CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Diploma Thesis

# A quantitative analysis of Statechart aesthetics and Statechart development methods

cand. inform. Jonas Völcker

May 4, 2008

Department of Computer Science Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by: Steffen H. Prochnow

## Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

"Objects have both behavior and state or, in other words, they do things and they know things. Some objects do and know more things, or at least more complicated things, than other objects. Some objects are incredibly complicated, so complex that developers can have difficulty understanding them."

-Scott W. Ambler [3] on Statecharts

This thesis would not appear in its present form without the kind assistance and support of the following people:

Prof. Dr. Reinhard von Hanxleden for his input and the equally generous and wise guidance during its conclusion; My advisor, Steffen Prochnow, for his unstinting commitment to help see this project through to its completion; Christiane Gross for her much appreciated pointers to the right statistical methods and her time spent on explaining them; Prof. Dr. Jürgen Golz for his advice on data analysis; All my friends, especially the ones that proof-read my thesis, Falk Starke and Sandro Esquivel; My parents for their continuing support and patience; Fia for making me happy.

I have also benefited from many discussions with members of the Real-Time and Embedded Systems group. Thank you all for your time and ideas.

# Contents

| 1. | . Introduction                                                        | 1  |
|----|-----------------------------------------------------------------------|----|
|    | 1.1. Statecharts                                                      | 1  |
|    | 1.2. Conventional Statechart Editing Methods                          | 3  |
|    | 1.3. The KIEL Approach to Statechart Editing                          | 3  |
|    | 1.4. Style Guides and Aesthetic Criteria                              | 4  |
|    | 1.5. Implications and Outline                                         | 5  |
| 2. | . Related Work                                                        | 7  |
|    | 2.1. Related Work on Statecharts                                      |    |
|    | 2.2. Research on Aesthetic Criteria                                   |    |
|    | 2.3. Work on the Layout of Diagrams                                   |    |
|    | 2.4. Empirical Evaluation and Experiments on Layout Criteria          | 9  |
| 3. | . Survey and Selection of Aesthetic Criteria                          | 11 |
|    | 3.1. General Aesthetic Criteria for Diagram Creation                  |    |
|    | 3.2. Aesthetic Criteria in Graph Drawing                              |    |
|    | 3.3. Aesthetic Criteria for Class Diagram Creation                    |    |
|    | 3.4. Aesthetic Criteria for Statechart Creation                       |    |
|    | 3.5. Selection of Aesthetic Criteria                                  | 16 |
| 4. | . Defining Metrics for Statechart Properties and the Modeling Process | 19 |
|    | 4.1. Layout Metrics                                                   |    |
|    | 4.2. Modeling Metrics                                                 |    |
|    | 4.3. Application of the Defined Metrics                               | 31 |
| 5. | . Previous Experimental Evaluation of Statechart Layout               | 33 |
|    | 5.1. Experiment Design                                                |    |
|    | 5.2. Editors Used                                                     |    |
|    | 5.3. Internal and External Validity of the Experiment                 |    |
|    | 5.4. Results and Collected Data                                       |    |
|    | 5.4.1. Evaluation of Statechart Layouts                               |    |
|    | 5.4.2. Evaluation of Modeling Techniques                              |    |
|    | 5.4.3. Further Analysis of the Experimental Data                      | 39 |
| 6. | . Analysis of the Experiment's Records                                | 41 |
|    | 6.1. General Remarks                                                  |    |
|    | 6.1.1. Data Acquisition and Validation                                | 42 |

|    | 6.2. | Data Used for the Analysis of Aesthetic Metrics           | 46  |
|----|------|-----------------------------------------------------------|-----|
|    |      | 6.2.1. Transition Length Data                             | 46  |
|    |      | 6.2.2. Width to Height Ratio Data                         | 47  |
|    |      | 6.2.3. Usage of Available Space Data                      | 48  |
|    |      | 6.2.4. Placement of Initial and Final States Data         | 51  |
|    |      | 6.2.5. Distances Between Node Borders Data                | 53  |
|    |      | 6.2.6. Distance of States to Straight Lines Data          | 53  |
|    |      | 6.2.7. Number of States and Hierarchy Level Data          | 57  |
|    |      | 6.2.8. Intersection of Components Data                    | 57  |
|    |      | 6.2.9. Directional Statechart Flow Data                   | 60  |
|    |      | 6.2.10. Number of Transitions and Transition Bend Data    | 61  |
|    | 6.3. | Data Used for the Analysis of the Modeling Process        | 63  |
|    |      | 6.3.1. Mouse Click and Keystroke Data                     | 64  |
|    |      | 6.3.2. Error Data                                         | 65  |
|    | 6.4. | Summary of the Data Acquisition Process                   | 67  |
| 7. | Ana  | ysis of Statechart Aesthetics                             | 69  |
|    | 7.1. | Selection of the Data Set                                 | 70  |
|    |      | 7.1.1. Selection of Dependent Variables                   | 70  |
|    |      | 7.1.2. Selection of Data Based on Test Subject Experience | 75  |
|    |      | 7.1.3. Separation of Complexity Levels                    | 75  |
|    |      | 7.1.4. Wanted and Unwanted Data Correlation               | 76  |
|    | 7.2. | Analysis of Individual Aesthetic Criteria                 | 79  |
|    |      | 7.2.1. Transition Length                                  | 81  |
|    |      | 7.2.2. Width to Height Ratio                              | 83  |
|    |      | 7.2.3. Usage of Available Space                           | 84  |
|    |      | 7.2.4. Placement of Initial and Final States              | 86  |
|    |      | 7.2.5. Distances Between Node Borders                     | 88  |
|    |      | 7.2.6. Distance of States to Straight Lines               | 90  |
|    |      | 7.2.7. Number of States and Hierarchy Levels              | 91  |
|    |      | 7.2.8. Intersection of Components                         | 92  |
|    |      | 7.2.9. Directional Statechart Flow                        | 95  |
|    |      | 7.2.10. Number of Transitions and Transition Bends        | 97  |
|    | 7.3. | Composition of Multivariate Regression Models             | 98  |
|    |      | 7.3.1. Subjective User Rating (Awarded Points)            | 100 |
|    |      | 7.3.2. Objective User Rating (Time)                       | 104 |
|    | 7.4. | Evaluation of the Observations                            | 106 |
| 8. | Ana  |                                                           | L09 |
|    | 8.1. |                                                           | 109 |
|    | 8.2. | 0 0                                                       | 112 |
|    | 8.3. |                                                           | 113 |
|    | 8.4. | Modifications to Improve the Layout                       | 114 |

Contents

| 9. | Conclusion and Future Work                                                                                                                                                                                                                                                                                                                                        | 117                                                                                                                                                                                                                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Α. | Bibliography                                                                                                                                                                                                                                                                                                                                                      | 123                                                                                                                                                                                                                        |
| В. | Statecharts Used in the Experiment                                                                                                                                                                                                                                                                                                                                | 129                                                                                                                                                                                                                        |
| С. | Collected Data                                                                                                                                                                                                                                                                                                                                                    | 141                                                                                                                                                                                                                        |
| D. | Correlation Matrices                                                                                                                                                                                                                                                                                                                                              | 167                                                                                                                                                                                                                        |
| Ε. | Data Scatterplots                                                                                                                                                                                                                                                                                                                                                 | 175                                                                                                                                                                                                                        |
| F. | Written CodeF.1.Files written in RF.1.1.validate-data.RF.1.2.validate-data-functions.RF.1.3.validate-data-consistency.RF.1.4.validate-data-plausibility.RF.1.5.read-data.RF.1.6.generate-plots.RF.1.7.dataset-functions.RF.1.8.dataset.RF.2.1.XMLAnalyzer.javaF.2.2.XML.javaF.2.3.CSVWriter.javaF.2.4.SVGPathParser.javaF.2.5.SVGPathHandler.javaF.2.6.Sink3.java | <ul> <li>191</li> <li>192</li> <li>193</li> <li>194</li> <li>196</li> <li>200</li> <li>204</li> <li>206</li> <li>209</li> <li>224</li> <li>225</li> <li>226</li> <li>227</li> <li>228</li> <li>229</li> <li>230</li> </ul> |

Contents

# List of Tables

| 4.1. | Reference chart for metric abbreviations                               | 28  |
|------|------------------------------------------------------------------------|-----|
| 6.1. | Component sizes with regard to the layout used                         | 49  |
| 6.2. | Individual distance to nearest neighbor for each state                 | 53  |
| 6.3. | Number of states per complexity level                                  | 59  |
| 6.4. | Key mapping for user actions                                           | 64  |
| 6.5. | Identification markers for the editing process                         | 67  |
| 6.6. | Different types of errors made in the experiment                       | 67  |
| 7.1. | Correlation coefficients for combinations of dependent and indepen-    |     |
|      | dent variables                                                         | 80  |
| 7.2. | Comparison of significance levels for bivariate models                 | 99  |
| 7.3. | Variance inflation factors for complete composite subjective user rat- |     |
|      | ing model                                                              | 101 |
| 7.4. | Model coefficients: Awarded points as a function of selected indepen-  |     |
|      | dent variables                                                         | 102 |
| 7.5. | Variance inflation factors for composite subjective user rating model  |     |
|      | containing selected variables                                          | 102 |
| 7.6. | Variance inflation factors for original model                          | 105 |
| 7.7. | Variance inflation factors for adjusted model                          | 106 |
| 8.1. | Comparison of measured time to construct a specified Statechart ver-   |     |
|      | sus time calculated by linear model                                    | 111 |
| 8.2. | Minimum actions needed to create and modify the specified chart        | 111 |
| 8.3. | Various editor characteristics                                         | 113 |
| 8.4. | Editing efficiency by tool                                             | 114 |
| C.1. | Data used in the analysis of Statechart aesthetics                     | 142 |
| C.2. | Data used in the analysis of Statechart development methods            | 160 |

# List of Figures

| 1.1.<br>1.2.<br>1.3.                                               | A sample chart that shows Statechart elements from <i>Esterel Studio</i> [22] A sample chart that shows Statechart elements from <i>ArgoUML</i> [7] .<br>A figure that shows how experimental data can influences "optimal" layout generation | 2<br>3<br>6          |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                    |                                                                                                                                                                                                                                               | 0                    |
| 3.1.<br>3.2.                                                       | Two graphs that show conflicting aesthetics criteria                                                                                                                                                                                          | 11<br>12             |
| <ol> <li>4.1.</li> <li>4.2.</li> <li>4.3.</li> <li>4.4.</li> </ol> | A Statechart with measures added in different size units                                                                                                                                                                                      | 21<br>22<br>23<br>24 |
| 4.5.                                                               | An example of the flow metric                                                                                                                                                                                                                 | 26                   |
| 5.1.                                                               | A simple complexity Statechart, laid out according to five different layout strategies                                                                                                                                                        | 34                   |
| 5.2.                                                               | Three Statecharts of varying complexity, laid out according to the                                                                                                                                                                            |                      |
| 5.3. 5.4.                                                          | Alternating Dot Layout (ADL)                                                                                                                                                                                                                  | $\frac{35}{36}$      |
| 5.5.                                                               | used by the KIEL-macros editor                                                                                                                                                                                                                | 37<br>38             |
|                                                                    |                                                                                                                                                                                                                                               |                      |
| 6.1.                                                               | An exemplary boxplot                                                                                                                                                                                                                          | 43                   |
| 6.2.                                                               | Two exemplary scatterplots that show different levels of detail                                                                                                                                                                               | 44                   |
| 6.3.                                                               | A Q–Q plot showing nearly normal distributed data                                                                                                                                                                                             | 45                   |
| 6.4.                                                               | A Statechart with transition lengths labels added by <i>Inkscape</i>                                                                                                                                                                          | 46                   |
| 6.5.                                                               | Data plots: Average transition length metric                                                                                                                                                                                                  | 47                   |
| 6.6.                                                               | Data plots: Statechart width to height ratio metric                                                                                                                                                                                           | 48                   |
| 6.7.                                                               | Data plots: usage of Statechart drawing space by simple states metric                                                                                                                                                                         | 49                   |
| 6.8.                                                               | Data plots: usage of Statechart drawing space by simple states and                                                                                                                                                                            |                      |
|                                                                    | state attribute space metric                                                                                                                                                                                                                  | 50                   |
|                                                                    | Data plots: usage of Statechart drawing space by top-level states metric                                                                                                                                                                      | 51                   |
| 6.10.                                                              | A Figure explaining the transformation of Statechart borders                                                                                                                                                                                  | 52                   |
|                                                                    | Two scatterplots depicting the placement of initial and final state                                                                                                                                                                           | 52                   |
|                                                                    | Data plots: Average distance between two node borders metric                                                                                                                                                                                  | 54                   |
|                                                                    | Data plots: Minimum distance between two node borders metric                                                                                                                                                                                  | 54                   |
|                                                                    | Data plots: Maximum distance between two node borders metric                                                                                                                                                                                  | 55                   |
| 6.15.                                                              | Two Statecharts illustrating the distance to a straight line metric $D_{I}$                                                                                                                                                                   |                      |
|                                                                    | and $D_M$                                                                                                                                                                                                                                     | 55                   |

| 6.16. Three Statecharts illustrating the <i>distance to a normal line</i> metric .                         | 56       |
|------------------------------------------------------------------------------------------------------------|----------|
| 6.17. Data plots: Distance to a straight line metric $D_{I}$                                               | 57       |
| 6.18. Data plots: Distance to a straight line metric $D_M$                                                 | 58       |
| 6.19. Data plots: Distance to a straight line metric variants $D_{I}$ and $D_{M}$ ,                        |          |
| separate layouts shown                                                                                     | 58       |
| 6.20. Data plots: Distance to a straight line metric $D_{NA}$                                              | 59       |
| 6.21. Data plots: Distance to a straight line metric $D_{NS}$                                              | 60       |
| 6.22. Data plots: Distance to a straight line metric $D_{NR}$                                              | 61       |
| 6.23. Data plots: Distance to a normal line metric, separate layouts shown                                 | 62       |
| 6.24. The possible distance problems in a Statechart.                                                      | 62       |
| 6.25. Number of overall distance problems in the experiment's Statecharts                                  |          |
| (overview)                                                                                                 | 62       |
| 6.26. Directional Statechart flow.                                                                         | 63       |
| 6.27. Three plots that show the number of transition types for each Statechart.                            | 64       |
| 6.28. Three boxplot diagrams that show the number of input actions for                                     |          |
| each editor used $\ldots$ | 65       |
| 6.29. Pie charts that show the partitioning of user actions into categories                                |          |
| for each editor used                                                                                       | 66       |
| 6.30. Three boxplot diagrams that show the number of error actions for                                     |          |
| each tool                                                                                                  | 66       |
| 6.31. Six boxplots diagrams that show the number of errors made $\ldots$ $\ldots$                          | 68       |
|                                                                                                            |          |
| 7.1. Data plots with different correlation coefficients (simplification)                                   | 71       |
| 7.2. A scatterplot that shows the awarded points in dependence of the                                      |          |
| needed time                                                                                                | 72       |
| 7.3. Dummy variable regression example                                                                     | 73       |
| 7.4. Correlation coefficients: Particularities                                                             | 77       |
| 7.5. An Exemplary Correlation Matrix                                                                       | 78       |
| 7.6. Linear model plots: Average transition length                                                         | 82       |
| 7.7. Linear model plots: Width to height ratio                                                             | 84       |
| 7.8. Linear model plots: Usage of available space                                                          | 86       |
| 7.9. Linear model plots: Rating of initial and final states placement                                      | 87       |
| 7.10. Linear model plots: Placement of final state                                                         | 88       |
| 7.11. Linear model plots: Minimum distance to nearest node border                                          | 89       |
| 7.12. Linear model plots: Distance to a straight line                                                      | 91       |
| 7.13. Linear model plots: Number of states                                                                 | 92       |
| 7.14. Linear model plots: Number of simple states                                                          | 93       |
| 7.15. Linear model plots: Intersection faults                                                              | 94       |
| 7.16. Linear model plots: Statechart flow                                                                  | 95<br>06 |
| 7.17. A Statechart with a "good flow" and low subjective ratings                                           | 96       |
| 7.18. Linear model plots: Number of transitions                                                            | 98       |
| 7.19. A plot that shows the difference between points calculated by the                                    | 109      |
| multilinear regression model and award points                                                              | 103      |
| 7.20. A Statechart which received poor subjective user ratings                                             | 104      |

### List of Figures

| 7.21. | A plot that shows the difference between time calculated by the mul-<br>tilinear regression model and the time needed by test subjects | 107 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| 8.1.  | Efficiency spread shown for each tool                                                                                                  | 114 |
| 8.2.  | Statechart created and modified with the WYSIWYG editor during                                                                         |     |
|       | the experiment                                                                                                                         | 115 |
| B.1.  | Different layouts of simple complexity Statecharts, model 1 of 5                                                                       | 129 |
| B.2.  | Different layouts of simple complexity Statecharts, model 2 of 5                                                                       | 130 |
| B.3.  | Different layouts of simple complexity Statecharts, model 3 of 5                                                                       | 130 |
| B.4.  | Different layouts of simple complexity Statecharts, model 4 of 5                                                                       | 130 |
| B.5.  | Different layouts of simple complexity Statecharts, model 5 of 5                                                                       | 131 |
| B.6.  | Different layouts of hierarchical complexity Statecharts, model 1 of 5                                                                 | 131 |
| B.7.  | Different layouts of hierarchical complexity Statecharts, model 2 of 5                                                                 | 132 |
| B.8.  | Different layouts of hierarchical complexity Statecharts, model 3 of 5                                                                 | 133 |
| B.9.  | Different layouts of hierarchical complexity Statecharts, model 4 of 5                                                                 | 134 |
| B.10  | .Different layouts of hierarchical complexity Statecharts, model 5 of 5                                                                | 135 |
| B.11  | .Different layouts of parallel complexity Statecharts, model 1 of 5                                                                    | 136 |
| B.12  | .Different layouts of parallel complexity Statecharts, model 2 of 5                                                                    | 137 |
| B.13  | .Different layouts of parallel complexity Statecharts, model 3 of 5                                                                    | 138 |
| B.14  | .Different layouts of parallel complexity Statecharts, model 4 of 5                                                                    | 139 |
| B.15  | .Different layouts of parallel complexity Statecharts, model 5 of 5                                                                    | 140 |
|       |                                                                                                                                        |     |

# List of Listings

| 7.1. | Exemplary dummy variable levels                   | 74 |
|------|---------------------------------------------------|----|
| 7.2. | A summary of an exemplary linear regression model | 74 |
| 7.3. | Dummy variable levels for complexity              | 75 |
| 7.4. | Dummy variable levels, updated                    | 76 |

# List of Used Acronyms

| ADL     | Alternating Dot Layout                         |
|---------|------------------------------------------------|
| ADBL    | Alternating Dot Layout Backwards               |
| AL      | Arbitrary Layout                               |
| ALL     | Alternating Linear Layout                      |
| CLT     | Central Limit Theorem                          |
| CSV     | Comma Separated Values                         |
| IQR     | Interquartile Range                            |
| KIEL    | Kiel Integrated Environment for Layout         |
| кіт     | KIel statechart extension of doT               |
| LLL     | Linear Layer Layout                            |
| LOWESS  | Locally Weighted Scatterplot Smoothing         |
| mRMR    | minimal-redundancy-maximal-relevance           |
| PDF     | Portable Document Format                       |
| SNF     | Statechart Normal Form                         |
| SSM     | Safe State Machines                            |
| SVG     | Scalable Vector Graphics                       |
| UML     | Unified Modeling Language                      |
| VIF     | Variance Inflation Factor                      |
| WYSIWYG | What You See Is What You Get                   |
| XML     | eXtensible Markup Language                     |
| XSLT    | eXtensible Stylesheet Language Transformations |
|         |                                                |

## 1. Introduction

Finite state machines depict the dynamic behavior of a system and its reactions to various events depending on its current state. Traditionally, state transition diagrams have been used to describe finite state machines (Appelgren and Hvannberg [6]). To improve the notation of these diagrams, Statecharts have been proposed by Harel [28].

## 1.1. Statecharts

The aforementioned state transition diagrams represent a directed graph. In essence, so do Statecharts. However, Statecharts extend transition diagrams with concurrency, synchronization, and a hierarchical refinement, and use the concept of *superstates* to counteract the effects of exponential diagram growth seen in traditional finite state machines. All Statecharts consist of the following basic elements (for a graphical representation see Figures 1.1 and 1.2):

- A filled circle, denoting the initial state of the diagram
- A hollow circle with another circle in it, denoting the final state (if a final state is designated)
- Rounded rectangles, denoting states. Each state has a name, printed in the center or at the top of that state. States can be either simple states or super-states:
  - Hierarchical states, representing a hierarchical structure of state machines
  - Parallel states, representing concurrency of independent state machines.
- Arrows, denoting a transition between states. Transition labels have the form E[C]/A, where E is the event that triggers the transition, C is a condition that guards the transition from being taken unless it is true, and A is an action that is executed when the transition is taken.

Statecharts encourage the repeated decomposition in substates and superstates, i.e. simple, hierarchical, and parallel states. With hierarchical states, Statecharts can be drawn with different levels of abstraction, revealing more or less of the behavior and functionality of a system. These qualities make them ideal for the modeling process of complex *reactive systems* (Harel and Pnueli [29]). Reactive systems are event driven and react constantly to internal and external events. They find widespread use in safety critical realtime applications such as anti-lock brakes or flight control systems. As the number of such systems is rising steadily in modern life, Statecharts

#### 1. Introduction



Figure 1.1.: A sample chart that shows Statechart elements from *Esterel Studio* [22]

have rapidly gained importance in the industry. Today it is impossible to ignore them in real-time system design, as they are an integral part of the Unified Modeling Language (UML) [58], which is used by most major companies.

The wide usage in the industry leads to the daily creation of an abundance of Statecharts. Modern projects often include many Statecharts (Krut, jr. and Wood [38]). This implies that modelers often have to work with several charts at a time, selfcreated and externally made. To effectively create and modify Statecharts, modelers need an environment that supports the designer in the creation process. Major software companies, such as IBM, have developed such environments, which can be used to create and modify Statecharts. Mostly, these are part of a software suite which encompasses the whole modeling process (for instance IBM's Rational Rose *Realtime* [56]). However, only Statechart editors are considered here instead of complete modeling frameworks. Furthermore, only a Statechart dialect called Safe State Machines (SSM) is considered, as the data basis used here solely consists of SSM Statecharts. Multiple dialects have evolved from the original notation. However, looking at the Figures 1.1 and 1.2, one can see that most differences are in design, not in essence. For the purpose of this work, the SSM dialect is interchangeable with almost any other form of Statechart design. The following text will concentrate on different approaches to Statechart creation and the Statechart editors associated with them.



Figure 1.2.: A sample chart that shows Statechart elements from ArgoUML [7]

## 1.2. Conventional Statechart Editing Methods

Commonly known are What You See Is What You Get (WYSIWYG) editors, where the Statechart layout is almost completely in the hands of the modeler. Only few syntactic restraints, such as the prevention of state placement on already occupied spaces, prohibit a total freedom of layout. This leads to a large variety of Statechart layouts, each according to the individual designer's taste. With the growing importance of Statecharts, it is most crucial that a Statechart can be easily read, understood, and edited. This minimizes errors and ensures maintainability, as it facilitates the exchange between developers. However, a developer working with a Statechart formerly edited by someone else might rearrange the Statechart to her or his own liking, even if the previous Statechart design was already understandable. Although nothing is changed in the Statechart structure, time is consumed in the process. This is a common problem of WYSIWYG editors, as they interact directly with the Statechart's layout and structure.

## 1.3. The KIEL Approach to Statechart Editing

To speed up the editing process, a different approach to Statechart development is taken by two editors from the *Kiel Integrated Environment for Layout (KIEL)* [34] framework. The editors try to counteract the problem of comprehension issues, which are originating from layout differences. This is done by removing control over the layout to let users focus on the structure of the Statechart under development. The

#### 1. Introduction

following two paragraphs describe the approaches utilized by the editors.

