framework . 109

6.2 Future Work . 109

viii

Contents

6.2.1 Speci�c Model Transformations 109
6.2.2 General Model Transformation 111
6.2.3 Execution Framework . 112

6.3 Summary . 112

Bibliography 115

ix

Contents

x

Abbreviations

ABRO The hello world synchronous paradigm

API application programming interface

ATL Atlas Transformation Language

BFS breadth-�rst search algorithm

CASE Critical Applications & SystEms Development

CAN Controller Area Network

CT Continuous Time

DE Discrete Events

DSL Domain Speci�c Language

DTD Document Type De�nition

EMF Eclipse Modeling Framework

FSM Finite-State-Machine

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

GUI graphical user interface

IDE integrated development environment

IEEE Institute of Electrical and Electronics Engineers

I/O input/output

JSON Java Script Object Notation

KlePto KIELER leveraging Ptolemy

KIEL Kiel Integrated Environment for Layout

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

xi

Contents

M2M model-to-model

M2T model-to-text

MDSD Model Driven Software Development

ME Micro Edition

MoC model of computation

MOF Meta Object Facility

MOML modeling markup language

MVC Model-View-Controller

oAW openArchitectureWare

OCL Object Constraint Language

OMG Object Management Group

OSGi Open Services Gateway initiative

QVT Query/View/Transformations

PHP PHP Hypertext Preprocessor

PN Process Networks

RCP Rich Client Platform

RTI runtime infrastructure

SCADE Safety Critical Application Development Environment

SDF Synchronous Data�ow

SR Synchronous Reactive

SSM Safe State Machines

TCP Transmission Control Protocol

TMF Textual Modeling Framework

TTP Time Triggered Protocol

UI user interface

UML Uni�ed Modeling Language

URI Uniform Resource Identi�er

xii

Contents

VHDL Very High Speed Integrated Circuit Hardware Description Language

XML Extensible Markup Language

xiii

Contents

xiv

List of Figures

1.1 GUI of KIELER and the KIEM Eclipse plug-in during a simulation run 1
1.2 MVC in KIELER: The Execution Manager belongs to the controller

part (from [23]) . 2

2.1 Esterel Studio GUI . 6
2.2 Simulation in the Safety Critical Application Development Environment

(SCADE) suite . 7
2.3 Simulation GUI of Matlab/Simulink tool 8
2.4 Eclipse GUI of Topcased tool . 9
2.5 Simulation in the KIEL GUI . 10

3.1 Eclipse Workbench with Editors and Views 16
3.2 Simpli�ed Ecore metamodel subset 18
3.3 EMF generator context menu options 18
3.4 EMF generator model import . 19
3.5 GMF Dashboard View for diagram editor generation 20
3.6 Ptolemy model using SR and ModalModel domain to sum-up even

and odd values . 26
3.7 Simpli�ed metamodel of MOML �le structure 30

4.1 Model railway installation . 34
4.2 Model Railway Bus Diagram (from [30]) 35
4.3 Schematic track scheme of the model railway (from [30]) 36
4.4 Metamodel of the railway controller language 37
4.5 Railway controller example model in Eclipse GMF editor 38
4.6 Railway controller embedded in a Ptolemy model 40
4.7 Simpli�ed metamodel of SyncChart language 46
4.8 Simulation of a SyncChart example model in the Eclipse GMF editor 49
4.9 Transformation of simple-states . 49
4.10 Transformation of transitions with signal triggers 50
4.11 Transformation of parallel regions and local signals 51
4.12 Transformation of input and output signals 52
4.13 Transformation of hierarchy . 53
4.14 Transformation of normal termination transitions (omitting states S4,

S5, and S6 in the Ptolemy model for clarity reasons) 55
4.15 Transformation of preemption and history transitions 56
4.16 A cyclic (left) and a logical-correct (right) SyncChart 60

xv

List of Figures

4.17 Examples of good-natured cylclic SyncCharts 60
4.18 A non-reactive (left) and a non-deterministic (right) SyncChart . . . 61
4.19 Simpli�ed version of Token Ring Arbiter (from [39]) 63
4.20 Token Ring Arbiter de�ned in SyncCharts 64
4.21 Ptolemy extension actors necessary for the supported subset of Sync-

Charts . 65
4.22 Abstract transformation and execution scheme of KlePto 71
4.23 Computing an execution step with KIELER leveraging Ptolemy (KlePto) 73
4.24 Mapping of (a) input signals, (b) output signals and (c) states 74

5.1 Schematic overview of the Execution Manager infrastructure 78
5.2 graphical user interface (GUI) of the Execution Manager 79
5.3 Dialog for adding DataComponents to Execution Manager schedule . 81
5.4 Data pool evolvement example for one execution step (schematic) . . 83
5.5 DeltaObserver vs. observer DataComponent 84
5.6 Linear scheduled execution of DataComponents 85
5.7 Extension de�nition for a DataComponent 88
5.8 KIELER Execution Manager (KIEM) DataComponent properties . . . 92
5.9 ABRO example as a SyncChart . 101
5.10 DataTable plug-in visualizing ABRO simulation results 103
5.11 Mobile data table application visualizing ABRO simulation results . . 105

xvi

Listings

3.1 Xpand example template . 22
3.2 Xtend example for model extensions 24
3.3 Xtend example for model transformations 25
3.4 Xtend example with escape to Java 25
3.5 Java code called by Xtend code . 26

4.1 Main tasks of Ptolemy transformation 41
4.2 Example transformation code fragment: Traversing inner states . . . 42
4.3 Xpand template code fragment of coordinator thread 44
4.4 Pseudocode to transform normal termination transitions 54
4.5 Xtend code to transform normal termination transitions 58
4.6 Pseudocode to �nd possibly emitted signals 62
4.7 Pseudocode extending the Ptolemy �xed point iteration 66
4.8 Java code to decide whether a transition is possibly enabled 67
4.9 fire() method of IO Actor . 67
4.10 fire() method of Combine Actor 69
4.11 Method for initializing loading and running the Ptolemy Model . . . 70
4.12 Setting model input signals . 72
4.13 Getting model output signals . 72

5.1 AbstractDataComponent implementation example 90
5.2 Implementing (optional) properties for a DataComponent 94
5.3 Simpli�ed observer-only DataComponent thread 96
5.4 Simpli�ed producer-only DataComponent thread 97
5.5 Synchronous signal resetter . 100
5.6 ABRO in Java example DataComponent 102

xvii

Listings

xviii

List of Tables

3.1 Overview of some of Ptolemy's built-in domains 28

4.1 Combine functions used by the Combine Actor 69

5.1 Main methods of the central abstract class AbstractDataComponent 91
5.2 JSON representations of synchronous signals 99

xix

1 Introduction

Computer simulations [22] are an established means to analyze the behavior of a
system.

On the one hand one wants to be able to predict and better understand physical
systems and train humans to better interact with them (e. g., weather forecasts or
�ight simulators). On the other hand one aspires to emulate computer systems�
often embedded ones�themselves prior to their physical integration in order to in-
crease safety and cost e�ectiveness (e. g., airbag controller or mars robot).

The basis for such a simulation is usually a model, an abstraction of the real world,
carrying su�cient information to specify the relevant system parameters necessary
for the semantical analysis and execution. The notation of a model instance is a
concrete textual or graphical syntax.

Figure 1.1: GUI of KIELER and the KIEM Eclipse plug-in during a simulation run

1

1 Introduction

1.1 KIELER Framework

The approach of this work is implemented in the context of the Kiel Integrated
Environment for Layout Eclipse Rich Client (KIELER)1 framework. It is a test-bed
for enhancing the pragmatics of model-based system design, i. e., the way the user
interacts with models [23].

The KIELER framework is a set of open source Eclipse plug-ins that integrate
with common Eclipse modeling projects, such as the Graphical Modeling Framework
(GMF), the Textual Modeling Framework (TMF), and especially the modeling back-
bone Eclipse Modeling Framework (EMF).

While Eclipse handles model syntax in a common and generic way, this is not yet
done for semantics. Hence, before handling pragmatics of simulations for models
in general, generic interfaces and speci�cation possibilities for semantics themselves
need to be found. This is the purpose of the KIELER Execution Manager (KIEM)
and KIELER leveraging Ptolemy (KlePto), the execution and simulation approach
presented in this work.

Fig. 1.1 shows the KIELER GUI during a simulation run with KlePto and KIEM.
The latter provides a user interface, shown in the bottom Eclipse View of Fig. 1.1.
The former provides visual feedback about computed simulation details. These are
presented both in the graphical model editor itself and in separate Eclipse Views like
the data table (or optional environment visualizations).

The context of both projects is depicted in Fig. 1.2 that illustrates the Model-
View-Controller (MVC) pattern used in KIELER, where the simulation of models is
part of the controller aspects.

Figure 1.2: MVC in KIELER: The Execution Manager belongs to the controller part
(from [23])

1http://www.informatik.uni-kiel.de/rtsys/kieler/

2

http://www.informatik.uni-kiel.de/rtsys/kieler/

1.2 Problem Statement

1.2 Problem Statement

In the past all model editing, parsing, and processing facilities were manually imple-
mented with little generic abstractions that inhibit interchangeability. Standardized
languages, e. g., the Uni�ed Modeling Language (UML), try to alleviate this, but
sometimes they are too general and complex to be widely accepted.

As a recent development, Domain Speci�c Languages (DSLs) target only a speci�c
range of application, o�ering tailored abstractions and complying to the exact needs
of developers within such domains.

On the one hand, there are already well established toolkits like the Eclipse Mod-
eling Framework (EMF) or Microsoft's DSL toolkit to de�ne an abstract syntax of a
DSL in a model-based way. They provide much infrastructure, such as a metamodel
backbone, synthesis of textual and graphical editors, and post-processing capabilities,
such as model transformations, validation, persistence, and versioning. The designer
of tools regarding such a DSL, the tool smith, faces less e�orts in developing his or
her modeling environment. This is achieved by the sophisticated tool assistance and
possibly a generative approach. This provides, e. g., generated implementations for
simple model interactions automatically and in a common and interchangeable way.

On the other hand there is the semantics of such a DSL. This also has to be
de�ned in order to let a computer execute2 such models. For the speci�cation of
the latter no well established approaches exist yet. But as semantics often exists at
least implicitly in the mind of the DSL-tool-designer there is a need to provide a way
for making it explicit. Additionally, there should be a common way to simulate and
validate models once the semantical aspects are covered.

The contribution of this work is twofold: On the one hand it is a proposal on how
DSL semantics can be de�ned �exibly and in a denotational sense by utilizing existing
semantic domains without introducing any new kind of language or notation. On
the other hand, a light-weight and extensible execution framework is presented that
allows a common way to specify components in order to simulate, validate, and
dynamically visualize models of a DSL.

The following claims can be made for the solutions to both parts:

Model semantics:

1. Simplicity: Avoid new language or notation

2. Flexibility: Avoid concrete language

3. Usability: Favor common technologies

4. Extensibility: Avoid closed speci�cations, favor modular ones

2Model simulation requires an executable model. A model is executable if a mappable represen-
tation exists that a computer is able to execute (e. g., a generated and compiled program).
In other words a model is executable if an execution semantics exists for it (s. Sec. 2.2).

3

1 Introduction

5. Comprehensibility: Concern target group, no too formal notations

6. Abstraction: Keep abstraction level as high as possible

Model execution:

1. Simplicity: Keep interfaces simple

2. Flexibility: Develop tailored data representations

3. Extensibility: Use standards for interfaces

4. Comprehensibility: Emphasize traceable framework behavior

5. Uniformity: Avoid usage of numerous languages and technologies

6. Interactivity: Focus on discrete, stepwise executions

1.3 Outline of this Document

In Chap. 2 some major model simulation frameworks that partially in�uenced this
work are presented, including Esterel Studio, Ptolemy II, SCADE, Matlab/Simulink,
Topcased, and KIEL. Additionally, di�erent approaches to specify execution seman-
tics and model transformations are compared, while reasoning about design decisions.
Chap. 3 introduces the technologies used throughout the implementation. Firstly,

it gives an overview of Eclipse, its workbench and the utilized plug-in mechanism.
Secondly, it introduces fundamental Eclipse technologies, such as EMF, GMF and
transformation languages like Xpand and Xtend. An outline of Ptolemy, its compu-
tational strengths and an association to the Eclipse world follows. Finally, the JSON

standard as an e�cient data exchange format is sketched.
Two case studies are presented in Chap. 4, exemplarily illustrating the common

KlePto approach to denotational specify execution semantics. In the �rst, a language
to describe railway controllers is covered. The second case study concerns a subset of
a graphical synchronous modeling language (SyncCharts). For both case studies, the
domain is presented �rst, followed by a language analysis. As this chapter emphasizes
the Model Driven Software Development (MDSD) by utilizing the presented DSL

toolchain, the automatic generated model editors are inspected next. Afterwards
the transformation ideas are described and �nally implementation details are given.
In Chap. 5 the KIEM architecture is studied. First a motivation and an overview

of the component parts is given. The basic building blocks of this architecture, inter-
facing ideas, and the GUI are discussed. Ideas about the scheduling mechanism, data
management, and features like extensibility and �exibility follow. Implementation
details of all ideas are outlined afterwards. This chapter closes with several example
implementations using the KIEM architecture.
Finally, Chap. 6 gives an outlook on future work and summarizes the results of

this diploma thesis.

4

2 Related Work

As this work splits up into two major parts, this also applies to the related work
chapter. In the �rst part, some major model simulation frameworks are presented.
In the second one, di�erent approaches on how to de�ne execution semantics and
model transformations are analyzed and compared in short, in order to justify design
decisions made in this work.

2.1 Simulation Frameworks

There exist a lot of modeling tools that provide discrete simulation runs for their
domain models. This means that the (graphical) model is executed stepwise. There
are two classi�cations of models, �tting to discrete execution semantics:

� Data-�ow models usually are communicating components linked by channels.
This is where the data �ow. In a synchronous communication setting, each
component may interact once during an execution step. In an asynchronous
communication setting, an execution step could mean: one interaction of each
distinct component (e. g., Kahn process networks [34]).

� Control-�ow models usually are states linked by transitions. Control changes
by state-to-state transitions. This is where the control �ows. There are several
ways to compute this stepwise, such as �nding a �xed point or taking at most
one enabled transition per execution step (e. g., Ptolemy ModalModel domain
or SR domain, see Sec. 3.2).

In the following some popular tools supporting simulations are mentioned.

2.1.1 Esterel Studio

Based on the Esterel [11] language, Esterel Studio [20] is an environment to design
control-�ow models. Mainly it was used to synthesis hardware, e. g., by export-
ing models to Very High Speed Integrated Circuit Hardware Description Language
(VHDL) code. Formal veri�cation is well integrated into this tool.
Simulation is also a built-in feature. In early compiler versions (Esterel 4), a

VHDL based soft-prototype was generated out of the graphical control-�ow model
(Safe State Machines (SSM), a Statechart dialect) and then simulated with a generic
hardware simulation engine.
Because SSMs can be seen as the commercial version of SyncCharts, the simulation

visualization of active states inspired the visualization component of SyncCharts (see
Sec. 4.4) used in this work.

5

2 Related Work

Figure 2.1: Esterel Studio GUI

2.1.2 Ptolemy II

Ptolemy II [36] is a framework that supports heterogeneous modeling, simulation, and
design of concurrent systems. For integrated simulation purposes Ptolemy contains
a graphical editor called Vergil . But there also exists the possibility to embed the
execution of Ptolemy models into arbitrary Java applications. As Ptolemy II is the
most current development, it will just be called Ptolemy throughout the rest of this
work and implicitly the Java based Ptolemy II is meant, not it's C based Ptolemy
Classic predecessor.

As the Ptolemy framework has not only inspired this work but also is used as a
simulation back-end, it is discussed in more details in Chapter 3.

Most interesting is the combination of Java and the ability to model complex
concurrent systems under several (combinable) model of computations (MoCs).

2.1.3 SCADE

SCADE [21] (Safety Critical Application Development Environment) is a tool for
graphically de�ning synchronous data-�ow models. Originally Lustre [26] was the
underlying data-�ow language and the SCADE language was a graphical represen-
tation of it [16]. By now, SCADE evolved to an own, independent language where
control-�ow and data-�ow parts are can be arbitrarily mixed with each other.

The SCADE suite mainly o�ers a certi�ed code generator that for example can
produce C code. Compiled, this code can also be used to simulate a SCADE model
within the tool, as shown in Fig. 2.2. As the data-�ow components are very modular,
each component (that also may contain others) can be simulated. Inputs of the
component are treated as environmental inputs, outputs are treated as environmental

6

2.1 Simulation Frameworks

Figure 2.2: Simulation in the SCADE suite

outputs. In order to interface with the SCADE simulation, the Transmission Control
Protocol (TCP) and the internal data representation can be used.

In the context of this work, the KIEM execution framework tries to simplify interfac-
ing by using a standardized data exchange format and common Eclipse technologies.
TCP communication can be bridged but is not mandatory. The simulation handling
of the stepwise executing gave much inspirations for this work. This was extended
by also allowing the user to make execution steps backwards (to already computed
values) in a generic manner.

2.1.4 Matlab/Simulink/State�ow

Like SCADE, Matlab [42]/Simulink and State�ow [43] is a toolchain already used a lot
in industry, but mostly in the automotive area. Matlab is mainly used for technical
calculations and the Simulink extension (see Fig. 2.3) brings in graphical data-�ow
models where components represent more or less complex mathematical calculation
functions.

The simulation here works di�erent to other tools as the user �rst de�nes the
simulation duration and later may inspect, interpret or analyze the resulting values.
The advantage is that not only discrete time models but also continuous ones can be
simulated. The drawback is that a stepwise execution (that allows user interaction)
may only be emulated on already computed results.

7

2 Related Work

Figure 2.3: Simulation GUI of Matlab/Simulink tool

2.1.5 Topcased

The Topcased1 project is a software environment primarily for constructing critical
embedded systems. It is used in the aviation industry and o�ers hardware/software
co-design. Topcased is based on the Eclipse framework and targets the model driven
development with simulation as the key feature for validating models [17]. It fo-
cuses on the development of a modular and generic Critical Applications & SystEms
Development (CASE) environment. For this, the toolkit is based on the Eclipse Mod-
eling Project. Topcased can not only be used to model a system but also to model
the environment and scenarios.

This inspired the execution framework presented in this work signi�cantly, as it
will try to map all three entities to interacting components with one and the same
underlying exchange data model. In Fig 2.4, the Eclipse based Topcased GUI is
shown.

2.1.6 Modelica

Modelica2 is an environment to describe and simulate physical models. It is based on
object-oriented equations to describe these kinds of systems. Modelica is increasingly
being used in the automotive industry. Simulations are based on a mathematical
representations that can be solved by Modelica simulation environments, such as
MathModelica or SCICOS. This is comparable to the Simulink approach and there
exist possibilities to exchange models between both tools.

1http://www.topcased.org
2http://www.modelica.org/

8

http://www.topcased.org
http://www.modelica.org/

2.2 Execution Semantics

Figure 2.4: Eclipse GUI of Topcased tool

2.1.7 KIEL

The KIEL project [50] presents an alternative paradigm for visualizing Statecharts [27]
during simulation. It follows the basic idea to dynamically construct a view of the
system model that includes all active states (the focus) and their parent states (the
context). The project's implementation is a good but monolithic Java tool. As a
successor, the KIELER project tries to strengthen extensibility and allow for more
generic constructs.

Hence as much ideas, strategies, and technology as possible have been reused from
the KIEL project. Fig. 2.5 shows the simulation of a Statechart within the KIEL tool.

2.2 Execution Semantics

According to Webster's, semantics is the �study of meanings�.

The term execution semantics (of a programming language) is usually understood
as the de�nition of the implicated program behavior based on various language con-
structs.

Hence, in order to simulate a model, semantics must be clear. Usually semantics
is de�ned for model languages (or tools supporting them) either informal or formal.
For an informal description, natural language is often su�cient. For a formal

9

2 Related Work

Figure 2.5: Simulation in the KIEL GUI

de�nition, one distinguishes between:

1. Axiomatic semantics

2. Operational semantics

3. Denotational semantics

In the �rst, logical axioms are used to represent model or language constructs
where Hoare logic [29] is a common paradigm. In the second, the execution of a
model or language construct is described directly (often in a mathematical way).
The lambda calculus [31] or an abstract state machine are examples here. In the
third, each model or language construct is transformed into a denotation [55], a
target language, often a mathematical one.
In the area of semantics w.r.t. programming or model languages numerous works

exist. In the following, exemplarily two di�erent approaches are compared that
refer to this work. Before this, it is shown how semantics a�ects the simulation of
current modeling tools presented in the last section. Because this work is based on
a denotational semantic de�nition using model transformations, �nally some M2M

transformation approaches are compared.

2.2.1 Simulation Tools

Most of the tools presented in Sec. 2.1 are speci�c and follow clear semantics. This
enables such tools to come up with a tailored simulation engine that is able to execute
the models following this concrete semantics.

10

2.2 Execution Semantics

For example, SCADE de�nes a graphical notation for the synchronous data-�ow
and control-�ow SCADE-language. For this, formal semantics exist and the C code
generation delivers an executable simulation of the model. Similar assertions apply
to Esterel Studio.

Ptolemy supports heterogeneous modeling and di�erent semantics for and within
the same model. However, Ptolemy has �xed concrete and abstract syntax and hence
cannot be used directly to express arbitrary DSLs, where one reason to create them
is to get a very speci�c language notation. Hence, it was investigated further as
a generic semantic back-end in combination with the Eclipse modeling projects as
elaborated in Chap. 4.

2.2.2 Di�erent Approaches

As mentioned in Scheidgen and Fischer [51], two fundamentally di�erent concepts
(relating to the classi�cations from above) can be emphasized for specifying model
semantics primarily in the context of DSLs:

1. Model transformation into a semantic domain. In this case semantics is applied
to a metamodel by a simple mapping or a more complex transformation into
a domain for which there already exists an explicit semantical meaning (e. g.,
because models in this domain are executable or/and because there exist formal
semantics like in the case of Ptolemy). This relates closely to a denotational
semantic de�nition.

2. Provision of a new action language, i. e., an operational semantic de�nition.
This concept applies semantics by extending the metamodel with semantical
information on the same abstraction level for which a meaning additionally
has to be de�ned (e. g., in writing generic model simulators that interpret this
information based on formal or informal given speci�cations).

In Chen at al. [14] the latter is a compositional approach for specifying the model
behavior. The M3Action framework for de�ning operational semantics3 is illustrated
by Eichler at al. [28].

Although de�ning a new high-level action language for transforming a runtime
model during execution is a very interesting �eld and retains a stricter separation
between the di�erent abstraction levels, in the context of this work it was decided to
follow the more natural approach. That is, leveraging an existing semantic domain
and specifying model transformations with necessary inter-abstraction-level mapping
links to the model in question.

Some advantages can be identi�ed:

1. There is no need to de�ne any new language to express semantics on the meta
model abstraction level.

3http://www.metamodels.de

11

http://www.metamodels.de

2 Related Work

2. There is a quite direct connection for meta model elements and their counter-
parts in the semantic domain that allows easy traceability.

3. The expressiveness is not limited by a concrete language due to the �exibility
of conceptionally using any semantic domain (e. g., also well-known ones).

4. Abstraction levels can be retained by carefully choosing an abstract semantic
domain and advanced techniques for model transformation (e. g., a generative
approach for the transformations as well).

2.2.3 Model Transformations

According to the presented and compared approaches and for the above reasons, the
model transformation approach was chosen in this work. Hence a way to describe
such transformations is essential.
These play a key role in generative MDSD. They describe the transformation of

models (i. e., metamodel instances) that conform to one metamodel into models,
which then conform to another or even the same metamodel.
Because the context of this work, namely KIELER, is based on Eclipse and EMF,

a model-to-model (M2M) transformation must be chosen that is or can be well inte-
grated into both.
Czarnecki and Helsen [18] give a feature based survey of model transformation ap-

proaches by comparing several transformation languages in the sense of for example:

� Domain (e. g., string patterns or typed variables)

� Syntactic separation of parts in a rule (e. g., for the source and for the target
model)

� Multidirectionality (e. g., execute a rule in both directions)

� Parametrization (e. g., allow control parameters for specifying alternative pat-
terns)

These and other features are explained and illustrated in the context of a selection
of transformation languages. They can be used in order to help with the decision
which language may be suited best for a project.
Prominent Eclipse and EMF based transformation languages are:

Atlas Transformation Language (ATL): ATL [12] is part of the Eclipse M2M Project4

combining imperative and declarative programming aspects.

The Object Constraint Language (OCL)5 is used to query models. The trans-
formation consists of a set of rules applying to the elements of the speci�c
source metamodel.

4http://www.eclipse.org/m2m/
5http://www.omg.org/spec/OCL/2.0/

12

http://www.eclipse.org/m2m/
http://www.omg.org/spec/OCL/2.0/

2.2 Execution Semantics

Query/View/Transformations (QVT): This is part of the Eclipse M2M Project and
also part of the Meta Object Facility (MOF)6. It conforms to the Object Man-
agement Group (OMG) standard. It also has a declarative and an imperative
part.

Xpand/Xtend: These are both parts of the Eclipse Modeling Project. Xpand is a
template language to perform M2T transformations. Xtend is a functional lan-
guage to extend metamodels and to perform M2M transformations. Querying
models is done in an OCL-like manner.

To sum up, ATL di�ers from QVT mainly by the syntax where QVT complies with
the OMG standard [45]. ATL is the one that has been used for a longer time in the
Eclipse context while QVT is not fully implemented yet.
Xpand and Xtend evolved from the openArchitectureWare (oAW) project and are

totally di�erent approaches. They recently have been seamlessly integrated into
Eclipse. Because Xtend is not only a transformation language, it can be used to
extend metamodels. This way for example Xpand templates can be simpli�ed using
Xtend constructs. Xtend can also be extended by using Java wherever limits of the
functional expressiveness may be reached. These languages have also a long and
successful history within the oAW project already. They are based on the same type
system and the same expression language (e. g., to query models).
In this work both M2T and M2M transformations are used. Additionally, in the

context of KIELER several parts (e. g., metamodel extensions) should be reusable.
This leads to the decision to use Xpand and Xtend for model transformations.
Nevertheless, the Eclipse based approach presented in this work is conceptually

open to use any transformation language that supports EMF meta models.