The Textual KIT Editor The first editor uses a structural description language for Statecharts, called *KIel statechart extension of doT (KIT)*. In KIT, Statecharts are expressed as a series of Statechart element declarations. KIT statements can be easily edited by a simple text editor. To obtain a graphical representation of the Statechart described with KIT, another component of the modeling framework has to generate the visual Statechart components. This approach allows the graphical form to be used for efficient internal and external communication, as the layout is standardized. The problem of different Statechart design is shifted from the graphical Statechart representation to the textual representation. This reduces the comprehension problem to the editing process. As the description language is based on Statechart structure, the representation of Statecharts between developers.

**The Structure-Based Editor** Instead of editing the Statechart structure in the textual representation, one can also manipulate the Statechart structure directly. This is the approach followed by the macro-based editor (referred to as *KIEL-macros*) implemented in the KIEL. The location for the modification is selected in a graphical representation of a Statechart, then a key macro is used to initiate a structural change. This lets the user concentrate on the modeling of Statecharts, leaving the layout process to the framework. This approach to Statechart design is relatively new. With the data gathered from an experiment (Prochnow and von Hanxleden [49]), the different editing techniques will be examined and compared to the WYSIWYG approach.

## 1.4. Style Guides and Aesthetic Criteria

Requiring Statecharts to be created with a uniform layout helps to reduce the time and effort, and in turn the cost, of Statechart design and maintenance. Maintainability has become an elementary part of development, not only for Statecharts, but all object oriented software systems. A common set of standards and guidelines should be agreed to and followed in a software project. The intention of these guidelines is to enable the modeler to create diagrams that are easier to understand and work with. The benefit would be an increase in productivity for the modeler and the whole business. Interestingly, there are only few commonly used uniform Statechart layout criteria. Ambler [4] proposes a set of guidelines for Statechart notation and drawing. He emphasizes the importance of guidelines in his foreword and encourages software companies to purchase his book, instead of creating and implementing own style guides. This would be a step towards a more uniform Statechart design, however, it is not likely that all software companies comply.

If a uniform layout is proposed to enhance the understandability of Statecharts, one has to ensure that the chosen uniform layout surpasses the layout capabilities of human Statechart developers. This requires a knowledge of what is perceived "good" by developers and which Statechart layout criteria influence the understanding. Research on the influence of aesthetic criteria on the understandability of diagrams has been conducted (e.g. by Purchase [51]). Furthermore, the correlation of UML diagram layout with preference and performance of human subjects was tested in experiments (Purchase et al. [55]). However, the researched UML diagram types were class and collaboration diagrams, not Statecharts. This still leaves the problem of understanding the effects of Statechart aesthetics on human preference and performance to be explored.

To lessen this problem, a set of Statechart layout metrics—a measurement of certain Statechart properties—is developed in this thesis from commonly accepted and validated aesthetic criteria (as in Purchase et al. [55]). For the empirical validation of these metrics, data from the above mentioned experiment was used. The details of this experiment will be discussed in Section 5.

The experimental data, combined with the collected aesthetic criteria, reveals which metrics have an influence on the preference and understanding of Statecharts. Based on the results, a ranking of these criteria can be found, as it is unlikely that all aesthetic criteria have the same effect on a user. With the ranked metrics a model will be derived that encompasses part of the examined metrics. This model can be used to rate Statecharts regarding the preference and performance of a user (See Figure 1.3 for an illustration of the process). Such a model could encourage modeling tool authors to implement a set of style rules in their application. This rule set could be used to test if the Statechart conforms with the aesthetic criteria defined. The application could then give direct feedback to the developer by showing him graphically where her or his model conflicts with predefined criteria. Another possibility would be to use the findings as parameters for an automated layout process, such as the one implemented in KIEL. Thus, an easier to understand and uniform Statechart could be generated, which would save a lot of time in maintenance and communication.

## 1.5. Implications and Outline

To conclude, the "right" design of Statechart becomes increasingly important in industrial development. The maintainability and communicability of Statecharts is closely related to the design. Furthermore, "good" design is not supported by commercially available editors. As there are currently only few data sources available, an study based on empirical data to find Statechart properties that lead towards such a "right" Statechart design is beneficial to not only the industry, but all Statechart designers.

This thesis investigates the influence of aesthetic criteria and Statechart development methods on the *preference* and *performance* of test subjects. Preference indicates the subjective rating of Statecharts without semantic evaluation of the Statechart elements. Performance represents the ability to understand a Statechart's

#### 1. Introduction



Figure 1.3.: A figure that shows a way to generate an "optimal" layout from aesthetic criteria. Layout metrics are used to quantify the aesthetic criteria and composed to generate the layout. The choice of metrics is decided by experimental data.

semantic, i.e. how much time was needed to correctly construct a sequence of Statechart responses to signal events. In the context of development methods, performance denotes the ability to work productively with a given tool. The focus of this work is to find influential aesthetic criteria. The combination of them into a formula can be used to calculate the rating a Statechart would receive from the participants of the experiment mentioned above, representing Statechart developers in general.

The remainder of this work is partitioned as follows: First, related work concerning this thesis is reviewed. In Chapter 3, aesthetic criteria for different types of diagrams (e.g. graphs, Statecharts and class diagrams) are collected and discussed. Although the reviewed diagrams differ from each other in intent, they share similar construction elements. These similarities can be used to find applicable layout aesthetics not originally intended for Statechart diagrams. Chapter 4 reviews already existing and defines different layout metrics gained from the inspected aesthetic criteria. The experiment introduced in Chapter 5 and the data acquisition in Chapter 6 provide the data basis for the analysis and composition of the presented metrics. The composition of the metrics into a rating formula is described in Chapter 7, the analysis of editing techniques in Chapter 8. Chapter 9 concludes this work and presents an outlook on future applications of the gained information.

## 2. Related Work

This chapter relates work that has already been done on subjects that are of importance to this thesis. A quick survey on Statechart related work is followed by a look on the literature published in the field of aesthetic criteria. Closely related is the work on layout of Diagrams (especially so called *node-link diagrams*). However, the layout mechanisms are not always validated to be beneficial to human users. The last paragraph gives insight on empirical validation of layout criteria.

### 2.1. Related Work on Statecharts

To specify the behavior of reactive systems, Harel [28] developed the graphical notation of Statecharts as an extension to finite state machines. Many Statechart dialects have emerged, such as *SyncCharts* [5] or *Argos* [39]. Today, Statecharts (now called *State Machines*) are part of the UML and are used by various commercial applications, such as IBM's *Rational Rose* [56], Mathwork's *Simulink* [40] or *Esterel Studio* [22]. While Statechart semantics have been defined by well-formedness rules in the UML context by the Object Management Group [58], no formal layout criteria are given. On the other hand, formal layout rules are in effect at software development companies (Kreppold [37]) and available in the literature (Ambler [4]).

## 2.2. Research on Aesthetic Criteria

Aesthetic criteria for graph layout have been mentioned as far back as 1987, when Roberto Tamassia researched the importance of placing a graph on a grid with the minimum number of bends [57]. A graph drawing tutorial from Cruz and Tamassia [15] incorporates this aesthetic criterion. A good overview of the literature in the area of graph drawing can be found in a survey on this subject written by Di Battista et al. [20]. Coleman and Parker [14] call aesthetics a "measure of desirability" which is to be maximized, if a graph is meant for human consumption. To that end, they constructed and implemented a graph layout method which views graph layout as an optimization problem.

While it is commonly accepted in the graph drawing community that these aesthetics improve the readability of graph drawings, little experimental proof has been offered as far as aesthetic criteria for graph layout are considered. The most complete studies in this field have been conducted by Purchase et al. [52, 51, 55]. Other work concentrates on the cognitive aspects (Ware et al. [60]) or uses eye tracking to gain knowledge about the way people read graphs (Huang and Eades [31]). However, the

#### 2. Related Work

focus of this research has always been on graphs, not Statecharts (although Purchase, Carrington, and Allder [55] research *UML* elements). If the research was focused on Statecharts, aesthetic criteria used for graph layout have been used without much consideration (Appelgren and Hvannberg [6]).

## 2.3. Work on the Layout of Diagrams

**General Layout** A formally defined set of layout rules can be beneficial for a company, as the maintainability of Statecharts goes hand in hand with its layout (Ambler [4]). A Statechart which can be clearly visually perceived and understood has an advantage over Statecharts with random layout. Textual programming languages often define coding conventions in the form of a secondary notation, such as indentation, structure etc. In graphical programming languages such as Statecharts, there have been several attempts to induce such conventions, for example by introducing a Statechart Normal Form (SNF) (Prochnow and von Hanxleden [47]). Of these, none has found widespread use so far. The first tool to use this SNF is the KIEL modeling tool, developed by the aforementioned authors.

As the layout of a Statechart is so important, there has been work on the visualization and layout of Statecharts. Castelló, Mili, and Tollis [11] researched the visualization of Statecharts and treated them as graphs, applying graph layout algorithms. While not explicitly stated, aesthetic criteria, in combination with floorplanning algorithms and hierarchical drawing, are used to generate an user-friendly layout. The results are evaluated with a series of examples, but there has been no evaluation by experiment.

**Layout Metrics** Purchase [50] chose to deduct a definition of metrics from aesthetic criteria. She examined graph layout algorithms and applied the designed metrics to them. This thesis follows her idea of devising metrics from aesthetic criteria. In earlier research, Purchase validated some aesthetic criteria, such as edge crossings and edge bends with experiments, proving for the first time the importance of aesthetic criteria for the understanding of graphs. The metrics found from these studies have been defined "objectively", i.e. independent of the authors or other judgement. On the other hand, this implies that no empirical study about the perception of what metric appears to be "good" has taken place. Experimental research to determine whether human perception conforms with these objective measurements is left for a later study. Purchase et al. further researched aesthetic criteria and metrics, now looking at UML class diagrams [54]. There has been research on Statechart metrics for usability evaluation (Genero et al. [26], further researched by Appelgren and Hvannberg [6]), although their work is looking at the structure of a Statechart, not at its layout. There has been work based on structural metrics to predict the understandability of a Statechart by using fuzzy logic (Cruz-Lemus et al. [16]).

Automated Statechart Layout There have been several approaches to automatically layout graphs. One very important contribution is the GraphViz (Gansner and North [25]) layout framework, which has found its application in numerous other projects. The creator of Statecharts, David Harel, researched the automated layout of hierarchical "blob" models (defined as "rounded-corner rectilinear shapes" [30]), which include Statecharts. He applied subjective (though customizable) criteria to his drawings, for example the uniformity of blob dimension, symmetry, and space utilization. In addition to graph layout, there has been work on Statechart layout. Several commercial tools (for example Rational Rose Realtime [56]) offer a layout function for UML components, including Statecharts. Their implementation is rather rudimentary, neither regarding aesthetic criteria, nor accepting parameters to let the user influence the layout. Regarding user interaction, Castelló et al. [11] have developed a framework for the static and interactive visualization of Statecharts, based on hierarchical drawing and floorplanning. They do not, however, incorporate aesthetic criteria.

The KIEL modeling tool [34] has been developed at the group of *Real-Time and Embedded Systems*, Department of Computer Science, Christian-Albrechts-Universität zu Kiel to investigate different Statechart development methodologies. The research on effective Statechart creation methods is central to a dissertation at the Real-Time and Embedded Systems group (Prochnow [46]). A lot of research and diploma theses have flown into this tool [49, 47, 61, 35].

# 2.4. Empirical Evaluation and Experiments on Layout Criteria

Prechelt [45] states that a lot of the published work in practical informatics has not been supported by empirical evaluation. This applies also to diagram layout research. Aesthetic criteria and layout guidelines are often presented without further evaluation or taken from simple questionnaires (Koning et al. [36]). The individual proposals are justified rationally, not by empirical validation. An experimental approach is the exception for the—sometimes vast—variety of design and style guidelines presented in various papers. One of the exceptions are the works of Purchase et al. [53]. They state that it is important for aesthetic criteria to be evaluated by experiments with humans, so the aesthetics can be judged with respect to how much they assist the human comprehension. Another experiment on graph aesthetics was performed by Ware et al. [60]. Extensive experiments about Statechart composition were conducted by Genero et al. [26] and Cruz-Lemus et al. [17]. However, these concerned the structural aspects of Statecharts. Genero researched the influence of various structural Statechart elements, such as the number of entry actions in a state. Her colleague Cruz-Lemus researched the impact of hierarchical states on the understandability of a Statechart. There has been an evaluation of the preferred layout of the KIEL developers, called Alternating Dot Layout (ADL). This layout was empirically compared to other layouts in an experiment with graduate-level students

### 2. Related Work

(Prochnow and von Hanxleden [48]).

## 3. Survey and Selection of Aesthetic Criteria

The general idea of understandable Statecharts is that they have to fulfill two criteria: Good structure and good layout. If a Statechart gets too complex, it is almost impossible to understand. However, if the layout is confusing, it takes very long to understand even simple Statecharts, as the important information does not present itself immediately. The aspects which influence the perception of a Statechart are called *aesthetic criteria*.

To identify which criteria of layout appeal to Statechart designers, a survey of conducted work follows. The aesthetic criteria collected are presented in the following sections. The individual sections correspond to the diagram types that were researched in the related literature. In addition, aesthetic criteria suggestions for Statechart layout have been gathered from questionnaires, filled out by graduate-level computer science students [49]. The questionnaires and the related experiments will be discussed in Section 5.

Often, more than one aesthetic criterion is affected when a drawing is created. The different criteria have to be considered and prioritized to maximize the understandability. The example in Figure 3.1 shows that the minimizing of edge crosses may lead to a decline in symmetry (Fruchterman and Reingold [24]). Therefore, it is important to know which aesthetic criteria have the highest impact on the human comprehension.



Figure 3.1.: Two graphs explaining the conflict between edge crossing and symmetry: The minimizing of edge crossings may lead to a decline in symmetry.

#### 3. Survey and Selection of Aesthetic Criteria

Much work has been done in the field of aesthetic criteria for graph layout (Görg et al. [27], Purchase [50], Davidson and Harel [18], Di Battista et al. [20]). However, Statecharts have been mostly overlooked (with a few exceptions [17, 6, 55]) or simply taken for a special form of graph. Likewise, there has been little research on class diagram aesthetics, collaboration diagrams etc.

To give a general overview, aesthetic criteria found in literature are presented here. They are differentiated by the type of diagram that they were originally conceived for.

## 3.1. General Aesthetic Criteria for Diagram Creation

First, some general style guidelines. These apply to all kinds of diagrams, UML or otherwise. The terms *lines*, *symbols*, and *labels* are used to represent the appropriate element in other diagrams:

- Symbols represent diagram elements such as nodes, class boxes, and states.
- Lines represent the connection elements such as edges, associations, and transitions.
- Labels represent diagram elements such as names, association roles, and conditions.

Most of the following criteria can be found in *The Elements of UML 2.0 Style* by Scott W. Ambler [4].



Figure 3.2.: Two diagrams that depict the improvement of aesthetic criteria (figure inspired by Ambler [4])

#### Aesthetic Criterion 3.1.1 (Avoid Crossing Lines)

When two or more lines cross in a diagram, the possibility to misread either of them exists.

#### Aesthetic Criterion 3.1.2 (Depict Crossing Lines as a Jump)

It cannot always be avoided to cross lines in a diagram. Sometimes this is even the better solution, as seen in Figure 3.1. However, to clearly indicate which line is which, crossings should be depicted as a jump, with one line "hopping" over the other.

#### Aesthetic Criterion 3.1.3 (Use Straight Lines, Place Symbols on a Grid)

Avoid diagonal or curved lines, place symbols on a grid. Horizontal or vertical straight lines are easier for the eye to follow than diagonal or curved lines. The placement of symbols on a grid facilitates the use of straight lines. In Figure 3.2b, the lines are improved in this manner. Many tools offer a function which restricts symbol placement to a fixed a grid.

#### Aesthetic Criterion 3.1.4 (Arrange Symbols Symmetrically)

In the first version of the diagram shown in Figure 3.2, the symbols are placed almost randomly. Organizing symbols and lines in a symmetrical matter makes the diagram easier to read. A clear pattern will make the diagram easier to understand.

#### Aesthetic Criterion 3.1.5 (Apply Consistently Sized Symbols)

In Figure 3.2a, symbol A is larger than the others. The size of a symbol is often associated with its importance. If all symbols of one type are of the same importance, their size should be kept identical. Only draw individual symbols bigger if the emphasis is intentional.

#### Aesthetic Criterion 3.1.6 (Attach Lines to the Middle of Symbols)

The middle of a symbol is expected to be the origin of all protruding lines. A consistent design makes the diagram easier to read.

#### Aesthetic Criterion 3.1.7 (Align Labels Horizontally)

Text is much more readable if it is printed horizontally. The labels in Figure 3.2 are easier to read in the second diagram. A Labels should be drawn horizontally, even if the line it is associated with is vertical.

#### Aesthetic Criterion 3.1.8 (Minimize the Number of Symbol Types)

Koning et al. [36] recommend that the number of different symbols in a diagram is to be kept under seven. If more symbols types are used, the risk of confusing the modeler is too high.

#### Aesthetic Criterion 3.1.9 (Include White Space in the Diagram)

White space is the area between drawing elements in a diagram. A crowded diagram is harder to read, the space for labels is not sufficient, etc. Notice the improved readability of 3.2b.

#### Aesthetic Criterion 3.1.10 (Organize Diagrams Left to Right, Top to Bottom)

In western cultures, the usual reading direction is left to right or top to bottom. Therefore, this is the way most diagrams will be read. If a diagram has a starting point, it should be placed in the upper left corner (Eades and Sugiyama [21]).

#### 3. Survey and Selection of Aesthetic Criteria

#### Aesthetic Criterion 3.1.11 (Avoid Many Close Lines)

The eye loses track of individual lines if there are other in close vicinity. This can be avoided by keeping a reasonable distance between all symbols and lines.

#### Aesthetic Criterion 3.1.12 (Apply Color or Different Fonts Sparingly)

Although color is a good way to indicate specialties in diagrams, an overuse can be overwhelming. Koning et al. [36] propose a restriction of six or less colors.

## 3.2. Aesthetic Criteria in Graph Drawing

As mentioned before, the majority of work on aesthetic criteria is in the field of graph layout. This is understandable, as graph layout concerns researchers for much longer than Statechart design. However, various aesthetic criteria can be adopted for Statecharts, as they resemble a directed graph in many ways. The following aesthetic criteria for graph drawing have been suggested in the literature:

#### Aesthetic Criterion 3.2.1 (Node Distance)

Davidson and Harel [18] state that nodes placed too close to each other have a negative influence on the readability. This corresponds to the white space aesthetic from section 3.1. The opposite is also true. If nodes are placed too far from each other, the distance traveled between them might abate the concentration of the observer Coleman and Parker [14].

#### Aesthetic Criterion 3.2.2 (Nodes Should be Placed on a Grid)

The placement of nodes is also widely researched. Tamassia [57] and Papakostas and Tollis [43] propose a grid placement of nodes. The orthogonality is said to help the user track edges.

#### Aesthetic Criterion 3.2.3 (Nodes Should be Placed Symmetrically)

In all graphic standards, the display of symmetries is found to be desirable (Di Battista et al. [20]). A uniform distribution of nodes is proposed. Also, symmetrical information should be represented in a symmetrical way.

#### Aesthetic Criterion 3.2.4 (Edge Length)

Edges in a graph should be short (Tamassia [57]), but not too short (Coleman and Parker [14]). This corresponds with the node distance above. If edges get too long, they might be hard to follow. On the other hand, if an edge is too short, it might not allow enough space for labels or arrowheads in directed graphs. Furthermore, Di Battista et al. [20] propose that edge lengths should be consistent in a graph drawing. This leads to a clear pattern, which in turn makes the graph easier to read.

#### Aesthetic Criterion 3.2.5 (Edges Should not Intersect Each Other)

The intersection of lines mentioned above is also found in graph layout (Di Battista et al. [20]). Aside from planar graphs, intersections are frequent in graph drawing. If they can be avoided, one should do so. However, the graph with the least crossings is not always the most intuitive (see Figure 3.1).

#### Aesthetic Criterion 3.2.6 (Avoid Bends in Edges)

Tamassia [57] comes to the conclusion that edge bends should be avoided. Straight edges are easier to follow for the human eye. Edge bends are an interruption of the reading direction and distract the eye while tracking the edge.

#### Aesthetic Criterion 3.2.7 (Label Placement)

The placement of a label has to satisfy the following criteria (Imhof [32], Kakoulis and Tollis [33], Yoeli [63]): It should under no circumstances overlap with any other graphical component, except with its associated edge. The placement of the label has to ensure that it is identified with just one edge in the drawing. Therefore, it must be very close to its associated edge. Finally, each label must be placed at the best possible position among all acceptable positions.

## 3.3. Aesthetic Criteria for Class Diagram Creation

Class diagrams have been subject to research on aesthetics. Purchase et al. [55] validated aesthetic criteria, taking some criteria from graph drawing aesthetics. The following criteria were tested in their experiments :

#### Aesthetic Criterion 3.3.1 (Draw Diagrams With Fewer Line Crossings)

In an experiment, test subjects preferred class diagrams with a low number of line crossings.

#### Aesthetic Criterion 3.3.2 (Draw Diagrams With Fewer Line Bends)

The same subjects found diagrams easier to read if there were less line bends.

#### Aesthetic Criterion 3.3.3 (Prefer Horizontal Text)

Diagrams with only horizontal labels were rated better than ones with both horizontal and vertical text.

#### Aesthetic Criterion 3.3.4 (Use Joined Inheritance Lines)

The use of joined inheritance lines (as the UML notation specifies) was preferred to the usage of separate lines (as it would be done in graph drawing).

#### Aesthetic Criterion 3.3.5 (Prefer a Narrow Layout Over a Wide Layout)

The test subjects preferred a narrow layout, an aesthetic criterion originally proposed by Coleman and Parker [14].

#### Aesthetic Criterion 3.3.6 (Draw Orthogonal Diagrams)

Test subjects preferred orthogonal diagrams over diagrams that were non-orthogonal.

## 3.4. Aesthetic Criteria for Statechart Creation

As mentioned earlier, there are only a few aesthetic criteria in literature specifically related to Statecharts. The UML style guidelines proposed by Ambler [4] touch the subject of Statecharts—the rules applying to the aesthetics of a Statechart are listed here.

#### 3. Survey and Selection of Aesthetic Criteria

#### Aesthetic Criterion 3.4.1 (Minimum Distance Between States and Transitions.)

Keep a reasonable minimum distance between states and transitions. It can be hard to follow transitions if there are many lines in close vicinity. This applies to other transitions as well as to states. Especially bad is the intersection of transitions with states.

#### Aesthetic Criterion 3.4.2 (Placement of the Initial State)

The initial state should be placed at the top left of the Statechart. Placing the initial state in the upper left corner reflects the way that people in western cultures read. Alternatively, the placement in the center at the top of the Statechart is acceptable.

#### Aesthetic Criterion 3.4.3 (Placement of the Final State)

The final state should be placed at the bottom right of the Statechart. This also reflects the left-to-right, top-to-bottom approach to reading.

#### Aesthetic Criterion 3.4.4 (Place Labels Near Source States)

A visual closeness to the state helps to identify the labels with their corresponding source state.

#### Aesthetic Criterion 3.4.5 (Place Labels on the Basis of Transition Direction)

Place Transition Labels on the Basis of Transition Direction. As a Statechart often is full of transitions, a placement heuristic for labels can help to identify labels with their transitions. Ambler proposes the following:

Place transition labels

- above transitions that go from left to right
- below transitions that go from right to left
- right of transitions that go down
- left of transitions that go up

Note that this consistently places labels to the left of a transition, relative to its orientation.

## 3.5. Selection of Aesthetic Criteria

It can be seen that some aesthetic criteria apply to all kinds of diagrams. These include the use of straight lines, an orthogonal layout, and the reduction of crossing lines.

**Application to Statecharts** Not all aesthetic criteria can be applied to Statecharts. Some are not applicable because they are too specifically designed for a type of diagram, such as the usage of joined inheritance lines (Criterion 3.3.4). Others would make sense for Statechart design, but are not used in Statechart development. This is the case with Criterion 3.1.2, which proposes a "jump" representation of crossing lines.

Some of the aforementioned aesthetic criteria are applicable to Statecharts, but will not be considered in this work. Part of this omission is caused by the data basis, which does not contain suitable data for certain aesthetics, such as symmetry or color. Another cause is the focus of this work, which concentrates on various layout aspects. This led to the exclusion of almost all label related aesthetic criteria.

For the rest of the criteria, an appliance to Statecharts seems feasible. Edges and lines are translated into transitions, nodes and symbols into states where appropriate. This work will concentrate on the basic Statechart construction elements and related criteria: States and transitions.

**Criteria that Concern States** States are the building blocks of a Statechart. The first thing that comes to mind is the placement of states. In the criteria mentioned, the placement of initial and final state is mentioned specifically in 3.4.2 and 3.4.3. This is also a general criterion for the creation of diagrams (3.1.10). The more states are placed, the more area is needed to display the Statechart. Criteria 3.1.9 and 3.2.1 state that a Statechart should not be overly crowded with states. However, Criterion 3.3.5 declares that users prefer narrow Statecharts. This could also indicate a preference for sequential placement of states. Indirectly, this is supported by the preference for orthogonal state placement (3.2.2, 3.3.6). Regardless of the Statechart's shape, one has to keep a minimum distance between the elements of a Statechart. This is the intention of Criteria 3.4.1, 3.1.11, 3.1.9 and 3.2.1.

**Criteria that Concern Transitions** If states are the building blocks of a Statechart, transitions are the cement that hold it. Various aesthetic criteria concern themselves with aspects of transitions. Transition length is mentioned in Criterion 3.2.4. An indirect relation can be seen with the distance between states, Criteria 3.1.9 and 3.2.1. The distance influences the transition length. Although transitions can be drawn with arbitrary length, the usual approach is to connect two states with the fewest bends possible. This also implicates a short transition between them. The bends in a transition are subject of another criterion, mentioned for almost every diagram type (see Criteria 3.1.3, 3.2.6, and 3.3.2). The change in transition direction is also mentioned in many criteria. However, the change of direction *between* two transitions is also a bend that might be hard to follow. The number of transitions correlates with the risk of transition intersection. This is often considered detrimental to the understanding of a Statechart, as mentioned in Criteria 3.1.1, 3.2.5, 3.3.1, and 3.2.7.

**Measurement of Aesthetic Criteria** To express the extend of the selected criteria in a given Statechart, one has to define a formal way of measuring them. This will be done in the following section, where such measurements, called *metrics*, will be discussed.

3. Survey and Selection of Aesthetic Criteria

# 4. Defining Metrics for Statechart Properties and the Modeling Process

"You can't control what you can't measure."

-Tom DeMarco [19]

As stated before, a Statechart has to be easily readable and interchangeable between developers. The most important property for this is the Statechart layout. To measure the aesthetic quality of a Statechart, some kind of measurement is needed to quantify different aspects of that chart's layout.

If all relevant aspects can be measured and presented to the Statechart's designer, she or he could optimize the drawing of a Statechart. Going further, the tool used to create the Statecharts could not only provide this analysis, but also alter the Statecharts accordingly. The most beneficial aesthetic aspects have to be identified. Therefore, a selection of aesthetic criteria has been taken from the literature and adapted to Statecharts in the previous section. The ranking of these aspects has to be evaluated on the basis of the data gained from user ratings of Statecharts. This will be further discussed in Section 7.

With the influential aspects known, a defined way of measuring them could be specified, a formal metric. This metric is a function that takes a Statechart as input and returns a numerical evaluation of that Statechart, considering the aesthetic criteria under observation. If such metrics could be found, it would be feasible to adapt them to other visual languages, such as UML activity charts. This could be done by varying the parameters of the metrics to make them applicable to other diagram types.

In addition to layout metrics, there are metrics concerning Statechart structure. They have been researched by Appelgren and Hvannberg [6] as well as Cruz-Lemus et al. [17] and Genero et al. [26]. No details will be addressed here, as this thesis focuses on layout metrics. However, it is possible that beside layout metrics, a tool could incorporate the use of structural metrics. This is a topic to be examined in further research. The following section gives an overview of various metrics concerning layout.

## 4.1. Layout Metrics

The following metrics can be found in the literature, regarding graph layout difference (Branke [9], Bridgeman and Tamassia [10]). The metrics presented are applicable to Statecharts in general, as they concern the layout of graphs. However, they describe the change between two versions of the same graph. For this reason they are not applicable for the Statecharts used in this work.

- Absolute vertex positions: The total distance each node has moved.
- Orthogonal ordering / relative vertex positions: The distance a node has moved in relation to its neighbors.
- Proximity: Use proximity information to measure the number of neighbor changes for each node.
- Edge routing: Edges are used as a distance measure. The change in edge routing represents a change in distance.

There has been research in the field of validating graph drawing and also UML aesthetics with metrics, mainly by Purchase [50, 51]. She proposes seven different metrics for aesthetic criteria:

- An edge crossing metric  $\aleph_c$ : The edge crossings aesthetic metric for a graph is based on the number of edge crossings in that graph, where an edge crossing is defined as a point on the plane where two edges intersect. When calculating the number of crossings, only pairwise edge intersections are considered. In the case where  $k \ge 2$  edges cross at a single point, it is treated as though  $\frac{1}{2}k(k-1)$ individual pairwise crossings have occurred.
- An edge bends metric  $\aleph_b$ : The aesthetic metric for bends in a graph is based on the number of bent edges in the drawing; that is, internal points of an edge whose coordinates do not lie on the straight line between the two end nodes of the edge.
- A symmetry metric  $\aleph_s$ : Purchase proposes a computational aesthetic metric  $(\aleph_s)$ , which takes into account assumptions about the human perception of symmetry. The proposed algorithm returns a numerical value between 0 and 1, which represents the extend to which the drawing can be considered symmetric.
- A minimum angle metric  $\aleph_m$ : Purchase bases the minimum angle aesthetic metric for a graph on the average deviation of adjacent incident edge angles from the ideal minimum angle.
- Orthogonality metrics  $\aleph_{ne}$  and  $\aleph_{eo}$ : The concept of orthogonality in a graph drawing is separated into two independent measurements:
  - the extent to which edges and edge segments follow the lines of an imaginary Cartesian grid (*edge orthogonality*,  $\aleph_{eo}$ ),



Figure 4.1.: A Statechart with measures added in different size units. The Statechart is scaled down to half its original size

- the extent to which nodes and bend points make maximal use of the grid points in an imaginary Cartesian grid (*node orthogonality*,  $\aleph_{no}$ ).
- An upward flow metric  $\aleph_f$ : This metric determines the proportion of edge segments of a directed graph, which have a consistent direction. The desired direction is described to be usually upwards or downwards along the vertical axis.

The cited author presents these metrics in detail, but makes several restrictions in the definition. The metrics are designed to work on graphs with at most one edge between any two nodes, which is something not commonly found in Statecharts. Furthermore, the different metrics are not set in relation to each other, giving seven independent measurements for the graph's aesthetic criteria instead of one overall measurement.

The consistency of the measurement used was a problem. Several tools had to be utilized to measure distances, angles, etc. There are different measurements used in computer graphics. One of the most widely used measures is the *point*. However, at least three different *point* definitions are known: The french *Didot's point*, the *traditional American point*, and the *desk-top publishing (dtp) point*. The difference stems from the different definition of the unit *foot* in various countries. Not all tools supported the unit *dtp point*, so the unit *pixel* (px) was used, as a dtp point is equivalent to 1.25 px in the used tools. (A dtp point is 1/72 of an inch or 0.353 mm, whereas 1 pixel equals 1/90 of an inch or 0.2822 mm in all tools used. See Figure 4.1 for a Statechart with a transition that is measured in all four units.)

$$\frac{1}{72}$$
 inch = 0.353 mm = 1 *dtp* point = 1.25px

The unit pixel is usually a relative measurement, depending on the resolution of a picture and the viewing device. However, the used unit pixels is a so called *user unit* and fixed to 90 pixels per inch.

After evaluating the metrics found in the literature, some seemed applicable for Statechart aesthetics, such as the number of edge bends. Others were specific to diagrams other than Statecharts. The various metric definitions from the literature 4. Defining Metrics for Statechart Properties and the Modeling Process



(a) A Statechart with a width to height ratio of 0.28 (b) A Statechart with a width to height ratio of 5.47

Figure 4.2.: Two Statecharts that differ in width to height ratio

inspire the following ten metrics for Statechart layout, based on the aesthetic criteria collected in Chapter 3:

#### Layout Metric 1 (Transition Length)

The transition length is thought to have an influence on the user rating of a Statechart. Therefore, the following metric TRL is proposed:

$$\mathrm{TRL} = \frac{1}{n} \sum_{i=1}^{n} |\mathrm{transition}_i|$$

with n being the total number of transitions in the given Statechart and  $|\text{transition}_i|$  being the length of transition i. This metric measures the average transition length for a given Statechart in px.

#### Layout Metric 2 (Width to Height Ratio)

Aesthetic criterion 3.3.5 states that users prefer narrower diagram layouts. Two possible layouts come to mind: A Statechart that has a very low width to height ratio, and one that has a very high ratio. Therefore, a metric WHR is devised that measures the ratio between width and height. See Figure 4.2 for two Statecharts depicting the difference between a low and a high ratio. The metric is defined as:

$$WHR = \frac{width \text{ of Statechart}}{height \text{ of Statechart}}$$

#### Layout Metric 3 (Usage of Available Space)

The number of states and the space left between them inspired this metric. The aesthetic criteria suggest that a reasonable amount of "white space" is beneficial for the understanding of a Statechart. The amount of used space SU is measured by the following metric:

$$SU = \frac{amount \text{ of space taken up by Statechart elements}}{area \text{ of the Statechart}}$$



Figure 4.3.: Three figures used to illustrate the "usage of available space" metric. The shaded areas of the Statecharts depict the measured areas.

 $(SU_A)$ 

As it is unknown which elements of a Statechart are perceived as "white space", this metric was split up in three variants  $SU_S$ ,  $SU_A$ , and  $SU_T$ , differing by the types of elements that were measured. SU<sub>S</sub> measures only the simple states of a diagram, SU<sub>A</sub> takes all simple states and adds the state attribute space of hierarchical states. The last metric, SU<sub>T</sub>, measures only the topmost states, considering them opaque. The intention is to let the experimental results decide which one gives the best fit. See Figure 4.3 for a visualization of the different spaces that are considered. The particularities of the variants are discussed in Section 6.2.3.

#### Layout Metric 4 (Placement of the Initial and Final State)

The establishment of a reading direction from left to right, top to bottom has been mentioned twice in Chapter 3. Explicitly mentioned were the initial and final state of a Statechart in Criteria 3.4.2 and 3.4.3. This metric measures the compliance of the state placement to these aesthetic criteria. The upper left corner of the Statechart is defined as 0% width and height. Consequentially, the lower right corner is identified with 100% Statechart width and height. The aesthetic criterion mentions an equivalence of left to right and top to bottom reading direction. Therefore, this metric rewards both positions, top and left of the chart with the same rating.

The following two metrics have been devised:

$$P_{I} = 100 - \frac{\text{hor. position of initial state in \% + vert. position of initial state in \%}{2}$$
$$P_{F} = \frac{\text{hor. position of final state in \% + vert. position of final state in \%}{2}$$

 $P_I$  measures the placement quality of the initial state,  $P_F$  does the same for the final state.

#### Layout Metric 5 (Distance to Nearest Node Borders)

Criteria 3.2.1 and 3.1.9 state that there should be a minimum and maximum distance between states. This metric tries to represent the crowdedness of a Statechart by

4. Defining Metrics for Statechart Properties and the Modeling Process



Figure 4.4.: A section of a Statechart that illustrates the nearest node borders of state A.

measuring the distance between Statechart nodes. The specification *node* is necessary, as there are elements in the Statecharts under observation, that are not a state but might be perceived as one. This metric measures the minimum distance between each state in the Statechart and its nearest neighbor (see Figure 4.4). Again, several variants of this metric are proposed. They only differ in the treatment of the data.  $NB_{MIN}$  selects the minimum distance found in a Statechart.  $NB_{MAX}$  selects the maximum found when distances are calculated.  $NB_{AVG}$  is the average of all distances between states and their nearest neighbor.

$$NB_{MIN} = \min_{i=1,\dots,n} \{d(s_i)\}$$
$$NB_{MAX} = \max_{i=1,\dots,n} \{d(s_i)\}$$
$$NB_{AVG} = \frac{1}{n} \sum_{i=1}^{n} \{d(s_i)\}$$

with  $d(s_i)$  being the distance from state  $s_i$  to its nearest neighbor in px.

#### Layout Metric 6 (Distance of States to Straight Lines)

The preference for orthogonal and narrow Statecharts could be an indicator for another preference: The placement of states in a manner that resembles a sequential progression in the Statechart, e.g. a straight line.

The adherence to a placement on a straight line is measured (in px) by the distance of state centers to an imaginary straight line placed in the Statechart under observation. The position of the state centers and the straight line is measured in absolute coordinates (i.e. pixel units). The line was placed horizontal or vertical, according to the layout of the given Statechart. The straight line placement was subject to much discussion and was finally decided to be measured in three different variants. The first variant,  $D_I$ , places the line through the initial state:

$$D_{I} = \frac{1}{n} \sum_{i=1}^{n} d(\text{initial line}, \text{statecenter}_{i})$$

The second variant,  $D_M$ , places the line through the arithmetic middle of the Statechart:

$$D_{M} = \frac{1}{n} \sum_{i=1}^{n} d(\text{middle line}, \text{statecenter}_{i})$$

The last variant, called  $D_N$ , calculates a normal line, which is a straight line horizontal or vertical—through the calculated mean of all state centers. This rewards Statecharts that are drawn in a very linear way, even if the states are not placed on a line in the horizontal or vertical center of the Statechart.

$$D_{N} = \frac{1}{n} \sum_{i=1}^{n} d(\text{normal line, statecenter}_{i})$$

with d being a suitable distance metric, here the minimum difference between either the horizontal or vertical coordinates, and n being the number of states.

However, Statecharts of higher complexity posed another question: How are hierarchical states handled? Is the center of a hierarchical state counted when calculating a normal line? Should every hierarchical substate be treated as a Statechart of its own? All of these possibilities were considered and the  $D_N$  metric was split into three. Now, metric  $D_{NA}$  accounts for all state centers, simple or hierarchical. The  $D_{NS}$  metric only takes simple states into account, as hierarchical states are containers for simple states and the offset of their state center from a straight line might not be perceived as detrimental to the linearity of a Statechart.

The last metric,  $D_{NR}$ , acts exactly like  $D_{NS}$ . The only difference is that the metric calculates the distance to a normal line in each hierarchical state recursively, as if the hierarchical state was a simple complexity Statechart. The results for each substate are then summed up and divided by the number of substates encountered. The original Statechart is treated as the first hierarchical state.

#### Layout Metric 7 (Number of States and Hierarchy Levels)

This is very straightforward. The number of simple and hierarchical states is counted for each complexity level.

$$N_{\rm S} = N_{\rm SS} + N_{\rm HS}$$

 $N_{SS} = number of simple states$ 

 $N_{\rm HS} =$  number of hierarchical states

#### Layout Metric 8 (Intersection of Components)

Again, this is a counting metric. The number of intersections is recorded for various components, i.e. transitions, states, and labels. These were the intersection faults that occurred in the Statecharts used. The following metrics count the number for each category:

 $IF_{TN} = number of transition-node intersection faults$ 

 $IF_{TT} = number of transition-transition intersection faults$ 

 $IF_{TL} = number of transition-label intersection faults$ 

 $IF_{LL} = number of label-label intersection faults$ 



Figure 4.5.: An example of the flow metric: The angle  $\phi$  between outgoing transition T and incoming transitions  $t_i$  is measured. The directional change is 180°-  $\phi_{ti}$ . Only the minimum of directional change is recorded for outgoing transition T.

$$IF = IF_{TN} + IF_{TT} + IF_{TL} + IF_{LL}$$

Additionally, there were intersections between labels and states. However, these were too infrequent to be considered significant enough for a metric.

#### Layout Metric 9 (Directional Statechart Flow)

The aesthetic criterion regarding edge bends (3.2.6) states that the eye is interrupted each time the user has to follow changes in transition direction. This metric translates this to the disruption caused by the directional change between two transitions when entering and leaving a state. This is done because the comprehension of a Statechart could be related to the "flow" of states that are visited when tracing a series of events.

Therefore, the following metric FL is conceived, representing the average directional change of transitions in all state of a given Statechart:

$$FL = \frac{1}{n} \sum_{i=1}^{n} \min_{j} \{ (180 - \phi(T_i, t_{ij})) \}$$

with  $\phi(T_i, t_{ij})$  being the angle between outgoing transition  $T_i$  and incoming transition  $t_{ij}$ . The outgoing and incoming transitions  $T_i$  and  $t_{ij}$  always connect to the same state. An example is shown in Figure 4.5.

#### Layout Metric 10 (Number of Transitions and Transition Bends)

The metrics presented here count the number of bends in the Statechart's transitions. The used Statecharts contained only three types of transitions. Two of them had countable transition bends. These were the straight transitions, measured with metric  $N_{ST}$ , which do not bend, and polyline transitions, counted with metric  $N_{PT}$ . The polyline transitions in the experiment all had two bends. The last category were transitions consisting of splines. For these, it was not possible to count the bends. The transitions of the latter category were counted as "more than two bends", the number of these transitions was counted with the metric  $N_{SPT}$ . To get a complementary metric for the number of states metric, all transitions were summed up in a separate metric called  $N_T$ . This following metrics were used:

$$\begin{split} N_{\rm T} &= N_{\rm ST} + N_{\rm PT} + N_{\rm SPT} \\ N_{\rm ST} &= {\rm number \ of \ straight \ transitions} \\ N_{\rm PT} &= {\rm number \ of \ polyline \ transitions} \\ N_{\rm SPT} &= {\rm number \ of \ spline \ transitions} \end{split}$$

Table 4.1 contains the complete selected metrics, their variations, and their associated abbreviations.

This concludes the metrics for Statechart layout aesthetics. The following will describe metrics devised for the modeling process of Statecharts. The user actions are considered and metrics will be generated to compare the editors against each other.

# 4.2. Modeling Metrics

These metrics were not inspired by aesthetic criteria and they are not used to find an optimal layout. Modeling metrics are useful to gain insights into the influences of different Statechart design approaches on the user. The metrics are designed to measure editing aspects of the three tools mentioned in Chapter 5. Therefore, errors and actions of the test subjects from the experiment are analyzed.

The metrics reviewed here are divided into two different categories: The first category, consisting of Modeling Metrics 1 to 3, are counting metrics, like the *number of states* metric (Layout Metric 7) above. Metrics belonging to the second category are derived from the metrics in category one. They combine the generated data to gain insight into modeling processes. For example, the effectiveness of an editor is given by the ratio of productive actions to total actions. If the key-centered approach used in the KIEL-KIT editor is more effective than the mouse-centered one, future modeling tools could incorporate a more key-centered interface.

The metrics from the first category are presented in the following:

#### Modeling Metric 1 (User Input Actions)

This metric counts the number of user actions in four categories:

- number of keystrokes,
- number of key macros<sup>1</sup> used,
- number of mouse clicks, and
- number of mouse drags<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup>More than one key pressed at a time to access special functions, such as copy and paste, undo, and macros of the structure-based editor.

 $<sup>^{2}\</sup>mathrm{Hold}$  down the mouse button and drag the mouse, then release the button.

| Metric Abbreviation | Metric Definition                                                                                        |  |
|---------------------|----------------------------------------------------------------------------------------------------------|--|
| TRL                 | Average transition length                                                                                |  |
| log.WHR             | Logarithmized width to height ratio of the Statechart                                                    |  |
| $SU_S$              | Usage of available space, simple states only                                                             |  |
| SU <sub>T</sub>     | Usage of available space, Topmost States only                                                            |  |
| SUA                 | Usage of available space, simple states plus state Attribute space                                       |  |
| PI                  | Placement of initial state                                                                               |  |
| P <sub>F</sub>      | Placement of final state                                                                                 |  |
| NB <sub>AVG</sub>   | Average distance to nearest node border                                                                  |  |
| NB <sub>MIN</sub>   | Minimum distance to nearest node border                                                                  |  |
| NB <sub>MAX</sub>   | Maximum distance to nearest node border                                                                  |  |
| DI                  | Distance to a straight line through the initial state                                                    |  |
| D <sub>M</sub>      | Distance to a straight line through the middle of the Statechar                                          |  |
| $D_{NA}$            | Distance to a straight line through the arithmetic middle of al                                          |  |
| D <sub>NS</sub>     | states (either horizontal or vertical)<br>Distance to a straight line through the arithmetic middle of a |  |
| DNS                 | simple states (either horizontal or vertical)                                                            |  |
| D <sub>NR</sub>     | Distance to a straight line through the arithmetic middle of                                             |  |
|                     | all states (either horizontal or vertical), calculated recursive fo                                      |  |
|                     | each hierarchical state                                                                                  |  |
| Ns                  | Total number of states                                                                                   |  |
| N <sub>SS</sub>     | Number of simple states                                                                                  |  |
| N <sub>HS</sub>     | Number of hierarchical states                                                                            |  |
| IF                  | Total number of intersection faults                                                                      |  |
| $IF_{TN}$           | Intersection faults, transition—node                                                                     |  |
| $IF_{TT}$           | Intersection faults, transition—transition                                                               |  |
| IF <sub>TL</sub>    | Intersection faults, transition—label                                                                    |  |
| IF <sub>LL</sub>    | Intersection faults, label—label                                                                         |  |
| FL                  | Directional Statechart flow                                                                              |  |
| N <sub>T</sub>      | Total number of transitions                                                                              |  |
| N <sub>ST</sub>     | Number of straight transitions                                                                           |  |
| N <sub>PT</sub>     | Number of polyline transitions                                                                           |  |
| N <sub>SPT</sub>    | Number of spline transitions                                                                             |  |

Table 4.1.: Reference chart for metric abbreviations

#### Modeling Metric 2 (Errors Made)

The errors were divided into several categories as well:

- errors that require action in the making and action in correcting (for example the insertion of a wrong Statechart element): *normal errors*;
- errors that do not require action in the making, but require action to correct (for example the insertion of a wrong kind of state and a subsequent change to the correct state type via the state's properties): *delayed errors*;
- errors that have no consequences (such as stray mouse clicks): *unnecessary errors*;

The first three items were recorded separately. Additionally, the number of actions done for each item was recorded. Not possible are errors that do not require action to make and take no action to correct.

Modeling Metric 3 (Number of Actions Done to Improve the Statechart Visually) Actions done to improve the Statechart visually will be called *nicefy* actions from now on. These include all movement of Statechart elements to make room for another state or to ensure readability of labels. However, actions done to simply improve the visual appeal of the Statechart are also counted.

All metrics are compared for the three editors. Further metrics can be devised from the metrics above, such as the ratio between the number of productive actions and the number of total actions.

#### Modeling Metric 4 (Editor Efficiency)

The efficiency of the editor can be described as the ratio between benefit and cost, i.e. productive actions and total number of actions.

$$efficiency = \frac{\text{number of productive actions}}{\text{number of total actions}}$$

A high percentage indicates that only few actions were performed for unproductive tasks. This correlates to the inefficiency metrics below, which divide the unproductive part of the performed actions into subclasses.

#### Modeling Metric 5 (Minimum Number of Actions)

The minimum number of actions needed to create a specified Statechart. This is related to the *intuitiveness* of the editor, measured by the number of actions needed compared to the minimum possible number.

#### Modeling Metric 6 (Editor Inefficiency I)

The ratio between error actions and total actions is considered in this metric, called *inefficiency I*.

inefficiency 
$$I = \frac{\text{number of error actions}}{\text{number of total actions}}$$

This measure indicates how much the number of error actions impacts the total number of editing actions. 4. Defining Metrics for Statechart Properties and the Modeling Process

#### Modeling Metric 7 (Editor Inefficiency II)

The relation between unnecessary actions and total actions is considered in this metric, called *inefficiency II*.

inefficiency  $II = \frac{number of unnecessary actions}{number of total actions}$ 

This metric reurns the amount of total time that is spent without changing the Statechart layout or structure of a Statechart, but trying to do so. High values in this metric indicate faults in the user guidance of an editor, because the user is trying to do something, but cannot execute her or his intention.