2.2.4 Simulation High-Level Architecture

Our architecture is related to the IEEE standard for modeling and simulation high-
level architecture [33]. The KIELER Execution Manager (KIEM) presented in Sec. 5
follows the ideas of the runtime infrastructure (RTI). However, our approach does
not follow the standard in detail, but is meant to be a light-weight approximation.
Fig. 5.1 on page 78 gives an overview of this infrastructure provided by KIEM.

6http://www.omg.org/mof/

13

http://www.omg.org/mof/

2 Related Work

14

3 Used Technologies

Before diving into the explanation of the main ideas or even any implementation de-
tails of this work, it is necessary to introduce some key technologies used throughout
the next chapters. Because these cannot all be discussed in their full depth in the
context of this work, often only a sketch of the most important ideas and eligible use
cases are given with some references for further reading.

3.1 Eclipse

Because KIELER is an Eclipse based framework and the work of this project is a part
of the former, a short introduction to Eclipse seems in order.

Eclipse is a platform, well known as the Java IDE. It itself is implemented in
the Java language but by now has evolved to be a development tool for various
other languages (e. g., C++, PHP Hypertext Preprocessor (PHP), Extensible Markup
Language (XML)). It can also be seen as a framework for building IDEs. This is
summarized by the common principle that Eclipse is �an IDE for anything, and
nothing in particular� [47].

3.1.1 Plug-ins

The building blocks of Eclipse are components called plug-ins. The basic Eclipse
platform consists of a small number of such plug-ins and is extended by other plug-
ins. This architecture is �exible, modular, and extendable at the same time because
plug-ins can be replaced, plug-ins can extend other plug-ins and every plug-in can
be seen as a more or less independent puzzle piece of the overall application.

For each plug-in, the following information is necessary:

� What other plug-ins does it depend on, e. g., what functionality of other plug-
ins does it use?

� What functionality does it add?

� What of this functionality may be extended by yet other plug-ins, e. g., what
extension points does it o�er?

This kind of meta information is not part of the Java language. It is used to de-
scribe the interrelation within the overall architecture. The platform runtime engine
needs this information because it loads and runs plug-ins. This runtime engine exists

15

3 Used Technologies

on top of the OSGi1 Service Platform, where plug-ins (also called bundles) can be
installed and removed.

The necessary meta information of a bundle is stored in the XML based �le
plugin.xml. In addition to the dependency information, it contains a name and
an id of the respective plug-in.

Workbench Toolbar

Eclipse Views

Eclipse EditorsMain Menu

View Toolbar

Figure 3.1: Eclipse Workbench with Editors and Views

3.1.2 Rich Client Platform and Workbench

The Eclipse Rich Client Platform (RCP) allows to build IDEs using the plug-in ar-
chitecture described above. To reuse plug-ins in another context (e. g., their own
context), it describes a minimal set of bundles needed for an independent Eclipse
based RCP application.

The Workbench is among this minimal set of basic plug-in components. It can
simpli�ed be seen as the main window or desktop of an Eclipse application. All
parts of the Workbench may look similar at �rst glance, but are basically of two
di�erent types:

Eclipse Editor: Editors are integrated into the Workbench, meaning that all contri-
butions (e. g., toolbar icons) are embedded into the overall workbench, when
a speci�c editor is active (i. e., it has the focus). Editors cannot be decoupled
(e. g., dragged out) from the Workbench. There exists an editor pane that all

1Open Services Gateway initiative: http://www.osgi.org/

16

http://www.osgi.org/

3.1 Eclipse

editors share. They can be arranged within this pane but not outside of it.
Editors can be registered to �le types and hence appear automatically if the
user opens a �le of a respective type. Several Editor instances (with di�erent
contents) may be opened at the same time. In Fig. 3.1 two editors can be seen
in the upper right editor pane area.

Eclipse View: Views are not as integrated into the Workbench as Editors are. They
usually present additional or di�erent information about the contents of the
currently active editor (or even a selected object within). Typically there exists
at most one instance of a View. Views usually have their own toolbar (but can
also contribute to the Workbench's toolbar and Main Menu). The position of
Views can be arranged by the user more freely. He or she may also drag them
out of the Workbench. In this case they are displayed in their own window. In
Fig. 3.1 several Views (e. g., the Console View, Properties View or the Project
Explorer View) are arranged below the editor pane or left to it.

To retrieve additional and more detailed information about Eclipse, one should
visit the Eclipse Website2 or be referred to some common Eclipse literature [15].

3.1.3 The Eclipse Modeling Framework (EMF)

A basic prerequisite for MDSD are models that are based on metamodels. Metamodels
de�ne the abstract syntax of models and hence allow the speci�cation of languages as
object-oriented structure models. The Meta Object Facility is such a metamodeling
framework de�ned by the OMG [46], which has been taken shape for the Eclipse world
as the Eclipse Modeling Framework (EMF).
The EMF is the commonly accepted modeling framework for Eclipse. Because

there are few comparable competitors and the EMF is a basis for several other tech-
nologies, it is sensible to use it in an Eclipse based project that wants to utilize the
interchangeability within the Java, Eclipse, and EMF based world.

Metamodel

EMF uni�es Java, XML, and UML and lets the user de�ne an EMF model in all of these
forms while it is able to generate the other representations out of it. This makes it
easy to start with EMF as one can choose to:

� Directly use an EMF tree editor,

� Use a graphical editor,

� Import an XML schema de�nition, or

� Extract an EMF model from a Java implementation.

2http://www.eclipse.org

17

http://www.eclipse.org

3 Used Technologies

Figure 3.2: Simpli�ed Ecore metamodel subset

An EMF model is represented by Ecore (see. Fig 3.2). Because EMF bootstraps
itself, Ecore is again an EMF model.

The term metamodel and meta-metamodel might always seem a bit confusing but
it simply means that some model is a model for other models. Because an EMF model
(in Ecore) is often used to describe a set of other models, for these, it serves as a
metamodel. Hence, the other models can also be considered metamodel instances.

Fig. 3.2 shows a simpli�ed subset of Ecore with the following four classes:

1. EClass represents model classes having a name and optionally having at-
tributes and references,

2. EReference represents an association between classes, has a name, may be of
type containment and has exactly one target class,

3. EAttribute represents an attribute having a name and being of exactly one
type, and

4. EDataType represents the type of an attribute, which may be for example
int or String.

This (almost) is su�cient to de�ne EMF models that are supposed to serve as
metamodels. Hence one can use Ecore to de�ne the abstract syntax of a modeling
language.

Figure 3.3: EMF generator context menu options

18

3.1 Eclipse

The EMF Generator

EMF can take the Ecore representation and generate (e. g., Java) code out of it.
This is why the Eclipse Modeling Framework can also be considered a code genera-
tion facility. The generated Java implementation already contains getter and setter
methods and other complete code to load (parse) and save (serialize) models (i. e.,
metamodel instances of the original EMF model). Fig. 3.3 shows the context menu
options of an EMF generator model. The latter is an EMF model, enriched with addi-
tional information such as name spaces or package names. With the code generator
one can not only generate the other representations (Generate Model Code) but also
the loading and saving features (Generate Edit Code) and a ready to use tree editor
(Generate Editor Code) or even code to test models (Generate Test Code).

As stated before, there are various import options to start from. The import dialog
of EMF is depicted in Fig. 3.4 and shows these numerous alternatives.

Figure 3.4: EMF generator model import

Metamodels and DSLs

In the context of this work, all models are based on EMF. To describe the abstract
syntax of a DSL, one needs to de�ne an EMF model in Ecore. This is done for the case
studies presented in Chap. 4. As graphical diagram representations of EMF models
(like the one in Fig. 3.2) are easy to read, such diagrams will be presented in due
course.

19

3 Used Technologies

Figure 3.5: GMF Dashboard View for diagram editor generation

To gain detailed knowledge about the Eclipse Modeling Framework, the reader
should visit the EMF Website3 or refer to common EMF literature [54].

3.1.4 The Graphical Modeling Framework (GMF)

The Graphical Modeling Framework (GMF) is another framework built on top of
Eclipse and EMF. It also exploits the Graphical Editing Framework (GEF) that
facilitates the development of rich graphical editors. With the help of GEF and EMF,
GMF provides a generative component and runtime infrastructure for developing rich
graphical model editors.

The GMF Dashboard of Fig. 3.5 gives an overview of the generative toolchain that
comes with that framework. Given an EMF model describing an abstract syntax, it
can be used to generate a graphical editor out of the box. This editor serves the
same purpose as the tree editor that can be generated by the EMF toolchain. It
operates on models that are metamodel instances (i. e., they conform to the original
metamodel in EMF). Because a graphical representation comes up with additional
information such as the position and size of a node, this information is stored in a
separate notation model.

Nodes and edges of the graphical model may represent EClasses of the EMF

model. The latter is referred to as the Domain Model in Fig. 3.5. The graphical
representation may be derived from it and is referred to as the Graphical De�nition
Model. In a graphical editor, additionally there are tools that allow the user to
create new nodes of di�erent types or connect some nodes with edges. These tools
are de�ned in the Tooling De�nition Model. Finally, the Mapping Model combines
all three models and speci�es their interrelations.

3http://www.eclipse.org/modeling/emf/

20

http://www.eclipse.org/modeling/emf/

3.1 Eclipse

The Diagram Editor Generator Model is comparable to the EMF generator model.
It is a copy of all four models, combined and enriched by some information that
allows GMF to generate the diagram editor (i. e., the graphical model editor) out of
it.

Graphical GMF editors can further be customized by modifying the Mapping Model
or by using techniques like it was done for the SyncCharts editor of Fig. 4.8 by
Schmeling [52]. For further information about GEF4 and GMF5, the Websites or
adequate literature [25] should be consulted.

3.1.5 Xpand

Like EMF and GMF, Xpand is part of the Eclipse Modeling Project6. It is a statically-
typed template language that focuses on the generation of textual artifacts from
models. Xpand was originally developed as part of the oAW7 project before all parts
of oAW have been moved to Eclipse.

Xpand can be used together with various types of metamodels. Supporting EMF

models natively, with Xpand textual artifacts (e. g., Java or C code) can easily be
generated out of a model conforming to an EMF based metamodel.

The language back-end is based on Java and fully integrated into Eclipse, mean-
ing that several adequate plug-ins exist for all purposes of Xpand, such as reading
components, transformation components, pretty printer components, and writing
components.

Type System and Expression Language

Xpand is based on an expression language and type system that is also shared
with Xtend (s.b.). It has built-in types such as Void, Integer, String or
Boolean. Additionally, it is dynamically extended by the metamodel types
(i. e., class instances of the metamodel). These can also occur as collections, lists or
sets (e. g.,Collection[my::Type], List[my::Type], Set[my::Type]).
The expression language knows about:

� Basic arithmetic and boolean operations (e. g.,1+2*3, !(true && true))

� Operators (e. g.,==, ! =, <, ...)

� Strings (e. g.,“this is a string”)

� Integers, Reals (e. g.,10, 3.4)

� Collection operations (e. g.,collection.select(i | i > 3),...)

4http://www.eclipse.org/modeling/gef/
5http://www.eclipse.org/modeling/gmf/
6http://www.eclipse.org/modeling/
7http://www.openarchitectureware.org/

21

http://www.eclipse.org/modeling/gef/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/
http://www.openarchitectureware.org/

3 Used Technologies

Listing 3.1: Xpand example template

1 « IMPORT simpleecore »
2

3 « DEFINE main FOR SimplifiedEcore -»
4 « FILE "implementations.java" -»
5

6 /* some comment */
7

8 « FOREACH EClass AS class ITERATOR i -»
9 class « class.name -» {

10 //implementation of class number « i.counter1 -»
11 }
12 « ENDFOREACH-»
13

14 « ENDFILE -»
15 « ENDDEFINE »

Templates

Xpand templates are stored in *.xpt �les. These are textual �les that combine raw
template text and commands/expressions of the template language. The commands
and expressions operate on the model, based on the given metamodel. Special escape
characters (��� and ���) are used to di�er between template text and commands
or expressions. Commands and expressions must always be encapsulated by these
characters.

Listing 3.1 presents a very simple Xpand template �le. In the �rst line the
metamodel simpleecore.ecore is imported using the IMPORT() command en-
closed by the escape characters. Lines 3 and 4 create a destination (text) �le
implementations.java for every instance of SimplifiedEcore within a model
conforming to the metamodel from line 1. Line 5 and following lines de�ne the con-
tents of this text �le. This text �le's second line will be the java comment of line 6.
This is a raw template text (not encapsulated by escape characters) that is just
copied into the destination �le. The FOREACH() block of line 8 to 12 will result
in class de�nitions for each instance of EClass. This will be customized using the
expression of line 9, where the name of such an instance is extracted. Additionally,
the comment of line 10 includes an expression with a reference to the counter (i) of
the FOREACH() block.

For further information and examples of the Xpand template language and code
generation, the reader should refer to the given websites (s.a.).

3.1.6 Xtend

Xtend is another language, once arising from the oAW project. It is also now well
integrated into the Eclipse Modeling Project. Originally it was used to de�ne exten-

22

3.1 Eclipse

sions8 to a metamodel used in the Xpand template language.

Xtend is based on the same type system and expression language as Xpand is and
as it was explained in the previous section.

In addition to extending a metamodel, Xtend can also be used to de�ne a model-
to-model (M2M) transformation [56].

Metamodel Extensions

Xtend extensions are stored in *.ext �les. Listing 3.2 shows how simple extension
functions can be de�ned. Both of these functions have EClass as its �rst element.
This way they extend the operations on instances of class EClass within the meta-
model simpleecore.ecore. These extensions (i. e., functions on EClass objects)
can then be used within the Xtend �le and within an Xpand �le that imports the
Xtend �le.

Considering an object called myClass of type EClass, there are two possibilities
to call and make use of the de�ned Xtend functions:

1. myClass.upperCaseName or
myClass.setUpperCaseNameAndId(“new name”, “new id”)
to call them in a member-style syntax.

2. upperCaseName(myClass) or
setUpperCaseNameAndId(myClass, “new name”, “new id”)
to use them like static functions.

This Xtend �le of Listing 3.2 shows some common and basic structures that can
be found in most extension de�nitions. The function de�ned in line 3 has a String
return value. The value of a function results from the evaluation of its last statement.
In this case it is the statement class.name.toUpperCase() of line 4, where the
function toUpperCase() is built-in for the basic String type. As explained above
such basic types are already supported by the type system and expression language.

The second function de�ned in line 8 has no return value as indicated with the
Void return type. It introduces a new local variable nameCopy that the param-
eter name is just assigned to. The static type system makes sure that the type
of nameCopy will also be String. In line 11 a statement (with no return value)
to set the id is executed. This statement has side-e�ects, namely the id assign-
ment. Because this is the last statement of the method, the (absent) return value
(of type Void) is inherited from it and matched to the de�ned one (also Void).
In line 10 another assignment statement is executed. The sequence operator �->�
delimits sequential, imperative statements as the one of line 10 and line 11. This
way initializations, which are inherently imperative and not side-e�ect-free, can be
realized.

8The name Xtend is derived from the fact that it serves as an extension to the metamodel in the
context of Xpand.

23

3 Used Technologies

Listing 3.2: Xtend example for model extensions

1 import simpleecore;
2

3 String upperCaseName(EClass class):
4 class.name.toUpperCase()
5 ;
6

7

8 Void setUpperCaseNameAndId(EClass class, String name, String id):
9 let nameCopy = name:

10 class.setName(nameCopy.toUpperCase()) ->
11 class.setId(id)
12 ;

Model Transformations

As indicated above, Xtend can not only be used to extend a metamodel but also to
transform models. Basically one distinguishes between two types of model transfor-
mations:

Model to Model In this case there are two di�erent metamodels. One of them serves
as the source and the other as the target metamodel. The model transformation
describes how instances of the target metamodel can be constructed out of
instances of the source metamodel. As the implication is directed from the
source metamodel instance to the target metamodel instance this is called a
unidirectional9 transformation description.

Inplace In case there is just one metamodel and only modi�cations on metamodel
instances are de�ned, this is called an inplace model transformation.

Using Xtend, both transformation types are possible. Listing 3.3 shows two Xtend
functions, the �rst method transform() of line 4 de�nes a M2M transformation,
the other method inplace() of line 9 de�nes an inplace model transformation.

In the �rst transformation the keyword create instantiates a new entity of type
otherecore::MainType de�ned in the target metamodel. It takes a parameter
main that belongs to the source metamodel. In line 5 it simply sets the name of
the newly created entity (this) to the name given by the object from the source
metamodel instance. It then returns the new entity, as all create functions do.

In the second transformation of line 9, the source metamodel instance is modi�ed
and hence can be seen to be the target metamodel instance at the same time. The
name of the entity main is modi�ed to the same, but upper case letters.

9Apart from Xtend, there also exist bidirectional transformation descriptions that not di�er be-
tween a source and a target metamodel, but these descriptions tend to be a lot more restrictive
in their expressiveness.

24

3.2 Ptolemy

Listing 3.3: Xtend example for model transformations

1 import simpleecore;
2 import otherecore;
3

4 create otherecore::MainType this transform(simpleecore::MainType main):
5 this.setName(main.name)
6 ;
7

8

9 Void inplace(simpleecore::MainType main):
10 main.setName(main.name.toUpperCase())
11 ;

Listing 3.4: Xtend example with escape to Java

1 import simpleecore;
2

3 String upperCaseName(simpleecore::EClass class):
4 class.getNameInJava.toUpperCase()
5 ;
6

7

8 String getNameInJava(simpleecore::EClass class) :
9 JAVA myUrl.myPackage.myJavaClass.myStaticMethod(myUrl.simpleecore.EClass)

10 ;

Escape to Java

Whenever for example the functional style of Xtend or the absence of global variables
seems to limit the user in any way, he or she can easily escape to the Java language
instead. This is done by using the JAVA keyword.

Listing 3.4 shows a function called getNameInJava() that uses this keyword
to escape its computation to the static Java method myStaticMethod() de-
�ned in the package myUrl.myPackage and shown in Listing 3.5. The com-
putation itself takes place in line 6 of this listing and is nothing extraordinary.
As the Java code requires the EMF implementation code for the given metamodel
simpleecore.ecore, all getter and setter methods for the de�ned classes/types
are easily accessible.

For further information and examples of the Xtend extension and transformation
language, the reader should refer to the given websites (s.a.).

3.2 Ptolemy

The Ptolemy II project studies heterogeneous modeling, simulation, and design of
concurrent systems with a focus on systems that mix computational domains [19].

The behavior of reactive systems (i. e., systems that respond to some input and
a given con�guration with an output in a real-time scenario) is modeled in Java

25

3 Used Technologies

Listing 3.5: Java code called by Xtend code

1 package myUrl.myPackage;
2 import myUrl.simpleecore.EClass;
3

4 public class myJavaClass {
5 static String myStaticMethod(EClass class) {
6 return class.getName();
7 }
8 }

Figure 3.6: Ptolemy model using SR and ModalModel domain to sum-up even and
odd values

with executable models. The latter consists of interacting components called actors.
Hence this approach is referred to as Actor-Oriented-Design. These actors interact
under a model of computation (MoC), which speci�es the semantics encapsulated in
a special director actor. Ptolemy models are hierarchically layered allowing di�erent
MoCs for each layer. Actors are allowed to consist of one of the following:

1. Pure Java code that may produce output for some input during execution.

2. Other Ptolemy actors composed together under a separate MoC that de�nes
the overall in- and output behavior.

26

3.2 Ptolemy

3.2.1 Domains

There exist several built-in directors (i. e., concurrency and communication imple-
mentations) that come with Ptolemy II, such as Continuous Time (CT), Discrete
Events (DE), Process Networks (PN), Synchronous Data�ow (SDF), Synchronous
Reactive (SR) and Finite-State-Machine (FSM). Table 3.1 gives a short overview of
these and describes their domains. Whenever this seems to limit the developer, he or
she may easily adapt or de�ne new Ptolemy II directors in Java that implement their
own (e. g., more specialized) semantical rules of actor component interaction. The
combination of these various, extendable domains allows to model complex systems
with a conceptually high abstraction leading to coherent and comprehensible models.

3.2.2 A Heterogeneous Model Example

An example Ptolemy II model is presented in Fig. 3.6. In this example the two
domains SR and FSM (or rather the ModalModel domain as a new and enhanced
version of the older FSM, see [37]) are mixed. On the top-level there is a synchronous
data-�ow actor-to-actor communication. At a given rate, execution steps occur where
each actor is �red once (i. e., its fire() method is called). Inside this, the actor
may react to given (or absent) input tokens with output tokens.

In this example the ramp actor produces an ascending sequence of integer numbers,
starting with 0. Each �ring, one token arrives at the input of the ModalModel. This
has two output ports and due to its implementation shown in the expanded view
below, it alternately produces a token 1 on each output port as a result of this
speci�c input token stream.

Looking closer into its control-�ow implementation, each time the ModalModel is
�red, it may change its state by taking an enabled transition. Due to the nature of
these transition guards in Fig. 3.6, there always is an enabled transition. If the state
is even and the input token (referred to as input) is even, the even_output will
produce a 1 token, the other will not produce any token. The state is not changed
in this case. If the state is even and the input token is odd, the odd_output will
produce a 1 token, the other will not produce any in this case. The transition leads
to the other state odd now. This means that for the next �ring, the odd state's
outgoing transitions are inspected and de�ne a potential reaction of the actor. In
this example, the behavior in state odd is (inverse) analogue to the one in state
even.

On the SR data-�ow layer each out coming token of the two ModalModel output
ports is counted in a delayed loop where the value of the loop is monitored by a
special sink actor. According to the ramp input and the ModalModel implemen-
tation, these values will not di�er by more than one. Note that the AddSubtract
actor has multiport input ports, meaning that all tokens arriving are summed-up
and result in just one output token of this value. Also note that according to the
synchronous semantics of the SR domain, the delaying of the values is mandatory,
because instantaneous loops are prohibited.

27

3 Used Technologies

Domain Description

Continuous Time (CT) Interaction via continuous time signals, actors
compute di�erential relations between inputs and
outputs, di�erential equation solvers for simula-
tion

Process Networks (PN) Interaction via asynchronous message passing, ac-
tors react to input messages and compute new
output messages

Synchronous Data�ow (SDF) Special PN domain with �xed number of messages
each �ring

Synchronous Reactive (SR) Interaction via synchronous message passing at a
�xed rate, messages can be absent

Finite-State-Machine (FSM) Entities are not conventional actors but states
here, execution is strictly ordered sequence of
state transitions, built-in expression language to
evaluate transitions guards

Table 3.1: Overview of some of Ptolemy's built-in domains

3.2.3 Simulations

Fig. 3.6 shows a Ptolemy model in its graphical representation, opened in the Vergil10

editor that comes bundled with the Ptolemy framework. In addition to create and
modify Ptolemy models, this editor also allows to simulate them. According to
the used actors and domains, simulation results and even debugging results may be
visible right away in the editor. For example, in Fig. 3.6 the monitored values are
displayed.

But the simulation of Ptolemy models is not restricted to Vergil only. Ptolemy
is built on the Java language and all components are implemented in Java. In the
memory, a Ptolemy model is nothing more than (cascaded) instances of various
Ptolemy classes (mainly actors with parameters). The framework additionally o�ers
possibilities to execute Ptolemy models programmatically and stepwise from and
within Java programs. But stepwise executions are not generally possible using
Vergil.

Compared to for example SCADE, Ptolemy models cannot have input or output
ports on their outermost hierarchy level that could serve to interact with the environ-
ment. Thus, Ptolemy models can be considered closed models where all interaction
is limited to the participating actors. In order to communicate with an environment,
special actors need to provide this functionality.

10Note that Fig 3.6 shows two hierarchy layers while Vergil can only display one layer per window.

28

3.2 Ptolemy

3.2.4 Technical Details

For the sake of brevity no advanced technical details can be given here and the reader
may refer to the technical Ptolemy documentation, in particular about the *charts
(pronounced starcharts) principle [24]. It illustrates how hierarchical Finite-State-
Machines can be composed using various concurrency models leading to arbitrarily
nested and heterogeneous model semantics.

In addition to this also the Ptolemy documentation11 or other literature concerning
the Ptolemy project [19, 13, 38, 35, 36] might give some useful additional and more
detailed technical information.

3.2.5 Ptolemy EMF Model

The graphical representation of Ptolemy models shown in Fig. 3.6 is just one, used
by the bundled Vergil editor. If you save a Ptolemy model into a �le, an XML based
format is used. This is called the modeling markup language (MOML). The MOML

XML �le content is used just as another representation of one and the same Ptolemy
model. Parsers and serializers exist to transform a Ptolemy model in Java to its
MOML equivalent and vice versa. Hence a Ptolemy model can be speci�ed in both
ways. The advantage of specifying it using MOML is that the compiled Ptolemy
classes are not needed for constructing the model.

Because MOML is a language describing (syntactically valid) Ptolemy models, it
can be considered an abstract syntax. The latter is de�ned by a Document Type
De�nition (DTD). This can also be represented in the XML schema12 de�nition
language.

As seen in Sec. 3.1 a XML schema de�nition �le can be imported by the EMF

framework in order to construct an EMF based metamodel. Such a metamodel type
is useful in the context of Eclipse as discussed in this section.

Fig. 3.7 shows a simpli�ed version of the Ptolemy EMF based MOML metamodel.
Note that most Ptolemy components (e. g., actors) are represented as EntityType
instances that specify the implementing Java class and a name. These may have
named ports represented as PortType instances. All links (hierarchically) inside a
component are contained by it and consist of two LinkType and one Relation-
Type instance. A relation may optionally be a vertex (shown by Vergil as a dia-
mond). Components usually have a number of named properties of type Property-
Type. The latter sometimes contain values but always are typed by their class at-
tribute. Additionally, a director of type DirectorType is a special component
to express the MoC. Because this is a rather simpli�ed version of the MOML meta-
model, only basic components are visible. The reader should refer to the Ptolemy
documentation for a complete metamodel.

11http://ptolemy.eecs.berkeley.edu/ptolemyII/designdoc.htm
12http://www.w3.org/XML/Schema

29

3 Used Technologies

Figure 3.7: Simpli�ed metamodel of MOML �le structure

3.3 The Java Script Object Notation (JSON)

The Java Script Object Notation (JSON) is a lightweight format for saving and in-
terchanging data. Although it is based on the JavaScript programming language,
JSON itself is completely language independent. Besides its e�cient representation
(compared for example to XML), JSON is a lot more human readable. It is based on
two building blocks:

1. Key/value pairs

2. Ordered lists

The �rst one is often implemented as objects, structs, or hash tables, the second
often as arrays or lists.

30

3.3 The Java Script Object Notation (JSON)

3.3.1 Implementations

Because these basic constructs can be represented in most modern higher program-
ming languages, there exist various JSON implementations. Just to numerate some:

� C, C++, C#

� Delphi

� Ei�el, Erlang, Haskell, Lisp

� Java, JavaScript

� Perl, PHP, Phython, OpenLaszlo

� Ruby, Visual Basic

A complete list of implementations can be found on the o�cial JSON website13.

3.3.2 Structure

The Java implementation14 used in the context of this work basically consists of the
JSONObject class. An instance of this class is an unordered collection of key/value
pairs. Its serialized form is wrapped into curly braces having colons separating keys
from their values and commas separating several of such key/value pairs.
For example such an object with two keys key1 and key2 and with two respective

values value1 and value2 would have the following string representation:

{ key1:value1 , key2:value2 }

While the key is of type String, a value can have various types. For example:

� boolean

� int, double

� String

� Object

With the last generic Object type, it is also possible to cascade JSONObjects
into another. Consider the example from above, where the second value is another
JSONObject instance consisting of the two key/value pairs key2a, value2a and
key2b, value2b:

{ key1:value1 , key2:{ key2a:value2a, key2b:value2b } }

13http://www.json.org
14http://www.json.org/java

31

http://www.json.org
http://www.json.org/java

3 Used Technologies

The usage of the JSON implementation for Java is well documented on the Website.
Basically there exist the following priorly used methods in order to:

� Accumulate values under a key: accumulate()

� Get the value of a key: get()

� Determine the JSONObject contains a speci�c key: has()

� List all contained keys: keys()

� Remove key/value paires: remove()

� Serialize the JSONObject: toString()

� Parse a serialized representation: JSONObject()

32

4 Semantics

As introduced in Chap. 2, there are two possible ways to specify semantics of a DSL:

1. Model transformation into a semantic domain

2. Provision of a new action language

Both approaches have their pros and cons as already discussed. In this work the �rst
one is used in leveraging Ptolemy II as a �exible and extensible simulation back-end.
For this, a model transformation is utilized to automatically generate valid Ptolemy
models (i. e., meta model instances are transformed into MOML �les). The meta
model describes the speci�c DSL for which two di�erent case studies are presented:

� First, a language describing simple controllers for a model railway system is
examined in Sec. 4.1.

� Second, a transformation following the semantics of SyncCharts, a special syn-
chronous Statechart dialect, is given in Sec. 4.2.

For each case study a short introduction into the domain is given, followed by a
description of the metamodel and an outline of the transformation.
Common to both DSLs is the idea of the simulation and visualization component

that is interfaced with the Execution Manager presented in Chap. 5. The simulator
engine is described in Sec. 4.3. All of this is covered in the KIELER leveraging
Ptolemy (KlePto) subproject that also comes up with the implementation counterpart
for the presented transformation and simulation component ideas.

4.1 Model Railway Controller Language

In a �rst case study a controller language for a model railway system is presented.
This language is similar to a more or less simple state machine dialect but with the
additional concept of concurrency built-in. For this study a model transformation
into the Ptolemy model language is given in addition to a code generation approach
for C that is I/O equivalent.
The train service on a railway system is a paradigm of a system with much dynamic

behavior. Often, only a limited number of tracks is available, passing of trains is
only possible in certain constellations, and collisions must be avoided as well as
blocking. Possibly there are additional constraints such as time tables to meet or
special directions and speeds to maintain. The task of a controller is to operate such
a railway system while meeting a collection of such requirements.

33

4 Semantics

4.1.1 Model Railway Installation

The model railway installation (see. Fig 4.1) of the department of computer science at
the Christian-Albrechts-Universität zu Kiel is a concrete and real live example of such
a dynamic system. In this rather complex laboratory there are more than 200 sensors
and actuators installed that can be operated over several distinct bus systems, namely
Controller Area Network (CAN), Time Triggered Protocol (TTP), and Ethernet., as
depicted in Fig. 4.2. The (simpli�ed) track scheme of the installation is given by
Fig. 4.3.
Every track segment that is visually separated from the others can be controlled

separately (i. e., the speed of a locomotive is in�uenced by controlling the spe-
ci�c voltage power of such a segment). The latter is addressed by its name (e.g,
KH_ST_5). Nearly all segments are equipped with two reed contacts (mechanical
switches). There is one at each end of a track segment, denoted as a small blue bar
in Fig. 4.3. These contacts are triggered when passed by a train and hence they
serve as sensors to derive train positions. Additionally, power electronics installed
under the baseplate is able to detect trains occupying a track by measuring potential
di�erences. All 29 switch points and every signal light can also be addressed and set
by peripheral devices.

Figure 4.1: Model railway installation

The tracks can be divided into three circles:

1. Kicking Horse Pass (red)

2. Outer Circle (green)

34

4.1 Model Railway Controller Language

P
ow

er
 S

w
itc

he
s

CAN−Bus TTP
TTP−Bus

CAN−Bus PC104

Ethernet

12V

12V

12V
S

w
itch

TTP TTP

TTPTTP

TTP TTP

TTPTTP

123

5 6 7 8

4

PC104 PC104 PC104 PC104 PC104PC104 PC104

14 15 16

PC104

17 18 19 20 21

10
PC104 PC104

1
PC104 PC104 PC104 PC104

7 6 5 4
PC104 PC104

239
PC104

8
PC104

12
P

C
10

4
P

C
10

4

13
P

C
10

4

11

22
0

P
C

104

23
P

C
104

P
C

104

Networks

CAN Bus Systems

TTP Bus

PC104 Ethernet subnet

12 V Power Supply

Special network elements

External Connector

Bus Termination

Controlling nodes

TTP Powernode 312

PC104 Node + Controller
PC104

TTP

Figure 4.2: Model Railway Bus Diagram (from [30])

3. Inner Circle (orange)

Trains may transit from one circle into another using the blue turnaround loops
or the approach tracks of the Kicking Horse Pass on the left and right side.
A more detailed and more technical description of the model railway is given on

the website1 dedicated to it or in the diploma thesis of Stephan Hörmann [30]. There
also exists more information concerning the C interface that is used in Sec. 4.1.6.
Details about the Java interface and the simulation used in Sec. 4.1.5 can be found
elsewhere [44].

4.1.2 Domain Speci�c Language

Considering the above railway system as the domain, a language was de�ned to
model simple controllers that are able to ful�ll various tasks. To summarize, such a
controller should be able react to three possible kinds of input events:

Reed contact was triggered

Timeout event occurred

Track is detected to be occupied

1http://informatik.uni-kiel.de/~railway/

35

http://informatik.uni-kiel.de/~railway/

4 Semantics

Figure 4.3: Schematic track scheme of the model railway (from [30])

Additionally, this controller should be able to generate the following kinds of actions:

Set the speed of a track segment

Set a switch point to straight or branch position

Set a signal light to a speci�c color

A controller can be seen as a reactive system, which responds to input events with
output actions where the pace is limited by the environment (i. e., the physics of the
model railway system). As mentioned earlier, concurrent reactive tasks should be
possible.

A state-based language is su�cient to describe such controllers. It treats the input
events as triggers of transitions and covers the di�erent output actions as three types
of nodes representing states. The speci�c action of a node type will be taken as soon
as it is entered. Transitions (i. e., directed edges) lead from one node to another.

36

4.1 Model Railway Controller Language

To cope with the concurrency aspects, several nodes may be marked with an initial
tag. The computation of all strongly connected components can then take place
concurrently.

Figure 4.4: Metamodel of the railway controller language

Fig. 4.4 shows the metamodel representing such a model railway controller lan-
guage. The RailController class owns an arbitrary number of Nodes. These
can have an initial tag as explained above. A Node is an abstract class that is
derived by the SetSpeed, SetPoint, and SetSignal class, each having spe-
ci�c properties required by their distinct actions. Nodes also contain their outgo-
ing Transitions. The latter link them to exactly one possibly other destination
Node. The Transition class is abstract as well and substantiated by the classes
EventContact, EventWait, and EventOccupied. These types represent the
di�erent triggers that may enable each Transition, con�gured by the properties
of each child class.

4.1.3 Domain Speci�c Editor

The metamodel described in Sec. 4.1.2 represents the abstract syntax of railway
controller models. Using the Eclipse EMF/GMF toolchain introduced in Sec. 3, it is
relatively straightforward to produce a graphical Eclipse based editor. Using such,
one is able to create and modify graphical representations of the controller models
where, e. g., Nodes are represented as boxes (each type having a di�erent color) and
Transitions are drawn as connecting edges between those boxes (again, each type
having its own color). Such an out of the box editor can be seen in Fig. 4.5.

In the end the additional graphical information (i. e., the layout) is stored apart
from the domain model information.

37

4 Semantics

Figure 4.5: Railway controller example model in Eclipse GMF editor

4.1.4 Transformation

The domain model information contains only enough information to specify the un-
ambiguous semantics of a model railway controller, having the implicit knowledge of
the de�ned domain language in mind. To make this knowledge about the domain
language explicit and to give the controller models an execution semantics, a model
transformation into a semantic domain was chosen, for the already discussed rea-
sons. If the semantics of the target domain is clearly de�ned and formal proven2, an
unambiguous transformation is su�cient. Further formal proofs just need to concern
the transformation. Hence using Xtend as a M2M transformation language from the
railway controller domain into a Ptolemy semantic domain is adequate.

In addition to this, a M2T transformation is given using the Xpand template lan-
guage to generate runnable C code. This code is input/output (I/O) equivalent, where
not a complete reasoning about this is provided, but evidence for some implemen-
tation details that support this thesis. This also applies to the M2M transformation
description. In the next two sections both approaches are discussed in more detail.

4.1.5 Xtend M2M Transformation

Within the Xtend transformation description all parts of the domain language must
to be considered, leading to the following speci�cation requirements:

� Behavior must be deterministic,

2This is the case for the Ptolemy framework, as outlined in Sec. 3.2.

38

4.1 Model Railway Controller Language

� Nodes must be represented as states (where control holds),

� Transitions need to connect states,

� The type of a Node and the type of a Transition must be represented
accordingly, evaluating the events and taking actions respectively, and

� Concurrent strongly connected Nodes should be able to react concurrently:

� All concurrent nodes must have the same input,

� All concurrent actions must be considered (in any order).

In order to partially reason about the correctness of the transformation, �rst a simple
example is surveyed and later the collected requirements and their concrete imple-
mentations within the transformation are discussed.

Example

Addressing the example railway controller model that can be seen in Fig. 4.5, a
transformation that ful�lls these requirements leads to a Ptolemy model as depicted
in Fig 4.6. This controller has the following behavior:

1. Start with a (gray) initial node to set some points of the (orange) Inner Circle
(see. Fig. 4.3) in order to route a train positioned on track IC_ST_3 around.

2. Wait for 2 seconds.

3. Set the speed of all tracks of the Inner Circle to 100.

4. Wait until the �rst reed contact of track IC_ST_3 is triggered.

5. Set the speed of IC_ST_0 and IC_ST_3 down to 30 in order to slow down
the train.

6. Wait until the second reed contact of track IC_ST_3 is triggered.

7. Stop the train by setting the speed of IC_ST_3 to 0.

8. Wait for 10 seconds before starting in 3. again.

Note that in this simple example there is no concurrency present because there
exists just one strongly connected component. In a concurrent setting with several
such components, one would have to create a ModalModel actor for each strongly
connected component. Its outputs must be connected to the merging actors and the
inputs to the delay split relations.

39

4 Semantics

Figure 4.6: Railway controller embedded in a Ptolemy model

Deterministic behavior

To achieve deterministic behavior the SR domain of Ptolemy is chosen (see Sec. 3.2
or [57]). With this domain, all events and actions are represented as tokens, which
have a clear and distinct value at each Tick. This is because of the �xed point
iteration that takes place in the background.

Representing Nodes and Transitions

In order to get a natural representation of Nodes and Transitions in Ptolemy, the
ModalModel domain is chosen as it already supports a simple kind of state machine.

Representing events and actions

A ModalModel needs input- and output-ports according to the events to react to
and actions to take. Actions are intended to take place when a node is entered and
ModalModel states do not support this kind of entry actions natively. But this can
be modeled as output actions of ModalModel transitions that lead to the speci�c
typed Node. Hence an extra initial ModalModel node is needed to take care of

40

4.1 Model Railway Controller Language

Listing 4.1: Main tasks of Ptolemy transformation

1 create EntityType this createBaseEntity(simplerailctrl::RailController rc):
2 //set static name, create SR director and RailwayInterfaceActor
3 this.setName("RailController") ->
4 this.setClass1("ptolemy.actor.TypedCompositeActor") ->
5 this.property.add(createMainSRDirector()) ->
6 this.entity.add(createModelRailwayIOActor()) ->
7 //create concurrent threads (and connect them)
8 createThreads(rc.nodes, this) ->
9 //delay operators to avoid instantaneous loop

10 this.entity.add(createDelay("delayContact")) ->
11 this.entity.add(createDelay("delayOccupied")) ->
12 //merge concurrent output actions togehter
13 this.entity.add(createModelRailwayMerge("mergeTracks")) ->
14 this.entity.add(createModelRailwayMerge("mergePoints")) ->
15 this.entity.add(createModelRailwayMerge("mergeSignals")) ->
16 //split input events for all concurrent threads
17 this.relation.add(createVertexRelation("contactsGLOBAL")) ->
18 this.relation.add(createVertexRelation("occupiedGLOBAL")) ->
19 //connect (static) actors
20 connectActors(this, "ModelRailwayIO.contact",
21 "delayContact.input", "delayContactRelation") ->
22 connectActors(this, "ModelRailwayIO.occupied",
23 "delayOccupied.input", "delayOccupiedRelation") ->
24 connectActors(this, "ModelRailwayIO.tracks",
25 "mergeTracks.output", "mergeTracksRelation") ->
26 connectActors(this, "ModelRailwayIO.points",
27 "mergePoints.output", "mergePointsRelation") ->
28 connectActors(this, "ModelRailwayIO.signals",
29 "mergeSignals.output", "mergeSignalsRelation") ->
30 addLink(this, "delayContact.output", "contactsGLOBAL") ->
31 addLink(this, "delayOccupied.output", "occupiedGLOBAL")
32 ;

the (unconditioned) action associated with the initial Node of the railway controller
domain language. Events of this language are handled by guard expressions of the
ModalModel transitions that lead from one node to another. Special attention has
to be payed to the case in which two of such expressions (belonging to di�erent
transitions) evaluate to true at the same tick instant. This case is handled with a
deterministic choice where all events are processed in the order they were created,
giving precedence to transitions created earlier. In the transformation this is handled
by adding the negated expression of a transition in a conjunction to all transitions
with lower priority according to their time of creation.

Concurrency aspects

As not only one initial Node is allowed, all strongly connected Nodes starting at
an initial node, are transformed into separate distinct ModalModels. Note that
models with other than exactly one initial node per strongly connected component

41

4 Semantics

Listing 4.2: Example transformation code fragment: Traversing inner states

1 Void createInnerStates(EntityType modalController,
2 simplerailctrl::Node sourceState,
3 List[simplerailctrl::Transition] transitionList) :
4 let currentTransition = transitionList.last():
5 let doneDestinationState = isMarked(currentTransition.destination):
6 createSimpleStateEntity(modalController, currentTransition.destination) ->
7 //first look up other target states (of this source state)
8 if (transitionList.size > 1) then
9 createInnerStates(modalController,

10 sourceState,
11 transitionList.withoutLast()) ->
12 //then create transitions to these
13 addTransition(modalController, currentTransition) ->
14 //then go on with the target state (as new source state)
15 if ((!doneDestinationState)
16 && (currentTransition.destination.outTransitions.size > 0)) then
17 createInnerStates(modalController,
18 currentTransition.destination,
19 currentTransition.destination.outTransitions)
20 ;

are considered invalid. This could be enforced by using a syntax validation language3.

Strongly connected components, each represented as a ModalModel, are run con-
currently by Ptolemy.

To ful�ll the requirement that all concurrent ModalModels need to see the same
consistent events, the input tokens are split up on the SR layer. This is also where
the merging of output actions takes place. For each type of action there is a merging
actor that gives precedence to later connected ModalModels on its multiport. Not
con�icting actions (on di�erent tracks, points, or signals) can be merged by taking
the union of all.

Further implementation details

Listing 4.1 shows the main Xtend function used for the transformation. In the
�rst line the RailController class instance of the source controller model is
passed as a parameter. This function creates a Ptolemy entity (see Fig. 3.7), i. e., a
TypedCompositeActor, and sets its name and class type in the second and third
line.

To chose Ptolemy's SR domain, the speci�c director is added in line 4 as a property
of the top-level entity. The communication with the environment (i. e., the real model
railway or its simulation) is handled by the special actor ModelRailwayIOActor.
It takes actions as input tokens and produces events (as they occur on the real
model railway or its simulation) as output tokens. In line 7 all threads (i. e., strongly
connected components) are created as described. The following delay operators are

3http://wiki.eclipse.org/Refactorings_for_Xpand_/_Xtend_/_Check

42

http://wiki.eclipse.org/Refactorings_for_Xpand_/_Xtend_/_Check

4.1 Model Railway Controller Language

mandatory to breakup the instantaneous loop. For each kind of output signal a
merge operator is needed in order to handle multiple threads (ModalModels). The
relations created in lines 16 and 17 split the input events of the railway system for all
concurrent ModalModels as explained above. Eventually all actors on the top-level
need to be connected accordingly, which is done in lines 19 to 31 and 8.

As another example fragment of this transformation, Listing 4.2 shows the traversal
through all inner states of a strongly connected component that starts at its initial
node. This is a recursive function following all outgoing transitions to their target
states if those have not already been marked as visited. The recursion ends i� there
are no unvisited states left that can be reached from the initial node. Other nodes
are not of interest for this ModalModel, either because they may belong to another
thread, or because they are not reachable by any initial node and hence they would
never be processed at all and can safely be omitted in the transformation. This
recursion is started for all nodes marked as initial.

4.1.6 Xpand M2T Transformation

As introduced above, the Xpand transformation generates C code. Xpand is a tem-
plate based approach (see Sec. 3.1.5) to transform metamodel instances into arbitrary
text or code. Because the generated C code should behave exactly like the Ptolemy
model, in the following, the implementation concerning the same speci�cations stated
in Sec. 4.1.5 is outlined.

Deterministic behavior and concurrency aspects

Concurrency is naturally implemented by using Pthreads. To maintain a determin-
istic behavior, a notion of a tick is introduced in the C code. This leads to a barrier
synchronization scheme as described by Andrews [7, p. 115], where concurrent state
machines are implemented as worker threads and a master is the coordinator thread.
Example code for the latter can be seen in Listing 4.3. All worker threads block
on private semaphores (using the �ag synchronization principle [7, p. 118]). The
coordinator increases the global tick when all threads have done so. It also clears
the semaphores, which gives the concurrent threads the opportunity to proceed to
the next tick. In order to avoid a deadlock situation, it has to be ensured that all
threads make progress, i. e., eventually �ag that they have proceeded.

All threads need to grab a global lock for communicating with the railway interface,
because concurrency needs to be avoided for the interface access. The notion of ticks
ensures fairness: Eventually all threads get the chance to communicate within one
tick at the latest if all others �agged that they are done for this tick. Because at
least one node is able to make progress and will eventually �ag, this guarantee can
be proven by a simple induction reasoning.

As a simpli�cation, terminated threads can �ag their termination separately and
the master will not wait for them again. This assumes that once a thread has
terminated, i. e., has reached a state with no outgoing transitions, it will stall forever.

43

4 Semantics

Listing 4.3: Xpand template code fragment of coordinator thread

1 void* ThreadFunctionMaster(void* port)
2 {
3 int track;
4 while (!MasterShutdown) {
5 //do not wait for terminated threads
6 « FOREACH nodes AS n ITERATOR i -»
7 « IF n.initial -»
8 if (localTERMINATED«i.counter1 -») {
9 localLOCK«i.counter1-» = 1;

10 }
11 « ENDIF -»
12 « ENDFOREACH -»
13

14 //wait for all localTicks to be increased
15 if (« FOREACH nodes AS n ITERATOR i -»
16 « IF n.initial -»(localLOCK« i.counter1 -» == 1)
17 &&« ENDIF -»« ENDFOREACH -»(1)) {
18 //fill ContactMem and OccupiedMem array
19 for (track = 0; track < 48; track++) {
20 ContactMem[track][0] = getcontact(railway,track,FIRST,1);
21 ContactMem[track][1] = getcontact(railway,track,SECOND,1);
22 OccupiedMem[track] = trackused(railway,track);
23 }
24

25 //increase a tick counter (useless)
26 TICK++;
27 //if (DEBUGCONTROLLER) printf("TICK %d\n",TICK);
28 « FOREACH nodes AS n ITERATOR i -»
29 « IF n.initial -»
30 localLOCK«i.counter1-» = 0;
31 « ENDIF -»
32 « ENDFOREACH -»
33 }//end if
34 usleep(1000); // sleep for 1ms
35 }
36 return (void *)1;
37 }

Representing Nodes and Transitions

Using a so-called state machine programming pattern [1], strongly connected com-
ponent nodes (each such component in its own thread) are represented by a loop
construct with an additional switch-case statement incorporating the di�erent states
in its case arms. The initial node is the start value of a state variable that changes
when transitions are taken. Hence transitions are just the change of this variable,
conditioned by its trigger.

Representing events and actions

Reed contact and occupied events are represented by the global read only variable
�elds ContactMem and OccupiedMem. The wait event is handled individually in
each thread. To ensure that all threads see the same input events, after all threads

44

4.2 SyncCharts

have proceeded and before the resetting of their private semaphores takes place, the
coordinator reads in all contact and occupied events from the interface. Multiple
or concurrent reads of the interface would either result in inconsistent views on the
input events, or in access errors as the interface itself is not thread safe.

The merging of output actions in this implementation is sequentialized, due to
the use of global locks, in an arbitrary access order. Hence in the non-con�icting
case this results in the same output as the Ptolemy model would produce. In the
con�icting case, the Ptolemy model output is one special case of an execution trace
output of this implementation, where the order is given by the thread creation id.

4.2 SyncCharts

The Statecharts formalism, proposed by of David Harel in 1987 [27], extends Mealy
machines with hierarchy, parallelism, signal broadcast, and compound events and
is a well known approach for modeling control-intensive tasks. SyncCharts [2], the
natural adoption of Statecharts to the synchronous world, were introduced almost
ten years later.

A M2M transformation that synthesizes Ptolemy models from Eclipse EMF models
(representing SyncCharts) is presented as a second case study. In the following,
�rst semantical aspects of SyncCharts are studied, followed by a short overview of
the SyncChart editor and a discussion of the transformation. The transformation
already covers a major subset of the SyncCharts language. A sketch of implementing
additional parts will be given later in Sec. 6.2.

4.2.1 Domain Speci�c Language

A SyncChart can also be seen as the graphical notation for the synchronous Esterel
language [11]. SyncCharts and Esterel are used to describe reactive systems and so
are SyncCharts. Following the synchrony hypothesis [49] the reaction is computed
tick wise and the computation itself does not take any time. This means that the
generated output computed to an input in one tick instance is visible in this same
instance. Because the output might have an impact on the computation itself, the
computation proceeds until the system's variables reach a de�ned value.

In the following only a subset of SyncCharts is presented that can be handled by the
transformation. A metamodel for this subset can be seen in Fig 4.7. André [5, 4, 6]
presents and analyzes additional features and semantical aspects of SyncCharts.

Signals

Signals are a very important concept of SyncCharts. Signals can be either present
or absent during an instant but not both at the same time. The presence status of
input signals is de�ned by the environment. The presence status of local and output
signals is computed by the simulation depending on the current state and the signal
status of other input and local signals (but not on output signals). Signals are

45

4 Semantics

Figure 4.7: Simpli�ed metamodel of SyncChart language

de�ned to be input signals and/or output signals, or alternatively local signals. They
are de�ned within a state. As signals are ValuedObjects, they additionally have a
name and a type. SyncCharts provide two types of signals. Pure signals, which just
have a presence status, and also valued signals, which in addition to the presence
status carry a value. At this point, the transformation presented here supports
only pure signals, hence the type must always be PURE. Using signals, a broadcast
communication between concurrent states can be implemented. The presence status
of signals must always be clear and unambiguously de�ned within a tick. Otherwise
the SyncChart is invalid (i. e., not constructive, see [9]) and must be rejected.

Expressions

Expressions are boolean terms that can be either of simple or of complex type. In
the �rst case they only consist of a SignalReference evaluated to the presence-
value of the speci�c Signal. In the second, they carry an additional operator that
indicates how to link sub-expressions within this ComplexExpression together. This
way any boolean combination of SignalReferences can easily be represented.

States

States are one of the building blocks of SyncCharts. They have an id and a label
that do not need to be equivalent but must comply to some formatting rules. The
type of a State is always NORMAL because other types, such as conditional or
textual [2], are not supported by the transformation.
Hierarchy is supported by SyncCharts meaning that States may contain children

States. These must be grouped in one or more Regions. A State that contains
other regions/states is also called macrostate. It is called simple-state if does not

46

4.2 SyncCharts

contain anything. Additionally, a state can be tagged to be initial or to be �nal.
When control enters its parent, immediately the initial state is entered. When a �nal
state is entered, either the control stalls or a so-called normal termination de�ned
for its parent is taken (s.b.).

Transitions

Transitions lead from one state to another and are contained by the source state.
Inter-level transitions are not permitted by SyncCharts. Transitions can take one of
the following types:

� WEAKABORT

� STRONGABORT

� NORMALTERMINATION

The STRONGABORT means preemption of a macrostate if it is taken, i. e., no signals
can be emitted within the macrostate in this instance. In this property it di�ers from
the WEAKABORT that will allow such signal emissions in the same instance it is taken.
The NORMALTERMINATION is syntactical sugar because it can be represented using
a WEAKABORT (see [5]). It is triggered from inside a macrostate when all parallel
regions have reached a �nal state.

Transitions have labels, which are represented by the Action class and optionally
contain an Expression and/or an Effect. The latter is a sequence of pure signal
emissions. The Expression represents the trigger and hence infers whether the
transition is ready to be taken (i. e., is enabled) or not.