#### Modeling Metric 8 (Editor Inefficiency III)

The relation between actions to improve the layout (called *nicefy* actions) and total actions is considered in this metric, called *inefficiency III*.

inefficiency  $III = \frac{\text{number of nicefy actions}}{\text{number of total actions}}$ 

Originally, the nicefy actions fell into the category "unnecessary actions", but they were separated to investigate the reasons for the time spent in the WYSIWYG editor. How much time is spent on improving the Statechart layout? Only values for the WYSIWYG editor are calculated, as this is not really comparable between editors. The other two editors arrange the Statechart elements on their own, preventing a layout alteration by the user. However, the concept of nicefy actions could be translated to the KIEL-KIT editor as the users might choose to improve their code layout. This was not investigated further, because these actions were infrequent and some code layout rules (such as *one statement per line*) were enforced by the editor. Although not comparable between editors, it might be interesting to know what partition of the actions performed in the WYSIWYG editor is used for nicefy actions.

#### Modeling Metric 9 (Error Costs)

If an error is made, how much of a nuisance is the correction of this error? This concerns the number of error actions per error, and in consequence the amount of time spent on errors. The metric gives an overview how much an error "costs".

Before the metrics of the latter category can be implemented, a conversion factor between the different input actions had to be found. This factor would allow keystrokes to be expressed as a fraction of mouse clicks. This would lead to a reduction of complexity and time, as the different actions could be expressed as abstract actions of uniform type. This could be a measure for the amount of user interaction needed to create a Statechart.

The process of data acquisition will be described in Chapter 6. The conversion into the abstract input actions is explained in Chapter 8.

## 4.3. Application of the Defined Metrics

#### Definition 4.3.1 (User Rating)

The user rating is a measure of the Statechart performance by the user. It includes a subjective and an objective rating. The Statechart is rated subjectively by the user's liking of this chart and objectively by the time the user needs to understand it.

In the context of this work, the subjective user rating is associated with the dependent variable awarded points. This indicates the points that were awarded by users to a specific Statechart in comparison to other Statecharts. The objective user rating is associated with the dependent variable needed time, in seconds, indicating the time needed to understand a given Statechart.

With the collected aesthetic criteria transformed into metrics, it still has to be decided which aesthetic criteria have the most influence on the user rating. To find out which metric is most important and how to combine them, the following Chapters discuss the application of the above specified metric to Statecharts used in an experiment and the correlation of the gained data with user ratings. 4. Defining Metrics for Statechart Properties and the Modeling Process

# 5. Previous Experimental Evaluation of Statechart Layout

The data describing user preference in this work was collected by an experiment, conducted in late 2006 and early 2007 (Prochnow and von Hanxleden [49]). The experiment was designed to investigate two questions proposed by the authors of the experiment:

- 1. "Do the macro-based and text-based editing techniques make the Statechart construction process easier and faster than the conventional WYSIWYG method?"
- 2. "Are the resulting Statecharts more readable and comprehensible?"

The mentioned Statecharts were laid out according to an algorithm contained in the KIEL framework. The resulting layout was compared with four other layouts to answer the second question proposed by the authors of the experiment. Figure 5.1 shows an example Statechart laid out according to the favored layout (i.e. ADL) and four layouts it is compared with. The layouts used in the experiment were:

- Alternating Dot Layout (ADL): An automatically generated layout, featuring amongst others a clockwise layout, a minimization of back transitions, and a consistent placement of initial and final states (see Figure 5.1a)
- Alternating Dot Layout Backwards (ADBL): The same as ADL, drawn backwards (see Figure 5.1b)
- Alternating Linear Layout (ALL): Another automatically generated layout that lines up all states in a hierarchy level either horizontally or vertically. This layout uses only straight lines for transition routing (see Figure 5.1c)
- Linear Layer Layout (LLL): A manually drawn layout that places states on layers, trying to avoid back transitions (see Figure 5.1e)
- Arbitrary Layout (AL): A layout that is drawn manually without style guidelines (see Figure 5.1d)

The Statechart layouts were presented in three different complexities: Simple, hierarchical, and parallel. *Simple Statecharts* contain only simple states and no parallelism. *Hierarchical Statecharts* add hierarchical states to the simple complexity. Statecharts of *parallel* complexity add orthogonality to the chart, now containing

#### 5. Previous Experimental Evaluation of Statechart Layout



Figure 5.1.: A simple complexity Statechart, laid out according to five different layout strategies

simple, hierarchical, and parallel states. Figure 5.2 shows the different complexities for a Statechart laid out according to the ADL.

The experiment was divided into two parts. The first part was conducted with 24 students participating in a course on model-based design and distributed real-time systems, having only little knowledge of Statechart formalism and modeling concepts. The second part was conducted with 19 students that completed the course. In the following, the participants of the first experiment will be referred to as *beginners*, the participants of the second experiment as *advanced users*.

In the following, the design of the experiment and the tasks the participants were assigned will be described (Section 5.1). Next will be a brief look at the editors used for the third task (Section 5.2). Finally, the experiment's approach to internal and external validity are described in Section 5.3 and the experiment's results are evaluated in Section 5.4.

## 5.1. Experiment Design

The participants were given tasks to complete. In sequential order, they had to complete the following assignments:

Subjective Layout Rating The experiment subjects were given pairs of Statecharts and had to rate them against each other. The participants were asked to rate according to the readability and comprehensibility of the presented Statecharts. Each participant had to rate 5 Statechart layouts in a series of 30 comparisons, 10 for each complexity level. This provides the subjective user rating *awarded* 



Figure 5.2.: Three Statecharts of varying complexity, laid out according to the Alternating Dot Layout (ADL)

*points*, which will be used as a dependent variable for the analysis of aesthetic criteria in Chapter 7.

- **Objective Layout Rating** This assignment tested the understandability of Statecharts. The experiment participants had to analyze the Statecharts they had rated before. The time they needed to answer questions about the activation sequence of the Statechart correctly was recorded. This provides the objective user rating *needed time*, which will be used as the second dependent variable in Chapter 7. In Chapter 8, the time needed will be used as a comparative variable for the number of user actions.
- Modeling of a given Statechart The experiment participants had to create and modify a Statechart according to given specifications. The task was assigned three times with different editors (see next section) to analyze the different modeling techniques.

Two of the three parts, the objective rating and the modeling, were controlled by the experiment supervisor and solutions were rejected in case of incorrectness. After completion of the tasks, the subjects were given a questionnaire to record their comments on the experiment. The experiment was performed in sessions of one to two hours with one participant at a time. To ensure traceability of the extracted data, the complete sessions were recorded on videotape with the written consent of the participants. 5. Previous Experimental Evaluation of Statechart Layout



Figure 5.3.: A screenshot that shows the WYSIWYG editor of *Esterel Studio* 

# 5.2. Editors Used

**The WYSIWYG Editor** The WYSIWYG editor used is an element of the *Esterel Studio* modeling suite (see Figure 5.3 for a screenshot of the user interface). The user is presented with three areas: The workspace, the menu bar, and the tool bar. The WYSIWYG editing paradigm requires the user to spend much time with layout-related activities in addition to the task of constructing the correct underlying Statechart structure. Most elements of the editor are only accessible with the mouse and each structural change in the edited Statechart requires several actions to perform.

Both remaining editors are implemented in the KIEL tool, where they are accessible simultaneously and may be placed side by side. However, the test subjects were presented with reduced functionality and had to use the two editors in sequence, not simultaneously. In normal operation, the user can choose to work with either editor at any time and the tool keeps the other editor synchronized with the changes.

The two editors follow the concept of *structure based editing*, i.e. directly editing the Statechart's structure instead of both, layout and structure at the same time, relieving the developer of the layout actions.



Figure 5.4.: A screenshot that shows the components of the KIEL Tool that are used by the KIEL-macros editor

**The KIEL-macros Editor** The KIEL-macros editor (see Figure 5.4) features a workspace, which takes up the center of the program window. The users were given a reference sheet with the keyboard macros and were asked to complete the task, if possible, with only these commands. Some tasks required the use of the mouse, for example the labeling of transitions. The editor features an input area for this task, where transition labels, state names, etc. can be assigned to the selected element.

**The KIEL-KIT editor** The textual editor is located at the right of the graphic area. Every change made here is shown instantly in the workspace, where a Statechart representation of the code is displayed (see Figure 5.5). Aside from basic techniques like *copy and paste* and positioning the cursor with the mouse, all editing was performed with the keyboard only.

#### 5. Previous Experimental Evaluation of Statechart Layout



Figure 5.5.: A screenshot that shows the cooperation between the KIEL-KIT editor and the graphic area

# 5.3. Internal and External Validity of the Experiment

Internal validity refers to the extent to which it can be accurately stated that the independent variable produced the observed effect. In contrast, *external validity* refers to the extent to which results of an experiment can be generalized to and across different persons, settings, and times Christensen [13].

The participants were divided into five groups, which received similar but different Statechart models to ensure the internal validity of the experiment. The variables interfering with the internal validity (modeling experience, motivation, environmental conditions, etc.) were controlled by equalizing them between appropriate groups. This was done by randomized group assignment.

The external validity was considered to be intact, even though the experiment preconditions differ somewhat from real Statechart modeling. Some of the mentioned differences are the usage of inexperienced participants and the limitations of the Statecharts used .

# 5.4. Results and Collected Data

The experimental results are presented here in a brief form. For an interpretation of the results, see the paper written by Prochnow and von Hanxleden [49]. The correctness of the data was validated by the author of the experiment with statistical methods.

#### 5.4.1. Evaluation of Statechart Layouts

The assessment of the awarded points showed a clear preference for Statecharts laid out according to the ADL, so question 2 can be answered with a "yes". proposed by the author of the experiment in question . Experiment participants stated that they liked "short and traceable" transitions and that the "element structure has to follow the Statechart meaning". Translated to the Statechart layouts, this implies that the ALL scored lower than the LLL because of unnecessarily long transitions.

The authors speculate that the better rating for the ADL Statechart is a result of better micro and macro layout, e.g. better label placement and a compact, white space avoiding layout.

#### 5.4.2. Evaluation of Modeling Techniques

The beginners were able to use the WYSIWYG editor without the aid of a reference sheet, whereas the reference sheets for the other two editors were frequently consulted. On average, the novices needed less time to complete their tasks when using the WYSIWYG editor. Regarding the advanced users, participants needed slightly less time using the KIEL-KIT editor. The authors of the experiment suggest that using expert practitioners would increase the difference in time between the WYSIWYG and KIT editors.

Performing modifications on an existing Statechart took less time using either one of the KIEL editors instead of the WYSIWYG editor—this was related to the focus of the editing work in the different editors. As mentioned in Section 5.2, the advantage gained by the WYSIWYG editor through its intuitive usage is counteracted by the time needed to rearrange Statechart elements on the workspace. Users modifying the existing Statechart with the macro-based editor needed the least number of operations. However, performing the operations with the textual editor needed less time . This discrepancy is explained with the frequent consultations of the reference sheet while working with the KIEL-macros editor.

#### 5.4.3. Further Analysis of the Experimental Data

By looking at the experimental results, one can immediately recognize the implicit preference of the experiment subjects, i.e. which Statechart layout was preferred over the others. However, to gain information about the actual criteria the subjects preferred (the explicit preference), further research was essential. The data contained much unused information. To access this information, the experiment's materials were processed again during this diploma thesis. To quantify the apparent aesthetic criteria, the metrics constructed in Chapter 4 were applied to the experiment's Statecharts. This process is described in the next chapter. The gained data is then visualized and validated, before it is used in the analysis of aesthetic criteria and the

#### 5. Previous Experimental Evaluation of Statechart Layout

modeling process. Additionally, the subjective and objective user ratings from the exoeriment are set into relation with the measured aesthetic criteria.

# 6. Analysis of the Experiment's Records

After choosing the aspects of Statechart layout aesthetics to be analyzed, data had to actually be collected from Statecharts. The ratings of the test subjects were also needed. Regarding aesthetic criteria, the awarded points and used time were the response to the change in aesthetic criteria. Looking at the modeling process, the time needed to create a specified Statechart (and then modify it) was of interest, as well as the actions the user took to do this.

# 6.1. General Remarks

The starting point to collect the data needed was always the material and records from the experiment described in Chapter 5. The awarded points as well as the time needed was already recorded in this experiment. However, the focus of the research done was on the specific layouts, subsuming multiple Statecharts into five categories. Therefore, the data had to be processed and user ratings assigned to the individual Statecharts instead of the layouts. As the experimental data were meticulously recorded, this was easily calculated in a spreadsheet.

Subsequently, a set of aesthetic criteria was chosen and transformed into concrete metrics as described in Chapters 3 and 4. The chosen metrics were then applied to all Statecharts, returning a set of aesthetic properties. As the data acquisition was different for each chosen criterion, this will be addressed in the individual sections.

The editing data were recorded in a different way. Except for the time used to create and modify the specified Statechart, all data were gained from video tapes. The tapes were recorded during the experiment and show the computer screen during the individual participants' part. From this video data, all actions could be counted.

All data collected were either stored directly in a Comma Separated Values (CSV) file or recorded in a spreadsheet and then converted to a CSV file. To ease the creation and handling of linear regression models, all data were then assembled into one data structure for each part of the experiment under observation (layout aesthetics and development methods). These structures were also stored as CSV files. All plots, as well as the statistical analysis in Chapters 7 and 8 were performed with the statistical software R, version 2.6.2 [?].

**Principles of the Data Analysis** To minimize the error in the data collection, all data acquisition was done very carefully. However, even the most careful acquisition cannot avoid erroneous data. Therefore, the collected data were validated. Prechelt

proposes an outline in six steps for the data analysis of controlled experiments in information technology, which will be reproduced in abbreviated form in the following paragraphs. For a more complete version and more valuable advice on experiment design, see his book on controlled experiments (Prechelt [45]).

As a general principle, the data analysis should preferably be performed with the most basic and demonstrative methods available. This keeps the error rate down as well as helping to find errors made nonetheless. Graphical methods are to be preferred, as the human eye is very good at data analysis on its own.

#### 6.1.1. Data Acquisition and Validation

This subsection describes the handling of problems that may occur in the acquisition of data generated in an experimental context, i.e. the part of data analysis that accounts for the correctness of acquired data.

Assessment of the Acquired Data (Step 0) The acquisition of data has to be done with great accuracy, especially when entering data manually. The acquisition process should be planned ahead with an evaluation scheme in mind, tested first on sample data points before applying it to the complete data.

The acquisition of the data used in this thesis was planned and discussed, individual schemes were devised and tested. If a scheme proved to be inapplicable on the tested data, it was altered to ensure consistency.

**Consistency Testing (Step 1)** To test the consistency of the data, the following items were considered (as proposed by Prechelt):

- Is the number of data sets for each group correct?
- Are data sets missing?
- Are there negative values where they could not be?
- Are there null values where they could not be?
- Are values higher than they could be? Example: Percentages higher than 100, time values longer than the experiment duration.
- Are there unexpected values in enumeration variables? Example: A misspelled name of a programming language or a misspelled group name.
- Are all constraints between several variables satisfied? Example: Are there less given answers than correct ones?

All these tests check if the data meet conditions that fortify the assumption of correctness. These points have been addressed by automatically testing the collected data with a script and by testing random samples manually.



Figure 6.1.: An exemplary boxplot

#### Definition 6.1.1 (Boxplot)

A boxplot (also known as a box-and-whisker plot, definition taken from Prechelt [45]), as seen in Figure 6.1, is a one-dimensional plot utilized to display the distribution of data in a given sample. The width of the "box" contains the central fifty percent of the observations, with the thick line indicating the median. Explained intuitively, a quarter of the observations lies to the left of the box, two quarters inside the box (separated by the median) and the final quarter to the right of the box. The length of the box is called the Interquartile Range (IQR). The bars at the end of the dashed lines to the sides of the box indicate the last observations inside 1.5 times the IQR. If an observation lies more than this distance from the box, it is indicated by small circle and called outlier.

The boxplot is useful in a quick visual comparison of different sets of data, regarding the dispersion (spread) and skewness of their distribution.

#### Definition 6.1.2 (Scatterplot)

A scatterplot is a two-dimensional point plot in Carthesian coordinates for two variables of a set of data (See Figure 6.2, examples created with the R statistical software, package car [23]). The horizontal position of a data point is determined by one variable, the vertical position by the other. The plot can be augmented by various regression lines (linear regression, Locally Weighted Scatterplot Smoothing (LOWESS), etc.) to show linear or nonlinear relations between the variables. Another variant used in this work also displays boxplots next to the axes.

**Plausibility Testing (Step 2)** The testing of plausible data attributes to find data that seem unlikely is called *plausibility testing*. Data that seem implausible is sometimes correct but often erroneous.

These plausibility test were done (as proposed by Prechelt):

- Looking at a single variable:
  - Are there only a few unusual high / low values? Tools: One-dimensional plot, boxplot.
  - Are there more than a few unusual high / low values? Tools: Histograms and density plots.



Figure 6.2.: Two exemplary scatterplots that show different levels of detail

- Is there a single value that occurs often? Tools: Histograms, density plots and one-dimensional plots.
- Looking at the relation of two variables:
  - Are there unlikely combinations? Tools: Two-dimensional plots (scatterplots), one-dimensional plots of coefficients, differences, etc.

This was done by creating numerous plots for each data row. A selection of them can be viewed in the individual data validation sections for each metric under observation. Note that the complexity and metric names had to be shortened in the plots, as they did not always fit the drawing space. Mostly, the names are intuitive. Complexities simple, hierarchical, and parallel were encoded as complexity 1, 2, and 3, respectively.

#### Definition 6.1.3 (Q–Q Plot)

A Q–Q plot (or Quantile–Comparison Plot, definition in part taken from Fox [23]) is a graphical method of deciding whether a data sample differs from a given distribution, for example the normal distribution. In essence, the Q–Q plot resembles a scatterplot. For a sample with n observations, n points are plotted. The ordered data is plotted on the horizontal axis against the corresponding quantiles of the reference distribution. If the two distributions are the same, this approximates a straight line. If there is a substantial deviation from linearity, one can assume that the distributions are different from each other. See Figure 6.3 for an exemplary Q–Q Plot.

This concludes the testing of the data. After ensuring that the data is valid, the actual analysis can commence. The following steps described here are performed in the following two chapters.



Figure 6.3.: A Q–Q plot showing nearly normal distributed data

**Illustration of Results (Step 3)** The first step in the analysis of the validated data is the graphical representation of the assumed interrelations to asses the conformity of the data with the expected correlations. This was done by generation of scatterplots depicting almost every relation between the collected data. These can be found in Appendix E. The relations of the investigated metrics to the awarded points and needed time are analyzed in individual subsections of Chapters 7 and 8.

Numerical representation of Results (Step 4) The numerical evaluation should be performed after the illustration of the data, as the optical representation gives clues to the kind of test that works best with the data at hand. In the case of the data analyzed in this thesis, this was the (multi-) linear regression with dummy variables, explained in Chapter 7.

**Find Possible Explanations (Step 5))** In this step, look for clues indicating the mechanism behind findings whether they are expected or unexpected. An analysis should start with the confirmation (or its rejection) of the hypothesis stated in the experimental design (*hypothesis-driven analysis*) and proceed with the search for causes of the findings (*speculative analysis*). The second analysis is most important for results that contradict the hypothesis.

**Data Browsing (Step 6)** After the scientific analysis, it is often valuable to browse the data for not researched correlations. This can be done by creating pairwise scatterplots between all data collected, looking for surprising effects in the illustrated data such as non-expected correlations between variables. The pairwise plotting was

#### 6. Analysis of the Experiment's Records



Figure 6.4.: A Statechart with transition lengths labels added by Inkscape

done as a side effect of the analysis of multivariate correlations. See the correlation matrices in Appendix D for all combinations.

## 6.2. Data Used for the Analysis of Aesthetic Metrics

The following subsection titles indicate in parentheses the metric from Chapter 4 in question. The label also indicates the column in Appendix C. E.g., the column labeled TRL corresponds to the transition length data.

#### 6.2.1. Transition Length Data (TRL)

The transition lengths were only available implicitly from the Statecharts used in the experiment. The charts are stored in a computer graphics format, and the transition lengths had to be extracted from them. This was done in the following way: First, the chart files had to be converted from Portable Document Format (PDF) to Scalable Vector Graphics (SVG) [59]. These files were then opened in the *Inkscape* application and the individual transition lengths of each Statechart were measured. Inkscape was used, as it features a convenient tool for this purpose. To make repetitions in case of errors or missing values easier, the process of extracting the values was automated. For this purpose, the Statecharts were saved with the added measurements for each transition (see Figure 6.4 for an example), instead of simply recording the measured transition lengths. The created SVG files with added measures were transformed by XSLT (as SVG files are essentially eXtensible Markup Language (XML) [62] files) into a list of transition lengths and subsequently stored in CSV files. The transformation and conversion into CSV was done by a JAVA program written for this purpose. The average, minimum, and maximum transition lengths for each chart were calculated from this data and again stored as a CSV file.

The average of all transitions for each Statechart was calculated. This data were displayed in the form of various boxplots (see Figure 6.5), to spot outliers. The outliers could indicate faults in the data, such as values which are too high or too low. Also, the shortest and longest transitions for each chart were determined and tested for unlikely values.



(a) A boxplot diagram that shows the data spread for the different complexities



Figure 6.5.: Several boxplots that show the distribution of the average transition length data

It is evident from the plots that the different complexities, as well as the layouts, vary greatly in their average transition length. The higher complexities show a much lower average, with the exception of the Alternating Linear Layout (ALL).

To verify that all transitions were measured, the number of transitions measured for each Statechart was calculated and compared to the correct number. This proved to be necessary. As every transition had to be manually selected (clicked on in *Inkscape*), one transition was not measured at all. The missing transition was noticed in the reliability testing, as the number of transitions differed from that of other charts with the same complexity.

#### 6.2.2. Width to Height Ratio Data (WHR)

For this measure the exact width and heigth of the Statecharts was needed. The data were read by a simple shell script from LATEX files containing size information of the Statecharts. These files were already existent, as they were used to include the Statecharts into the questionnaires handed to the subjects of the experiment. The files include parameters for lower left and upper right coordinates of each Statechart. With this information, the width to height ratio (and the area, see next subsection) was calculated. However, the mentioned LATEX files contained rather generous fitting viewport information. The viewports had to be adjusted to fit the Statechart boundaries exactly. See Figure 4.2 for Statecharts with very different width to height ratios. As seen in Figure 6.6a, most of the charts stay close to a ratio of about two times the width to height.

The data were displayed as a scatterplot and a boxplot (see Figure 6.6). Note that the y-axis has a logarithmic scale (ratios of 0.5 and 1 have the same distance as ratios 1 and 2). The few outliers were manually verified to be true. Random samples were measured by hand and compared to the automatically generated ratios. The mentioned logarithmic scale has to be considered in the calculations in the next section. Therefore, the logarithm of the width to height ratio was calculated. This







(b) Three boxplots that show the distribution of the width to height ratio data for the different complexities

Figure 6.6.: Statechart width to height ratio data plots. Subfigure 6.6a shows that the ratio of almost all charts nears two with increasing complexity. Only the Linear Layer Layout differs.

transformation of the data allows the correlation with linear terms. Furthermore, the construction of linear regression models is simplified by this.

For the remainder of this work, the metric width to height ratio identifies this modified definition. Whenever the data will be used, it will be the logarithmized version.

#### 6.2.3. Usage of Available Space Data ( $SU_S$ , $SU_A$ , $SU_T$ )

This metric measures the percentage of Statechart space taken up by states. To calculate the Statechart area, the width and height of the Statechart are taken from the same data source as the width to height ratio. Furthermore, the area occupied by Statechart elements was calculated. The various elements of a Statechart occupy a characteristic amount of drawing space. The area occupied by each is shown in Table 6.1.

Several methods were used to calculate the occupied space, as it was not known how the occupation was perceived by the participants. The first method only considered the topmost states, considering them opaque to the human observer. If this showed the greatest significance, a user would consider the Statechart space as almost completely taken up by states, if there are one or more big macrostates. Next, only simple states and connectors were considered to take up space. This stems from the idea that macrostates are not considered to consume space, as they contain other states. The last method calculated the space as before and added the space taken by the attribute space of macrostates. The idea behind this method was to consider every space that cannot contain another state. See Figure 4.3 for a visualization and comparison of the three methods. The amount of used space was then set in relation to the Statechart drawing area and stored in a file as the percentage of a Statechart's area that was used.