Several (outgoing) transitions are allowed for a state. A transition can be assigned
a priority, i. e., a positive integer value where 0 means the transition has the high-
est precedence. Additionally, a transition can be marked to be linked to a history
connector by setting the boolean isHistory �ag.

Entering a macrostate over a history connector means that possibly not the initial
states within are enabled. Instead, other states may be active that were last active,
when this macrostate has been left before.

Regions

Regions introduce a notion of parallelism. They are contained in one (parent)
macrostate. Regions must contain at least one state but can contain several ones.
Within Regions there must be exactly one initial state. Signals can be used to
implement broadcast communication between parallel regions, i. e., a transition in
one region may emit a Signal in one tick instance that enables a Transition in a
parallel Region, where this Signal is a part of the trigger in the same tick instance.

47

4 Semantics

4.2.2 Domain Speci�c Editor

The KIELER SyncCharts editor (see Fig. 4.8) was created by Schmeling [52] using
the Eclipse EMF/GMF toolchain. Additional modi�cations to the standard GMF

editor were made. The structure of the complete EMF model, i. e., the SyncCharts
metamodel, where the metamodel of Fig. 4.7 is a direct sub-metamodel, can also be
found in Schmeling's study thesis [52].

Because the transformation currently does not support the complete metamodel,
some restrictions apply that will be discussed in Sec. 4.3. Nevertheless, this editor
is capable of creating models that conform to the structure as it was introduced in
the section above.

Fig. 4.8 shows a running simulation. Active states are colored in red (see Sec. 4.4).
Details of the simulation engine are discussed in Sec. 4.3.

Regions are surrounded or separated by a dotted line. States are represented as
boxes carrying an optional textual label. Macrostates have an additional child area,
where Regions can be inserted. Transition labels are displayed as their textual rep-
resentation and also entered and parsed as such. In addition to weak abortion transi-
tions, strong abortion transitions have a red dot symbolizing the preemption. Normal
termination transitions are indicated by a green triangle. The history connector is
displayed as a circled �H�. Finally, all signals are enumerated in each macrostate's
header bar.

4.2.3 Transformation

To make the knowledge about the SyncCharts language explicit and to give the syn-
tactically correct SyncChart models an execution semantics, a model transformation
into the Ptolemy semantic domain was chosen, as already done in the �rst case study.

Again Xtend su�ces as a M2M transformation language from the (reduced) Sync-
Chart domain model of Fig. 4.7 on page 46 into the Ptolemy domain model of Fig. 3.7.
Additional e�ort has to be taken to bridge the synchronous semantics and Ptolemy's
compositionality. This is done by the implementation of a new SyncChart director
as described in Sec. 4.2.7.

In the following, all the main ideas of the transformation process are discussed.
Because the overall transformation is rather large, implementation details will only
be given in extracts in the following sections.

Simple-States

Simple-states are transformed into Ptolemy kernel states, which can be seen in
Fig. 4.9. These belong to and are contained by a ModalModel actor that imple-
ments a �at �nite state machine as described in Sec. 3.2. State names in Ptolemy
are restricted to a smaller alphabet and need to be unique on di�erent hierarchy
levels (s.b.). Hence an additional hash-value is added to its possibly slightly adapted
original name. The latter is usually relevant only to allow tracing between the two

48

4.2 SyncCharts

Figure 4.8: Simulation of a SyncChart example model in the Eclipse GMF editor

models, e. g., if trying to simulate erroneous SyncCharts where an exception message
from Ptolemy should help with debugging of the original SyncChart.

Figure 4.9: Transformation of simple-states

49

4 Semantics

Transitions and Signals

Transitions are basically supported by the ModalModel actor, unless some specialties
of SyncChart transitions exist that need some extra e�ort to be expressed in Ptolemy.
Fig. 4.10 shows three transitions from one initial source state to three di�erent target
states. Within the SyncChart these transitions have distinct priorities where the
upper most transition has the highest priority. The ModalModel only distinguishes
deterministic and non-deterministic transitions, but not priorities.
To address this, the transformation applies the following rule trans(): Assume a

state with n outgoing transitions ei with triggers ti, priorities pi and i ∈ I := {1..n}.
For transition ec with 1 ≤ c ≤ n, the transformed trigger trans(tc) is computed as
follows:

trans(tc) = (!tk1 ∧ ... ∧ !tkm) ∧ tc, k1, ..., km ∈ {k|k ∈ I ∧ pk > pc}

This means that every trigger of one outgoing transition has an impact on all trans-
formed triggers of outgoing transitions with a lower priority. An empty transition
trigger is interpreted as a true.
Additionally, what can be seen in Fig. 4.10 is the declaration of two input signals

I1 and I2 for which ports exist in the ModalModel actor to connect the signals to
an outer data-�ow layer.

0

1

2

Figure 4.10: Transformation of transitions with signal triggers

Parallelism and Signals

Ptolemy's built-in concurrency is the main feature of using it as a semantic domain
for SyncCharts, which also o�er parallelism.
Fig. 4.11 shows all hierarchy layers of a Ptolemy model. The outermost layer, an

implicit state of the SyncChart, contains two regions, separated by the dotted line.
In the topmost state, a local signal L is de�ned that is used by the regions to com-
municate. Parallel regions are represented as concurrent ModalModel actors. All

50

4.2 SyncCharts

Figure 4.11: Transformation of parallel regions and local signals

concurrent ModalModels need to be connected to the same signals, de�ned or visible
on the data-�ow layer, which represents the parent state of the regions. This is be-
cause all regions need to have a consistent view on the signals and the ModalModels
could possibly produce the same signals. All output tokens must be merged in-
stantaneously with a (non-strict) merging combine actor. The latter is presented in
Sec. 4.2.7.

A ModalModel can have incoming and outgoing ports. On the containing data-
�ow layer these are connected to other actors, e. g., other ModalModels. There, a
token will be generated and �ow i� a signal is present. I� a signal is absent, no
token is generated. The generation takes place initially at the speci�c port of the
ModalModel where the signal is emitted as a consequence of an enabled and taken
transition. The token may traverse several Ptolemy actors during the �xed point
iteration.

The computation of the �xed point, to �nd a clear signal status for all local and all
output signals, takes place in the SyncChart director that is explained in full detail
in Sec. 4.2.7.

Local Signals

To compute a clear signal status for local signals, as seen in Fig. 4.11, is more involved
than for input and output signals. This is because they can be used to communicate
between parallel regions also across hierarchy levels. Therefore the �ow of a possible
token, indicating the presence of such a signal, must be feasible to cover all possible
control-�ows. Thus every ModalModel actor, which represents a region, has two
ports for every local signal L, one input port named Li and one output port Lo.
Both require an adequate renaming of transition triggers and emissions within the
region.

51

4 Semantics

Figure 4.12: Transformation of input and output signals

Output Signals

Output signals are not allowed to appear within transition triggers. This makes it
relatively easy to compute them. Possible tokens need to be passed to the outer-
most layer where they can be merged and interpreted by a simulation engine, see.
Sec. 4.3. This is done by adding output signal ports to a ModalModels where they
appear in some transition e�ect, see Fig. 4.13. For parallel regions, i. e., concur-
rent ModalModels, output signals are merged with the same Combine Actor as local
signals.

Fig. 4.12 shows an output signal O that is emitted by two regions at the same time
when input signal I is present.

Input Signals

Ptolemy models are closed models. Therefore a special actor is needed to dynamically
insert tokens (representing present signals) during the execution. This is done by
the IO Actor presented in Sec. 4.2.7. The simulation engine (see. Sec. 4.3) is able to
inject tokens, representing input signals, if the environment sets them to a present
status. Otherwise they are set to an absent status.

Fig. 4.12 shows an input signal I that is contained in triggers within two parallel
regions.

Hierarchy

Hierarchy is another important feature of SyncCharts that Ptolemy natively sup-
ports. States can have an optional re�nement. This allows a state to have another
data-�ow layer as its re�nement. On this, several concurrent ModalModel actors
may represent parallel inner regions of the original SyncChart macrostate.

Fig. 4.13 shows an example of hierarchy where macrostate S2 contains a region
with another simple-state S3. On the Ptolemy side a state with a re�nement is

52

4.2 SyncCharts

Figure 4.13: Transformation of hierarchy

colored green, as it is the case for state S2. Signals need to be passed on correctly
between all layers as explained above.

Normal Termination

The notion of a normal termination transition of SyncCharts is not natively sup-
ported by Ptolemy. A normal termination transition of a macrostate is triggered, if
all inner regions of this macrostate have reached a state tagged as �nal. A normal
termination has no other triggers but can have signal emissions in its e�ects.

The transformation uses the approach described by André [5]. In this approach
a normal termination transition is replaced by a weak abort. The trigger of this
abort is the conjunction of auxiliary signals, one for every inner region of the orig-
inating macrostate. These auxiliary signals must also be added to the emissions of
all transitions that lead to �nal states in an inner region. Additionally, an auxiliary
self-transition for each �nal state sustains the emission of these signals.

Pseudocode for this transformation is given in Listing 4.4. First, for all regions
within the topmost state, search_region() is called. In a recursive manner for
all states within the inspected regions, search_state() is invoked. Secondly, for
all states, outgoing transitions are handled by inspect_transitions(). If a
transition has the type normal termination, build_triggers_and_effects()
takes care of the transformation details and the transition's type is changed to a
weak abort.

In line 24 build_triggers_and_effects() retrieves the current macrostate,
where an outgoing normal termination transition is going to be transformed, and the
normal termination transition as well. For all inner regions, corresponding signals
are created, added to the macrostate and to the trigger of the outgoing transition.

For all regions their �nal states are focused. For such a �nal state a new self-

53

4 Semantics

Listing 4.4: Pseudocode to transform normal termination transitions

1 search_region(region r):
2 for all states s of r
3 if s is MACROSTATE then
4 search_state(s)
5 fi
6 if s has OUTGOING_TRANSITIONS then
7 inspect_transitions(s)
8 fi
9 rof

10

11 search_state(state s):
12 for all regions r of s
13 search_region(r)
14 rof
15

16 inspect_transitions(state s):
17 for all transitions t of s
18 if (t is NORMALTERMINATION) then
19 build_triggers_and_effects(s, t)
20 set type of t to WEAKABORT
21 fi
22 rof
23

24 build_triggers_and_effects(state s, transition t):
25 for all regions r of s
26 signal_r := new signal
27 add signal_r to s
28 add signal_r to trigger of t
29

30 for all FINAL states f of r
31 transition_f := new transition
32 set traget of transition_f to f
33 add transition_f to transitions of f
34

35 for all INCOMING transitions i of f
36 set effect of i to emit signal_r
37 rof
38 rof
39 rof

transition is created and then for all incoming transitions, an output emission is
added. The latter consists of the added signal for the respective region.

Fig. 4.14 shows a macrostate with two regions that have two �nal states S3 and S6.
Whenever one of these states is reached in the transformed Ptolemy model, a token
signalizing this is produced. If eventually both regions of S1 have reached their �nal
states, the weak abortion transition that has a conjunction of all auxiliary region
signals as its trigger, is enabled. This �nally leads to taking the normal termination
transition and emitting the signal O.

A more detailed description of the Xtend implementation for this transformation
is given in Sec. 4.2.4.

54

4.2 SyncCharts

normal_termination

Figure 4.14: Transformation of normal termination transitions (omitting states S4,
S5, and S6 in the Ptolemy model for clarity reasons)

Preemption and the History Connector

Strong abortion and the history connector, i. e., a transition marked as preemptive
and not as a reset transition, are features directly supported by Ptolemy ModalMod-
els. In the �rst case, if the trigger is true and the transition is taken, no signals that
would be emitted inside a possible re�nement are actually emitted, i. e., all signal
emissions and state transitions inside are preempted. In the second case, a transition
that is not marked to reset its target state, will cause this state to remain in its last
con�guration when it is reentered. In other words, if such a macrostate is reentered

55

4 Semantics

Figure 4.15: Transformation of preemption and history transitions

over a history transition, its last enabled states are still enabled, instead of its initial
states as in the normal reset transition case.
Fig. 4.15 shows the two additional transition types and their corresponding trans-

formation results in Ptolemy. Both strong abortion transitions in the SyncChart
model and the preemptive transition in the Ptolemy model are indicated by a red
circle. Note that the option reset can be chosen for a Ptolemy transition in its
parameter settings but is not re�ected in the graphical view.

4.2.4 Xtend M2M Transformation

The previously given transformation concepts are implemented using the Xtend
transformation language. This language was introduced in Chap. 3. To give an
impression of the rather direct implementation strategy that can be used in order
to realize these transformations, the following presents an overview and a detailed
example.

Implementation approach

In order to retain a better structure, the overall transformation resolves into the
following three main parts:

1. Preprocessing transformation steps,

2. Recursive main transformation, and

3. Postprocessing transformation steps.

In the preprocessing steps, e. g., all normal termination transitions are transformed
into an equivalent representation with a weak abort, as described in Sec. 4.2.3. Addi-
tionally, all local signals are renamed according to their hierarchy de�nition in order

56

4.2 SyncCharts

to make their names globally unique. In another preprocessing step, all local sig-
nals, de�ned within any inner macrostate, are raised up to the one and only topmost
macrostate. The latter is done to guarantee that the simulation in Ptolemy later is
able to �nd a signal assignment. This step is described in the following sections.

After preprocessing, the recursive transformation starts with the outermost state.
This contains at least one region. For every region a ModalModel actor is cre-
ated. Every region contains at least one state. For every state of a region that is
a macrostate, a Ptolemy state with a re�nement is created. For its inner regions
this process continues recursively. If this state is a simple-state, then just a sim-
ple Ptolemy kernel state with no re�nement is created. All hierarchy levels in the
given SyncChart is directly mappable to the hierarchical structure of the constructed
Ptolemy model.

During the creation of ModalModels, all local signals and all input and output
signals that are referred to from within, result in input or output ports being con-
structed accordingly. These are in addition named and annotated to the name and
the type of the signal they belong to. For every transition of the original Sync-
Chart, a transition is constructed during the recursive main transformation steps.
The trigger and e�ect of it is computed in Java escaped primarily imperative code.

After the second main transformation has completed, postprocessing steps �nal-
ize the transformation. They take advantage of the auxiliary annotations made
during the transformation. One of these postprocessings connects all ports within
Ptolemy state re�nements; this is where original SyncChart regions are represented
by ModalModels having several input and output ports. As another postprocessing
step, all nondeterministic transitions are resolved by taking their original priorities
into account. These have also been added as auxiliary annotations.

Normal Termination Transformation using Xtend

As an implementation example of a transformation step described in the previous
paragraph, the normal termination transformation postprocessing is presented here.

The Xtend code implementing the pseudocode of Listing 4.4 is given in Listing 4.5.
The transformation ideas were already discussed in Sec. 4.2.3.

The transformation step starts in line 1 with a call of n2wRegion() with the
outermost region's states as a list parameter. This region contains a single macrostate
representing the overall SyncChart. In line 2, the �rst state of the list (in this case
there is only one) is saved in the state variable. In line 3, if there are other states,
the recursive call takes place without the already considered one. This construction
implements a recursive walk through a whole list of states and is also used in the other
functions below. If this state is a macrostate, then in line 6 the n2wState() function
is called that handles all regions of this macrostate and calls n2wRegion() again for
their inner states. In line 7 the state is inspected for any outgoing transitions that are
of interest because they might be normal termination transitions to be transformed.

If the latter is the case, n2wTransition() is called and handles all transitions
of this macrostate. The state is also handed over as a parameter because it is needed

57

4 Semantics

Listing 4.5: Xtend code to transform normal termination transitions

1 Void n2wRegion(List[synccharts::State] stateList) :
2 let state = stateList.first():
3 (stateList.withoutFirst().size > 0) ?
4 n2wRegion(stateList.withoutFirst()) : null ->
5 (state.isMacroState()) ?
6 n2wState(state.regions) : null ->
7 (!state.outgoingTransitions.isEmpty) ?
8 n2wTransition(state.outgoingTransitions, state) : null;
9

10 Void n2wState(List[synccharts::Region] regionList) :
11 let region = regionList.first():
12 (regionList.withoutFirst().size > 0) ?
13 n2wState(regionList.withoutFirst()) : null ->
14 (region.innerStates.size > 0) ?
15 n2wRegion(region.innerStates) : null;
16

17 Void n2wTransition(List[synccharts::Transition] transitionList, synccharts::State state) :
18 let transition = transitionList.first():
19 let complexExpression = new synccharts::ComplexExpression:
20 (transitionList.withoutFirst().size > 0) ?
21 n2wTransition(transitionList.withoutFirst(), state) : null ->
22 complexExpression.setOperator(OperatorType::AND) ->
23 (transition.type.toString().matches("NORMALTERMINATION") && (state.regions.size > 0)) ?
24 transition.setTrigger(complexExpression) : null ->
25 (transition.type.toString().matches("NORMALTERMINATION") && (state.regions.size > 0)) ?
26 n2wBuildTriggerState(state.regions,
27 state.parentRegion.parentState,
28 transition) : null ->
29 (complexExpression.subExpressions.size == 1) ?
30 transition.setTrigger(complexExpression.subExpressions.get(0)) : null ->
31 (transition.type.toString().matches("NORMALTERMINATION")) ?
32 transition.setType(synccharts::TransitionType::WEAKABORT) : null;
33

34 Void n2wBuildTriggerState(List[synccharts::Region] regionList,
35 synccharts::State mainState,
36 synccharts::Transition weakAbortTransition) :
37 let region = regionList.first():
38 let regionSignalName = "finished_" + hash(region.innerStates.flatten().toString()):
39 let regionSignal = new synccharts::Signal:
40 let signalReference = new synccharts::SignalReference:
41 let trigger = weakAbortTransition.trigger:
42 regionSignal.setName(regionSignalName) ->
43 regionSignal.setType(ValueType::PURE) ->
44 mainState.signals.add(regionSignal) ->
45 signalReference.setSignal(regionSignal) ->
46 ((ComplexExpression)trigger).subExpressions.add(signalReference) ->
47 (regionList.withoutFirst().size > 0) ?
48 n2wBuildTriggerState(regionList.withoutFirst(), mainState, weakAbortTransition) : null ->
49 (region.innerStates.size > 0) ?
50 n2wBuildTriggerRegion(region.innerStates, mainState, weakAbortTransition, regionSignal) : null;
51

52 Void n2wBuildTriggerRegion(List[synccharts::State] stateList, synccharts::State mainState,
53 synccharts::Transition weakAbortTransition, synccharts::Signal regionSignal) :
54 let state = stateList.first():
55 (stateList.withoutFirst().size > 0) ?
56 n2wBuildTriggerRegion(stateList.withoutFirst(), mainState, weakAbortTransition,regionSignal) : null ->
57 (state.isFinal) ?
58 n2wBuildTriggerFinalState(state, mainState, weakAbortTransition,regionSignal) : null;
59

60 Void n2wBuildTriggerFinalState(synccharts::State finalState, synccharts::State mainState,
61 synccharts::Transition weakAbortTransition, synccharts::Signal regionSignal) :
62 let newTransition = new synccharts::Transition:
63 newTransition.setTargetState(finalState) ->
64 finalState.outgoingTransitions.add(newTransition) ->
65 n2wBuildTriggerFinalStateTransitions(finalState.incomingTransitions(), weakAbortTransition, regionSignal);
66

67 Void n2wBuildTriggerFinalStateTransitions(List[synccharts::Transition] transitionList,
68 synccharts::Transition weakAbortTransition,
69 synccharts::Signal regionSignal) :
70 let transition = transitionList.first():
71 let signalEmission = new synccharts::Emission:
72 signalEmission.setSignal(regionSignal) ->
73 transition.effects.add(signalEmission) ->
74 (transitionList.withoutFirst().size > 0) ?
75 n2wBuildTriggerFinalStateTransitions(transitionList.withoutFirst(),
76 weakAbortTransition,
77 regionSignal) : null;

58

4.2 SyncCharts

later when new auxiliary signals have to be added to it. n2wTransition() will
walk through all (outgoing) transitions of the state in lines 17 to 32. A Complex-
Expression is created (line 19) in case this is a normal termination. This is done
because a normal termination does not have an explicit trigger but its transformation,
the weak abortion, needs such a trigger. Because later the conjunction of all auxiliary
signals is needed, the operator is set to AND in line 22. The further processing for
all regions of the macrostate (e. g., the creation of the auxiliary signals) is done in
n2wBuildTriggerState() that is called in line 26.
The function n2wBuildTriggerState() of line 34 walks through all regions

of the macrostate. It creates a new signal in lines 38-39 and 42-43. This is added
to the containing macrostate in line 44. In line 46, it is also added to the trigger of
the considered outgoing weak abortion transition. Function n2wBuildTrigger-
Region() of line 52 then searches for �nal states of a region contained in the
macrostate. These �nal states are then handled by n2wBuildTriggerFinal-
State() of line 62. A new self-transition is created in line 66 and added to the �nal
state in line 68. Finally, all incoming transitions of the �nal state (including the just
created self-transition) need to get an additional signal emission. The latter is done
by function n2wBuildTriggerFinalStateTransitions. It walks through all
incoming transitions of the �nal states and adds such a Emission in line 77.

4.2.5 Constructiveness

So far, the structural syntax and additional semantical aspects as well as the trans-
formation and implementation ideas have been outlined. Now a short introduction
into the constructive behavioral semantics as it is also found in the synchronous
language Esterel [9] will be given, to help understanding the implementation of the
Ptolemy SyncChart director.
A SyncChart with a cyclic dependency can be seen in Fig 4.16 on the left side.

For such a SyncChart it cannot be decided whether signal A and signal B are present
or not. If all kinds of cyclic SyncCharts would be rejected, also good-natured ones
as shown in Fig 4.17 were not allowed. The constructive approach helps to be less
restrictive.

The Signal Coherence Law

Within one tick, a signal can either be present or absent, but not both at the same
time. A signal assignment (i. e., a collection of signals projected on the present or the
absent state for a tick instance) conforms the coherence law, i� all (local) signals that
are evaluated to be present are emitted in any taken transition, respecting scopes.

Logically Reactive SyncCharts

A SyncChart is called to be reactive, i� there is at least one signal assignment con-
forming to the coherence law. This must be true for every input signal assignment
and every possible con�guration. The SyncChart on the left side of Fig. 4.18 is not

59

4 Semantics

Figure 4.16: A cyclic (left) and a logical-correct (right) SyncChart

Figure 4.17: Examples of good-natured cylclic SyncCharts

reactive. This is because if on the one hand the signal A is assumed to be present,
the upper transition is taken. But then the signal would never be emitted, which
contradicts the coherence law. If on the other hand the signal A is assumed to be
absent, the lower transition is taken. But then the signal would be emitted and the
upper transition with its higher priority must have been taken instead. This means
there is no signal assignment that conforms to the coherence law.

Logically Deterministic SyncCharts

A SyncChart is called deterministic, i� there is at most one signal assignment con-
forming to the coherence law. This must be true for every input signal assignment
and every possible con�guration. The SyncChart on the right side is not logically
deterministic. This is because if on the one hand the signal A is assumed to be
present, the upper transition is taken (because of its precedence). Also signal A is

60

4.2 SyncCharts

0
1

0
1

Figure 4.18: A non-reactive (left) and a non-deterministic (right) SyncChart

emitted making this assignment coherent. But if on the other hand the A is assumed
to be absent, the lower transition is taken (because the upper one is not enabled)
and no A is emitted. This makes the second assignment also conform to the coherent
law, ending up in two such signal assignments.

Logically Correct SyncCharts

A SyncChart is called logically correct, i� there is exactly one signal assignment
conforming to the coherence law. This must be true for every input signal assignment
and every possible con�guration. In other words, a SyncChart that is reactive and
deterministic is logically correct. An example for such a SyncChart is shown in
Fig. 4.16 on the right side.

Constructive SyncCharts

Because SyncCharts like the one on the right side of Fig. 4.16 are very di�cult to
analyze in the general case and make use of self justi�cation and speculative comput-
ing [9], such SyncCharts should also be rejected.

According to Berry [10] and Ohlho� [48], a signal assignment for constructive
SyncCharts can be established following several rules:

1. All signals have the status unknown initially.

2. Input signals are set to their present status, i. e., to either present or absent.

3. During the computation, the status of local and output signals is computed
considering the following rules:

� If a signal cannot be emitted, its status must be set to absent.

� If a signal must be emitted, its status must be set to present.

� A signal cannot be emitted, if there is no possibly enabled transition that
would emit it.

61

4 Semantics

Listing 4.6: Pseudocode to �nd possibly emitted signals

1 returnList = new List
2

3 for all actorsAllowedToFire as actor
4 if actor.type is ModalModel then
5 currentState = ((ModalModel)actor).currentState()
6 outTransitions = curentState.getOuttransitions()
7

8 for all outTransitions as transition
9 if (isPossiblyEnabled(transition))

10 signalList = transition.getEmissionSignalList()
11 returnList.append(signalList)
12 fi
13 rof
14 fi
15

16 if actor.type is StateRefinement then
17 stateRefinement = (StateRefinement)actor
18 nestedDirector = (SyncChartDirector)stateRefinement.getDirector()
19 nestedSignalList = nestedDirector.getPossibleSignals()
20 returnList.append(nestedSignalList)
21 fi
22 rof

� A transition is possibly enabled if it is clearly enabled or if it cannot be
clearly evaluated to false, e. g., because some signals in the trigger have
an unknown status.

� A transition can be taken and possible signals must be emitted, if the trig-
ger evaluates to true and if no other transition with a higher precedence
exists, or all existing clearly evaluate to false.

If any signals remain unknown after all possible stepwise computations have been
done, i. e., a �xed point for the signal assignment has been found, then this SyncChart
has to be rejected as being non-constructive.

4.2.6 The Token Ring Arbiter

The Token Ring Arbiter presented by Berry [10] is an example for cyclic circuits.
It models a token ring network, which naturally leads to a cyclic dependency of
signals. This is because of its circular connection, where neighboring stations directly
dependent on each others signals.
Fig. 4.19 shows a simpli�ed version of the Token Ring Arbiter with three stations.

Note that this can be extended to any number of stations. Each station in the ring
has an input request signal (R1, R2, or R3) and an output grant signal (G1, G2,
or G3). Additionally there exist local network signals, for synchronization between
all stations. That are signals to pass on a token (P1, P2, and P3) and signals that
represent the token itself (T1, T2, and T3).
At all times, exactly one member of the ring carries the token, i. e., exactly one of

the signals T1, T2, and T3 must be present. Whenever several stations try to access

62

4.2 SyncCharts

T1

P1

G1R1

P2

T2

R2 G2

P3

T3

R3 G3

Figure 4.19: Simpli�ed version of Token Ring Arbiter (from [39])

the network, i. e., request the bus using their signals R1, R2, or R3, only one station
may succeed to ensure mutual exclusion. This is the station closest to the token
(in an unidirectional way). The token is propagated on in the same unidirectional
way to the next station using the signals T1, T2, or T3 respectively. This ensures
fairness.

The Token Ring Arbiter is a paradigm for a system with a static cycle that only
dynamically can be broken up, by the circulating token. Most Esterel compilers
cannot handle this kind of cycles, as they are di�cult to detect. This di�culty is
explained in more details by Lukoschus and von Hanxleden [40].

Fig. 4.20 shows the Token Ring Arbiter modeled in SyncCharts and simulated with
KlePto in KIELER. All network signals are modeled as local signals. The upper regions
of all stations implement the token circulation where station1 passes the token on
to station2, station2 passes the token on to station3, and station3 passes
the token on to station1.

The lower regions are the more interesting ones. Here the granting takes place.
The reaction is as follows and matches to the one of �gure 4.19:

� If a station gets a token or a pass signal, it is allowed to react:

1. If it has an open request (signal), it grants access.

2. If there is no present request signal, it will pass on the access right using
the pass signal of the next station in order.

These two possible reactions are modeled with two transitions for each station.
Note that station1 has an additional input signal InitialToken it reacts to.
This is because some station must have an initial token. Otherwise this would lead
to non-determinism because of cyclic dependencies as outlined by Berry [10]. Thus,
in order to simulate this in KIELER, the InitialToken input signal must be set
to be present, before the �rst simulation step is allowed to take place. Afterwards it
should be absent.

63

4 Semantics

Figure 4.20: Token Ring Arbiter de�ned in SyncCharts

4.2.7 Ptolemy Extensions

SyncChart Director

The SyncChart director is the heart of the Ptolemy SyncChart simulation. It is
based on the Ptolemy FixedPointDirector. As such, it performs a �xed point
calculation for one tick instance in order to �nd a signal assignment for constructive
SyncCharts as introduced in the section before. Because Ptolemy is designed to be
very modular but the constructive semantics is not4, the SyncChart director has to

4

Huizing and Gerth [32] showed that the combination of the synchronous hypothesis with
causality and modularity cannot be done with any simple semantics. Hence, because SyncCharts
are based on the synchronous hypothesis and are causal, they cannot be modular.

64

4.2 SyncCharts

Figure 4.21: Ptolemy extension actors necessary for the supported subset of
SyncCharts

bridge this gap. It does so during the execution only because the modular design in
Ptolemy should be preserved as far as possible.

No other prede�ned director that comes bundled with Ptolemy ful�lls these tasks.
This is why the SyncChart director is needed to reasonably compute signal values
following the SyncCharts semantics.

To cope with the constructive rules presented in Sec. 4.2.5, the SyncCharts Director
needs to do a must-cannot analysis (see [9] or [53]) w.r.t. local signals. Therefore
it needs to know which signals could possibly be emitted within one �xed point
calculation. The pseudocode of Listing. 4.6 addresses this issue. All actors need to
be inspected of their type:

ModalModel: In this case all outgoing transitions of the current ModalModel state
are inspected. If an outgoing transition is found to be possibly enabled then
the signals appearing in the emission of its e�ect are added to a return list,
representing all possibly emitted signals.

State with re�nement: In this case a recursion gaps the modularity and hierarchy to
preserve the constructive semantics. The SyncCharts Director gets all signals
that are possibly emitted from the inside of a macrostate. These are also added
to the return list.

The function that returns a boolean value depending on the fact whether a transition
is possibly enabled or not is shown in Listing 4.8.

A transition in Ptolemy can be asked whether it is enabled or not by calling the
isEnabled() method. It is enabled, i� the trigger of this transition can clearly be
evaluated to true, where unknown signals are considered under the logical inference
rule of neutrality. For example, let signal P be present and signal A be absent. The

65

4 Semantics

Listing 4.7: Pseudocode extending the Ptolemy �xed point iteration

1 schedule = orderIOActorsfirst(schedule)
2

3 do
4 do
5 // normal fixed point iteration of Ptolemy
6 while not iterationConverged()
7

8 possibleSignals = getPossibleSignals()
9 stateSignals = getStateSignals()

10

11 for all (stateSignals as signal)
12 if not possibleSignals.contains(signal) then
13 setToAbsent(signal)
14 fi
15 rof
16

17 while not iterationConverged()

status of signal U is unknown. Then the following can be inferred for triggers t1 and
t2 of two transitions e1 and e2:

t1 := P ∨ U
t2 := A ∧ U

enabled(e1) = P ∨ U = true ∨ U = true
enabled(e2) = A ∧ U = false ∧ U = false

If the enabledness of a transition cannot be inferred, as it would be in cases with
triggers t3 = P ∧ U or t4 = A ∨ U, then an exception is thrown by Ptolemy. In this
case the transition cannot yet be clearly declared neither to be enabled nor to be
disabled. But it still has the status possibly enabled and true must be returned (see
Listing 4.8). In all other cases false can safely be returned, as the transition can
clearly be determined to be disabled.

With the above considerations, the idea of extending the �xed point iteration can
be discussed. It is illustrated in the pseudocode of Listing 4.7. The normal �xed
point iteration stops, when no further input ports of the considered (scheduled)
actors have either been cleared (i. e., indicating the absence of a token) or got a new
token.

All possibly emitted signals are retrieved by calling the getPossibleSignals()
method described above. The outermost SyncChart director carries a list of all local
signals that can be accessed by calling the getStateSignals() method.

Because only transitions on the current hierarchy level or lower levels are inspected,
to deal with possible emissions in higher levels, the approach here is to compute the
possible emissions starting at the highest level. Hence, all local signal declarations
need to be raised to the highest hierarchy level (after making their names unique).
For the restricted subset of SyncCharts considered here, this is not a problem because

66

4.2 SyncCharts

Listing 4.8: Java code to decide whether a transition is possibly enabled

1 public boolean isPossiblyEnabled(Transition transition)
2 throws IllegalActionException {
3 try {
4 //if we for sure know this transition is enabled we can return true
5 if (transition.isEnabled()) {
6 return true;
7 }
8 } catch(UndefinedConstantOrIdentifierException e) {
9 //if we cannot evaluate the transition trigger because of a missing

10 //signal status, we must return also true here
11 return true;
12 }
13 //if we for sure know this transition is disabled we can return false
14 return false;
15 }

Listing 4.9: fire() method of IO Actor

1 public void fire() throws IllegalActionException {
2 // dispose an optional trigger token
3 if (trigger.getWidth() > 0) {
4 if (trigger.hasToken(0)) {
5 trigger.get(0);
6 }
7 }
8

9 // if signal is present, send out an integer token with the signal’s value
10 if (present.getValueAsString().equals("true")) {
11 signal.send(0, new IntToken(Integer.valueOf(value.getValueAsString())));
12 }
13 // else send clear because signal is absent
14 else {
15 signal.sendClear(0);
16 }
17 super.fire();
18 }

it is not possible to access signal states/values of other ticks (e. g., by using pre or
suspend).

For all these local signals it is determined whether they are possibly emitted or
not. If such a signal is not in the list of the possibly emitted signals, then it cannot
be emitted under any circumstances in a constructive setting. Hence it can be set
to absent, i. e., the respective input ports of scheduled actors can be cleared. If any
new local signal has been set to absent in this manner, the �xed point iteration has
to continue.

67

4 Semantics

After a �xed point has been found, hopefully, all signals have a known status
and either are present or absent. If this is not the case, an exception is raised in
the postfire() method, just like the Ptolemy FixedPointDirector handles
this. It indicates a causality loop in the original SyncChart model, making it non-
constructive.

IO Actor

The IO Actor, as shown in Fig 4.21 and used for example in Fig 4.15, is nec-
essary to inject tokens into a running Ptolemy model. This actor of the type
TypedAtomicActor has 4 parameters:

1. A signal name that can be used to map signals in the Ptolemy model to a
signal in the original SyncChart,

2. A boolean present status,

3. An integer value of the signal, and

4. An optional permanent �ag, indicating that a possible present signal should
also be emitted in further ticks.

Additionally, this actor and its parameters can fully be controlled programmatically
with respective getter and setter methods. Its relatively simple and self-explanatory
fire() method is illustrated in Listing. 4.9.

Combine Actor

The Combine Actor as shown in Fig. 4.11 is responsible for merging the signals
of parallel regions in the SyncChart and hence for merging tokens of concurrent
ModalModels in the Ptolemy model. It is already equipped to handle valued signals
(i. e., signals that in addition to their present status also carry an integer value).
These are currently not supported by the SyncChart simulation (see. Sec. 4.2.1).

Therefore it computes a combined value using one of the prede�ned commutative
and associative functions shown in Table 4.1. It provides two output ports, one that
states whether the signal is present or absent, and an additional one that states the
combined value of the signal. This actor has a multiport for the inputs and is not
strict. The latter means that it can produce output tokens as soon as any input
token arrives on any input channel. It will only clear its output, if it cannot expect
any input tokens, i. e., all input channels have been cleared.

Its fire() method is illustrated in Listing. 4.10. In the upper part of this method
the combined value is calculated based on all available input tokens. In the lower
part it is tested whether all input channels are cleared. This is the case if there has
not any token been received yet. But if there was a token, or several tokens, the
combined value is sent out.

68

4.2 SyncCharts

Listing 4.10: fire() method of Combine Actor

1 public void fire() throws IllegalActionException {
2 super.fire();
3

4 // check if any ports have known inputs
5 for (int i = 0; i < input.getWidth(); i++) {
6 if (input.isKnown(i) && input.hasToken(i)) {
7 _present = true;
8 // get the token
9 IntToken in = (IntToken) input.get(i);

10 if (in != null) {
11 // apply commutative+associative combine function
12 _value = _updateFunction(in.intValue(), _value);
13 }
14 }
15 }
16

17 if (!_present) {
18 // check if all ports are cleared (known w/o any token)
19 boolean allKnown = true;
20 for (int i = 0; i < input.getWidth(); i++) {
21 allKnown &= input.isKnown(i);
22 }
23 // if no token can arrive, clear the output
24 if (allKnown) {
25 output.sendClear(0);
26 value.sendClear(0);
27 }
28 } else {
29 // send out combined integer token if presentToken
30 output.send(0, new IntToken(1));
31 value.send(0, new IntToken(_value));
32 }
33 }

Function Output

CONST A constant integer value

ADD The sum of all received tokens

MULT The product of all received tokens

MAX The maximum value of all received tokens

MIN The minimum value of all received tokens

AND Logical conjunction interpreting 1 as true and 0 as
false

OR Logical disjunction interpreting 1 as true and 0 as
false

Table 4.1: Combine functions used by the Combine Actor

69

4 Semantics

Listing 4.11: Method for initializing loading and running the Ptolemy Model

1 public synchronized void executionInitialize() {
2 // create a file url
3 URI momlFile = URI.createFileURI(new File(PtolemyModel).getAbsolutePath());
4 // create new MoML parser
5 // make sure Ptolemy is in dependencies
6 MoMLParser parser = new MoMLParser();
7 // create lists for iterating inputs and outputs
8 kielerIOList = new LinkedList<KielerIO>();
9 modelOutputList = new LinkedList<ModelOutput>();

10 // parse the Ptolemy moml file
11 NamedObj ptolemyModel = null;
12 ptolemyModel = parser.parse(null, new URL(momlFile.toString()));
13 parser.reset();
14 // start executing the model
15 if (ptolemyModel != null && ptolemyModel instanceof CompositeActor) {
16 // check if the parsed model is of correct type
17 modelActor = ((CompositeActor) ptolemyModel);
18 // get the manager that manages execution
19 manager = modelActor.getManager();
20 // go thru the model and add fill the kielerIOList (Inputs)
21 fillKielerIOList(kielerIOList, extracted());
22 // go thru the model and add fill the kielerCombine (Outputs)
23 fillModelOutputList(modelOutputList, extracted());
24 // run the model
25 if (manager != null) {
26 // run forest, run!
27 manager.initialize();
28 }
29 }// end if
30 }

4.3 KIELER leveraging Ptolemy Simulation Component

The KlePto simulation component handles three activities:

1. Transform the DSL model into a Ptolemy model,

2. Execute the transformed model with Ptolemy, and

3. Handle the interfacing of the model.

As the transformation in general is unique w.r.t. to the DSL, the execution and
interfacing can be quite similar, at least for DSLs of the same nature, e. g., state
based ones. Hence, in this section the focus is on the execution and interfacing
activities.

The general idea of transforming, executing, and interfacing, with the Execution
Manager presented in Chap. 5, is depicted in Fig. 4.22. For the upper part, a
M2M transformation needs two metamodels and a model as its input. The target
metamodel is the metamodel of Ptolemy, the metamodel of the DSL in question is
the source metamodel. The model should conform to the source metamodel. The
transformation creates a new model that then conforms to the target metamodel,

70

4.3 KIELER leveraging Ptolemy Simulation Component

moml.ecore

dsl.ecore model.dsl

Xtend M2M

dsl2moml.xtend

model.pto

Ex
ec

ut
io

n
M

an
ag

er

M2M description

produce

load &
execute

commands

simulation data

metamodels model to
simulate

Ptolemy Simulator

Data Observer

Data Producer

Figure 4.22: Abstract transformation and execution scheme of KlePto

i. e., is a Ptolemy model. This can be loaded and executed as described in the
following sections. Additional care needs to be taken to maintain mappings between
both models. A DataObserver and DataProducer part of the simulation component
then interacts with the Execution Manager. The DataObserver reads in possible
commands (input signals) from the environment. The DataProducer writes out
resulting simulation data, e. g., the current state or emitted signals. Details of these
components will be discussed in the next chapter.

Execution of Ptolemy Models

Before executing the Ptolemy model produced by the M2M transformation, it must be
read into memory from a MOML �le and parsed. Listing 4.11 shows the corresponding
Java code. Lists of actors for handling the input and outputs are created in lines 8
and 9. The actual parsing takes place in line 12. The Ptolemy model is contained in
the ptolemyModel object that should be of type CompositeActor. A Ptolemy
manager is extracted (see line 19), which is necessary to iterate over the model.

The execution of a Ptolemy model step, equivalent to a synchronous tick because
of the SyncChart director, then takes place in several computation steps illustrated
in Fig 4.23. First all output signals are reset to be absent. Then the list of IO Actors
(see Sec. 4.2.7) that was �lled during the initialization is �lled with the present status
of all input signals de�ned in the environment. How signals are represented in the
environment and how this concretely can be done is explained in Chap. 5.

Now the Ptolemy manager's iterate() method is called. This triggers one �xed
point iteration for the given set of input signals and the current con�guration, i. e.,
the current states of the ModalModels.

Because the simulation wants to extract the currently active states, this is done
in a recursive fashion. In Ptolemy, all ModalModels have a current state, even the

71

4 Semantics

Listing 4.12: Setting model input signals

1 // iterate thru all kielerIOs = set the input signals
2 // assuming inputData is a JSONObject containing environment signals
3 for (KielerIO kielerIO : kielerIOList) {
4 // calling the signal name getter method
5 String signalName = kielerIO.getSignalName();
6 // resolving environmental signal status
7 boolean isPresent = false;
8 if (this.inputData.has(signalName)) {
9 Object object = this.inputData.get(signalName);

10 isPresent = (JSONSignalValues.isPresent(object));
11 }
12 // calling the present status setter method
13 kielerIO.setPresent(isPresent);
14 }

Listing 4.13: Getting model output signals

1 // returnObj should afterwards contain all present output signals
2 JSONObject returnObj = new JSONObject();
3 // iterate thru all Combine Actors = get the output signals
4 for (int c = 0; c < this.modelOutputList.size(); c++) {
5 // if the signal status of the Actor is present
6 if (this.modelOutputList.get(c).present) {
7 // retrieve the name
8 String signalName = this.modelOutputList.get(c).signalName;
9 // create a new signal with this name and a present status true

10 JSONObject signalObject = JSONSignalValues.newValue(true);
11 // add this to the returnObject
12 returnObj.accumulate(signalName, signalObject);
13 }
14 }

ones that do not appear as re�nements of other current states. To adapt this inter-
pretation, the recursion needs to proceed only in depth for ModalModels appearing
within current states.

Also the present status of all output signals is of interest. Therefore it is iterated
through all Combine Actors (see Sec. 4.2.7) that merge output signals on the topmost
hierarchy layer and know about their present statuses.

Interfacing and Mapping

The interfacing with the environment, i. e., with KIEM, uses the JSON data format
(see Sec. 3.3). Input and output signals are addressed using the original signals
names, which must be unique. The mapping is strongly linked to the transformation
process, as the IO Actor used for input signals and the Combine Actor used for
output signals, must store an additional signal name value. This value is set during
the transformation because only there the mapping is implicitly clear by construction.
It can be made explicit in the transformation only. This is done by annotating the

72

4.4 Visualization Simulation Component

output signals := absent

IO Actors := environment input

call Ptolemy.iterate()

search active states

iterate output Combine Actors

Figure 4.23: Computing an execution step with KlePto

Ptolemy model (e. g., by adding such parameters). The same is true for the states
of ModalModels. At the time they are constructed by the transformation, it is
clear to which original SyncChart state the new state belongs. Because names of
states are not uniquely de�ned across hierarchy levels, another option to address
EMF objects within a model is used for this purpose: FragmentURIs, similar to the
XPath5 notation, serve to identify states. Their string representation makes it easy
to attach them as an additional parameter to created Ptolemy ModalModel states.

Listing 4.12 shows how input signals can be injected using the IO Actor intro-
duced in Sec. 4.2.7, where the signal name serves as a unique identi�er. In line 9 a
JSON implementation method is used to retrieve a JSONObject for a given signal
name. The present status is tested in line 10, with a special implementation that
conforms to a convention for representing synchronous signals in JSON (see Chap 5).
In Listing. 4.13 the corresponding part for extracting the signal status of output
signals using the Combine Actor (see Sec. 4.2.7) is shown. For every present signal a
JSONObject of the same name is created and merged into an overall return value.

In Fig. 4.24 the mapping of signals (w.r.t. their names) and of states (w.r.t. their
FragmentURI) is shown according to the example of Fig. 4.8.

4.4 Visualization Simulation Component

The visualization of SyncCharts (as seen in Fig. 4.8) takes place directly in the GMF

model editor. Hence it can be called a model visualization.

5http://www.w3.org/TR/xpath20/

73

http://www.w3.org/TR/xpath20/

4 Semantics

Figure 4.24: Mapping of (a) input signals, (b) output signals and (c) states

The component's task is to highlight currently active states. These states are
computed by the simulation engine as seen in the previous section. More precisely,
the simulation engine computes the FragmentURI, a unique identi�er of a State
EMF object. By using this identi�er, the object to highlight (i. e., a GEF EditPart
representing this State instance) can be retrieved by polling the speci�c GMF editor.
The highlighting of this visualization follows a more general pattern:

1. A trigger indicates that the active state(s) have changed and the visualization
should update its highlighting. This is usually done in a synchronous manner,
as explained in Chap. 5. The component's input is a list of active state Frag-
mentURIs. In every execution step it computes the di�erence of the current and
the last active states. If there exists a di�erence, the trigger becomes true.
Otherwise it is false.

2. A visualization e�ect is the resulting action of a visualization. In this case it
is the highlighting of a state by coloring its bounds in red.

74

4.4 Visualization Simulation Component

3. A combination of trigger and e�ect combines both and makes sure that the
following equivalence always holds:

trigger ⇔ e�ect

This means that a speci�c state is visualized using the e�ect, if and only if the
trigger for this speci�c state holds. Otherwise the visualization e�ect has to be
removed, if it was set before.

The implementation of triggers, e�ects and combinations is detailed elsewhere [8].

75

4 Semantics

76

5 Execution Framework

As a subproject of KIELER, the Execution Manager (KIEM) implements an interface
for the simulation and execution of domain speci�c models and possibly graphical
visualizations. It does not do any simulation computation itself, but it combines
simulation components, visualization components, and a user interface to control
execution within the KIELER application, as indicated in Fig. 5.1.

These components can simply be constructed using the Java language by imple-
menting some commonly de�ned interfaces. A generic approach on how to prepare
the implementation of such simulation engines themselves for a speci�c DSL has just
been presented in the previous chapter. In this chapter, a concrete implementa-
tion strategy used in the KIELER project will be given. Additionally, the Execution
Manager infrastructure and implementation details are analyzed.

5.1 Motivation

As outlined in Chap. 1 and presented in Chap. 3 with EMF, there exists a well
established framework for Eclipse that helps building domain speci�c languages in a
model driven approach. Additionally, there exists an IEEE standard for a modeling
and simulation high-level architecture [33]. No approved Eclipse project covers the
latter yet. Because in the KIELER project there is a need for being able to simulate
created models, the KIELER Execution Manager bridges this gap.

It is desirable to have an architecture that satis�es the following requirements:

Modularity: Several interacting but independent components should be able to par-
ticipate in a simulation run.

Performance: It should be possible by design that these components are able to
perform their tasks as concurrently as possible.

Extensibility: Simulation components need to have a very �exible and clear inter-
face. On the one hand the interaction should conform to a commonly agreed
standard, but on the other also be very e�cient.

Flexibility: It must be ensured that several kinds of tasks can be ful�lled by such
components, e. g., user interaction, visualization, recordings, online-debugging,
various communication, validation or other analysis functionality.

Usability: The user interface must also be simple and clear allowing the user to do
as much as possible with a minimum number of interaction steps.

77

5 Execution Framework

Interactivity: The user should be able to interact with the model during simulation.
This requires a discrete, stepwise execution.

5.2 Framework Overview

The KIEM framework provides the main simulation infrastructure for the KIELER

project. Fig. 5.1 shows it as a gray box where so-called DataComponents can be
attached. These components are able to communicate with each other via interfaces
provided by KIEM. Hence, KIEM can be seen as an implementation of a communi-
cation bus between independent and concurrent DataComponents. As also depicted
in Fig. 5.1, these DataComponents can cope with various tasks ranging from sim-
ple input/output facilities over communication or recording processors to simulation
engines that can be less or more complex and generic.

In the following sections these DataComponents, the interaction and scheduling
mechanisms, and other concepts that lead to the current design of KIEM are discussed.

Execution Manager Runtime

Java Simulator

Data Producer/Observer

Generic Simulator

Data Producer/Observer

Ptolemy II

Environment
 Visualization

Data Observer

Model Feedback
Visualization

Data Observer

Recorded
Trace Player

Data Producer

TCP/IP Interface

Data Producer/Observer

External Appl.

Figure 5.1: Schematic overview of the Execution Manager infrastructure

5.2.1 DataComponents

DataComponents are the building blocks of executions in the KIEM framework. These
components are pure Java code that is restricted to meet a special interface so that
the Execution Manager is able to address all components and interact with them in
the same way. Therefore the Eclipse plug-in concept is used (see Sec. 3.1). In partic-
ular, the Execution Manager provides an extension point that DataComponents can
implement. As the name suggests, DataComponents handle (simulation) data and
use these to interact with each other. Hence, they may produce data addressed for
other DataComponents or observe data values from other components or even both
at the same time. Fig. 5.1 shows an example setup.

Therefore DataComponents can be classi�ed according to their type of interaction
into four categories:

1. Initializer DataComponents usually neither observe nor produce any data. Ex-
amples are the running of a web server (see Sec. 5.3.8) during the execution or
the synchronization of a data base before and after a simulation run. Other

78

5.2 Framework Overview

tasks could be a M2M transformation or code generation and compilation as
presented in the previous chapter.

2. Pure observer DataComponents do not produce any data, e. g., simulation
visualizations.

3. In contrast, pure producer DataComponents do not observe any data. This
makes such components, e. g., user input facilities, data independent of others.

4. Finally, there are observing and producing DataComponents, such as simulation
engines that react to input with some output.

In Fig. 5.1 also the type of a DataComponent is denoted at the top of each box
representing one.

Figure 5.2: GUI of the Execution Manager

5.2.2 User Interface

The GUI of KIEM is implemented as an Eclipse View and associated with the KIEM

plug-in1. If this plug-in is loaded, the Eclipse View of Fig. 5.2 can be made visible
and positioned around the editor pane.

Mainly in focus is a list of all loaded DataComponents that extend a special
extension point (see Sec. 5.3). These components carry an icon that symbolizes
the type of DataComponent as explained above. All components can be scheduled
linearly. This is done by changing their position in the list using the up and down
arrow buttons. The scheduling a�ects the interaction with other DataComponents
and is explained in Sec. 5.2.4. DataComponents may provide properties that are
con�gurable by the user directly inside the KIEM UI.

1de.cau.cs.kieler.sim.kiem

79

5 Execution Framework

The scheduling (i. e., the ordered list of DataComponents) is saved together with
their property settings in an *.execution �le. Because KIEM implements a save-
able View, this can be achieved by using the normal Eclipse save or save as func-
tionality while the current focus is inside KIEM.

The GUI provides intuitive buttons to control the stepwise execution of all sched-
uled and active DataComponents:

Make an execution step backwards into the history

Make a forward execution step

Run the execution, i. e., make several execution steps with the user de�ned
aimed step duration

Pause a running execution

Stop and terminate an execution

These buttons can be found in the upper right area of the KIEM View. Next to the
up and down button is the text �eld that lets the user set an aimed step duration.
This is the time an execution step should take. It depends strongly on the time spent
by all DataComponents to execute a step. If they are faster than the set desired step
duration, the execution (in run mode) stalls up to reaching the aimed duration for
the step before executing the next one. The step and the run button come with an
optional menu, which lets the user jump to a speci�c step (lying in the past) or run
to a speci�c step (lying in the future).

The current execution step number is displayed in the text �eld on the left side
of the buttons. If the current tick is a new one, the number is just displayed as
is. If it is a so-called history step (i. e., a step lying in the past) then its number is
surrounded with brackets. For example �[3]� is the execution step number three
that already was computed before.

DataComponents that are scheduled (i. e., appear in the list) can be marked as ac-
tive or passive. All active ones are visualized with a black text color having a checked
selection box. Passive DataComponents (e. g., the ones grayed out in Fig. 5.2) are not
considered when KIEM invokes an execution step for every (active) DataComponent
in the list.