There are differences in the size of states between two sets of layouts: The first set





(a) A boxplot diagram that shows the data spread for the different complexities



Figure 6.7.: Several subfigures that visualize the data gained from the metric usage of Statechart drawing space ( $SU_S$ ), counting only simple states

| Component    | ( 1 )) • | Size (in $px^2$ ), Layouts LLL, AL |
|--------------|----------|------------------------------------|
| Simple state | 3075     | 946                                |
| Connector    | 356      | 356                                |
| Final State  | 855      | 825                                |

Table 6.1.: Component sizes with regard to the layout used.

containing the Alternating Dot Layout (ADL), Alternating Dot Layout Backwards (ADBL), and ALL, the second containing the Linear Layer Layout (LLL) and Arbitrary Layout (AL) (see Chapter 5 for Statecharts of the different layouts). The size of simple states, connectors and final states for each were measured (see Table 6.1). The rounded edges of States were approximated, as their area is in the range of a few pixels. Round connectors were approximated by circles or ellipses. The size of the Statechart attribute space is not noted in Table 6.1, as it varies for each macrostate. However, it has a fixed height (at least in the data gained from the experiment) and can be calculated by multiplying the width of the macrostate with this fixed height.

Three Figures are shown here, wich were used to validate the data: Figure 6.7, 6.8,



(a) A boxplot diagram that shows the data spread for the different complexities

(c) Three boxplot diagrams that show the data spread of individual layouts for each complexity

Figure 6.8.: Several subfigures that visualize the data gained from the metric *usage* of *Statechart space* (SU<sub>A</sub>), counting simple states and the state attribute space

and 6.9. The data were tested for reliability by generating boxplots (See Subfigures 6.7a, 6.8a, and 6.9a) from the data. Also, the frequency distribution was generated and is shown in Subfigures 6.7b, 6.8b, and 6.9b Immediately noticeable in the three boxplot diagrams is the difference between the metrics regarding the complexity level. Metric SU<sub>A</sub> shows a divergence between Statecharts of simple complexity and Statecharts of complexities hierarchical and parallel. Data gained through metric SU<sub>A</sub> has a more homogeneous spread. The aforementioned divergence is enlarged in the third boxplot (showing metric SU<sub>T</sub>). From the position and size of the boxplots, it is assumed that the SU<sub>A</sub> data will be the most valuable data, as the spread indicates that there is a diversity of measured data and the position hints that the data is comparable over complexity boundaries. However, this has to be verified by correlation of the data with user ratings.

There is a inconsistency regarding the connector area of the ALL layout: If there is more than one transition entering or leaving the connector on one side, the area of that connector is enlarged by 150 % for each transition added. This accommodates the additional transitions. This has been considered in the data acquisition process, the bigger connector was taken into account with the enlargement factor.



Figure 6.9.: Several subfigures that visualize the data gained from the metric usage of Statechart space ( $SU_T$ ), counting only top-level states

itv

### 6.2.4. Placement of Initial and Final States Data ( $P_I$ , $P_F$ )

The initial and final states are important spots in a Statechart. If they are not in the expected places, it may take time to find them. The measurement of the initial and final states placement was done by recording the absolute position of initial and final states in cartesian coordinates. The lower left coordinates of the initial and the final state were read from the Statechart graphics files. *Inkscape* displays these coordinates for each object on the drawing space. Only the first initial and the last final states in a hierarchical Statechart have been taken into account, since these can be viewed as the starting and end point of the Statechart. The data recorded and stored in a file. This data had to be converted into relative values before usage, as the different Statechart dimensions prohibit a direct comparison of the positions.

During data conversion, the dimensions of the initial/final state had to be considered. A state touching the left border of the Statechart should be registered with a horizontal value of 0 %. A state touching the right border should be registered with a horizontal value of 100 %. Figure 6.10 shows the chart transformation. A margin is removed from the sides to compensate for the state dimensions. This margin has to be half the width of the initial or final state. The same applies for the vertical placement. Not shown in the Figure is the margin for final states. However, this is analogous to the transformation for initial states. To evaluate these data, it has



Figure 6.10.: A figure showing the transformation of Statechart borders. The new boundaries have to be half an initial state smaller to position the center of the initial state at 0 % (respectively 100 %).



(a) A scatterplot that shows initial state posi- (b) A scatterplot that shows final state positions

Figure 6.11.: Two scatterplots depicting the placement of initial and final state. Placement density is shown with a color gradient. Higher density is represented with darker color.

been visualized as seen in Figure 6.11. The figure also shows the density of state placement with a color gradient. Selected random samples were tested manually to validate the data.

# 6.2.5. Distances Between Node Borders Data (NB<sub>MIN</sub>, NB<sub>MAX</sub>, NB<sub>AVG</sub>)

The distances between each node's border and its closest neighbor's border was measured for each chart. The data were then stored in separate files for each chart. Parallel borders are interpreted as state borders, as they are visual boundaries, according to aesthetic Criterion 3.1.11. After the data has been collected, the average, maximum, and minimum distances from each chart were calculated. The data were measured in *Inkscape* by hand, which is more susceptible to errors than automated data generation. However, it was not feasible to implement the automated generation in this case, as the SVG format internally uses relative measures. The average, minimum, and maximum distances were stored in a single file, whereas the individual data were stored in several files, one for each Statechart. The content of such a file is shown in Table 6.2 (see Figure 4.4 for a visualization).

It was expected to see a clustering of smaller distances according to the nesting of macrostates in higher complexity Statechart. Figures 6.12, 6.13, and 6.14 show the spread and distribution of the data.

# 6.2.6. Distance of States to Straight Lines Data (D<sub>I</sub>, D<sub>M</sub>, D<sub>NS</sub>, D<sub>NA</sub>, D<sub>NR</sub>)

The research on aesthetic criteria showed a favor for straight lines in state placement. Several authors recommended the placement on an orthogonal grid. To see if users prefer Statecharts with lined-up states, a straight line (or more, see Metric 6 variant  $D_{NR}$ ) was placed in the chart, and the distance of each state to this line was measured. However, as mentioned in Section 4, it was not clear where such a line should be placed. Various placements were tested in this metric. The line was drawn through the initial state, through the arithmetic middle of the chart, and

| State     | Nearest Neighbor | Distance (in px) |
|-----------|------------------|------------------|
| initial A | А                | 54.00            |
| А         | initial A        | 54.00            |
| В         | Ε                | 16.43            |
| С         | D                | 57.05            |
| D         | $\mathbf{C}$     | 57.05            |
| Е         | В                | 16.43            |

Table 6.2.: Individual distance to nearest neighbor for each state in Statechart c1m1-l1 (shown in Figure 6.4)



spread of individual layouts for each complexity





Figure 6.13.: Several Subfigures that visualize the data gained from the minimum distance between two nodes metric

ity



(a) A boxplot diagram that shows the data spread for the different complexities



(c) Three boxplot diagrams that show the data spread of individual layouts for each complexity

Figure 6.14.: Several Subfigures that visualize the data gained from the maximum distance between two node borders metric



Δ

(a) A Statechart with a line through the initial state



Figure 6.15.: Two State charts illustrating the distance of states to a straight line metrics  $\rm D_{I}$  and  $\rm D_{M}$ 

through the arithmetic middle of all state centers. The line orientation had to be compensated for different chart layouts, i.e. horizontal or vertical. This was done by drawing either a horizontal or a vertical line, regarding the positioning of the states in the Statechart (see Figures 6.15 and 6.16 for examples).

Hierarchical Statecharts had to be handled differently, as they can contain more than one axis. A recursive approach for hierarchical Statecharts seemed feasible. Therefore, another metric (Layout Metric 6) calculated the distance to a normal line for each hierarchical substate as if it was a simple Statechart (see Figure 6.16c for an example). The best location for the straight line has to be revealed by the tests in Chapter 7.



(a) Statechart with a normal line drawn, only simple states considered

(b) Statechart with a normal line drawn, all states considered



(c) Statechart with a normal line drawn, hierarchical states recursively processed

Figure 6.16.: Three Statecharts illustrating the *distance to a normal line* metric. The finer crosshairs indicate simple state centers, the coarser crosshairs indicate hierarchical state centers. Transitions and labels have been removed to avoid confusion.

Figure 6.15a shows the distance to a straight line drawn through the initial state. A straight line positioned at the vertical middle of the Statechart is shown in Figure 6.15b. The plotted data for initial and middle line is shown in Figures 6.17,6.18, and 6.19 the plotted data for the normal line metrics is shown in Figures 6.20, 6.21, and 6.22. Figure 6.23 shows the normal line data by layout. The number of outliers in Figures 6.17a and 6.17b indicates that the initial state might not be a good place to draw the line on which the distance of states is measured. The distribution of the data gained through the Metrics  $D_M$ ,  $D_{NS}$ , and  $D_{NA}$  is rather similar in spread and position. As there are no hierarchical states in simple complexity Statecharts, the data gained for this complexity is identical for metrics  $D_{NS}$ ,  $D_{NA}$ , and  $D_{NR}$ . The special nature of metric  $D_{NR}$  sets the data gained through it apart from the rest. The boxplots for each of the three complexities are completely different from each other. If this has a negative influence on the analysis remains to be seen.





(b) A boxplot diagram that shows the data

spread for Metric 6, variant  $D_I$ , in different

(a) A boxplot that shows the data spread for Metric 6, variant  $D_I$ 



(c) A histograms that shows the distribution of the  $D_{\rm I}$  data



(d) Three histograms that show the distribution of the D<sub>I</sub> data for all three complexities

Figure 6.17.: Several plots that visualize the data collected from Layout Metric 6 (distance to a straight line). The distribution and spread for variant  $D_I$  is shown.

#### 6.2.7. Number of States and Hierarchy Level Data ( $N_S$ , $N_{SS}$ , $N_{HS}$ )

Layout Metric 7 required basic counting. In our sample, Statecharts of simple complexity consist of 7 simple states (actually, these are 7 *nodes*, including the connector) and no hierarchical states. Statecharts of hierarchical complexity include 11 simple states and 3 hierarchical states. Statecharts of parallel complexity consist of 16 simple states and 2 hierarchical states. These hierarchical states have two parallel regions inside, which were counted as separate hierarchical states. This complies with the human viewpoint, which perceives parallel states as two separate functional areas. The different Statechart complexities and their number of states can be seen in the previous chapter (Figure 5.2).

# 6.2.8. Intersection of Components Data (IF, $IF_{TS}$ , $IF_{TT}$ , $IF_{TL}$ , $IF_{LL}$ )

There are only some intersections between components of the Statecharts under observation. Most intersections were seen between labels and transitions. As this was noted as a bad thing by the participants of the experiment, the intersections were counted and will be related to the user preference.



(a) A boxplot that shows the data spread for Metric 6, variant  $D_M$ 





(c) A histograms that shows the distribution of the  $\rm D_M~data$ 

(d) Three histograms that show the distribution of the  $D_M$  data for all three complexities

Figure 6.18.: Several plots that visualize the data collected from Layout Metric 6 (distance to a straight line). The distribution and spread for variant  $D_M$  is shown.



Figure 6.19.: Multiple boxplots diagrams that show the data spread of the different layouts for the *distance to a straight line: Initial and middle line* metric





(a) A boxplot that shows the data spread for Metric 6, variant  $\mathrm{D}_{\mathrm{NA}}$ 



(b) A boxplot diagram that shows the data spread for Metric 6, variant  $D_{NA}$ , in different complexities



(c) A histograms that shows the distribution of the  $D_{\rm NA}$  data

(d) Three histograms that show the distribution of the  $D_{\rm NA}$  data for all three complexities

Figure 6.20.: Several plots that visualize the data collected from Layout Metric 6 (distance to a straight line). The distribution and spread for variant  $D_{NA}$  is shown.

| Complexity                                     | Number of<br>Simple Nodes | Number of<br>Hierarchical States |
|------------------------------------------------|---------------------------|----------------------------------|
| Simple Statecharts<br>Hierarchical Statecharts | 7<br>11                   | $0 \\ 3$                         |
| Parallel Statecharts                           | 16                        | 6                                |

Table 6.3.: Number of states per complexity level





(b) A boxplot diagram that shows the data

ent complexities

spread for Metric 6, variant  $D_{NS}$ , in differ-

(a) A boxplot that shows the data spread for Metric 6, variant  $D_{\rm NS}$ 





(d) Three histograms that show the distribution of the  $D_{NS}$  data for all three complexities

Figure 6.21.: Several plots that visualize the data collected from Layout Metric 6 (distance to a straight line). The distribution and spread for variant  $D_{NS}$  is shown.

All crossings were counted manually. The different intersection faults considered were:

- 1. Intersections between transitions and states (see Subfigure 6.24a);
- 2. Transitions intersecting with other transitions (see Subfigure 6.24b);
- 3. Intersections between labels and transitions (see Subfigure 6.24c);
- 4. Two or more labels intersecting (see Subfigure 6.24d).

The total intersection faults are shown in 6.24, for an example of the individual faults see Figure 6.25. Transitions are the key element of the intersection faults: For every type of Statechart element there was a Statechart in which the element was intersected by a transition. The data were recorded in a spreadsheet and saved. Figure 6.25 shows an overview of total distance problems encountered.

#### 6.2.9. Directional Statechart Flow Data (FL)

If a high level of directional change occurs between incoming and outgoing transitions of a state, it might interrupt the reading of a Statechart. In this metric, the degrees





(b) A boxplot diagram that shows the data

spread for Metric 6, variant  $D_{NR}$ , in different

(a) A boxplot that shows the data spread for Metric 6, variant  $D_{\rm NR}$ 





8 -20 40 dist. NL (rec.) complexity 1 0 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 30 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10

(d) Three histograms that show the distribution of the  $D_{\rm NS}$  data for all three complexities

Figure 6.22.: Several plots that visualize the data collected from Layout Metric 6 (distance to a straight line). The distribution and spread for variant  $D_{NR}$  is shown.

between all outgoing transition of a state and every incoming one was measured, thus finding the minimum amount of directional change for each outgoing transition. To get a measure for the whole Statechart, the degrees of each state are summed up, then divided by the number of outgoing transitions. Therefore, the mean minimum angles between outgoing and incoming transitions for each Statechart were calculated. See Figure 4.5 for an illustration. Figure 6.26 shows the distribution and spread in two boxplots, separated by complexity and layout, together with a histogram of the data.

# 6.2.10. Number of Transitions and Transition Bend Data (N $_{\rm T}$ , N $_{\rm ST}$ , N $_{\rm PT}$ , N $_{\rm SPT}$ )

The subject of this metric is the number of edge bends in a transition. However, this is not applicable here. The Statechart layouts that were used in the experiment provided indifferent data. The used Statecharts have one of three transition types:

- 1. straight line
- 2. polyline



(a) A boxplot diagram that shows the data spread for Metric 6, variant  $D_{NA}$ , separated by layout

(b) A boxplot diagram that shows the data spread for Metric 6, variant D<sub>NS</sub>, separated by layout



(c) A boxplot diagram that shows the data spread for Metric 6, variant  $D_{\rm NR}$ , separated by layout

Figure 6.23.: Distance to a straight line. The data distribution for different layouts is shown in multiple boxplots for each of the three variants  $D_{NA}$ ,  $D_{NS}$ , and  $D_{NR}$ .



Figure 6.24.: The possible distance problems in a Statechart.





Figure 6.26.: Directional Statechart flow. Subfigures 6.26a and 6.26b show the boxplots, respectively histograms, for the different complexities. Subfigure 6.26c divides the complexities into the separate layouts.

3. spline

This is a problem. The number of edge bends is only countable for polyline transitions. The straight transitions have obviously no bends, the spline transitions consist solely of bends. The polyline transitions used in the experiment all have exactly two bends. So, instead of the edge bends, the respective number of straight, polyline and spline transitions is counted. The spline transitions are considered to represent transitions with more than two bends. This abstraction is necessary to generate ordinal values. Figure 6.27 shows an overview of the data for each Statechart.

# 6.3. Data Used for the Analysis of the Modeling Process

Acquiring the data for this analysis was done manually. The questions asked in the original experiment did not include the number of keystrokes or mouse clicks, so they were not measured automatically at the time the experiment took place. Ideally, the number of user actions would be recorded by the computer used in the experiment. However, the machine cannot separate error actions from productive ones, so at least the error actions would have to be counted manually. However, if the computer would record the time of each action, the observer could denote the start and end time of an error and let the computer display the actions that are inside this timeframe.

#### 6. Analysis of the Experiment's Records



Figure 6.27.: Three plots that show the number of transition types for each Statechart.

Table 6.4.: Key mapping for user actions

| Key | User Action |
|-----|-------------|
| У   | mouse click |
| х   | mouse drag  |
| с   | keystroke   |
| v   | key macro   |

### 6.3.1. Mouse Click and Keystroke Data



Figure 6.28.: Three boxplot diagrams that show the number of input actions for each editor used

#### 6.3.2. Error Data

Errors were recorded in a similar way as mouse clicks and keystrokes. An error consists of multiple actions, called error actions, so the process of recording the error actions was the same as mentioned above. However, each error had to be recorded separately to get the absolute number of errors made by each participant. To do so, the video was halted after each error and the recorded stream of multiple actions belonging to this individual error was terminated by a marker indicating the intention the user had. For instance, the addition of a state in the WYSIWYG editor would be yyAS, indicating two mouse clicks (y) leading to the addition of a state (AS). For all markers see Table 6.5.

Figure 6.29 shows the percentage of actions belonging to the different action categories. Instead of the no error category, the number of actions that is left when all error actions are subtracted is shown: *productive actions*, actions that lead to the creation of the specified Statechart.

Every error may consist of different actions, such as typing a wrong identifier or selecting the wrong state to insert into a Statechart. Also, to resolve the error made, one has to perform one or several actions. The number of these error actions are shown in Figure 6.30. The total number of the errors made in categories one and two can be seen in Figure 6.31. To categorize the errors made in the experiment (Prochnow and von Hanxleden [48]), the categories shown in table 6.6 are chosen.



Figure 6.29.: Pie charts that show the partitioning of user actions into categories for each editor used



Figure 6.30.: Three boxplot diagrams that show the number of error actions for each tool.

| Marker         | Intention                                                | Cat                                       |
|----------------|----------------------------------------------------------|-------------------------------------------|
| SS             | Select State                                             | 0                                         |
| AS<br>MS<br>DS | Add State<br>Modify State<br>Delete State                | 1.1                                       |
| ST             | Select Transition                                        | $\begin{array}{c} 1.2 \\ 1.3 \end{array}$ |
| AT<br>MT<br>DT | Add Transition<br>Modify Transition<br>Delete Transition | 1.4                                       |
| SL<br>AL<br>ML | Select Label<br>Add Label<br>Modify Label                | 1.5                                       |
| DL             | Delete Label                                             | 2.1<br>2.2<br>2.3                         |

Table 6.5.: Identification markers for

the editing process

Table 6.6.: Different types of errors made in the experiment

| Category | Description                                                                        |
|----------|------------------------------------------------------------------------------------|
| 0        | unnecessary                                                                        |
| 1.1      | wrong state modified /<br>added / deleted                                          |
| 1.2      | typing error                                                                       |
| 1.3      | wrong transition modified<br>/ added / deleted                                     |
| 1.4      | wrong label modified /<br>added / deleted, abbrevia-                               |
| 1.5      | tion instead of label added<br>wrong other element mod-<br>ified / added / deleted |
| 2.1      | wrong type of state added                                                          |
| 2.2      | left out characters                                                                |
| 2.3      | inserted text $/$ elements at wrong position                                       |

# 6.4. Summary of the Data Acquisition Process

The acquisition of the above data was a long process which often led to the definition of a new variant or even a new metric, as new aspects were found and had to be incorporated. After the data was collected, it still had to be validated. This was a challenge of its own, as the correct visualization for the gained data was not evident. However, suited visualization techniques was needed to asses errors in the data. The tests proposed by Prechelt [45] were a great help for the validation. After all data was collected and validated, the analysis of aesthetic criteria could commence. The next chapter first explains which data was used for the analysis and why, then the individual criteria are related to the points that were awarded and the time required by the participants in the experiment described in Section 5.



Figure 6.31.: Six boxplots diagrams that show the number of errors made in the different categories.

To gain an answer to the question of aesthetic influence on user ratings asked earlier a quantitative analysis of the recorded data is performed. The experiment concluded that users preferred a certain Statechart layout (the Alternating Dot Layout (ADL)) over others. This work tries to answer the question why the layouts were rated differently, based on the criteria selected from the numerous aesthetics of Chapter 3. The intention is not to decide which of the layouts presented in Chapter 5 is best (as this was clearly answered by the experiment), but to explore the reasons of user rating for Statecharts.

#### Definition 7.0.1 (Statistical Error and Residuals)

The amount by which an observation differs from its expected value is called the statistical error. The expected value is based on the whole population from which the statistical unit was chosen randomly. It is typically unobservable because the whole population cannot be tested. The difference between the measure of the sample and the unobservable population mean is a statistical error. A residual (or fitting error), is an estimate of the statistical error and can be observed. The difference between the measure of a sample and the observable sample mean is a residual.

A Statechart is perceived as an entity. The combination of different aesthetic criteria leads to a general aesthetic quality of the chart. To represent the fact that multiple aesthetic criteria form the perception of the whole Statechart, the selected metrics are first reviewed individually and then combined into a model.

In the following part, several statistical terms are used informally. Their definitions will be introduced before the first use, as seen below.

#### Remark 7.0.2 (Statistical Decision)

A remark on the preconditions of a statistical decision: In statistical decision theory for linear models, there are usually five assumptions that are verified to be true for the used data (Bortz [8]). These are:

- 1. The distribution of the statistical error and the residuals has to follow normal distribution.
- 2. The statistical errors have to be uncorrelated.
- 3. The dependent variables have to be uncorrelated with the statistical errors.
- 4. There is no heteroscedasticity, i.e. a fixed variance for all predictor variables and no correlation between them.

- 7. Analysis of Statechart Aesthetics
  - 5. The data is stationary, i.e. the joint probability distribution does not change when the data are shifted in time or space.

Regarding (1): The data collected in this work is only a sample of the much larger population and therefore has a limited variance. As the Central Limit Theorem (CLT) states that the sum of a large number of independent and identically-distributed random variables will be approximately normally distributed (Bortz [8]), the normal distribution assumption is accepted to be true. Assumptions (2) to (4) are accepted as well, as they are reasonable for the collected data. The last assumption (5) is necessarily true, as the data is defined to be stationary by the statistical model assumed here.

#### Definition 7.0.3 (Statistical Hypothesis Testing)

A statistical hypothesis test is a method of making statistical decisions by looking at experimental data. The data is tested for a given property by stating a null hypothesis  $H_0$  and calculating the probability of the experimental observations, given  $H_0$  is true. If this probability p is very small, one can argue that the null hypothesis is not true. Instead, the opposite of the null hypothesis (called the scientific or alternate hypothesis  $H_1$ ) is accepted. The lower p, the lower is the probability of rejecting  $H_0$ , when  $H_0$  is actually true.

#### Remark 7.0.4 (Statistical Significance)

If p is small enough to consider it unlikely that the data has occurred by chance, it is called statistically significant. The threshold is essentially defined arbitrarily and called the significance level. Commonly accepted levels of significance are 0.05, 0.01, and 0.001. For values smaller than 0.001, p is considered numerical zero and represented by a 0.

# 7.1. Selection of the Data Set

The general idea is to describe the influence of all Statechart aesthetics on the user in one model. However, there are several categorial variables. Can they be studied together, or do they have to be separated? The categories which have to be brought together are:

- Dependent variable under observation (points, time);
- Knowledge of test subjects (beginner, advanced);
- Complexity of Statecharts (simple, hierarchical, parallel).

#### 7.1.1. Selection of Dependent Variables

First, the handling of the user ratings has to be decided. The subjects of the experiment were presented two tasks: Rate the Statecharts according to their preference<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Two Statecharts were compared at a time, a Statechart could be awarded between -8 and 8 points. This is the *subjective* user rating.



Figure 7.1.: Data plots with different correlation coefficients (simplification)

and understand the given  $Statecharts^2$ .

#### Definition 7.1.1 (Correlation Coefficient)

The correlation coefficient r is a measure of the linear correlation between two variables, that is, a measure of the tendency of the variables to increase or decrease linearly together. It can take values between -1 and 1, indicating a negative or positive correlation (see Figure 7.1). A value of r = 0 indicates that there is no linear correlation between the variables, whereas a value of r = 1 indicates a completely linear correlation. A value of r = -1 indicates a completely reverse linear correlation.