DataComponents do not need to appear in the list. They can be deleted from the
schedule by pressing the del key. Additionally, there is a dialog (see Fig. 5.3) that
allows the user to add DataComponents, whose plug-ins have been loaded. Some
special DataComponents may be multi-instantiable and can be added multiple times
to the schedule list, each instance having its own property values.

80

5.2 Framework Overview

Figure 5.3: Dialog for adding DataComponents to Execution Manager schedule

Master Component

A DataComponent may be a master. In this case it takes over the role of the user
and is able to trigger play, step, pause, and stop functionality or may change the
step duration time. A Master Component should not change the scheduling, add or
remove DataComponents. If a Master Component could delete itself, the expected
behavior is unclear. The same is true for adding other Master DataComponents.
Behavior of such a Master would depend on the presence and behavior of other
DataComponents what should be avoided, apart from normal data interaction during
an execution. In a schedule, there should be at most one enabled master present. If
this is not the case, KIEM will automatically disable all but one master.

A Master Component may be interesting for a remote cooperation of several KIEM
DataComponents. This enables for example special DataComponents to communi-
cate via a remote connection and duplicate user GUI commands. This way a sim-
ulation could take place spatially separated from a visualization. In Sec. 5.3.8 an
implementation is described that employs this pattern, by visualizing simulation re-
sults on a mobile phone that originally are computed in an Eclipse instance running
on a computer. For the remote connection, in this example, the Internet and the
TCP protocol is utilized.

Proxy Editor

The KIEM GUI is implemented as an Eclipse View, because it is intended to be used
together with an open editor (see. Sec 3.1). The disadvantage of this is that saveing
and opening of *.execution �les actually is not seamlessly integrated into the
Eclipse Workspace.

To deal with this problem, the KIEM GUI implements the interface ISaveable-
Part2. That makes KIEM having a saveable View . Whenever the KIEM GUI has the

81

5 Execution Framework

focus, using the Eclipse save or save as actions, triggers KIEM to save the execution
scheduling �le.

The standard opening of �les can only be done by Eclipse Editors. These usu-
ally de�ne the extension point org.eclipse.ui.editors to de�ne the standard
extension, an icon and the class providing the editor. Because KIEM cannot be an
Eclipse View and an Eclipse Editor at the same time (see Sec. 3.1), an additional
proxy editor is used for opening *.execution �les. In its init() method it
passes the IEditorInput parameter, containing the �le to be opened, on to the
single KIEM View instance. This will handle all further opening procedure in its
openFile() method.

5.2.3 Data Pool

The stepwise execution takes the scheduling into account that is given by the order
of the DataComponent list (see Sec. 5.2.4). Within one step, all DataComponents
marked as active are called to execute a step in this order.

General Interaction

Components may interact by exchanging data in order to communicate with each
other. The Execution Manager collects and distributes sets of data from and to each
active DataComponent. Therefore it needs some kind of memory as an intermedi-
ate storage to reduce the overhead of a broadcast, and to restrict and decouple the
communication providing a better and more speci�c service to each single DataCom-
ponent.

This storage is organized in a data pool where all data are collected for later usage.
The Execution Manager only collects data from components that are producers of
data. Whenever it needs to serve an observer DataComponent, it extracts the needed
information from its data pool, transparent to the component itself. The data in
the pool have no prede�ned meaning, hence all meaning is given to them from the
interacting components.

Dropping and Requesting Data

Fig. 5.4 shows an example setup with (A) one producer-only DataComponent, (B
and C) two observer and producer DataComponents, and (D) one observer-only
DataComponent (see. Sec. 5.2.1). These are all assumed to be active so they are
scheduled by the Execution Manager in the same order in which they appear in the
scheduling list, in Fig. 5.4 this is from left to right.

The data pool is organized using revision numbers. DataComponents can drop
new data into the pool, in this case they are producer DataComponents that return
a non-null value. These data get a new revision number in the pool. For example
this is the case for the green data package of component A that gets a revision #101.

82

5.2 Framework Overview

01100
10010
01011

observer/p
roducer (B

)

observer/p
roducer (C

)

observer only (D
)

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

next execution step

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011

#100

#101

#102

#103

#100

#101

#102

#103

#100

#101

#102

#100

#101

#100 #101 #101

producer only (A
)

Figure 5.4: Data pool evolvement example for one execution step (schematic)

DeltaObserver

If DataComponents are observers, there are two options:

1. They only want to observe the delta of data values

2. They want to observe the whole data of the pool

In the �rst case the DataComponent is only interested in data that were added to the
data pool since it was last (successfully) called. Therefore the Execution Manager
denotes the revision number of the last successful call. These components are called
delta observer .

In the second case the DataComponent is interested in the whole data of the pool.

Fig. 5.5 shows an execution of 5 steps with three participating DataComponents.
One producer generates (di�erent) data at steps 1, 3, 4, and 5. It does not produce
any data in step 2. Both observers get skipped in steps 2 and 3 (e. g., because they
might be a little slow).

In step 1 both observers get the blue data. Because there is no data in the pool,
both inputs (their parameter values) are the same. In steps 2 and 3 both get skipped.
Their step() method is not called in these steps. In step 4 the DeltaObserver gets
only the red and the yellow one, produced in steps 3 and 4 (these are the delta values
to the last time it was not skipped, i. e., step 1). The other observer gets the whole
data of the pool, namely the blue, the red, and the yellow data. In step 5 the recently
produced green data are the only ones that arrive at the DeltaObserver while the
other observer gets all ever produced data.

83

5 Execution Framework

Note that JSON data consist of key/value pairs. Data with equal keys may over-
ride each other giving precedence to the most recent produced value. However, the
strategy illustrated in Fig. 5.5 remains the same.

01100
10010
01011

01100
10010
01011

01100
10010
01011

1 2 3 4 5

Producer

Observer

DeltaObserver

Step

01100
10010
01011

01100
10010
01011

 /

skipped

skipped

skipped

skipped

01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011
01100
10010
01011

01100
10010
01011

01100
10010
01011

01100
10010
01011
01100
10010
01011

01100
10010
01011
01100
10010
01011

Figure 5.5: DeltaObserver vs. observer DataComponent

Data History

The dash within the data pool in Fig. 5.4 symbolizes the limit up to that (individual)
revisions are held in memory. Older revisions get merged together under the newest
and then smallest number as it is the case for data of revision #100 (and below)
in the example. This limit is also the boundary for the (history) steps backwards
during the execution. In the current implementation it is a constant set to a value
of 100000. Hence, the maximum number of steps to go backwards into the history
depends on the number of producer DataComponent that insert non-null values
into the data pool. In case DataComponents want to be executed in past (history)
steps, they will always get the full pool data as inputs in such history steps.

5.2.4 Linear Scheduling

All components have in common that they are called by the Execution Manager in
a linear order. This can be de�ned by the user in an execution setting and exactly
re�ects the order of the DataComponent list in the KIEM View shown in Fig. 5.2.
Because the execution is an iterative process�so far only iteratable simulations are
supported�all components (e. g., a simulation engine or a visualizer) should also
preserve this iterative characteristic. During an execution KIEM will stepwise activate
all components that take part in the current execution run and ask them to produce
new data or to react to older data. As KIEM is meant to be also an interactive

84

5.2 Framework Overview

listP := dataComponentList.select(type == producerOnly)
listAll := dataComponentList

prod := listP.getFirst()
listP.removeFirst()

not listP.empty()

comp := listAll.getFirst()
listAll.removeFirst()

listP.empty()

prod.asyncStartStep()

comp.syncStep()

comp.type == observerProducer

comp.type == observerOnly

comp.syncWaitEndStep()
comp.type == producerOnly

comp.asyncStep()
comp.isReady()

not comp.isReady()

not listAll.empty()

listAll.empty()

Figure 5.6: Linear scheduled execution of DataComponents

debugging facility, the user may choose to synchronize the iteration step times to real-
time. However, this might cause di�culties for slow DataComponents as discussed
below.

All components are executed concurrently. In particular, components that cannot
run concurrently due to implementation and scheduling restrictions share a common
thread. Apart from that, components are executed in their own threads. For this rea-
son, DataComponents should communicate (e. g., synchronize) with each other via
the data exchange mechanism provided by the Execution Manager only to enforce
thread safety. There are also additional scheduling di�erences between the types of
DataComponents listed in Sec. 5.2.1. These concern two facts: First, DataCompo-
nents that only produce data do not have to wait for any other DataComponent
and can start their computation immediately. Second, DataComponents that only

85

5 Execution Framework

observe data, often do not need to be called in a synchronous blocking scheme since
no other DataComponent depends on their (nonexistent) output.

The latter leads to the more detailed scheduling scheme for one execution step
shown in the activity diagram of Fig. 5.6. This is divided into two main parts:

1. Call all producer-only DataComponents and

2. Execute all DataComponents according to their scheduling order.

The �rst processes the list listP containing DataComponents that only produce
data. These do not depend on the (output) data of other components, so their
calculation can be started asynchronously at the beginning of an execution step.
When this list is empty, all such DataComponents have been processed. Note that
all DataComponents that only produce or only observe data run in their own threads.
The asyncStartStep() method for example will resume a blocked computation
of a waiting producer-only DataComponent thread.

In the second part the list of all DataComponents is walked in the order scheduled
by the user:

� For a observer and producer DataComponent there does not exist a di�erent
thread. The method syncStep() runs in the same thread as the execution
scheduling itself because it anyways blocks until the DataComponent has �n-
ished its computation.

� The computation of a producer-only DataComponent has already been started
(s.a.). At this point it must be considered that later scheduled components
may depend on the outputs of the current producer DataComponent. This
implies that the process needs to block with the call of syncWaitEndStep()
until the computation has �nished.

� Observer-only DataComponents do not produce any data. This implies that
other DataComponents cannot depend on them. Hence observer-only Data-
Components can be called asynchronously (asyncStep()). Because the com-
putation may need some time, an observer-only DataComponent's thread may
still process an older invocation of the same method. In this case isReady()
will return false and the component is skipped in this step. Note that skip-
ping of DataComponents can be dangerous and may lead to unexpected and
unpredictable behavior in some situations. Hence, the designer of a compo-
nent should trade of a blocking scheduling scheme against the possibilities and
consequences of the described time lacks.

An example could be an environment visualization component that may spend
much time in rendering the graphics. Additionally, this time could vary. Here
skipping makes sense, because otherwise all DataComponents are blocked by
the rendering process.

86

5.2 Framework Overview

If the list afterwards is not walked through completely the process will continue with
the next component. After all components have eventually been processed once, the
execution step completes.

5.2.5 Further Concepts

Besides the described basic concepts of the Execution Manager, there are some fa-
cilities and improvements that are summarized in the following.

Analysis and Validation: For analysis and validation purposes it is easy to include
validation DataComponents that observe special conditions related to a set
of data values within the data pool. These components may record events in
which such conditions hold or may even be able to pause the execution in order
to notify the user.

Extensibility: The data format chosen in the implementation relies on JSON. This
is often referred to, as a simpli�ed and light-weight XML. It is commonly used
whenever a more e�cient data exchange format is needed. Due to its wide
acceptance many implementations for various languages exist, thus aiding the
extensibility of the Execution Manager. Although DataComponents need to
be speci�ed in Java, the data may originally stem from almost any kind of
software component (e. g., an online-debugging component of an embedded
target). With this approach the Java DataComponents do not need to reformat
the data and can simply act as gateways between the Execution Manager and
the embedded target.
As an example, a mobile phone Java ME2 application has been developed that
can fully interact with the Execution Manager, see also Sec. 5.3.8.

Flexibility: For example synchronous signal data are easily represented within the
data model of KIEM. In a synchronous setting, a signal has not only a value
but additionally a status, which denotes it to be present or absent. For this
purpose, one just needs to �nd a common representation within the used JSON

format. Because signal presence is made explicit in the data pool of the Execu-
tion Manager, DataComponents need to make sure to reset them to be absent
for a next synchronous tick. This can be done by introducing a separate Dat-
aComponent, which resets all present signals, or in special cases this may be
done by the communicating DataComponents itself. Such a speci�cation can
be used to built several DataComponents that are able to interact following the
synchronous semantics of their external signals within an execution of KIEM.
An example of this is given in Sec 5.3.5.

Co-Simulation: Co-operative simulation allows the execution of interacting compo-
nents run by di�erent simulation tools. For each di�erent simulation tool a

2Java Micro Edition Framework: http://java.sun.com/javame

87

http://java.sun.com/javame

5 Execution Framework

speci�c interface DataComponent just needs to be de�ned. This way Mat-
lab/Simulink for example could co-simulate with a state machine model and
an online-target debugging interface to get a model- and hardware-in-the-loop
setup, which is useful for designing embedded/cyber-physical systems.

History: Together with the data pool the built-in history feature comes for free. This
enables the user to make steps backwards into the past. DataComponents
need to explicitly support this feature, e. g., one may not want a recording
component to observe (i.e, to record) any data again when the user clicks
backwards. This feature may help analyzing situations better. For example,
when a validation observer DataComponent pauses the execution because a
special condition holds, one may want to analyze how the model evolved just
before. This assists very well during interactive debugging sessions.

5.3 Implementation Details

After a framework overview of KIEM has been given in the previous section, this
section presents some implementation details.

In particular, the extension point used to implement a DataComponent is discussed
together with the abstract superclass of such components. This is followed by some
details about the handling of concurrent threads of KIEM used during the execution.
Additionally, optional properties of DataComponents are discussed as well as the
data model and a representation for synchronous signals. Finally, three example
implementations for DataComponents are given.

Figure 5.7: Extension de�nition for a DataComponent

88

5.3 Implementation Details

5.3.1 Extension Point

As introduced in Chap. 3, JSON is used as the concrete data exchange format. To
implement a DataComponent, one has to choose from two Eclipse extension points
that are o�ered by KIEM:

1. de.cau.cs.kieler.sim.kiem.json.datacomponent

2. de.cau.cs.kieler.sim.kiem.string.datacomponent

The �rst one is based on a special JSON implementation3 for Java. It uses JSON-
Objects for the communication with KIEM. The second one uses string represen-
tations, conforming to the JSON format, in order to communicate. This extension
point for example could be used for an embedded target where the implementa-
tion must consider memory limitations. In Fig. 5.7 an example DataComponent's
plugin.xml that extends KIEM using the �rst extension point is shown. The name
de�ned here is used by KIEM as a display name for the DataComponent (instance)
representation in the scheduling list of the GUI (see Sec. 5.2.2).

Both extension points are based on the same (abstract) super-class Abstract-
DataComponent and itself implement an interface called IDataComponent. To
conform to the interface, every DataComponent needs to supply code for the follow-
ing methods:

initialize(): This method is called during the initialization phase. That is,
when the execution is about to begin, but has not yet begun. The initialization
phase begins for example when the user clicks on the play, step, or pause button
in the GUI or such function is triggered from somewhere else (e. g., a Master
Component, see. Sec 5.2.2).

In this method a simulation DataComponent may trigger the memory alloca-
tion and the loading of the model to simulate.

wrapup(): When the execution has ended (normally) this method is called. For
instance, the stop button in the GUI was hit or a Master Component triggered
the execution stop. The wrapup() method is not called, when the execution
was abnormally aborted by an error. This is because if an error occurs in this
method, this could result in a deadlock.

step(): All DataComponents are periodically invoked by the Execution Manager
during an execution by calling their step() methods. This will be done once
for an execution step, as explained in Sec. 5.2.4. In this method a component
may react to inputs (parameter) with computed outputs (return value). The
parameter is of type JSON as well as the return value, both respecting the
implemented extension point.

3http://www.json.org/java

89

http://www.json.org/java

5 Execution Framework

Listing 5.1: AbstractDataComponent implementation example

1 public class DataComponent extends JSONObjectDataComponent
2 implements IJSONObjectDataComponent {
3

4 boolean waitI;
5 boolean doneI;
6

7

8 public void initialize() {
9 waitI = true;

10 doneI = false;
11 }
12

13 public boolean isObserver() {return true;}
14

15 public boolean isProducer() {return true;}
16

17 public JSONObject step(JSONObject jSONObject)
18 throws KiemExecutionException {
19

20 JSONObject returnObj = new JSONObject();
21 if (waitI && jSONObject.has("I")
22 && (JSONSignalValues.isPresent(jSONObject.get("I")))) {
23 //take transition from waitI to doneI
24 // when signal I is present
25 transition_waitI_doneI();
26 //output signal O
27 returnObj.accumulate("O", JSONSignalValues.newValue(true));
28 }
29

30 return returnObj;
31 }
32

33 private void transition_waitI_doneI() {
34 waitI = false;
35 doneI = true;
36 }
37 }

isObserver(): If a DataComponent needs inputs, i. e., needs data from another
DataComponent (e. g., a user input facility DataComponent as presented in
Sec. 5.3.7), it must return true in this method. Otherwise it can safely re-
turn false. In the latter case the parameter will always be null but the
DataComponent may have extra computation time (see Sec. 5.2.4).

isProducer(): If a DataComponent wants to produce data, e. g., in order to com-
municate with other DataComponents, this method must return true. If a
component does not produce any data, it may return false. Because the lat-
ter will have other scheduling consequences this is not always preferred, even if
no data are produced. If false is returned here, the Execution Manager will
ignore any data returned. In this case, null should be the �rst choice for a
reasonable return value.

90

5.3 Implementation Details

Feature Method Description

communication
provideFilterKeys()

Returns a String[] array that
leads to a more selective data com-
munication.

communication
isDeltaObserver()

In case of new steps, only di�erence
data are transmitted to the compo-
nent if it returns true here.

execution
checkProperties()

Is used in order to check the prop-
erty settings.

execution
isHistoryStep()

Is used by a component to decide be-
tween old and new execution steps.

execution/
scheduling notifyEvent()

This method is called when GUI

or execution events occur (e. g.,
pressed buttons, (de)activating,
adding, deleting, schedule changes).

scheduling
isMultiInstantiable()

Returns a boolean value that in-
dicates whether the component is
thread safe.

scheduling
isHistoryObserver()

Can be used to signal KIEM that
the component can handle (already
computed) old data.

parametrization
getDataComponentId()

Implements a basic unique identi�-
cation value computation.

parametrization
provideProperties()

Extra properties of type
KiemProperty[] can be pro-
vided as a return value.

parametrization
provideEvent-
OfInterest()

Returns events of interest
(type KiemEvent). For these
events KIEM will call the
notifyEvent().

coordination
isMaster()

A component may �ag that it imple-
ments master functionality.

coordination
isMasterImplemen-
tingGUI()

A master may also implement the
functionality originally provided by
the KIEM GUI. This way a button
hit results in the master to react.

coordination
masterCommand()

These methods can only be called by
master components in order to imi-
tate user inputs.

Table 5.1: Main methods of the central abstract class AbstractDataComponent

91

5 Execution Framework

Listing 5.1 shows an example implementation of a DataComponent with a minimal
set of methods needed to conform to the interface. In its initialize() method of
line 8, the initial state is set to be waitI. This component claims in line 13 that it
wants to observe values. Consequently, it usually can expect a non-null parameter
in its step() method of line 17.

It further claims in line 15 to produce values. Consequently, values returned in the
step() method will be considered by KIEM. This DataComponent utilizes signal
representations as to be discussed in Sec. 5.3.5. In lines 22 and 23 it is tested if a
signal I is within the observed data and additionally is present. If this is the case
and the component is in state waitI, the transition_waitI_doneI() method
executes the transition to state doneI. Additionally an output value O is produced
when taking this transition.

5.3.2 The Abstract Class AbstractDataComponent

The abstract class AbstractDataComponent plays a central role in the KIEM ex-
ecution framework. As seen earlier, all DataComponent implementations are implic-
itly based on it, because the respective extension points are. This class provides basic
common features needed for communication, execution, scheduling, parametrization,
and coordination. In Table 5.1 most of the methods are listed with a brief description
that can be used or overwritten in order to specialize a DataComponent.

Figure 5.8: KIEM DataComponent properties

5.3.3 DataComponent Properties

For the sake of usability, KIEM provides an extra functionality for de�ning user
con�gurable properties for a DataComponent instance. For every DataComponent
added to the scheduling list of KIEM a new property setting is de�ned.

92

5.3 Implementation Details

Fig. 5.8 shows the KIEM GUI with three DataComponents, each having their own
properties. In the GUI these can be folded [-] and unfolded [+]. Values can be
edited directly in the table. Properties may be of di�erent types. For example the
ABRO in Java DataComponent in Fig. 5.8 has a String state name property. The
user may add/edit arbitrary text in the value column. The same is true for the other
property example types listed below (boolean, integer, �le, choice, workspace �le,
and editor).
This way the user is able to con�gure component instances. All property settings

are saved together with the scheduling in the *.execution �les (see Sec. 5.2.2)
and restored when such schedulings are loaded into KIEM.
In the default case DataComponents do not have any properties to set. But

provision of properties can easily be done by overriding the method provide-
Properties() of the super class AbstractDataComponent. In this method
an instance of type KiemProperty[] must be constructed. This array contains
the properties in the same order as KIEM will show them for each instance of the
respected DataComponent.
A KiemProperty is again an abstract class and may be implemented to provide

�exible property types. For convenience reasons, some default implementations of
standard property types come along with KIEM:

� KiemPropertyTypeString

� KiemPropertyTypeBool

� KiemPropertyTypeInt

� KiemPropertyTypeChoice

� KiemPropertyTypeEditor

� KiemPropertyTypeFile

� KiemPropertyTypeWorkspaceFile

For each property type instance a name and a default value must be set. The value
may later be changed by the user in order to con�gure the referred DataComponent
instance respecting the property type. This is done in the same user interface (UI)
as the scheduling of the components itself. An example can be seen in Fig. 5.2 of the
KIEM GUI. The editing of values is done within the table using special CellEditors
appropriate to the type of property.
Examples for the implementation or provision of a KiemProperty[] array is

given in Listing 5.2. In line 3 the most simple (implicit) string constructor is used
in order to generate a property that allows to set and edit a String value. In lines
5 and 7 properties for values of the types boolean and int are created. For the
boolean type a drop-down list lets the user choose from the values true and false.
Lines 9 and 16 show a examples about how to specify �le types. For the GUI, these

93

5 Execution Framework

Listing 5.2: Implementing (optional) properties for a DataComponent

1 public KiemProperty[] provideProperties() {
2 KiemProperty[] properties = new KiemProperty[7];
3 properties[0] = new KiemProperty("state name",
4 "state");
5 properties[1] = new KiemProperty("some bool",
6 true);
7 properties[2] = new KiemProperty("an integer",
8 2);
9 properties[3] = new KiemProperty("a file",

10 new KiemPropertyTypeFile(),
11 "c:/nothing.txt");
12 String[] items = {"trace 1","trace 2", "trace 3", "trace 4"};
13 properties[4] = new KiemProperty("a choice",
14 new KiemPropertyTypeChoice(items),
15 items[2]);
16 properties[5] = new KiemProperty("workspace file",
17 new KiemPropertyTypeWorkspaceFile(),
18 "/nothing.txt");
19 properties[6] = new KiemProperty("editor",
20 new KiemPropertyTypeEditor(),
21 "");
22 return properties;
23 }

types come with enhanced text �elds linked to special dialogs in order to let the user
choose a �le. How to provide a more generic list of items to choose from is presented
in lines 12 and 13. The editor type of line 19, lists all opened editors together with
the opened �les.

In order to provide new types, the given example implementations listed above
can be considered a construction manual. It is basically done by deriving from the
abstract class KiemProperty. A custom KiemProperty needs to implement the
IKiemProperty interface and hence to provide the following two methods:

� getValue()

� setValue()

It must be ensured that all property values are the canonical string representa-
tives and hence all property values need to be serializable. The Object values of
the �rst two methods depend on the cell editor used by this property type. By
default this is the TextCellEditor that handles strings. One can override the
provideCellEditor() method and provide another cell editor here. For exam-
ple the ComboBoxCellEditor operates on integer values. It must be considered
that only the string representation is the one that will be stored (in a scheduling �le)
and should be unique to be distinguishable. Finally, the method provideIcon()
can be overridden to supply a di�erent than the default icon for the GUI.

94

5.3 Implementation Details

5.3.4 Scheduling and Concurrency Handling

The scheduling concept followed by the ideas described in Sec. 5.2.4 is not trivial
when it comes to producer-only or observer-only DataComponents. In both cases
the �ow of control is forked and concurrency handling is needed:

� Producer-only DataComponents can start computation right at the beginning
of an execution step.

� Observer-only DataComponents may compute concurrently to other compo-
nents until they are scheduled in the next execution step.

For both kinds of DataComponents the Execution class instance, which can be seen
as the central scheduler of KIEM, creates a worker thread in its constructor. Bene�ts
for such worker threads are that there will not be much overhead for creating and
disposing threads. This additional time is only needed once at the beginning of an
execution.

The class ObserverExecution implements the behavior of a worker thread
operating on a DataComponent that is a pure observer. The class ProducerExecu-
tion implements the behavior of a worker thread operating on a DataComponent
that is a pure producer. In the following both types of threads and their interaction
with the single Execution scheduling instance are analyzed.

ObserverExecution

In Listing 5.3 this interaction scheme for observer-only DataComponent threads is
shown. A central role plays the private done variable. For this the following invariant
IV holds outside the synchronized blocks:

IV : done == true ⇔ thread is sleeping

It ensures that a synchronized call of step() that should awake the worker thread
is never missed. Only if the thread is already sleeping (i. e.,done is true) it is woken
up. But because done is set to true (line 31) in another synchronized block just
before the thread goes to sleep in line 34, the invariant is always preserved. More
over, when step() returns false, done was not true just before the invocation.
This implies that the call to dataComponent.step() in line 39 had not returned
yet, and/or lines 29 to 34 had not been executed as well.

The latter case may occur when the component needs more computation time than
one execution step lasts.

Not shown in the simpli�ed version of Listing 5.3 is the fact that the (input) data
must be set before the invocation of line 39 and there is a possibility to set the stop
�ag variable. Also errors of the DataComponent-call are being caught and handled
as well as a distinction of the correct extension point and respective type castings.