#### Definition 7.1.2 (Coefficient of Determination)

The coefficient of determination  $r^2$  (also  $R^2$  or R-squared) measures the proportion of the variation in the dependent variable accounted for by the independent (explanatory) variables; i.e. the ratio of explained deviation and total deviation. This calculation returns a percentage. The Coefficient can be used to rate the goodness-of-fit of a linear model. However, it has its deficiencies. The denominator does not change and the numerator can only increase. Therefore, each additional variable added to the model will probably increase the numerator at least slightly, resulting in a higher  $r^2$ , even when the new variable causes the model fit to become worse.

The adjusted  $r^2$  value is an attempt to correct this deficiency by adjusting both the numerator and the denominator by their respective degrees of freedom. For this reason, adjusted  $r^2$  is generally considered to be a more accurate goodness-of-fit measure than  $r^2$  [1].

This delivers two dependent variables: The awarded points and the time needed to understand a given Statechart. Looking at the scatterplots of the two variables and the various independent variables, no similarity can be seen (see Figure 7.2). However, to test for correlation between paired samples of the dependent variables,

 $<sup>^{2}</sup>$ The time needed to correctly interpret the Statechart's response to signals was measured. This is the *objective* user rating.



Figure 7.2.: A scatterplot that shows the awarded points for the analyzed Statecharts plotted against the needed time to understand these Statecharts

a correlation test is performed. A variant of the correlation coefficient, called Spearman's Correlation Coefficient, is used as the data is not normally distributed. The distribution was verified qualitatively by plotting histograms and Q–Q plots (see Definition 6.1.3). The correlation test supports the assumption of no correlation. With a correlation coefficient of r = 0.08, one can assume that there is no correlation between the awarded points and the time needed to understand a Statechart. It seems that a pleasing layout is no guarantee for easy understanding. This also implies that the two dependent variables have to be viewed separately. For each variable to be explained, a separate model has to be constructed.

The number of cases to study has to be reduced, as there should be only one model for each dependent variable under observation (points awarded to the Statecharts and time used to understand the Statecharts).

The next category concerns the experience of the test subjects. To test whether different models should be constructed for beginner and advanced users, an independent variable (transition length) is tested, while controlling if the test subjects' experience has an influence.

#### **Dummy Variable Regression**

To do this, dummy variable regression (Miller and Erickson [41]) is applied. Dummy variable regression uses categorial predictors or  $factors^3$  as they are called in the used

<sup>&</sup>lt;sup>3</sup>An example of a factor would be the complexity of a Statechart.



Figure 7.3.: Dummy variable regression example

statistical software. The categories of these factors are called  $levels^4$ . Statistical tools offer functions to calculate a linear regression model where the dependent variable in the regression equation is modeled as a function of the independent variables. Note that "linear" regression denotes a linearity in the composition of the model, not in the regression terms themselves. The tool automatically uses factors in linear regression if they are included in a model. The first level of a factor is always used as a baseline level against which the other levels are tested, so it is not shown in the output. For k categories, k - 1 dummy variables are needed.

Simply speaking, the dummy variable acts as a switch whether a variable is included in the model or not. If the dummy variable is set to 1, the factor is included, if it is set to 0, the factor is excluded.

A simple example might help to understand the concept. Figure 7.3 shows exemplary data as a scatterplot. The data is partitioned into three groups, depicted by the different symbols. These groups can be represented by different linear regression lines. Instead of creating three regression models, one can add dummy variable factors to the linear model, encoding the group of the data point with the associated symbol (see Listing 7.1, the names of the symbols triangle and square are used as dummy variables, circle is the baseline).

A function call in the statistics software returns the coefficients for all three groups of data points. Listing 7.2 provides a sample printout. From this point onwards, the printouts are not displayed. Instead, the important information is presented as an equation containing the coefficients rounded to three decimal places. Furthermore, the adjusted  $r^2$  value is given to indicate the goodness-of-fit. The coefficients returned

<sup>&</sup>lt;sup>4</sup>The factor *complexity* has the levels simple, hierarchical, and parallel.

| Listing | 7.1: | Exempl | lary d | lummy | variable | levels |
|---------|------|--------|--------|-------|----------|--------|
|---------|------|--------|--------|-------|----------|--------|

|          | triangle | square |
|----------|----------|--------|
| circle   | 0        | 0      |
| triangle | 1        | 0      |
| square   | 0        | 1      |

for the example regression model are 13.17 for the baseline intercept, 2.126 for the triangle symbols, and 6.606 for the square symbols. The coefficient for the slope is 1. The baseline level is the circle group, giving the following formula for a regression line:

$$y_{circle} = 13.17 + x$$

To find the formulas for the other groups, the intercepts returned for the different symbols are added to the intercept of the original regression line:

$$y_{triangle} = 13.17 + 2.126 + x$$

and

 $y_{square} = 13.17 + 6.606 + x$ 

This is how dummy regression encodes three different functions in one model.

Listing 7.2: A summary of an exemplary linear regression model

```
Call:
lm(formula = y ~ x + symbol)
Residuals:
           1Q Median
                             ЗQ
    Min
                                      Max
                         3.5555 11.9747
-14.2398 -2.9939 0.1725
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
             13.16989 1.01710 12.948 < 2e-16 ***
(Intercept)
               1.00344 0.02848 35.227 < 2e-16 ***
х
               2.12586 1.00688 2.111
                                         0.0364 *
triangle
              6.60586 1.00688
                                  6.561 8.7e-10 ***
square
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.034 on 146 degrees of freedom
Multiple R-squared: 0.898, Adjusted R-squared: 0.8959
F-statistic: 428.6 on 3 and 146 DF, p-value: < 2.2e-16
```

If complexity levels are tested instead, the dummy variables would look like the ones shown in Listing 7.3.

As one can see, the first level of the factor (simple) is taken as the baseline category. If the first dummy variable is set to 1, the effects of observing hierarchical

Listing 7.3: Dummy variable levels for complexity

|              | hierarchical | parallel |
|--------------|--------------|----------|
| simple       | 0            | 0        |
| hierarchical | 1            | 0        |
| parallel     | 0            | 1        |

Statecharts would be added to the intercept. The second dummy variable does the same for parallel Statecharts.

If

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \epsilon_i$$

is a simple linear equation, the correct model for the dummy regression takes the form

 $y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n + \gamma_1 d_1 + \dots + \gamma_n d_n + \epsilon$ 

where y denotes the dependent variable,  $x_i$  the independent variables, and  $d_i$  the dummy variables (or *contrasts*).

#### 7.1.2. Selection of Data Based on Test Subject Experience

The test revealed that experience is not a significant factor in the user's rating. It can be seen that TRL (the average transition length) has a significant influence, while the experience does not. This does not hold for the second test, modeling the time taken, which differs significantly between beginners and advanced users. This has been expected, as learning and experience significantly lower the time taken to understand a Statechart. However, the difference in time needed is only in intercept value (about 70 seconds), not a change in slope.

The test subjects for the first and second experiment are the same persons, with the exception of five students who did not participate in the second experiment. Therefore, the data from the first and second experiment can not be brought together into a single model. The data would be influenced by the learning effect of the participants, also the sample size would not be enlarged, as the participants are the same. If the effect of learning on user ratings was the goal, another experiment would have to be designed. The effect of learning on the dependent variable time was already part of the experiment conducted earlier, and the effect of experience influences the regression line for the time needed to understand a Statechart and the independent variables only by an offset. It was decided that the target group for the application of the analyzed aesthetic criteria are experienced users. Therefore, the data for participant of beginner level were discarded.

#### 7.1.3. Separation of Complexity Levels

Looking at data scatterplots depicting the relation between dependent and independent variables for the different complexities (shown in Appendix E), it can be

observed that the hierarchical and parallel plots look similar. To test whether this is true in a statistical sense, this was also tested by *dummy variable regression*. Here, complexity was used as a factor and tested for differences.

Apparently, hierarchical and parallel Statecharts differ significantly from simple Statecharts. The result shows that hierarchical and parallel Statecharts were awarded about 2.3 points less in the experiment than simple Statecharts if they share the same average transition length. It was observed that hierarchical and parallel Statecharts return similar results (their results differ only 0.15 points from each other), whereas simple Statecharts are rated statistically better.

If the effect of complexity from the viewpoint of simple Statecharts is regarded, another model with simple Statecharts encoded as a dummy variable has to be tested. Now, hierarchical and parallel Statecharts form the baseline together. If the dummy variable is set to 1 (indicating a simple Statechart), the response of the linear model is about 2.3 points higher.

#### Definition 7.1.3 (Wilcoxon Rank-Sum Test)

The Wilcoxon rank-sum test (also called the Mann-Whitney U, or Mann-Whitney-Wilcoxon (MWW) test) is a non-parametric statistic test of significance to decide whether two samples of observations are distributed the same way.  $H_0$  states that the two samples are drawn from a single population, indicating that their probability distributions are equal. It requires the two samples to be independent, and the observations to be ordinal or continuous measurements, i.e. it can be decided between any two observations which one is greater.

Looking at the other independent variables, the separation of simple and more complex Statecharts seems reasonable for the dependent variable awarded points, i.e. the subjective user rating. Further testing shows, that this holds for statistical significant and nearly significant variables.

As they do not differ significantly from each other (a Wilcoxon rank-sum test returns a p value of 0.649, indicating no significant difference), parallel Statecharts are considered a special form of hierarchical Statecharts for all future tests. The dummy variable regression is updated in Listing 7.4 to reflect this change.

Listing 7.4: Dummy variable levels, updated

|        |            | higher | complexity |
|--------|------------|--------|------------|
| simple |            |        | 0          |
| higher | complexity |        | 1          |

#### 7.1.4. Wanted and Unwanted Data Correlation

The first step in the analysis was to produce scatterplots of awarded points and needed time in dependency of each independent variable. The scatterplots containing the variable *awarded points* were separated into simple and higher complexity (the scatterplots can be found in Appendix E). Examination of these scatterplots revealed no obvious relationships between the dependent variables and any of the



Figure 7.4.: Two plots that show an example of linear correlation between two variables. Both have a correlation coefficient for x and y of about 0.5. However, Subfigure (b) in reality has three independent data sets with a correlation coefficient near zero.

regressors although some relationships were suggested. Specifically, there appeared to be a negative relationship between awarded points and average transition length (TRL) as well as awarded points and the number of intersection faults (IF) at simple complexity. Furthermore, a slight positive correlation between time and the distance to a normal line (all states included,  $D_{NA}$ ), can be seen.

Correlation matrices were generated from the collected data. This helps to inspect the connection between user preference (respective time needed to understand a given Statechart) and the variables under investigation. The entries in these matrices are correlation coefficients.

The correlation coefficients alone might be ambiguous, as shown in Figure 7.4. If the data from the experiment is used without distinction between different layouts and complexities, the data might look like Subfigure 7.4b. The correlation coefficient may fail to describe the data correctly if for example the correlated values are clustered. This was ruled out by reviewing the scatterplots of the different variables. The partitioning of complexities took care of this matter in all existing cases.

While a strong correlation of independent variables with our dependent variables (awarded points and time needed) is good, correlations between the independent variables is not, as it cannot be said specifically which of the correlated variables caused the effect apparent in the dependent variable under observation. The effect of correlated independent variables has to be considered when combining the different metrics into a single model. Therefore, this will be discussed in the corresponding section.

To formally define when a correlation is declared to be present, the following hypotheses are formulated:

• Null hypothesis,  $H_0$ : There is no significant correlation between the tested



Figure 7.5.: Example of a correlation matrix: The main diagonal line contains the different variables which were tested for bivariate correlation. The upper triangular matrix contains Spearman's correlation coefficients at the intersection of the two tested variables. Greater coefficients are represented by bigger numbers. The lower triangular matrix contains scatterplots at the intersection of the two plotted variables. A regression line is shown in the scatterplots. The scales for the scatterplots are placed on either side of the matrix for spacing reasons. This placement is specified in the plotting function and cannot be changed.

variables.

• Alternative hypothesis,  $H_1$ : There is a significant correlation between the tested variables.

The correlation coefficient were tested with a level of significance p = 0.05, which means the level of confidence is 95 percent (i.e. the probability that  $H_0$  is rejected when  $H_0$  is false is at least 95 percent, which is statistically acceptable). For a sample size of 19 (the number of participants) and p = 0.05 the threshold for accepting the null hypothesis is 0.4555 [12].

The correlation between dependent and independent variables is shown in Table 7.1. The matrices generated for the correlations between the independent variables are given in Appendix D. An exemplary correlation matrix is shown in Figure 7.5. Notice the strong linear correlation between the average transition length (TRL) and the number of straight transitions ( $N_{ST}$ ) in the Statechart, which causes the high correlation coefficient seen in the upper part of the matrix.

Other work simply correlates the different metrics with a dependent variable and

records the observations. From the results, assumptions about the effect of these variables are made. All metrics are essentially examined separately. This work takes a closer look at the independent variables. Furthermore, it is a goal of this work to study the relations between the metrics. With these observations, a composed model of various metrics might explain the user rating even better.

The table shows a noticeable difference between simple and higher complexity Statecharts in subjective user rating as well as in objective user rating. No significant variable appears in more than one column. Still, the representation of each dependent variable with a single model is possible.

Again, dummy variable regression is used to combine the different complexities of the subjective rating into one model. As noted before, one can use the dummy variable as a switch to turn different parts of the regression equation on or off. As the independent variables behave very different when complexity levels are concerned, one has to describe the change in intercept as well as the change in slope of the model. To include different slopes for different variables, the dummy variable equation has to be updated:

$$y = \alpha + \gamma d + \left(\sum_{i=1}^{n} (\beta_i + \delta_i d_i) \cdot x_i\right) + \epsilon$$

Now, the dummy variable d not only affects the intercept, but the slope as well. This is represented in the equation with the coefficient  $\delta$ . Therefore, it is possible to include both, simple and higher complexity Statecharts, in the same model for subjective rating.

The correlation tests in Table 7.1 only show the isolated correlation coefficient of an independent variable with the observed dependent variable. However, another test is needed to decide whether the variable is still significant when the complexities are combined. Furthermore, quadratic influences can be seen in the plots. These influences can be tested in linear regression by adding squared terms to the equation. To find the significant components for the complete model, it has to be decided which metrics to include. Each metric is tested in a separate linear model with each of the dependent variables. From this it can be concluded which metrics have a significant impact on the users' rating in a combined complexity model. To decide if there is an influence, the significance and the adjusted  $r^2$  are considered. If there is more than one alternative for a metric, the one with the most significant effect in the model is chosen.

## 7.2. Analysis of Individual Aesthetic Criteria

The primary objective is to gain insight into the influence of various Statechart aesthetics on the user rating. A secondary objective is to combine these criteria to form a model which describes the observed effects. If such a model would fit the data good enough, it could be used to predict the user rating of future Statecharts. This would prove beneficial for the automatic generation of a Statechart layout.

| Metric Name                                                                                                           | awarded points $l$ simple complexity                              | awarded points<br>1. higher complexity                                          | needed time $J$ all complexities                                               |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| TRL                                                                                                                   | 0.0995                                                            | -0.5415                                                                         | -0.0739                                                                        |
| log.WHR                                                                                                               | 0.4759                                                            | -0.0712                                                                         | -0.1444                                                                        |
| $\begin{array}{c} \mathrm{SU}_{\mathrm{S}} \\ \mathrm{SU}_{\mathrm{T}} \\ \mathrm{SU}_{\mathrm{A}} \end{array}$       | $0.4466 \\ 0.4466 \\ 0.4466$                                      | 0.0564<br>-0.2063<br>-0.0162                                                    | -0.2018<br>0.5553<br>-0.014                                                    |
| P <sub>I</sub><br>P <sub>F</sub>                                                                                      | 0.0126<br><b>0.4908</b>                                           | -0.2342<br>0.0022                                                               | -0.1051<br>-0.0162                                                             |
| $\begin{array}{c} \mathrm{NB}_{\mathrm{AVG}} \\ \mathrm{NB}_{\mathrm{MIN}} \\ \mathrm{NB}_{\mathrm{MAX}} \end{array}$ | -0.0753<br>-0.2827<br>-0.0295                                     | $0.1946 \\ -0.0157 \\ 0.2535$                                                   | -0.133<br>-0.2814<br>-0.189                                                    |
| D <sub>I</sub><br>D <sub>M</sub><br>D <sub>NA</sub><br>D <sub>NS</sub><br>D <sub>NR</sub>                             | -0.2684<br>-0.3191<br>-0.3174<br>-0.3174<br>-0.3174               | -0.1711<br>-0.1707<br>-0.1163<br>-0.1737<br>-0.1394                             | 0.3949<br>0.5385<br>0.5427<br>0.5179<br>0.4598                                 |
| N <sub>S</sub><br>N <sub>SS</sub><br>N <sub>HS</sub>                                                                  | NA<br>NA<br>NA                                                    | $0.002 \\ 0.002 \\ 0.002$                                                       | $\begin{array}{c} 0.612 \\ 0.612 \\ 0.612 \end{array}$                         |
| IF<br>IF <sub>TN</sub><br>IF <sub>TT</sub><br>IF <sub>TL</sub><br>IF <sub>LL</sub>                                    | -0.4284<br>-0.3276<br><b>-0.5341</b><br>-0.1595<br><b>-0.6036</b> | $\begin{array}{c} 0.2352 \\ -0.2218 \\ -0.1942 \\ 0.2451 \\ 0.2463 \end{array}$ | $\begin{array}{c} 0.2264 \\ -0.0016 \\ 0.0379 \\ 0.1898 \\ 0.1827 \end{array}$ |
| FL                                                                                                                    | -0.175                                                            | -0.2959                                                                         | -0.0219                                                                        |
| N <sub>T</sub><br>N <sub>ST</sub><br>N <sub>PT</sub><br>N <sub>SPT</sub>                                              | NA<br>0.0662<br>0.088<br>-0.1711                                  | 0.0107<br><b>0.4736</b><br>-0.4378<br>0.1778                                    | <b>0.6018</b><br>0.2507<br>0.0789<br>0.1728                                    |

 Table 7.1.: Spearman's correlation coefficients for combinations of dependent and independent variables. Significant correlations are shown in boldface.

As work published about layout aesthetics for Statechart is sparse, there are no given layout metrics for Statechart aesthetics. This was the cause for the development of the metrics in Chapter 4. To investigate these, a general strategy is followed:

Given a set of data points, a linear regression is utilized to calculate a best fit for a straight regression line. If a quadratic correlation shows in the variable's scatterplots, the independent variable is squared and also added to the model to adapt the regression line. The regression coefficients are taken from a linear regression model given by the statistic software and displayed as an equation for a regression line. If more than one alternative of a metric is reviewed, only the best fitting metric is explained in detail. However, the adjusted  $r^2$  of the alternatives is stated for comparison purposes.

If there are correlations between the independent variable under observation and other independent variables, they are discussed in the later part of each variable's section. After each of the metrics is investigated, a multivariate regression model is built. The multivariate linear regression is a linear regression with more than one independent variable.

#### 7.2.1. Transition Length

The goal of this metric is to find out whether the transition lengths of a Statechart influence the user rating. It is expected that the users prefer shorter transition lengths as they did so in experiments regarding graph aesthetics (Coleman and Parker [14]). As far as understanding a Statechart is concerned, shorter transition lengths might help to track the activation of states. However, very short transitions could be counterproductive, as states are not readily discernible if placed too close to each other (Davidson and Harel [18]).

To find out if the transition length has a significant influence on the user rating, the independent variable TRL was tested against the dependent variables points and time.

To test for a significant correlation, two simple linear regression models are calculated. However, controlling for complexity, another term has to be added: the dummy variable mentioned before, encoding the complexity.

The linear model reveals no unexpected results. The transition length is only significant in higher complexity Statecharts. The model returns a quite large adjusted  $r^2$  value of 0.234 with p = 0. The following equation represents the linear model:

$$points = -2.147 + 7.624 \cdot d + (0.018 - 0.088 \cdot d) \cdot TRL$$

The linear model for the dependent variable points shows a good linear fit (see Figure 7.6a for a plot of the model function). This is consistent with the regression line seen in the scatterplots (see Appendix E), which shows an almost linear relation between the average transition length and the awarded points. The result indicates that in simple Statecharts the average transition length is not a factor for the subjective user rating (or maybe there was not enough variance of transition lengths).



(a) Points as a function of TRL, at different complexities

(b) Time as a function of TRL

Figure 7.6.: Two scatterplots that shows user ratings in dependence of average transition length. The lines represent linear model functions.

In higher complexity Statecharts, which already burden the user with more components, longer average transition lengths receive bad ratings. The reason for this could be the growing disorientation in the already complex Statecharts.

The second linear model for the dependent variable time shows no significant correlation between the time needed to understand a Statechart and its average length of transitions (see Figure 7.6b for a plot of the model function). This has been expected, as the original scatterplot showed a nearly horizontal regression line, indicating no relation between the two variables. As the metric is nearly significant with p = 0.0626, the linear model plot is shown here. The regression line is given by:

$$time = 143.82 - 0.198 \cdot TRL$$

A rather strong correlation can be seen (correlation coefficient of 0.81) between this variable and the number of straight transitions. This can be explained by looking at the more complex hierarchical Statecharts. The states are more clustered in Statecharts of higher complexity. As they have more states and more transitions, the average length of a transition is shorter than it is in Statecharts of simple complexity. The same holds true for polyline transitions, although the correlation is weaker (correlation coefficient of 0.58). Last, a notable correlation with the Statechart flow is apparent (correlation coefficient of 0.55). It seems that Statecharts with short average transition lengths possess smaller angles of directional change between incoming and outgoing transitions. However, as noted above, Statecharts with small average transition lengths tend to be ones of higher complexity. A reason might be the relatively linear construction of many Statecharts of higher complexity.

#### 7.2.2. Width to Height Ratio

The general shape of a Statechart seems to have an influence on the user preference. By looking at the ratio between width and height, it might be possible to find out if the user prefers square or oblong Statecharts.

Again, the linear regression models are fitted in R. This time, the logarithmized WHR is tested, since the original WHR contains logarithmic data. In contrast to the correlation coefficient in Table 7.1, the ratio is now significant in both complexities for the subjective user rating. The adjusted  $r^2$  is 0.09543, p = 0. A quadratic correlation can be seen in the scatterplot for points and log.WHR, so the squared width to height ratios are added to the model (shown as log.WHR<sup>2</sup> in the equations), testing for a quadratic influence. This raises the significance, as well as increasing the adjusted  $r^2$  value to 0.105. The increased value indicates a better fit. The equation for the regression line is given by the returned coefficients as:

points = 
$$-2.557 + 3.198 \cdot d$$
  
+ $(3.869 - 8.796 \cdot d) \cdot \log.WHR$   
+ $(6.453 - 10.417 \cdot d) \cdot \log.WHR^2$ 

The model for the dependent variable time containing log.WHR is also significant if a squared term is added. The adjusted  $r^2$  is 0.116, with a probability p = 0. The coefficients are used to construct the regression equation:

time = 
$$147.50 - 24.73 \cdot \log.WHR - 134.68 \cdot \log.WHR^2$$

The fitted models for the two dependent variables can be seen in Figure 7.7.

Regarding the subjective user rating, the quadratic fit indicates that users prefer their simple Statecharts rather oblong. The lowest points were awarded to Statecharts with a ratio of about 0.5, Statecharts which were narrower or wider received better ratings. For complex Statecharts, the preference seems to have changed to charts with a very low ratio of 0.25. However, the only Statecharts with this kind of ratio were the charts of Linear Layer Layout (LLL) design (the Statechart layouts are shown in Appendix B). The correlation may stem from the sheer number of Statecharts with a width to height ratio of about 2. As almost every other layout shared this ratio, the lower ratings from Alternating Dot Layout Backwards (ADBL), Alternating Linear Layout (ALL), and Arbitrary Layout (AL) have an effect on the good ratings of the ADL, making the narrow charts seem more attractive.

A ratio close to one seems to lessen the understandability. Most time needed to understand a Statechart was seen in Statecharts of ratios 0.75 to 1.25. This further encourages the theory that oblong Statechart are easier to understand. The placement on a straight line might be a possible explanation, see Subsection 7.2.6.