95

5 Execution Framework

Listing 5.3: Simpli�ed observer-only DataComponent thread

1 public class ObserverExecution implements Runnable {
2

3 private boolean done;
4 private boolean stop;
5 private DataComponent dataComponent;
6 private JSONObject data;
7

8 public ObserverExecution() {
9 this.stop = false;

10 this.done = true;
11 }
12

13 public synchronized boolean step() {
14 // check if we already done
15 if (!done) {
16 // deadline missed
17 return false;
18 } else {
19 // deadline met
20 this.done = false;
21 // awake this thread
22 this.notify();
23 return true;
24 }
25 }
26

27 public void run() {
28 while (!this.stop) {
29 synchronized (this) {
30 // now we got the result and are done
31 this.done = true;
32 // go to sleep
33 if (done) {
34 this.wait();
35 }
36 }
37

38 // do asynchronous call - do not use any return value
39 dataComponent.step(this.data);
40

41 } // next while not stop
42 }
43

44 }

ProducerExecution

In Listing 5.4 a similar interaction scheme for producer-only DataComponent threads
is shown. The done variable also plays a central role for the synchronization. Note
that a producer-only DataComponent must be called twice by the scheduler, i. e.,
the Execution instance.

The computation is started in the beginning of an execution step. Therefore
step() is called. It is assumed that done is true and any results of previous
execution steps have been reaped. Calling of step() sets the done variable to

96

5.3 Implementation Details

Listing 5.4: Simpli�ed producer-only DataComponent thread

1 public class ProducerExecution implements Runnable {
2

3 private boolean done;
4 private boolean stop;
5 private DataComponent dataComponent;
6 private JSONObject data;
7

8 public ProducerExecution() {
9 this.stop = false;

10 this.done = false;
11 }
12

13 public synchronized void step() {
14 done = false;
15 // this will awake the execution (blockinWaitUntilDone()) AND the waiting
16 // producer thread but only the producer thread will proceed, because
17 // done is guaranteed to be false!
18 // the execution will fall asleep until the producer has finished doing
19 // its step
20 this.notifyAll();
21 }
22

23 public synchronized void blockingWaitUntilDone() {
24 while (!this.done) {
25 // we pass the lock to someone else because we are still waiting for
26 // done to become true
27 this.notifyAll();
28 this.wait();
29 } // end while
30 // at this point done is true and we may reap the results now
31 }
32

33 public void run() {
34 while (!this.stop) {
35 // caller step() must ensure that done == false (before)
36 if (!done) {
37 synchronized (this) {
38 // now we got the result and are done so we set done to true
39 // to indicate that the results can be reaped
40 // while done is true we sleep and awake the execution
41 // (blockingWaitUntilDone()) that is possibly waiting
42 this.done = true;
43 // only proceed if done == false
44 // (hence blockingStep() was called)
45 while (this.done) {
46 this.notifyAll();
47 // at this point blockingWaitUntilDone() can return
48 this.wait();
49 }
50 // at this point we know that someone wants us to make a step
51 // and done is false
52 }//end synchronized
53 // do asynchronous call
54 this.data = compJSON.step(null);
55 } // end if not done
56 } // next while not stop
57 }
58 }

97

5 Execution Framework

false and promptly returns.

In the run() method, the worker thread waits for this condition (line 48) and
is woken up by the notifyAll statement of line 20. The worker thread then
calls the DataComponent.step() method in line 54 and blocks until it returns a
(produced) value. During this, the done variable is false (as set in line 14).

The scheduling protocol enforces the rule that before another invocation of step()
is allowed to occur, the scheduler must reap the execution results (or wait for them
�rst). Therefore blockingWaitUntilDone() is called by the Execution in-
stance, whenever this DataComponent is scheduled. If done is true, the method
just returns, and the produced data can be processed.

In the other, more interesting case, the execution thread must still wait for the re-
sults (line 28). Note that the constructs in lines 24-29 and lines 45-49 are symmetric.
Whenever the call of line 54 returns, the worker may enter the synchronized block
eventually. This is because a blockingWaitUntilDone()-call may eventually
wait and a step()-call is not allowed by protocol. Moreover line 42 will eventually
set done to true and before leaving the synchronized block, the worker thread is
going to sleep. Only after this, the possibly waiting Execution instance is woken
up and now sees the done == true condition.

5.3.5 Synchronous Signals

Using the JSON format as an implementation for the concrete data model, one has
to deal with the restrictions that come along with JSON itself and with the ones that
follow by the implementation of the communication mechanisms provided by KIEM:

� A JSONObject is a list of key/value pairs,

� The key is of type String,

� The value is an object that may itself be a JSONObject again, and

� All data are represented as a single JSONObject.

Synchronous signals normally have a name, a value, and a presence status. The
presence status must be consistent for one tick instance. A signal is present within
an execution step, if and only if its presence status is set to true.

If this is carried into the KIEM execution, a signal may be some object with a
String name-key in the overall JSONObject data list. Analogous to the above,
an observer DataComponent's input signal should only be present, i� any producer
DataComponent's output signal having the same name, was set to be present in the
same execution step, where the producer DataComponent was scheduled before the
observer DataComponent. If no such producer DataComponent exists, the signal
should be absent (i. e., not be present). But this implication is not re�ected directly
by the data pool.

98

5.3 Implementation Details

In the data pool, if any DataComponent in any execution step ever has produced a
value with that name, then this value persists. Hence the presence of a signal cannot
be implied by the presence of a data value (representing a signal).
For this reason signal presence or absence has to be made explicit. And because

data persist across execution steps, such signals must be set to absent in the beginning
of each step. Because this turns out to be a common convention, in order to deal
with synchronous signals in a reasonable way, a proposed solution includes a special
representation format for signal values and a special DataComponent to reset these.

Representation format

The proposed representation format is implemented in the class JSONSignal-
Values. Signals should contain not just a value but instead of that a JSONSignal-
Values. That is, they contain a JSONObject as their value, where at least one
parameter is called present and this parameter is of type boolean. It should indi-
cate the presence or absence of the signal. Another parameter is called value and
contains the normal value of this signal. But this parameter is optional, because
pure signals do not have any value. Examples for this representation are given in
Table 5.2.
Static helper methods for handling such signals are also included in the JSON-

SignalValues class. This includes:

� setPresent() / isPresent()

� isSignalValue()

� getSignalValue()

� newValue()

JSON representation Description

a:{present:true,
value:10}

Valued signal a, present, with an integer value
of 10

a:{present:false,
value:“hello signal”}

Valued signal a, absent, with a string value of
�hello signal�

b:{present:true} Pure signal b, present

b:{present:false} Pure signal b, absent

Table 5.2: JSON representations of synchronous signals

setPresent() is used to set a present status of a JSONSignalValue instance.
isPresent() queries the presence status of a JSONSignalValue instance. To
check whether a JSONObject instance has a present key, isSignalValue()
can be used. getSignalValue() returns the value key of a JSONSignalValue
instance. Finally, newValue() creates a new pure or valued signal's JSONSignal-
Value instance.

99

5 Execution Framework

Listing 5.5: Synchronous signal resetter

1 public JSONObject step(final JSONObject allDataIn)
2 throws KiemExecutionException {
3 JSONObject allDataOut = new JSONObject();
4 String[] fieldNames = JSONObject.getNames(allDataIn);
5 if (fieldNames != null) {
6 for (int c = 0; c < fieldNames.length; c++) {
7 // extract key, value from JSONObject
8 Object obj = allDataIn.get(fieldNames[c]);
9 String key = fieldNames[c];

10 if (obj instanceof JSONObject) {
11 // if signal
12 if (JSONSignalValues.isSignalValue((JSONObject) obj)) {
13 // if present
14 if (JSONSignalValues.isPresent((JSONObject) obj)) {
15 // modify and set absent
16 JSONSignalValues.setPresent((JSONObject) obj, false);
17 // add to return JSON value only if
18 // signal was changed
19 allDataOut.accumulate(key, (JSONObject) obj);
20 }
21 }
22 }
23 }
24 }
25 return allDataOut;
26 }

SyncSignalResetter

The synchronous signal resetter is an example plug-in4 that comes with KIEM. This
component must always be scheduled �rst within an execution step, at least before
all relevant DataComponents that take part in synchronous communications.

Its step() method can be seen in Listing 5.5. In line 3 a JSONObject for the
return values is created. Now all input data are processed in an iterative manner
(line 6). The name of a datum is extracted in line 8. If this is a signal value and it is
present then it is set to absent and accumulated (line 19) in the object to be returned.
Otherwise it is either not a signal or a signal that already is absent. Because in the
latter two cases, no updates of the data pool are required, this DataComponent not
needs to consider these. All updated signals, i.e, signals that were present and now
are to be set to absent, are returned in line 25.

5.3.6 Example 1: ABRO in Java

The following most basic example plug-in5 illustrates the implementation of a Data-
Component while using the synchronous signal conventions of the previous section.

4de.cau.cs.kieler.sim.syncsignalreset
5de.cau.cs.kieler.sim.abro

100

5.3 Implementation Details

Figure 5.9: ABRO example as a SyncChart

SyncCharts were introduced in Sec. 4.2. Consider the SyncChart in Fig. 5.9. This
speci�es the famous ABRO example [3], the hello world of the synchronous world. It
has three input signals A, B, and R and one output signal O.
The behavior is as follows:

� The system is concurrently waiting for signal A and signal B in states wA and
wB.

� If signal A is present and wA is the current state, state dA is entered.

� If signal B is present and wB is the current state, state dB is entered.

� Whenever dA and dB are the current states, immediately O is emitted and the
state done is entered.

� Whenever R is present, nothing of the above happens (preemption), but the
system is in states wA and wB afterwards.

This behavior can also be expressed by a DataComponent. Consider Listing 5.6
that implements a simple ABRO simulator assuming all signals are reset using the
synchronous signal resetter presented in the section before.

In lines 3 to 7, boolean state variables are declared for all possible states of the
system. The initialize() method resets the states to the initial ones calling the
resetABO() method in line 9. The method wrapup() must be implemented due
to the interface requirements, but is left empty in this case. In lines 11 and 12 the

101

5 Execution Framework

Listing 5.6: ABRO in Java example DataComponent

1 public class DataComponent extends JSONObjectDataComponent
2 implements IJSONObjectDataComponent {
3 private boolean wA;
4 private boolean wB;
5 private boolean dA;
6 private boolean dB;
7 private boolean done;
8

9 public void initialize() {resetABO();}
10 public void wrapup() {}
11 public boolean isObserver() {return true;}
12 public boolean isProducer() {return true;}
13

14 public JSONObject step(final JSONObject jSONObject)
15 throws KiemExecutionException {
16 JSONObject returnObj = new JSONObject();
17 if (jSONObject.has("R")
18 && (JSONSignalValues.isPresent(jSONObject.get("R")))) {
19 resetABO();
20 } else {
21 if (wA
22 && jSONObject.has("A")
23 && (JSONSignalValues.isPresent(jSONObject.get("A")))) {
24 wA = false; dA = true;
25 }
26 if (wB
27 && jSONObject.has("B")
28 && (JSONSignalValues.isPresent(jSONObject.get("B")))) {
29 wB = false; dB = true;
30 }
31 if (dA && dB) {
32 dB = false; dA = false;
33 done = true;
34 returnObj.accumulate("O", JSONSignalValues.newValue(true));
35 }
36 }
37 return returnObj;
38 }
39

40 private void resetABO() {
41 wA = true; wB = true;
42 dA = false; dB = false;
43 done = false;
44 }
45 }

component declares that it is going to observe data (i. e., the input signals A, B, and
R) and also produce data (i. e., the output signal O).

The most interesting method step() begins in line 14. It takes jSONObject, a
JSONObject instance, as an argument that may contain all input signals. In line
18 it is tested whether signal R is present. Before the JSONSignalValue of signal
R can be tested it must be checked if there exists such a signal name in the data at
all. The latter is done in the same line calling jSONObject.has(”R”) in line 17.
The same holds for testing the other input signals A in lines 21 to 23 and B in lines

102

5.3 Implementation Details

26 to 28. If R is present, the system is reset calling the resetABO() once again.
In the other case, it may react to A or/and B. It may do so by changing states from
wA to dA and wB to dB accordingly. If both state dA and dB are present at the
same time, state done is entered and signal O is emitted by accumulating it to the
returned JSONObject instance.

Figure 5.10: DataTable plug-in visualizing ABRO simulation results

5.3.7 Example 2: Data Table

The data table plug-in6 is a very useful example DataComponent. It is intended to
be used to display data and also to manually inject new/changed data values. The
GUI of the data table can be seen in Fig. 5.10.
As the global JSONObject is a list of key/value pairs, each of such pairs can be

displayed in the data table that has a key and a value column. Both are editable
cells, meaning that the user is able to edit the key and/or the value directly in the
table. A new table entry can be created using the Add Entry command (e. g., from
the context menu or the tool bar). A key/value pair can be deleted, using the Delete
Entry command or by pressing the del key.
Because the data table displays and modi�es data entries, it takes over the role of

an observer and producer. Usually the user edits some values in the data table, then
triggers an execution step, and afterwards wants to see the results in the data table.
Hence, the data table does not behave like a simulator component (e. g., the ABRO

DataComponent seen in Sec. 5.3.6) that computes new outputs using inputs. In this
case it is the other way round. Moreover the data table modi�cations by the user
refer to the inputs of DataComponents in the next execution step, while other (not
modi�ed) data are the output of DataComponents in the current execution step. To
handle this, there are two specialties about the data table:

� The data table is split into two components, a producer part and an observer
part. The producer part injects modi�ed or new data and should be scheduled
before any other DataComponent that expects to get inputs from the data

6de.cau.cs.kieler.sim.table

103

5 Execution Framework

table. The observer part updates the data table with the current values and
is reasonably scheduled after any other DataComponent that one wants to
observe the outputs from.

� In order to display both in the same table, instead of having two tables, mod-
i�ed or new data are marked in the table (with a �*�) while observed data are
not marked.

The data table additionally is aware of the synchronous signal conventions intro-
duced in Sec. 5.3.5. If a key/value pair conforms to this convention (i. e., has a
boolean present parameter) then it is interpreted to be a signal and to have any fur-
ther (optional) values in the value parameter. If the signal is present, the respective
check box is checked. If a signal is absent, it is not checked. The signal presence
can also be altered by the user and will result in a modi�cation marker as explained
above. A key/value pair can be modi�ed to be a signal (and vice versa) using the
command Signal (context menu).

In addition to this, an entry can be marked to be permanent . In this case a lock-
icon is displayed next to the entry. The producer part of the data table outputs this
entry in every following execution step, as if the entry has been modi�ed each time.
For example this can be used to permanently emit signals. Note that a locked entry
cannot be edited, except for its presence status for convenience, and that outputs of
other DataComponents with the same key may not be visible in the data table.

Synchronization

Because the data table consists of two DataComponents operating on the same table,
some additional synchronization is needed. For this, the singleton Eclipse View
of the table is used, more speci�cally, its one and only instance of the table data
(TableData). The Eclipse View records when the user is currently editing an
entry. If this is the case, no updates of the observer part and also the producer part
are re�ected in the table. If there is no editing ongoing, the entries can safely be
updated. The producer part always returns the entries in its step() method that
are tagged as modi�ed. This tag is then removed.

5.3.8 Example 3: Mobile Data Table

As mentioned in Sec. 5.2.5 and as an example of the extensibility of the KIEM frame-
work, a mobile phone application was developed that serves as a mobile data table.
This application is split into four di�erent parts:

Mobile application: This is the client program running on the mobile Java ME com-
patible phone. An Internet TCP connection is needed to connect to the server
part. It can be used to modify or delete data, insert new data and to remotely
control the execution.

104

5.3 Implementation Details

Server DataComponent: This is a DataComponent that is neither a producer nor
an observer but takes over the role of a master. It opens a port where the client
software is able to connect itself to. It further takes commands from the client
(e. g., to make an execution step), and relays them by calling the adequate
master methods (see. Sec. 5.2.2). Additionally, it o�ers its TCP stream for
reading and writing to the observer and producer component.

If the master component is enabled, the mobile data table may rule the exe-
cution. If the master component is disabled, the execution is controlled by the
KIEM GUI and not by the mobile application.

Observer DataComponent: This operates mostly like the data table observer. But
instead of using the Eclipse View to display updated data, the TCP stream is
utilized to relay this data to the mobile application.

Producer DataComponent: This component takes input from the mobile applica-
tion using the TCP stream provided by the master (server) component. This
is done asynchronously while the user edits the entry. If a step is made, all
updated data in the bu�er of the producer DataComponent is returned by its
step() method.

Some screen shots of the running mobile application part are depicted in Fig. 5.11.
In the �rst one the connection settings dialog is displayed. The second image shows
the modi�cation of the signal A that has no value. Because the mobile data table is
visualizing the ABRO simulation example from above, the last two screens show the
steps 1 and 2. In the �rst step the user sets the signal A and B to present. This
is visualized with a modi�cation tag (�*�) before the signal name. The user then
triggers an execution step pressing the step button. Once this has completed, the
resulting (present) signals A, B and O are displayed.

Figure 5.11: Mobile data table application visualizing ABRO simulation results

105

5 Execution Framework

106

6 Conclusions

As stated in Sec. 1.2, the problem covered by this diploma thesis is twofold:

1. Develop a generic mechanism, to construct simulation engines for arbitrary
DSLs.

2. O�er a generic execution framework to use these simulation engines, embedded
into an existing, and MDSD based DSL toolchain that is complete w.r.t. the
abstract syntax.

With this segmentation in mind, the following summarizes the results and gives
ideas for future work.

6.1 Results

6.1.1 Semantics

As stated in Sec. 1.2, there exists good support for de�ning the abstract syntax of
a DSL. In the context of MDSD, the Eclipse EMF/GMF toolchain allows to generate
feasible and customizable editors from this speci�cation.

However semantic aspects that are needed for simulation, have not bean addressed
previously in the same manner. This thesis presented an approach for a denotational
transformation. Sec. 2.2 gave an overview about how this gap can be �lled and
reasons about the approach of this work.

In Chap. 4, two case studies to illustrate this approach were presented:

Model Railway Controllers: This �rst case study showed how to construct a tai-
lored (simple) DSL out of a domain description. It further illustrated how a
simulation engine for this DSL can be derived from the abstract syntax and
how this compares to code generation.

SyncCharts: The second case study demonstrated how the transformation can be
accomplished for an already existing language having lots of non-trivial prop-
erties.

Both case studies showed the integration in current MDSD technologies. In par-
ticular, common Eclipse technologies, such as EMF, GMF, Xtend, and Xpand, were
employed. Additionally, the Ptolemy II tool and the C language were utilized and
integrated to execute models in order to simulate them.

107

6 Conclusions

As claimed, no new language or notation was introduced. The approach is not
bound to any concrete language, because it is conceptually open to other transfor-
mation languages. Common technologies were used for the framework and the model
transformations. Concerning the target group of domain experts, the operationally
driven and not too formal approach seemed to be an appropriate trade-o�. To accom-
plish this, it was shown that the abstraction can be maintained on a high-level using
M2M transformations, e. g., concurrency problems can be left for the concurrency-
experts by utilizing Ptolemy.

Hence, all aims, namely simplicity, �exibility, usability, extensibility, comprehen-
sibility, and abstraction, have been reached.

Model Railway Controllers

Various problems for the Model Railway Controller simulation implementation showed
up when trying to generate C code. Especially concurrency in combination with the
state machine pattern and a synchronous pattern with enforced thread synchroniza-
tion were the main goals reached in this part of the work.

When de�ning the M2M transformation in Xtend, merging of control data and the
Model Railway interface actor were the most di�cult tasks to accomplish. Concur-
rency, synchronization, and a state based representation came for free by employing
Ptolemy's strengths.

SyncCharts

De�ning the M2M transformation for SyncCharts turned out to be non-trivial in some
special parts. Still it was shown how their basic features can be represented:

1. Hierarchy is basically supported by Ptolemy's hierarchical structure.

2. Compound events are also basically supported, employing Ptolemy's expres-
sion language requiring only little adaption.

3. Parallelism is one of the strengths of Ptolemy. Little adaption was necessary,
such as merging local signals in a loop.

4. Signal broadcast was the hardest task, because Ptolemy's modularity con-
tradicts with �nding a globally consistent signal assignment. The introduced
SyncChart director handles this issue by the presented must-cannot analysis
crossing hierarchy levels.

5. Other features like the normal termination are solved separately. Preemption
is natively supported by Ptolemy's ModalModels.

Additionally it was shown how to bridge some general interfacing problems with
Ptolemy (e. g., using the special IO Actor).

108

6.2 Future Work

6.1.2 Execution Framework

The presented execution framework serves as a light-weight implementation of the
IEEE standard (see Sec. 2.2.4).

Arbitrary interacting components are supported and various existing example com-
ponents were presented. The interface between the framework and such components
is kept simple but �exible. Optional, extensible property features were introduced
to enhance the usability. Additionally, the user interface and handling is similar to
several tools presented in Chap. 2 in order to lower practical barriers.

As further claimed, �exible representations in the data model are possible, the
common Eclipse plug-in concept and extension points are used, which are both com-
mon standards. The framework behavior like the scheduling or the data management
was kept as simple as possible.

Hence, all aims, namely simplicity, �exibility, extensibility, comprehensibility, and
uniformity, are ful�lled.

6.2 Future Work

Although all initially set aims have been met as summarized above, there are several
ideas for future work that may arise from this diploma thesis.

6.2.1 Speci�c Model Transformations

Representing time: In the M2M transformation for the Model Railway Controller
language, currently �time� advances with each tick. This is not the preferable
option. One would favor to represent time as an optional input signal from the
environment in a multiform notion of time manner.

Optimize code: In the M2T transformation (code generation), one may possibly be
able to further optimize the C code by for example carefully reducing synchro-
nization barriers.

Transient states: For the SyncChart transformation, only the NORMAL state type is
supported yet. It is preferable to advance the transformation and additionally
allow immediate transitions or conditional states. In order to do so, one would
have to consider the following things:

1. Add an auxiliary parameter to denote such states in Ptolemy.

2. Adapt the SyncCharts director:

� Fire such ModalModels more than once during a �xed point iteration.

� Extend the computation of possibly emitted signals to signals of out-
going transitions of all currently reachable transient states.

109

6 Conclusions

Valued signals: Currently the simulation with KlePto only supports PURE signals.
Signal values of combined signals are computed in order to prepare an extension
that can handle valued signals. For such, one would need to:

1. Make use of (already computed) combined signal values.

2. Save these in Ptolemy parameters, as seen for counting the ticks in a
transformed Railway Controller model.

3. Replace ?S with the parameter name for a signal S in all transition labels.

PRE-operator: Although one can refer to the current presence status of signals in
transition guards, this cannot be done across execution steps. Hence, the
PRE-operator de�ned in SyncCharts is currently not supported. It could be
interesting to enabled the usage of this by:

1. Using Ptolemy parameters like for valued signals (s.a.).

2. Extending the SyncChart director to save the current value and present
status for the next tick.

3. Replace PRE(S) and PRE(?S) with the parameter name for a signal S
in all transition labels.

4. Take special care of an important pre-requirement, namely modularization
of signal broadcast (s.b.).

Emit input signals, read output signals: The presented must-cannot analysis per-
formed by the SyncChart director considers only local signals. These are signals
that are neither input nor output signals. As a consequence, input signals can
only appear in transition triggers, and output signals can only appear in tran-
sition emissions. There are two di�erent ideas to allow the reversal usage of
output signals in transition triggers and input signals in transition emissions:

1. Extended transition labels: One could imagine to extend transition
labels in a way that for every output signal which is read, an auxiliary
local signal is used. This is emitted in all transitions that would also emit
the original output label.

Similarly input signals that are emitted, are replaced by auxiliary local
signals that are added to transition triggers where the original input sig-
nals are combined in a disjunction.

2. Parallel regions: One could also imagine to add parallel regions to
the topmost state. One would add an auxiliary output signal with the
same name and modify the original output signal to be a local one. In
the added parallel region containing just one state, one would emit the
original output signal whenever the according retyped local one is present.

Similarly auxiliary input signals could imply the emission of the according
retyped local signals in such additional regions.

110

6.2 Future Work

With this injective transformation one needs to make sure that the map-
ping remains correct. This is because the additional regions and states
have no representation/meaning in the original SyncChart.

Modularization of broadcast: A major drawback of rising local signals as explained
in Sec. 4.2.7 is that this limits the computation of a signal assignment to the
current tick (see PRE-operator).

In order to enhance this, the possibly emitted signals that are currently com-
puted in a BFS style call chain, could be extended by a convergecast as ex-
plained by Lynch [41, p.60]. For this, hierarchy and parallelism of Ptolemy
models must be mapped to a graph structure. This can easily be done by as-
suming hierarchy as a parent-child relation and parallelism as a sibling relation
of entity nodes.

The convergecast must be implemented in such a way that it propagates from
every node that is responsible for deciding whether a signal must or cannot
be emitted. This is basically already prepared, as the SyncChart director
carries such a list of signals. Overridden signals must be considered in the
transformation, e. g., rename them in a �rst approach, as it is currently done.

Extending the propagation in the right manner is the most crucial aspect here
while also reconsidering this enhancement and formally reason about its cor-
rectness seams interesting.

6.2.2 General Model Transformation

Xtend Ptolemy API: Currently the presented model transformations are large col-
lections of Xtend functions, which ful�ll various tasks. Often these functions
are speci�c to a given problem.

To enhance this, one could consider to modularize and generalize the Xtend
functions and to advance their structure in order to acquire a simpler API for
creating Ptolemy models.

Advance abstraction: Because in the current approach one has to build transforma-
tions for a speci�c DSL either from scratch, by reusing functions, or by making
use of an API, one could imagine to follow a pattern that better �ts to MDSD.
This could be a generative approach for (basic) Xtend transformations. For ex-
ample one could start with one-to-one relations in a �rst approach and advance
this later.

Advance mapping: The mapping is currently implemented only rudimentarily. With
a generative approach (s.a) this could also be enhanced by deriving the map-
ping from a more abstract transformation speci�cation somehow.

Generic simulation components: The simulation components developed in this work
do their job for each DSL. Because this seems to have a very high potential of

111

6 Conclusions

similarities, one could try to combine these in a generic or abstract simulation
component that can optionally be re�ned to retain �exibility.

6.2.3 Execution Framework

Macrosteps: There is just one notion of an execution step, which results in all active
DataComponents to be called once by KIEM.

One could possibly consider to advance this to a notion of an optional macro
step where a component may be called several times to compute for example
a �xed point.

This may be further generalized according to Ptolemy's Actor-Oriented-Design
where each DataComponent may be represented by a Ptolemy actor. At least
two things might have to be investigated:

1. How to maintain the simplicity of the user interface and the DataCom-
ponent interface?

2. What about the e�ciency of this approach?

Enhance example components: The presented example DataComponents could po-
tentially be enhanced. For example the data table could be extended to display
and allow editing of hierarchical JSON data.

Automate KIEM: Currently the user has to schedule DataComponents (or even load
ready-to-use saved schedules) and manually control the execution. Master
components are intended to be used also in combination with user interaction.

Possibly one wants to automate the process of executing DataComponents in
a script-based or con�gurable way. Alternatively one may want to control the
execution from the command line in order to use operating system scripts. Both
ideas could be implemented as additional plug-ins that utilize the application
programming interface (API) of KIEM in order to accomplish their tasks.

Advanced con�gurations: KIEM currently does not have a preference page to save
additional settings like DataComponent timeouts. Also execution schedulings
might be similar for a common diagram type.

It may improve the usability further to allow the user to customize execution
schedulings for speci�c diagram types. An interface for these kind of settings
could be realized as an Eclipse preference page.

6.3 Summary

In this diploma thesis a two-level approach on how to simulate models of a DSL was
presented. This approach was integrated into the Eclipse EMF/GMF open source
toolchain. Additionally it was presented how Ptolemy II can be exploited as a sim-
ulation back-end. The followed denotational transformation based approach leaves

112

6.3 Summary

much space for �exibility, extension, and enhancements as stated in the section be-
fore. With KIEM, an execution framework exists that allows arbitrary components to
interact in an execution. This provides an easy to use interface for various simulation,
visualization, validation, and communication components.
Altogether, this thesis may serve as a good foundation for future research and

development in the context of KIELER and the execution of models.

113

6 Conclusions

114

Bibliography

[1] Jauhar Ali and Jiro Tanaka. Converting Statecharts into Java code. In Proceed-
ings of the Fourth World Conference on Integrated Design and Process Tech-
nology (IDPT '99), Dallas, Texas, June 2000. Society for Design and Process
Science (SDPS).

[2] Charles André. SyncCharts: A visual representation of reactive behaviors. Tech-
nical Report RR 95�52, rev. RR 96�56, I3S, Sophia-Antipolis, France, Rev. April
1996. http://www.i3s.unice.fr/~andre/CAPublis/SYNCCHARTS/
SyncCharts.pdf.

[3] Charles André. Semantics of S.S.M (Safe State Machine). Technical report,
Esterel Technologies, Sophia-Antipolis, France, April 2003. http://www.
esterel-technologies.com.

[4] Charles André. Semantics of SyncCharts. Technical Report ISRN I3S/RR�
2003�24�FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.

[5] Charles André. Computing SyncCharts reactions. In SLAP 2003: Synchronous
Languages, Applications and Programming, A Satellite Workshop of ECRST
2003, volume 88, pages 3 � 19, 2004.

[6] Charles André. Computing SyncCharts reactions. Electronic Notes in Theoret-
ical Computer Science, 88:3�19, October 2004.

[7] Greg Andrews. Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming. Addison Wesley, 2000.

[8] Nils Beckel. View Management for Visual Modeling. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
October 2009. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/nbe-dt.pdf.

[9] Gérard Berry. The Constructive Semantics of Pure Esterel. Draft
Book, 1999. ftp://ftp-sop.inria.fr/esterel/pub/papers/
constructiveness3.ps.

[10] Gérard Berry. The Esterel v5 Language Primer, 1999. ftp://ftp-sop.
inria.fr/meije/esterel/papers/primer.ps.

115

http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbe-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbe-dt.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps

6 Bibliography

[11] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Program-
ming Language and its Mathematical Semantics. In Seminar on Concurrency,
Carnegie-Mellon University, volume 197 of Lecture Notes in Computer Science
(LNCS), pages 389�448. Springer-Verlag, 1984.

[12] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Eddine
Rougui. First experiments with the atl model transformation language: Trans-
forming xslt into xquery. In 2nd OOPSLA Workshop on Generative Techniques
in the context of Model Driven Architecture, 2003.

[13] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework
for simulating and prototyping heterogeneous systems. Interntional Journal
of Computer Simulation, special issue on Simulation Software Development,
January 1990.

[14] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Compositional speci�cation
of behavioral semantics. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE'07), pages 906�911, San Jose, CA, USA, 2007.

[15] Eric Clayberg and Dan Rubel. Eclipse Plug-ins. Addison Wesley, 2009.

[16] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A conservative extension of
synchronous data-�ow with State Machines. In ACM International Conference
on Embedded Software (EMSOFT'05), Jersey City, NJ, USA, September 2005.

[17] Benoit Combemale, Xavier Cregut, Jean-Patrice Giacometti, Pierre Michel, and
Marc Pantel. Introducing simulation and model animation in the mde topcased
toolkit. In Proceedings of the 4th European Congress EMBEDDED REAL TIME
SOFTWARE (ERTS '08), 2008.

[18] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Syst. J., 45(3):621�645, 2006.

[19] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef
Ludvig, Stephen Neuendor�er, Sonia Sachs, and Yuhong Xiong. Taming
heterogeneity�the Ptolemy approach. Proceedings of the IEEE, 91(1):127�144,
Jan 2003.

[20] Esterel Technologies. Esterel Studio User Guide and Reference Manual, 5.0
edition, May 2003.

[21] Esterel Technologies. SCADE Technical Manual, 5.1 edition, February 2006.

[22] Paul A. Fishwick. Simulation Model Design and Execution: Building Digital
Worlds. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1995.

[23] Hauke Fuhrmann and Reinhard von Hanxleden. On the pragmatics of model-
based design. In Proceedings of the 15th International Monterey Workshop on

116

6 Bibliography

Foundations of Computer Software, Future Trends and Techniques for Devel-
opment, LNCS, Budapest, September To appear. Also available as Technical
Report 0913, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, May 2009.

[24] Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical �nite state machines
with multiple concurrency models. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 18:742�760, 1999.

[25] Richard C. Gronback. Eclipse Modeling Project: A Domain-Speci�c Language
(DSL) Toolkit. Addison Wesley, 2009.

[26] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data-�ow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305�1320, September 1991.

[27] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231�274, June 1987.

[28] Hajo Heichler, Markus Scheidgen, and Michael Soden. A meta-modelling frame-
work for modelling semantics in the contect of existing domain platforms. Tech-
nical report, Department of Computer Science, Humboldt-Universität zu Berlin,
2006.

[29] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576�580, 1969.

[30] Stephan Höhrmann. Entwicklung eines modularen Feldbussystems zur
Steuerung einer Modellbahnanlage. Diploma thesis, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, March 2006.
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/
theses/sho-dt.pdf.

[31] Paul Hudak. Conception, evolution, and application of functional programming
languages. ACM Comput. Surv., 21(3):359�411, 1989.

[32] Cornelis Huizing and Rob Gerth. Semantics of reactive systems in abstract
time. In Proceedings of the Real-Time: Theory in Practice, REX Workshop,
pages 291�314. Springer-Verlag, 1992.

[33] IEEE. IEEE standard for modeling and simulation (m&s) high level architecture
(HLA)�framework and rules. IEEE Std 1516-2000, pages i�22, Sep 2000.
http://ieeexplore.ieee.org/servlet/opac?punumber=7179.

[34] Gilles Kahn. The semantics of a simple language for parallel programming. In
Jack L. Rosenfeld, editor, Information Processing 74: Proceedings of the IFIP
Congress 74, pages 471�475. IFIP, North-Holland Publishing Co., August 1974.

117

http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/sho-dt.pdf
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/sho-dt.pdf
http://ieeexplore.ieee.org/servlet/opac?punumber=7179

6 Bibliography

[35] Bilung Lee and Edward A. Lee. Hierarchical concurrent �nite state machines
in ptolemy. In CSD '98: Proceedings of the 1998 International Conference on
Application of Concurrency to System Design, page 34, Washington, DC, USA,
1998. IEEE Computer Society.

[36] Edward A. Lee. Overview of the Ptolemy project. Technical Memorandum
UCB/ERL M03/25, University of California, Berkeley, CA, 94720, USA, July
2003.

[37] Edward A. Lee. Finite state machines and modal models in ptolemy ii. Techni-
cal Report UCB/EECS-2009-151, EECS Department, University of California,
Berkeley, Nov 2009.

[38] Edward A. Lee, Stephen Neuendor�er, and Michael J. Wirthlin. Actor-oriented
design of embedded hardware and software systems. Journal of Circuits, Sys-
tems, and Computers, 12:231�260, 2003.

[39] Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel pro-
grams. In Florence Maraninchi, Marc Pouzet, and Valérie Roy, editors, Inter-
national Workshop on Synchronous Languages, Applications and Programming
(SLAP'05), Edinburgh, April 2005.

[40] Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel
programs. EURASIP Journal on Embedded Systems, Special Issue on Syn-
chronous Paradigms in Embedded Systems, 2007. http://www.hindawi.
com/getarticle.aspx?doi=10.1155/2007/48979.

[41] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[42] Mathworks Inc. MATLAB reference guide. Natick MA., 1993.

[43] Mathworks Inc. State�ow and State�ow Coder for use with Simulink � User's
Guide. Mathworks Inc., 6 edition, 2004.

[44] Christian Motika. Modellbasierte Umgebungssimulation für verteilte Echtzeit-
systeme mit �exiblem Schnittstellenkonzept. Student research project,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
October 2007. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/cmot-st.pdf.

[45] Object Management Group. MOF 2.0 Query/Views/Transformation RFP, April
2004. http://www.omg.org/docs/ad/02-04-10.pdf.

[46] Object Management Group. Meta Object Facility (MOF) Core Speci�cation,
v2.0, January 2006. http://www.omg.org/spec/MOF/2.0/PDF/.

[47] Object Technology International, Inc. Eclipse Platform Technical Overview,
2003.

118

http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-st.pdf
http://www.omg.org/docs/ad/02-04-10.pdf
http://www.omg.org/spec/MOF/2.0/PDF/

6 Bibliography

[48] André Ohlho�. Simulating the Behavior of SyncCharts. Student research
project, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, February 2006. http://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/aoh-st.pdf.

[49] D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. The synchronous hypoth-
esis and synchronous languages. In R. Zurawski, editor, Embedded Systems
Handbook. CRC Press, 2005.

[50] Ste�en Prochnow and Reinhard von Hanxleden. Statechart development beyond
WYSIWYG. In Proceedings of the ACM/IEEE 10th International Conference
on Model Driven Engineering Languages and Systems (MoDELS'07), Nashville,
TN, USA, October 2007.

[51] Markus Scheidgen and Joachim Fischer. Human comprehensible and ma-
chine processable speci�cations of operational semantics. In Model Driven
Architecture- Foundations and Applications, volume 4530 of LNCS. Springer-
Verlag, 2007.

[52] Matthias Schmeling. An Eclipse-Editor for Safe State Machines. Student re-
search project, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, September 2009. http://rtsys.informatik.uni-kiel.
de/%7Ebiblio/downloads/theses/schm-st.pdf.

[53] Klaus Schneider, Jens Brandt, Tobias Schüle, and Thomas Türk. Improving
constructiveness in code generators. In International Workshop on Synchronous
Languages, Applications, and Programming (SLAP'05), Edinburgh, Scotland,
UK, 2005.

[54] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF -
Eclipse Modeling Framework. Addison Wesley, 2009.

[55] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, Cambridge, MA, USA, 1977.

[56] Sven E�tinge. Model2Model transformation with
Xtend, 2006. http://blog.efftinge.de/2006/04/
model2model-transformation-with-xtend_15.html.

[57] Paul Whitaker. The simulation of synchronous reactive systems in Ptolemy II.
Master's thesis, EECS Department, University of California, Berkeley, 2001.

119

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aoh-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aoh-st.pdf
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/%7Ebiblio/downloads/theses/schm-st.pdf
http://blog.efftinge.de/2006/04/model2model-transformation-with-xtend_15.html
http://blog.efftinge.de/2006/04/model2model-transformation-with-xtend_15.html

6 Bibliography

120

Index

A

ABRO . 100
abstract class of DataComponent . . 92
abstraction . 4, 108
abstraction levels 12
action language 11, 33
Actor-Oriented-Design . . . see Ptolemy
ATL. .12
auxiliary annotation 57
auxiliary signal see signal

B

barrier synchronization 43
broadcast . 46 f.

C

CAN . 34
case study 33, 45, 107
Class

AbstractDataComponent 89, 91 �.
Action . 47
Boolean . 21
boolean.93, 99
CellEditor . 93
ComboBoxCellEditor 94
ComplexExpression 59
CompositeActor 71
DirectorType 29
EClass 20, 22 f.
E�ect . 47
Emission . 59
EntityType.29
EventContact 37

EventOccupied 37
EventWait . 37
Execution 95 f., 98
Expression.46 f.
FixedPointDirector 64, 68
IDataComponent 89
IEditorInput 82
IKiemProperty 94
int . 93
Integer . 21
ISaveablePart2 81
JSONObject 31 f., 73, 123
JSONObject . . . 89, 98 �., 103, 123
JSONSignalValue99, 102
JSONSignalValues.99
KiemEvent . 91
KiemProperty 91, 93 f.
KiemPropertyTypeBool 93
KiemPropertyTypeChoice 93
KiemPropertyTypeEditor 93
KiemPropertyTypeFile 93
KiemPropertyTypeInt 93
KiemPropertyTypeString 93
LinkType . 29
MainType . 24
metamodel types 21
ModelRailwayIOActor 42
Node 37, 39 �., 44
Object. .31, 94
ObserverExecution 95
PortType . 29
PropertyType 29
ProducerExecution 95 f.
ptolemyModel 71
RailController 37, 42
Region . 46 �.

121

Index

Regions . 47

RelationType 29

SetPoint . 37

SetSignal . 37

SetSpeed . 37

Signal. .45 �.

SignalReference 46

Simpli�edEcore.22

State . 46, 74

String 21, 23, 31, 93, 98

TableData 104

TextCellEditor 94

Transition 37, 39 f., 44

TypedAtomicActor 68

TypedCompositeActor 42

ValuedObject 46

Void . 21, 23

co-simulation . 87

coherence law see SyncCharts

combination . 75

Combine Actor . 64

combine function 69

combined value . 68

communication . 92

compound events 45, 108

comprehensibility 4, 108 f.

Conclusions . 107

concurrency 41, 43, 50

concurrency in KIEM. see KIEM

concurrent systems 25

con�gurable properties 92

constructiveness see SyncCharts

continues time models 7

control-�ow. 5

coordinator thread.43

cyclic dependency 59

D

data exchange mechanism 85

Data Table . 103

data-�ow . 5

DataComponent 78 f.

abstract class.92

delta observer 83

example

ABRO in Java 100

Data Table.103

Mobile Data Table 104

Synchronous Signal Resetter.98

initializer .78

master .81, 91

multi-instantiable 80

observer-only 79, 86, 95

producer-only 79, 86, 95 f.

properties . 92

unique identi�cation.91

validation . 87

deadlock . 43

debugging . 49, 88

delta observer . . . see DataComponent

denotational semantic de�nition . . . 11

detect trains .34

deterministic behavior 38

discrete time models 7

DSL . 3

E

Eclipse . 15

bundle . 16

Editor .16

extension point 15

OSGI . 16

plug-in . 15

plug-in concept 78

plugin.xml 16, 88

Rich Client Platform 16

saveable View 80 f.

View . 16

Workbench . 16

Eclipse Modeling Frameworksee EMF

Eclipse Modeling Project 8, 21 f.

Eclipse Rich Client.see Eclipse

e�ect . 74

EMF . 12, 17

122

Index

bootstrap . 17
Ecore . 17
EAttribute 18
EClass . 18
EDataType 18
EReference 18

Generator . 19
Edit Code 19
Editor Code 19
import dialog 19
Test Code 19

meta-metamodel 17
metamodel . 17
metamodel instance 17
Ptolemy EMF model 29

Esterel . 5
Esterel Studio . 5
Ethernet . 34
execution . 92
execution semantics see semantics
execution setting 84
execution step . 89
executionframework 77
expressiveness . 12
extensibility 3 f., 77, 87, 108 f.
extra computation time.90

F

�nal state see state
�xed point iteration . . . 51, 66, 71, 109
�ag synchronization principle 43
�exibility 3 f., 77, 87, 108 f.
FragmentURI . 73 f.
Future Work . 109

G

GEF . 20
generic simulation component 111
global lock . 45
GMF. 20

Dashboard . 20

Diagram Editor Generator Model
20

Domain Model 20
editor. .37, 48
Graphical De�nition Model 20
Mapping Model 20
notation model 20
Tooling De�nition Model 20

Graphical Editing Framework see
GEF

Graphical Modeling Framework . . . see
GMF

H

heterogeneous modeling 25
hiearchy . 108
hierarchy . 45
high-level architecture 13
history . 88
history step . 80
history transition see transition
hoare logic. .9

I

i/o equivalent . 38
IEEE standard 13, 109
Inner Circle . 35
interactivity . 4, 78
intermediate storage 82
introduction . 1
IO Actor 52, 64, 68, 72

J

j2me . see Java ME
Java ME. .87, 104
Java Script Object Notationsee JSON
JSON 30, 87, 98, 103

JSONObject 73
JSONObject 31
key/value pairs 30

123

Index

K

key/value pairs.see JSON
Kicking Horse Pass 34
KIEL. 9
kieler framework . 2
KIELER leveraging Ptolemy.70
KIEM . 70

*.execution �le 80 �., 93
automate KIEM.112
buttons . 80
concurrency handling 95
data components 78
data pool. .82
extension point 89
framework overview 78
further concepts 87
GUI. 80
implementation details 88
linear scheduling 84
macrostep . 112
motivation . 77
properties . . . see DataComponent
scheduling details 95
schematic overview 78
user interface 79

KlePto . 70

L

laboratory . 34
lambda calculus . 9
logically deterministic see SyncCharts
logically reactive.see SyncCharts
Lustre . 6

M

macrostep see KIEM
mapping . 11, 72
master DataComponentsee

DataComponent
Matlab . 7
MDSD . 17

metamodel

railway controller language 37

Method

accumulate . 32

asyncStartStep 86

asyncStep . 86

blockingWaitUntilDone 98

build_triggers_and_e�ects . . . 53

checkProperties 91

DataComponent.step 98

�re 27, 67 �., 126

FOREACH.22

get . 32

getDataComponentId 91

getNameInJava. 25

getPossibleSignals 66

getSignalValue 99

getStateSignals 66

getValue . 94

has . 32

IMPORT. .22

init. .82

initialize 89, 92, 101

inplace . 24

inspect_transitions 53

isDeltaObserver 91

isEnabled . 65

isHistoryObserver 91

isHistoryStep 91

isMaster. .91

isMasterImplementingGUI.91

isMultiInstantiable 91

isObserver. .90

isPresent . 99

isProducer . 90

isReady . 86

isSignalValue 99

iterate. .71

JSONObject 32

keys . 32

masterCommand 91

myStaticMethod 25

n2wBuildTriggerRegion.59

124

Index

n2wBuildTriggerFinalState 59

n2wBuildTriggerState 59

n2wRegion . 57

n2wState . 57

n2wTransition 57, 59

newValue. .99

notifyEvent 91

openFile . 82

post�re. .68

provideProperties 93

provideCellEditor 94

provideEventOfInterest 91

provideFilterKeys 91

provideIcon 94

provideProperties 91

remove . 32

resetABO 101, 103

run. .98

search_region 53

search_state 53

setPresent . 99

setValue. .94

step 83, 89, 92, 95 f., 98, 100, 102,
104 f.

syncStep . 86

syncWaitEndStep 86

toString . 32

toUpperCase 23

transform . 24

transition_waitI_doneI 92

wrapup 89, 101

Micro Edition see Java ME

Microsoft DSL Toolkit 3

mobile application 105

Mobile Data Table 104

Modal Railway

environment 42

track scheme 36

ModalModel 39, 41, 65

model of computation. . . .see Ptolemy

Model Railway

controller language 33

domain speci�c editor 37

domain speci�c language 35

example . 39

input events 35

installation . 34

Java interface 35

output actions.36

transformation 38

Xpand transformation 43

Xtend transformation 38

model railway . 36

model transformation 11, 33

ATL . 12

feature based survey.12

model-to-model 12

QVT . 12

Xpand . 12

Xtend . 12

model visualization 73

Model-View-Controller.2

modularity . 77

modularization of broadcast 111

MOML see Ptolemy

multi-instantiable.80

multiform notion of time 109

multiport see Ptolemy

must-cannot analysis . see SyncCharts

MVC . 2

N

normal termination 108

O

oAW. .21 f.

online-debugging 77, 87

openArchitectureWare see oAW

operational semantic de�nition 11

optimize code . 109

OSGI. .16

Outer Circle . 34

outline of this document 4

125

Index

P

parallelism.45, 108
parametrization 92
performance . 77
peripheral devices 34
permanent . 104
plug-in .see Eclipse
postprocessing transformation 56
potential di�erences 34
power electronics 34
pragmatics . 2
PRE-operator . 110
preemption see transition, 108
preprocessing transformation 56
priorities see transition
private semaphore 43, 45
problem statement3
properties of a DataComponent . . . see

DataComponent
Ptolemy . 25, 64

fire() method 27
Actor-Oriented-Design 25, 112
documentation 29
domains . 27
Continuous Time 28
Finite-State-Machines 28
Process Networks 28
Synchronous Data�ow 28
Synchronous Reactive . . . 28, 40

DTD . 29
EMF model 29
example . 27
extension actors 65
extensions . 64
ModalModel 27
model of computation 25
MOML. .29
multiport 42, 68
ramp actor . 27
simulations . 28
Vergil .6, 29
XML Schema 29

Ptolemy II . 6, 25

Q

QVT . 12

R

railway.see Model Railway
reactive system . 36
recordings . 77
reed contact . 34
related work . 5
representing time 109
revision . 84
revision limit . 84
revision numbers 82
runtime infrastructure 13

S

Safe State Machine 5
saveable View. see Eclipse
SCADE . 6
scheduling . 80, 92
scheduling consequences 90
self justi�cation 61
semantic domain 33
semantics . 9, 33

action language 11
axiomatic . 9
denotational . 9
di�erent approaches 11
execution semantics 9, 38
formal . 9
informal . 9
model transformation 11
operational . 9
semantic domain 11

signal
absent. .45
assignment . 59
auxiliary . 53
broadcast.45, 108
input . 45
local . 45

126

Index

output . 45

possibly enabled . see must-cannot
analysis

present . 45

pure signals 46, 110

transformation 50 �.

valued signals 46, 68, 110

signal light . 34

simplicity 3 f., 108 f.

Simulation component 70

simulation frameworks 5

simulation infrastructure 78

simulation run . 77

simulations . 1

Simulink. .7

speculative computing 61

SSM. 5

state . 46

conditional 109

�nal . 53

macrostate . 46

simple-state 46

transformation 48

transient . 109

state machine programming pattern44

Statecharts . 9, 45

State�ow . 7

stepwise execution 80, 82

switch points . 34

SyncChart director 51, 59, 64

SyncCharts . 45

coherence law 59

constructiveness.59, 61, 64

domain speci�c editor 48

domain speci�c language 45

logically deterministic 60

logically reactive 59

must-cannot analysis . 61, 65, 108,
110

signal see signal

signal coherence law 59

state . see state

Token Ring Arbiter 62

transformation 48
transition see transition
Xtend transformation 56

synchronous signals 98 f.
synchrony hypothesis 45

T

TCP . 7, 81, 104
template language see Xpand
Token Ring Arbiter . . .see SyncCharts
toolchain.37, 48, 107
Topcased . 8
track scheme . 36
track segment . 34
train positions . 34
transition. .47

history . 56
immediate 109
normal termination.47
preemption . 56
priorities . 50
reset . 55
strong abort47
transformation 50
weak abort . 47

trigger. .74
TTP . 34

U

UML . 3
uniformity . 4, 109
usability 3, 77, 108
used technologies 15
user interaction . 77

V

validation DataComponent.see
DataComponent

Vergil .see Ptolemy
VHDL. 5

127

Index

visualization 73, 77

W

worker thread.43, 95

X

Xpand . 12, 21

*.xpt �le . 22
escape character 22
example . 22
expression language.21 f.
Model Railway 43
template language 21
type system 21 f.

XPath . 73
Xtend . 12, 22

*.ext �le . 23
API . 111
escape to Java.25
example . 23 �.
member-style syntax 23
metamodel extensions 23
Model Railway 38
model transformations.24
inplace . 24
model-to-model 24

static function call 23
SyncCharts.56

128

	Introduction
	KIELER Framework
	Problem Statement
	Outline of this Document

	Related Work
	Simulation Frameworks
	Esterel Studio
	Ptolemy II
	SCADE
	Matlab/Simulink/Stateflow
	Topcased
	Modelica
	KIEL

	Execution Semantics
	Simulation Tools
	Different Approaches
	Model Transformations
	Simulation High-Level Architecture

	Used Technologies
	Eclipse
	Plug-ins
	Rich Client Platform and Workbench
	The Eclipse Modeling Framework (EMF)
	The Graphical Modeling Framework (GMF)
	Xpand
	Xtend

	Ptolemy
	Domains
	A Heterogeneous Model Example
	Simulations
	Technical Details
	Ptolemy EMF Model

	The Java Script Object Notation (JSON)
	Implementations
	Structure

	Semantics
	Model Railway Controller Language
	Model Railway Installation
	Domain Specific Language
	Domain Specific Editor
	Transformation
	Xtend M2M Transformation
	Xpand M2T Transformation

	SyncCharts
	Domain Specific Language
	Domain Specific Editor
	Transformation
	Xtend M2M Transformation
	Constructiveness
	The Token Ring Arbiter
	Ptolemy Extensions

	KIELER leveraging Ptolemy Simulation Component
	Visualization Simulation Component

	Execution Framework
	Motivation
	Framework Overview
	DataComponents
	User Interface
	Data Pool
	Linear Scheduling
	Further Concepts

	Implementation Details
	Extension Point
	The Abstract Class AbstractDataComponent
	DataComponent Properties
	Scheduling and Concurrency Handling
	Synchronous Signals
	Example 1: ABRO in Java
	Example 2: Data Table
	Example 3: Mobile Data Table

	Conclusions
	Results
	Semantics
	Execution Framework

	Future Work
	Specific Model Transformations
	General Model Transformation
	Execution Framework

	Summary

	Bibliography