(a) Points as a function of log.WHR, different complexities shown

(b) Time as a function of log.WHR



Correlation with other independent variables:

There is a correlation between log.WHR and the space usage metrics  $SU_S$  and  $SU_A$  with  $r \approx 0.6$ . A possible explanation is found in the type of Statechart. A ratio below 1 indicates a Statechart with a smaller width than height. This is usually found in Statecharts in the LLL style. These Statecharts all have small states, leading to a low space usage compared to Statecharts of layouts ADL, ADBL, and ALL.

#### 7.2.3. Usage of Available Space

This metric was created to find an optimal ratio between the area occupied by states and the Statechart area. If a Statechart is dense, it gets hard to see what is important. On the other hand, it might be a waste of space if the Statechart is wide and sparse.

This is the first aesthetic criterion measured with alternative metrics. The  $SU_S$  and  $SU_A$  metrics try to describe the occupation of the Statechart with the smallest drawing units. The  $SU_T$  metric takes a different approach. It assumes that users perceive the space delimited by hierarchical states as entirely occupied, thus adding their area to the space taken up by states on the top level.

To decide which metric gives the best model fit, three different linear models are constructed for each dependent variable. As the metrics do not differ from each other at simple complexity, the intercept and slope are the same for all three models at base level. Without squared terms, the model explaining the awarded points with the used space when considering only topmost states (metric  $SU_T$ ) seems to be the most significant (adjusted  $r^2$  0.05774, p = 0). This is consistent with the correlation table (Table 7.1), where it fared best. However, the relation between the used space and the subjective rating seems to be quadratic. A model including quadratic terms using the SU<sub>A</sub> definition of the metric has an higher adjusted  $r^2$  value of 0.0982 (p = 0) and will be used in the linear regression. The coefficients gained from the linear regression model indicate the following equation:

The results for the linear model explaining the needed time with metric  $SU_T$  gives a surprisingly high adjusted  $r^2$  value of 0.3389 with p = 0. However, the strong correlation between time and  $SU_T$  seems to be an effect of intercorrelation between  $SU_T$  and the complexity of the Statechart. A strong correlation between  $SU_T$  and the number of transitions as well as the number of states can be seen. It seems logical that the time needed to understand a Statechart increases with the complexity of that Statechart.

The SU<sub>T</sub> metric does not seem to be a good way to describe the space usage. If the SU<sub>T</sub> model is dismissed, the next best fit is the SU<sub>S</sub> model. The correlation between SU<sub>S</sub> and the time used is almost linear. The model has an adjusted  $r^2$  value of 0.0613 and p = 0. The linear model returns the coefficients for the regression line:

time = 
$$160.301 - 3.451 \cdot SU_S$$

The slope might be irritating. It indicates that Statecharts with a low space usage need more time to understand than those with more occupied space. Intuitively, one associates more states with a higher space usage, which is technically correct. However, the space usage metric gives the percentage of used space. The Statecharts with more states (hierarchical Statecharts) actually have a lower usage of Statechart space. This stems from the usage of hierarchical states, which need a lot of drawing space, but are not counted in the calculation. This leads to a large Statechart area in comparison to the number of states. It seems that this metric is also correlated with the complexity and might not be representative for the time needed.

The model fits are displayed in Figure 7.8. Subfigure 7.8a indicates an optimal space usage of about 20 % for simple complexity Statecharts, whereas Statecharts of higher complexity receive the lowest ratings at 15 %. Their rating rises with lower space usage, indicating that the inclusion of white space is important. The rise in awarded points towards higher space usage should be regarded with caution, as the rating is only interpolated for percentages beyond 20 %.

The three different variants of this metric are naturally correlated. Only one can be used in a linear model at the same time. Other correlations include the distance to a straight line, which is heavily correlated at simple complexity (with Spearman's correlation coefficient r between 0.78 and 0.83), the number of transitions with SU<sub>T</sub>,



(a) Points as a function of SU<sub>A</sub> at different complexity levels

(b) Time as a function of  $SU_S$ 

Figure 7.8.: Two scatterplots that show user ratings in dependency of the used Statechart space.

r = 0.91, and the number of simple states (N<sub>SS</sub>) with SU<sub>T</sub> (r = 0.92). This is expected, as the highest number of states is with the charts of highest complexity, which in turn implies a large hierarchical state, taking up a large amount of Statechart drawing space. Furthermore, the number of intersection faults IF is strongly correlated with a correlation coefficient of 0.78. This is because of the correlation between N<sub>S</sub> and N<sub>T</sub>, which is almost completely linear. The high number of transitions causes a rise in intersection faults. A correlation with the number of states would seem logical, but cannot be seen in the correlation matrix for metric SU<sub>A</sub> and SU<sub>S</sub>. With this amount of correlation, this metric would be a bad candidate for the composite metric.

#### 7.2.4. Placement of Initial and Final States

It is assumed that the ideal position for an initial state is in the upper left corner and the ideal position for the final state is at the bottom right of the Statechart as proposed in Chapter 3. To verify this, the positions of both were measured and are now related to the user preference.

Figure 7.9 shows the placement of initial and final states together with the awarded points. A regression plane shows the gradient in both figures. The figures support the hypothesis: The upper left corner of a Statechart seems to be a preferred position of the initial state. The second figure indicates that users prefer a placement of the final state in the lower right corner.



tial state placement in a Statechart.



Figure 7.9.: Rating of initial and final state placement, displayed in a 3D scatterplot. The grid depicts a regression plane through the data points. The z axis represents awarded points.

The correlation table indicates  $P_I$  to be insignificant. This is confirmed by the linear model (see Figure 7.10). The only significance can be found in the position of the final state. The coefficient for the intercept is not significant in higher complexities. However, contrary to the correlation table, the placement of the final state seems to have an effect on the awarded points in higher complexities. The adjusted  $r^2$  value is 0.1038, with p = 0.

This gives the equation

points = 
$$-4.028 + 1.693 \cdot d + (0.042 - 0.021 \cdot d) \cdot P_F$$

The linear model for time shows no significant influence of the placement of either state on the objective user rating. The time needed to understand a Statechart seems not to depend on the position of either initial or final state.

The insignificance of the initial state placement is unexpected. If one compares only the ADL and ADBL charts, an advantage in the subjective user rating can be seen for the ADL charts. The ADL places the initial state at the left border of a Statechart, in contrast to the ADBL which places it at the right. However, the advantage of top left initial state placement does not seem to be significant for general Statechart layout, although a tendency towards higher ratings could be seen in Subfigure 7.8a.

At higher complexity levels, the placement of the initial state is correlated with the usage of available space in the SU<sub>S</sub> and SU<sub>A</sub> metric (r = 0.62 resp. 0.65). Another correlation can be seen with the NB<sub>AVG</sub> and NB<sub>MIN</sub>, returning a correlation coefficient of r = 0.70. However, this can be accounted to a few data points that are



Figure 7.10.: A scatterplot that shows points in dependency of the final state placement. The lines represent linear model functions at different complexity levels.

separated from the rest (see the correlation matrices in Appendix D). The placement of the final state does not seem to be significantly correlated with any other metric. However, slight correlations can be seen with the number of transitions  $(N_T)$  and the number of label-label intersection faults (IF<sub>LL</sub>).

#### 7.2.5. Distances Between Node Borders

The metrics  $NB_{AVG}$ ,  $NB_{MIN}$ , and  $NB_{MAX}$  evaluate the space between a state or connector border and its nearest neighbor (not to be confused with the meaning of neighbor in graphs). The distance indicates whether a Statechart is dense or spare. It would seem that a Statechart is easier to read if there are not as much parallel lines in direct vicinity of a state. Also, state borders which are not immediately recognizable as such may be mistaken for transitions or vice versa.

The data gives a significant model for  $NB_{MIN}$ , in both dependent variables points and time.

The subjective rating model returns an adjusted  $r^2$  value of 0.02494 with p = 0.01775. The NB<sub>MAX</sub> metric returned a higher adjusted  $r^2$ . However, the NB<sub>MIN</sub> metric was chosen, as it is significant in all complexities, whereas the NB<sub>MAX</sub> metric was only significant in higher complexities. NB<sub>AVG</sub> was not significant in any complexity. The linear regression line is given with the following equation:

points = 
$$2.659 - 3.063 \cdot d + (-0.089 + 0.156 \cdot d) \cdot \text{NB}_{\text{MIN}}$$

Which gives a descending slope for simple complexity Statecharts and an ascending slope for Statecharts of higher complexities. Users seem to dislike widely spaced Statechart, if they are relatively simple. In higher complexities, the number of states makes it harder to separate the individual components. Therefore, added space improves the perception and in turn affects the rating.

The linear model for the time needed is also significant. With an adjusted  $r^2$  value of 0.05837 (p = 0), it exceeds the other NB metrics. The coefficients for the regression line form the equation

#### $time = 141.542 - 1.143 \cdot NB_{MIN}$

This indicates that less time is needed for the understanding of a Statechart with a higher minimum node distance. This confirms the aesthetic criteria 3.1.9. The "white space" in a Statechart has an influence on the understandability. More white space seems to lessen the time needed to understand a Statechart. An upper bound to this can not be estimated, as the Statecharts under observation all contained a reasonable amount of white space. However, it is expected that a large amount of white space is detrimental to the understandability. The model functions are shown in Figure 7.11.



(a) Points as a function of NB<sub>MIN</sub> at different complexity levels

(b) Time as a function of  $NB_{MIN}$ 

Figure 7.11.: Two scatterplots that show user ratings in dependency of distance to nearest node border. The lines represent linear model functions.

As noted in the sections above,  $NB_{MIN}$  and  $NB_{AVG}$  are correlated with the placement of the initial state and the  $SU_A$  and  $SU_S$  metrics. Furthermore, there seems to be a correlation with the number of transitions. At simple complexity, the number of polyline transitions ( $N_{PT}$ ) is correlated with all three variants of this metric. The correlation coefficient is 0.7 for each. At higher complexities the correlation is moved

to the number of spline transitions ( $N_{SPT}$ ). Although  $NB_{MIN}$  is no longer highly correlated with  $N_{SPT}$ , the correlation coefficient of  $NB_{MAX}$  and  $NB_{AVG}$  are increased to 0.83 and 0.79 respectively. An explanation is the increasing number of lines in a Statechart, which naturally shortens the distances to the next node border.

#### 7.2.6. Distance of States to Straight Lines

The log.WHR metric confirmed that users prefer Statechart of oblong shape, in accordance to the Aesthetic 3.3.5. Maybe that is because the resulting linear placement facilitates the tracking of consecutive states. This metric is investigated to verify that the placement of states on straight lines has an effect on the user rating.

The subjective rating does not seem to be influenced significantly by the positioning of states. A significant influence can be seen at simple complexity for all five variants of this metric. However, the adjusted  $r^2$  of the best model fit is only 0.05282 for the D<sub>M</sub> metric (p = 0.0003). At higher complexity, no significant effect can be seen. The coefficients returned by the statistics tool are used in the equation

 $points_{simple} = 3.09 - 0.102 \cdot D_M$ 

The correlation with the time needed to understand a Statechart shows a completely different picture. Every metric is highly significant in the linear regression, the best fit being the  $D_{NA}$  metric. This is consistent with the correlation in Table 7.1, except for the  $D_{I}$  metric. However,  $D_{I}$  is almost significant in the table. The  $D_{I}$  metric showed the least goodness-of-fit of the models. As the visual analysis of the data's scatterplot showed a quadratic influence, a squared term was added to the model. This increased the adjusted  $r^{2}$  to 0.3115, the probability decreased to 0. The equation for the regression line is given as:

time = 
$$98.665 - 1.763 \cdot d \cdot D_{NA} + 0.041 \cdot D_{NA}^2$$

The model fit is visualized in Figure 7.12.

The plot visualizes nicely the expected relation between time needed and the placement of states on a straight line. The closer the states stay to a imaginary line, the better the user can follow the sequential action. The model function shows a slight rise towards a complete zero deviation. This may stem from the fact that the Statecharts with all states on a single line are almost exclusively of ALL design. This design has its own deficiencies, such as transitions that are hard to follow. However, they are still better rated than 50 % of all Statecharts. If one follows the idea of states placed on lines further, even non-straight lines come to mind (such as a circular placement of states). However, this is left to further research.

These five variants of the distance to a straight line metric are closely related to each other. At simple complexity, the three *normal line* variants are identical. Other significant correlations exist with the usage of Statechart space and the number of transitions. At simple complexity, a significant correlation (coefficient higher than 0.78) is seen. At higher complexities, this only holds for the SU<sub>T</sub> metric. The



(a) Points as a function of  $D_M$  at simple complexity (b) Time as a function of  $D_{NA}$ 

Figure 7.12.: Two scatterplots that show user ratings in dependency of distances to straight lines. The lines represent linear model functions.

coefficient is mostly lower, between 0.62 and 0.85. The highest correlation is the  $D_{\rm NR}$  metric. It seems that Statecharts with a high space usage of topmost states are the ones with distributed simple states in their hierarchical states. This is the case with the layouts LLL and AL. These were drawn by hand, so the layout algorithm of Kiel Integrated Environment for Layout (KIEL) seems to be more economic with the Statechart space. The borders of hierarchical states are drawn closer around the contained states. Furthermore, states are not placed arbitrary inside the hierarchical state, which leads to a better  $D_{\rm NR}$  rating.

#### 7.2.7. Number of States and Hierarchy Levels

This relates directly to the level of Statechart complexity. The number of simple states and the number of hierarchical states of each complexity level is counted. With these, the different complexity levels are compared against each other. Three options are examined: only simple states, only hierarchical states and the total number of states as the combination of both.

It is not possible to generate a model to describe the relation between awarded points and the number of states in a Statechart. The reason is found in the experiment design: Each complexity level has a fixed number of states. As the whole range of possible ratings is found on each complexity level, no conclusions can be drawn. Figure 7.13 illustrates this fact.

The time is highly correlated with the number of simple states in a Statechart. This is expected, as part of the Statechart complexity can be described by the number



Figure 7.13.: A scatterplot that shows points in dependency of the number of states. The data is jittered on the x axis to show overplotted data points.

of states in the chart. The increase in time consumption seems to be non-linear. A model containing a squared term gives an excellent fit with an adjusted  $r^2$  of 0.4324. The linear model coefficients are used to construct the following equation:

time = 
$$222.349 - 31.971 \cdot N_{SS} + 1.871 \cdot N_{SS}^2$$

The model function is shown in Figure 7.14.

This metric is highly correlated with the distance to a straight line metrics (correlation coefficient between 0.58 and 0.8). The conclusion drawn from this is that Statecharts with more states have a higher average distance to a straight line, which seems reasonable. A look at the scatterplots reveals that the different complexity levels each have a distinct cluster of points. Higher complexity Statecharts are generally rather quadratic in layout, as there are more states to distribute and connect with transitions. Also, the "alternating" layout strategies, which alternate between horizontal and vertical layout, tend to produce a layout that increases the distance to a straight line in Metrics  $D_{I}$ ,  $D_{M}$ ,  $DN_{A}$ , and  $DN_{S}$ . This was compensated for in Metric  $DN_{R}$  which was the only distance to a straight line metric not strongly correlated with the number of states. Another very high correlation can be seen with the SU<sub>T</sub> metric, as already described in Subsection 7.2.3.

#### 7.2.8. Intersection of Components

Labels have to be clearly recognizable and readable, transitions should be unambiguous to grasp the meaning of a Statechart. The impact of four different influences on the readability of Statecharts is researched:



Figure 7.14.: A scatterplot that shows needed time in dependency of the number of simple states. The line represents the linear model function.

- Transition crossing state: It is difficult to follow the transition through the state, as the state interrupts the eye tracking the transition (see Subfigure 6.24a).
- Transition crossing transition: The path of two or more transitions crosses, blending the transitions into another. This makes it impossible to tell which transition continues on which side (see Subfigure 6.24b).
- Transitions crossing/touching labels: If a transition touches a letter, it can change the appearance of that letter. Is the letter in the upper part of Subfigure 6.24c a l or a t, the letter in the lower part of the figure an I or a T?
- Labels crossing labels: If a label is superimposed on another label, it is hard to discern the single letters (see Subfigure 6.24d).

The individual categories have been put into linear models. The total number of intersection faults is correlated significantly with the subjective user rating. The linear model returns an adjusted  $r^2$  value of 0.08838, p = 0. Every coefficient is highly significant. The equation

points = 
$$2.829 - 4.306 \cdot d + (-0.615 + 0.947 \cdot d) \cdot \text{IF}$$

is gained from the linear regression model coefficients.

As seen before in other metrics, the resulting regression line has an ascending or descending slope based on the Statechart complexity. The model for simple complexity Statecharts indicates a decrease in points as the number of intersection faults increases. This was the expected behavior. However, Statecharts of higher complexity are rated better if they posses more intersection faults (see Figure 7.15a for a

### 7. Analysis of Statechart Aesthetics

graphical representation of the regression model). The behavior of the higher complexity linear model could be explained by the few outliers with a very good rating, but plenty intersection faults. They are caused by Statecharts with Linear Layer Layout which generally received good subjective ratings.

The linear regression model for the objective user rating shows an increase in the time needed to understand a Statechart if there are more intersection faults. The regression line is given as

time = 
$$121.29 - 9.438 \cdot \text{IF} + 1.548 \cdot \text{IF}^2$$

which gives a quadratic regression line, shown in Figure 7.15b, indicating that users have no problems with a few intersection faults. The higher the number of intersection faults, the more time is needed to compensate for the Statechart's shortcomings. The quadratic nature of the regression line indicates that high numbers of intersection faults are far worse than small numbers.



(a) Points as a function of IF at different complexity levels (b) Time as a function of IF

Figure 7.15.: Two scatterplots that show user ratings in dependency of total intersection faults. The lines represent linear regression model functions.

Taking a more detailed look at the specific fault categories, the number of labellabel crossings is the most significant. Its adjusted  $r^2$  is 0.1324, p = 0. Second to IF<sub>LL</sub> is the number of transition-transition crossings IF<sub>TT</sub>. The intercept of this model is not significant in higher complexities, lowering the adjusted  $r^2$  to 0.09996 for this metric. The transition-label crossing affects only higher complexities, although it is nearly significant in simple Statecharts, p = 0.054428. The crossing of nodes by transitions is only significant in simple complexity Statecharts. This can be explained by the low number of node-transition crossings in higher complexity Statecharts. Looking at the correlations between the various intersection faults and other metrics, a strong negative correlation can be seen for IF and IF<sub>TL</sub> with the usage of Statechart space metrics. They were already discussed in Subsection 7.2.3. For the regression model of time, there are no significant correlations, except for  $NB_{AVG}$ . This correlation can be ignored, as the influence of  $NB_{AVG}$  is insignificant on the dependent variables.



(a) Points as a function of FL at different complex-(b) Time as a function of FL ity levels

Figure 7.16.: Two scatterplots that show user ratings in dependency of Statechart flow. The lines represent linear model functions.

## 7.2.9. Directional Statechart Flow

Directional Statechart flow describes the amount of directional change the eyes have to follow while reading a Statechart. This is considered important for the reason that it is easier to follow a line of states going into the same direction, without having to search for the next state at an unpredicted location.

As a quadratic relation is seen in the scatterplots for this metric, a squared term is added to the model. The linear regression model returns an adjusted  $r^2$  of 0.1208, p = 0. The metric is significant in all terms. With the coefficients gained in the regression, the following equation is constructed:

points = 
$$9.606 - 11.163 \cdot d$$
  
+(-0.304 + 0.475 \cdot d) \cdot FL  
+(0.002 - 0.005 \cdot d) \cdot FL<sup>2</sup>



Figure 7.17.: A Statechart with a "good flow" and low subjective ratings

The model functions plotted in Figure 7.16a show a general decrease in rating for Statecharts with a high directional change, as expected. The increase in rating for simple Statecharts with a flow value over 70 is explainable by the type of Statecharts that returns such a high value for the flow metric.

The linear term in the model describing time in dependency of the Statechart flow is only nearly significant. However, the squared term is significant at the 0.05 level. This justifies the inclusion of the coefficient for the linear term in the following equation:

time = 
$$93.211 + 1.657 \cdot FL - 0.017 \cdot FL^2$$

The adjusted  $r^2$  value for this model is 0.009675, indicating a small influence on the objective user rating. This can be seen in Figure 7.16b, where the model function is shown.

The participants seem to dislike hierarchical Statecharts with very low flow metric ratings. This might be a fault of this metric. Its design incorporates only the angle of incoming and outgoing transitions for a state. The directional change of the transition between two states is not measured. This leads to a high rating for Statecharts which look like the one shown in Figure 7.17. One can see that almost every outgoing transition has an incoming transition directly in line. This leads to the good flow rating. However, the high amount of directional change makes the transition hard to follow. This could be a reason for the low rating of Alternating Linear Layout Statecharts.

The flow metric is only correlated with the average transition length at higher

complexities and with  $NB_{MAX}$  at simple complexity. As  $NB_{MAX}$  is only significant at higher complexities, this should be no problem. However, the correlation coefficient of 0.55 with TRL has to be kept in mind when composing a composite model.

## 7.2.10. Number of Transitions and Transition Bends

A transition is easier to follow if it has fewer bends. Straight transitions are therefore the easiest to follow. It is expected that Statecharts with (short) straight transitions are easier to understand.

The total number of transitions is consistent at each complexity level. As the partition in simple and higher complexity Statecharts reduces the amount of transition differences even further, the total number of transitions is not a good indicator for the subjective user rating. Furthermore, the this would constitute a structural metric instead of a layout metric. To gain more variability, the individual number of straight, polyline and spline transitions per Statechart is investigated, as these represent layout decisions. Of the three types, the number of straight transitions is the most significant indicator for the subjective rating of a Statechart. Users seem to prefer Statechart with more straight transitions. However, the significance is only given for Statecharts of higher complexity. With such small sample sizes, one has to be careful with the interpretation of the linear model. This metric suffers from the limitations of the data. As the type of transitions seems to be correlated with the layout of the Statecharts, the affinity of the participants to a specific layout can be a factor in this metric, adding unwanted correlations. Also, the use of absolute numbers makes this metric dependant on the complexity of the Statechart. The use of a relative measure might have been better suited.

The coefficients calculated in the regression model lead to the equation

$$points_{hierarchical} = -3.167 + 0.315 \cdot N_{ST}$$

Even though the significance is rather low, a very good adjusted  $r^2$  value of 0.1575 is returned, with a p numerical zero. See Figure 7.18a for a graphical representation

The model for the dependent variable time shows a high significance in the number of transitions. The adjusted  $r^2$  of 0.4023 is very high. This value increases even more with the inclusion of a squared term. The adjusted  $r^2$  value for this linear model with included squared term is 0.4304 (see Figure 7.18b). The linear model function is given as

time = 
$$205.407 - 23.457 \cdot N_T + 1.191 \cdot N_T^2$$

by the model coefficients.

The number of transitions is correlated with many other metrics. The most prominent correlation can be seen between the total number of transitions  $(N_T)$  and the  $SU_T$  metric, indicating that a high usage of available space by topmost states correlates with a high number of transitions. However, as the number of transitions and the  $SU_T$  metric are correlated with the number of states  $(N_S)$ , the correlation is not unexpected. The number of transitions and number of states can be used as



(a) Points as a function of  $N_{ST}$  at higher complexity (b) Time as a function of  $N_T$ 

Figure 7.18.: Two scatterplots that show user ratings in dependency of the number of transitions. The lines represent linear model functions.

a complexity measure. This explains the correlation between both and accounts for the high correlation coefficient of 0.81 with TRL, as the transition length is smaller in higher complexity Statecharts. Other correlations can be seen with the number of intersection faults. The more transitions are in a chart, the more intersection faults they can cause.

# 7.3. Composition of Multivariate Regression Models

After testing each metric independently, the ones to be included in the final model had to be chosen. The data from the individual metrics is collected in Table 7.2. The previous testing removed insignificant variables and chose between the different alternative metrics.

The approach used for variable selection is similar to the feature selection process minimal-redundancy-maximal-relevance (mRMR) described by Peng et al. [44]. One of the most popular approaches to feature selection is to select the features with the highest relevance to the dependent variable. Relevance is usually characterized in terms of correlation. This is known as maximal relevance. In feature selection, it has been recognized that the combination of individually good variables does not necessarily lead to a good model fit. Even if the variables are significant individually, the combination of two significant variables could result in them being no longer significant, if they are correlated too strongly. Therefore, minimum redundancy is

|                              | award          | led points     | needed time    |                         |  |
|------------------------------|----------------|----------------|----------------|-------------------------|--|
| Metric                       | p value        | Adjusted $R^2$ | p value        | Adjusted $\mathbb{R}^2$ |  |
| TRL                          | $0^{**}$       | 0.234          | 0.0626         | 0.009196                |  |
| log.WHR                      | 0***           | 0.105          | 0***           | 0.116                   |  |
| $SU_S$                       | $0^*$          | 0.07603        | 0***           | 0.0613                  |  |
| $\mathrm{SU}_{\mathrm{T}}$   | $0^{***}$      | 0.05774        | $0^{***}$      | 0.3389                  |  |
| $SU_A$                       | $0^{***}$      | 0.0982         | 0.7334         | -0.005153               |  |
| PI                           | 0.1754         | 0.006947       | 0.2786         | 0.002108                |  |
| $P_{\rm F}$                  | 0***           | 0.1038         | 0.653          | -0.002973               |  |
| NB <sub>AVG</sub>            | 0.2898         | 0.004233       | 0***           | 0.04287                 |  |
| $NB_{MIN}$                   | $0.0178^{***}$ | 0.02494        | $0^{***}$      | 0.05837                 |  |
| $\mathrm{NB}_{\mathrm{MAX}}$ | 0**            | 0.04843        | $0.0236^{***}$ | 0.01589                 |  |
| DI                           | $0.001^{*}$    | 0.04578        | 0***           | 0.121                   |  |
| $D_{M}$                      | $0^*$          | 0.05282        | $0^{***}$      | 0.2881                  |  |
| $D_{NA}$                     | $0.006^*$      | 0.03258        | $0^{***}$      | 0.3115                  |  |
| $D_{NS}$                     | $0.003^*$      | 0.03945        | $0^{***}$      | 0.2784                  |  |
| $\mathrm{D}_{\mathrm{NR}}$   | $0.006^{*}$    | 0.03365        | $0^{***}$      | 0.217                   |  |
| N <sub>S</sub>               |                |                | 0***           | 0.4324                  |  |
| $N_{SS}$                     |                |                | $0^{***}$      | 0.4324                  |  |
| $\mathrm{N}_{\mathrm{HS}}$   |                |                | $0^{***}$      | 0.4324                  |  |
| IF                           | 0***           | 0.08838        | 0***           | 0.1276                  |  |
| $IF_{TN}$                    | $0^{*}$        | 0.05756        | 0.982          | -0.003729               |  |
| $IF_{TT}$                    | $0^{***}$      | 0.09996        | 0.1791         | 0.003018                |  |
| $IF_{TL}$                    | $0.002^{**}$   | 0.04046        | $0^{***}$      | 0.04582                 |  |
| $\mathrm{IF}_{\mathrm{LL}}$  | $0^{***}$      | 0.1324         | 0***           | 0.06389                 |  |
| FL                           | 0***           | 0.1208         | 0.1008         | 0.009675                |  |
| N <sub>T</sub>               |                |                | 0***           | 0.4304                  |  |
| $N_{ST}$                     | $0^{**}$       | 0.1575         | $0^{***}$      | 0.1553                  |  |
| $N_{\rm PT}$                 | $0^{**}$       | 0.1132         | 0.0544         | 0.01006                 |  |
| $N_{SPT}$                    | $0.0587^{***}$ | 0.01575        | $0^{***}$      | 0.05722                 |  |

Table 7.2.: Comparison of significance levels for bivariate models

**Boldface** values mark the highest  $r^2$  for models with significant terms

\* Only significant in simple complexity \*\* Only significant in higher complexities \*\*\* significant in all complexities

considered. Essentially, the inter-variable correlation is minimized to obtain a better model fit.

Generally, the idea is to build the model by additive composition

$$f(S) = \sum_{i=1}^{n} c_i M_i(S)$$

with S being the Statechart under observation, and  $c_i$  the coefficients that determine the influence of metrics  $M_i$ , and n the number of included metrics.

Expressed as an equation according to the example in Section 7.1, this would be

user rating = 
$$\alpha + d\gamma$$
  
+ $(\beta_1 - d\delta_1) \cdot M_1$   
+ $(\beta_1 - d\delta_1) \cdot M_2$   
:  
+ $(\beta_{n-1} - d\delta_{n-1}) \cdot M_{n-1}$   
+ $(\beta_n - d\delta_n) \cdot M_n$ 

with d denoting the dummy variable, which is set to 0 for simple complexity Statecharts and set to 1 for Statecharts of higher complexity.  $\alpha$  is the intercept,  $\beta$  the individual coefficient of simple complexity term, whereas  $\gamma$  and  $\delta$  denote the same two for higher complexity.

To select the metrics suitable for a combined model, the correlation matrix for each dependent variable is consulted (see Figure 7.5 for an example of a correlation matrix). To find out which variables are correlated, the correlation coefficients in the upper triangular matrix are considered. In such a matrix, all variables are compared against each other, albeit bivariate (meaning that only two are compared at a time).

The correlation matrices are a good starting point to select variables for the model. However, as they only address bivariate correlation, the models generated with the information from the matrices have then to be tested for multivariate correlations.

This is done with the analysis of so called Variance Inflation Factors.

## Definition 7.3.1 (Variance Inflation Factor)

The Variance Inflation Factor (VIF) expresses the degree to which collinearity among the independent variables degrades the precision of an estimate. Its square root tells us how much the standard error is increased, compared to the standard error of uncorrelated independent variables. Typically, a VIF value greater than 10 is of concern (Myers [42]). Some authors set the critical value as low as 2.5 [2], others as high as 40 [1].

## 7.3.1. Subjective User Rating (Awarded Points)

The selected metrics highlighted in Table 7.2 are evaluated to build a multilinear regression model. Significant in simple and higher complexities are the metrics TRL, log.WHR,  $SU_A$ ,  $P_F$ ,  $NB_{MIN}$ ,  $D_M$ ,  $IF_{LL}$ , and  $N_{ST}$ .

| Metric                                   | VIF      |
|------------------------------------------|----------|
| TRL                                      | 52.575   |
| log.WHR                                  | 56.018   |
| $\log.WHR^2$                             | 78.725   |
| $SU_A$                                   | 355.815  |
| ${\rm SU_A}^2$                           | 181.193  |
| $NB_{MIN}$                               | 22.73    |
| $D_{M}$                                  | 236.685  |
| $P_{\rm F}$                              | 6.767    |
| $\mathrm{IF}_{\mathrm{LL}}$              | 8.966    |
| $N_{ST}$                                 | 1487.907 |
| $N_{ST}^2$                               | 3416.545 |
| $\mathrm{TRL}_{hierarchical}$            | 144.623  |
| $\log.WHR_{hierarchical}$                | 40.224   |
| $\log. WHR_{hierarchical}^2$             | 61.867   |
| $SU_{Ahierarchical}$                     | 4370.872 |
| ${{\rm SU}_{\rm A}}^2_{hierarchical}$    | 1463.381 |
| $\mathrm{NB}_{\mathrm{MIN}hierarchical}$ | 8.108    |
| $D_{Mhierarchical}$                      | 488.691  |
| $P_{\mathrm Fhierarchical}$              | 15.851   |
| $IF_{LLhierarchical}$                    | 8.067    |
| $N_{SThierarchical}$                     | 2391.651 |
| $N_{ST}^2_{hierarchical}$                | 4184.154 |

Table 7.3.: Variance inflation factors for complete composite subjective user rating model

\_

If all of these are put together into a linear model (with the appropriate squared terms, if applicable), the resulting adjusted  $r^2$  value is 0.477. This is a good model fit. However, the result is too much influenced by the correlations between the independent variables (see Table 7.3 for the variance inflation factors).

Therefore, the number of variables has to be reduced. Based on the correlation matrix and the inflation factors,  $N_{ST}$ ,  $SU_A$  and  $D_M$  are removed. This does not significantly impact the adjusted  $r^2$ , as its value only decreased by 0.09.

Table 7.4 shows the coefficients of the involved metrics. The metrics used are:

- TRL (Average transition length)
- log.WHR (Logarithmized width to height ratio)
- NB<sub>MIN</sub> (Minimum distance to the nearest node border)
- P<sub>F</sub> (Placement of the final state)
- IF<sub>LL</sub> (Number of label–label intersection faults)

The correlation matrix for simple complexity shows a rather strong correlation between the width to height ratio and the number of label–label intersections. However,

| Table $7.4.:$ | Model      | coeff      | icien | ts: |
|---------------|------------|------------|-------|-----|
|               | Awarded    | points     | as    | a   |
|               | function o | f selected | d inc | le- |
|               | pendent va | ariables.  |       |     |

| Metric                                  | Coefficient |
|-----------------------------------------|-------------|
| (Intercept)                             | -0.105      |
| TRL                                     | -0.013      |
| log.WHR                                 | 1.468       |
| $\log.WHR^2$                            | 4.45        |
| $NB_{MIN}$                              | -0.056      |
| $P_{\rm F}$                             | 0.025       |
| $IF_{LL}$                               | -0.994      |
| $(Intercept)_{hierarchical}$            | 1.513       |
| $\mathrm{TRL}_{hierarchical}$           | -0.074      |
| $\log.WHR_{hierarchical}$               | 1.867       |
| $\log. WHR_{hierarchical}^2$            | -5.077      |
| $NB_{MIN hierarchical}$                 | 0.235       |
| $P_{Fhierarchical}$                     | 0.011       |
| $\mathrm{IF}_{\mathrm{LL}hierarchical}$ | 1.018       |

Table 7.5.: Variance inflation factors for composite subjective user rating model containing selected variables

| Metric                                   | VIF    |
|------------------------------------------|--------|
| TRL                                      | 17.495 |
| log.WHR                                  | 7.914  |
| $\log.WHR^2$                             | 7.157  |
| $NB_{MIN}$                               | 4.52   |
| $P_{\rm F}$                              | 5.078  |
| $\mathrm{IF}_{\mathrm{LL}}$              | 6.341  |
| $\mathrm{TRL}_{hierarchical}$            | 30.66  |
| $\log.WHR_{hierarchical}$                | 9.158  |
| $\log. WHR_{hierarchical}^2$             | 9.055  |
| $\mathrm{NB}_{\mathrm{MIN}hierarchical}$ | 2.549  |
| $P_{Fhierarchical}$                      | 12.301 |
| $\mathrm{IF}_{\mathrm{LL}hierarchical}$  | 6.011  |

if composed into the linear regression model, an analysis of the variance inflation factor shows that the multivariate correlation between these two variables is acceptable. The higher factor of  $P_F$  in Table 7.5 is also not of concern. This factor is the product of a non-significant term in the model. These terms are discarded when the dummy variables are set to simple or higher complexity. A more concerning issue remains with the TRL metric. The high values indicate a correlation with one of the other variables. However, even after removing the variables one by one, the VIF stays greater than 10. As the removal of the TRL metric degrades the model far more than the slightly bigger error made when keeping the variable, the VIF of 30 is accepted. All of the above metrics are displayed as an equation:

$$points = -0.105 + 1.513 \cdot d \\ + (-0.013 - 0.074 \cdot d) \cdot TRL \\ + (1.468 + 1.867 \cdot d) \cdot \log.WHR + (4.45 - 5.077 \cdot d) \cdot \log.WHR^{2} \\ + (-0.056 + 0.235 \cdot d) \cdot NB_{MIN} \\ + (0.025 + 0.011 \cdot d) \cdot P_{F} \\ + (-0.994 + 1.018 \cdot d) \cdot IF_{LL}$$

The composed multilinear regression model is tested with the actual Statecharts that were subject to examination in the aforementioned experiment. The calculated response is then related with the subjective user rating. Figure 7.19 shows the data returned by the model. To put the value into context, the return value of the model and the spread of subjective user rating is shown. The average rating awarded to



Figure 7.19.: A plot that shows the difference between points calculated by the multilinear regression model and the actual points that were awarded by participants of the experiment. The grey bars depict the spread of subjective user rating, the dashed line indicates the average rating.

each Statechart was placed on the base line. The grey bars protruding in vertical direction from the base line indicate the spread between maximum and minimum rating for each Statechart. It can be seen that the model returns ratings that are inside the range of the subjective user ratings. The divergence from the line through the origin shows that the model does not ideally approximate the average ratings given. However, the difference between calculated and average rating of a Statechart is often less than 2.5 points. The average difference between these two (calculated as the mean of the absolute difference) is 1.48 points. The results can certainly be used to indicate a preference in user rating. The maximum deviation occurred at the rating of a parallel Statechart laid out according to the ALL. Statechart "c3-m3-l3" was misjudged by 5.03 points. The reason for this could be the ambivalent ratings that the Statechart received. This is in contrast to its neighbor "c3-m3-l4", whose rating was exceptionally well estimated and which received uniform ratings.

Another cause could be aesthetics that were excluded from the model because they were not significant in the context of all Statecharts. However, they might be relevant to the participant examining a Statechart. The Statechart "c2-m2-l5" is such a case. It received very low ratings, even though the model results describe it as an average chart. The data collected from this chart is inconspicuous, however, a visual



Figure 7.20.: A Statechart which was rated average by the constructed formula and which received poor subjective user ratings. Note the number of intersection faults.

examination reveals that the Statechart contains a high number of intersection faults, most notable is a transition that crosses a state. As this happened very sparsely in the complete data set, its linear model was not significant at higher complexities (see Figure 7.20 for a representation of this Statechart).

It is concluded from these observations, that the difference in rating of Statecharts that diverge from the base line is caused by Statecharts that were either not uniformly rated or that possessed negative (or even positive) traits that were not included in the final model.

## 7.3.2. Objective User Rating (Time)

From the data given in the correlation table for the objective user rating and all complexities, the following metrics can be chosen for the overall time model: log.WHR, SU<sub>S</sub>, NB<sub>MIN</sub>, D<sub>NA</sub>, N<sub>SS</sub>, IF, and N<sub>T</sub> (and their squared terms, if applicable). The adjusted  $r^2$  for a model containing all metrics is 0.4169. However, only one term is significant in this model, as the correlation between the variables influences the goodness-of-fit.

The number of metrics has to be reduced.  $N_{SS}$  is at least strongly correlated with three other metrics. Even though the adjusted  $r^2$  value is rather high, the VIF analysis shows the number of simple states and the number of transitions to be strongly correlated with other factors (see Table 7.6). Relying on the VIF analysis, the metrics  $N_T$  and  $N_{SS}$  are removed from the model. This results in a decrease of the adjusted  $r^2$ , which is 0.3898 for the reduced model.

Almost all terms are now significant or nearly significant. The only insignificant

| Metric                       | VIF     |
|------------------------------|---------|
| log.WHR                      | 3.071   |
| $\rm SU_S$                   | 6.074   |
| $\mathrm{NB}_{\mathrm{MIN}}$ | 3.881   |
| $D_{NA}$                     | 4.652   |
| $N_{SS}$                     | 140.514 |
| IF                           | 2.044   |
| $N_{T}$                      | 120.840 |

Table 7.6.: Variance inflation factors for original model

term is log.WHR. The equation for these terms is

As the adjusted  $r^2$  was lowered by the removal of the metrics N<sub>T</sub> and N<sub>SS</sub>, a possibility was found to counteract the effect by adding the metric N<sub>ST</sub> (number of straight transitions) to the model. The metric was chosen because it does not correlate with the terms already in the model. This made the terms SU<sub>S</sub> and NB<sub>MIN</sub> also insignificant, but raised the adjusted  $r^2$  to 0.4154. The significant subset of the available metrics was chosen to model the user ratings:

- D<sub>NA</sub> (Distance to a normal line through all states),
- IF (Total number of intersection faults), and
- N<sub>ST</sub> (Number of straight transitions).

The metrics show only a weak correlation with each other. A linear model encompassing the three (and their quadratic terms, if applicable) returns an adjusted  $r^2$  of 0.4202.

This is a better fitting model for the objective user rating, even though less terms are used. It seems that the high number of metrics in the first equation was still

### 7. Analysis of Statechart Aesthetics

correlated with each other. Another explanation is that the addition of the good fitting  $N_{ST}$  metric compensates the removal of the other metrics.

The multilinear correlation between these variables is calculated via the variance inflation factors. As seen in Listing 7.7, the factors are over 10. As the difference to 10 is not very large, they are considered not harmful.

| Metric              | VIF       |
|---------------------|-----------|
| $D_{NA}$            | 12.161985 |
| $\mathrm{D_{NA}}^2$ | 12.067427 |
| IF                  | 13.764598 |
| $\mathrm{IF}^2$     | 11.532892 |
| $N_{ST}$            | 1.847967  |

Table 7.7.: Variance inflation factors for adjusted model

The composed formula is applied to the Statecharts that were used in the experiment. The results are shown in Figure 7.21. As before, the return value of the model and the spread of subjective user rating is shown. The average time needed for each Statechart is shown on the base line. The spread between maximum and minimum rating for each Statechart is shown as a grey vertical bar.

Again, differences can be seen between the objective user rating and the calculated time that an average person would need to understand one of the examined Statechart. Mostly, these differences are less than 40 seconds. The average absolute difference to the actual ratings is 27.13 seconds, which is slightly better than the difference calculated by the model that was proposed first (which has a mean difference of 27.73 seconds).

# 7.4. Evaluation of the Observations

The proposed models seem to fit the Statecharts used in the experiment. Almost half the calculated ratings differ less than one point from the average user rating. 80 % of the calculated ratings are within a deviation of 2.5 points (which is the median for the deviation of real awarded points, meaning that 50 % of the ratings have less and 50 % have more than this deviation from the average rating). For the needed time, a similar result can be seen. One third of the calculated ratings differ less than 10 seconds, 56 % less than 20 seconds from the average time needed. If the limit is raised to 40 seconds (the median for the deviation of the objective user rating from the average needed time), more than 81 % of the calculated ratings are included.



Figure 7.21.: A plot that shows the difference in time calculated by the multilinear regression model and the actual times the participants of the experiment needed to complete their assignment. The grey background depicts the spread of objective user ratings.

7. Analysis of Statechart Aesthetics

# 8. Analysis of Statechart Modeling Processes

This chapter deals with the process of creating and modifying a Statechart. The particularities of the modeling process were described in Chapter 5. The goal is to find the aspects that influence the modeling of a Statechart. Therefore, various aspects of the modeling process are researched, for instance the relation between keystrokes and mouse clicks. Another measure are the errors made while creating or modifying a Statechart.

As described in Chapter 5, three different editors were used in the experiment: A commercial What You See Is What You Get (WYSIWYG) editor, and the two editors incorporated in the KIEL framework, a macro-based editor and a text editor (see Figures 5.3, 5.4, and 5.5 for screenshots of the three tools).

The concept of WYSIWYG is known from a lot of tools, not only in editing. To achieve an objective, one has to move the mouse pointer to many locations. This requires 2D coordination of the hand and eyes. Compared to this, the text editor can be used in a sequential way. This implies a speed advantage for keystrokes. However, if the user is required to perform actions on random locations, a lot of key input is needed to reach this locations and complete the given task.

The aim of the macro-based editor was to speed up the editing process by reducing mouse movement to a minimum. Almost every command that required the user to select a function from a menu or tool bar and execute actions in the drawing space has been assigned a key macro. This leads to less time spent selecting tools, but has to be learned by the user. For the same reason the beginners were excluded in the analysis of aesthetic criteria, they were removed from the modeling dataset (learning effects and same sample size).

# 8.1. Mouse Clicks and Key Strokes

To get a comparable measure of the Statechart creation and modification process, the amount of actions needed to complete the given tasks was recorded. It turns out that it is not feasible to use the individual amounts of keystrokes and mouse clicks, as the user can often substitute one for the other, e.g. use four keystrokes, where it would only take two mouse clicks. Almost all participants had their own favorite approach to model the Statechart. Some preferred the keyboard, others utilized the mouse as much as possible. To find a conversion factor between the four recorded event types (mouse clicks, mouse drags, keystrokes, and key macro usage), the time

### 8. Analysis of Statechart Modeling Processes

needed to complete a given task was used. A statistical model was calculated to represent the time needed by the amount of individual actions.

Basically, the statistical software solves a linear system of equations

 $\begin{array}{rcl} \text{time needed}_{\mathrm{real},c_1} &=& x_1 \cdot \mathrm{mc}_{c_1} + x_2 \cdot \mathrm{md}_{c_1} + x_3 \cdot \mathrm{ks}_{c_1} + x_4 \cdot \mathrm{km}_{c_1} \\ &\vdots &\vdots &\vdots \\ \text{time needed}_{\mathrm{real},c_n} &=& x_1 \cdot \mathrm{mc}_{c_n} + x_2 \cdot \mathrm{md}_{c_n} + x_3 \cdot \mathrm{ks}_{c_n} + x_4 \cdot \mathrm{km}_{c_n} \end{array}$ 

to obtain the conversion factor between the four recorded events. The variables mc, md, ks, and km stand for mouse clicks, mouse drags, key strokes, and key macros, respectively.  $c_1$  to  $c_n$  indicate the individual cases. Statistically speaking, it takes:

- 2.47 seconds for a mouse click,
- 0.72 seconds for a mouse drag,
- 0.73 seconds for a keystroke,
- 8.21 seconds for a key macro,

or, the other way around, in one second you can:

- click the mouse 0.41 times,
- perform 1.39 mouse drags,
- press a key 1.37 times,
- use a key macro 0.12 times.

The low coefficient seen for key macros might be explained by the time one needs to think of the correct macro. Another explanation might be the area of application for key macros. A copy and paste action sequence requires more planning and thought than 10 sequential keystrokes. Furthermore, a change between keyboard and mouse is particularly frequent with key macros. A key press is about four times faster than a mouse click. This is explained by the time it takes between mouse clicks. The movement from one click target to the next takes time, which is not needed between keystrokes. A special case are double clicks, as they don't need time in between to reposition the mouse. However, the time gain is lost in the statistical average for all mouse clicks.

With the coefficient from the linear equation system, a total number of actions can be calculated from the data recorded. This total number represents the time statistically needed by the participant p to execute all actions:

time needed<sub>calc,p</sub> =  $2.47 \cdot mc_p + 0.72 \cdot md_p + 0.73 \cdot ks_p + 8.21 \cdot km_p$ 

The linear model gives a good fit. Table 8.1 displays the mean of real time taken to complete the task (calculated as: time needed<sub>real,avg</sub> =  $\frac{1}{n} \sum_{i=1}^{n}$  time needed<sub>real,pi</sub>)

|             | Average Time Needed |            |  |  |
|-------------|---------------------|------------|--|--|
| Tool        | Real (measured)     | Calculated |  |  |
| WYSIWYG     | 207.05              | 208.43     |  |  |
| KIEL-macros | 173.21              | 168.63     |  |  |
| KIEL-KIT    | 159.66              | 159.29     |  |  |

 Table 8.1.: Comparison of measured time to construct a specified Statechart versus time calculated by linear model

| Table 8.2.: Minimum | actions | needed | to | create | and | modify | the specified | chart |
|---------------------|---------|--------|----|--------|-----|--------|---------------|-------|
|                     |         |        |    |        |     |        |               |       |

| Editor and task    | Mouseclicks | Mousedrags | Keystrokes | Macrokeys |
|--------------------|-------------|------------|------------|-----------|
| WYSIWYG create     | 39          | 1          | 10         | 0         |
| WYSIWYG modify     | 16          | 3          | 3          | 0         |
| WYSIWYG total      | 55          | 4          | 13         | 0         |
| KIEL-macros create | 32          | 0          | 20         | 6         |
| KIEL-macros modify | 9           | 0          | 6          | 3         |
| KIEL-macros total  | <b>41</b>   | 0          | <b>26</b>  | 9         |
| KIEL-KIT create    | 11          | 5          | 46         | 0         |
| KIEL-KIT modify    | 2           | 4          | 22         | 0         |
| KIEL-KIT total     | 13          | 19         | 68         | 0         |

as well as the mean of the times calculated with the coefficients gained from linear regression (calculated as: time needed<sub>calc,avg</sub> =  $\frac{1}{n} \sum_{i=1}^{n} time needed_{calc,p_i}$ ).

This is a comparable measure between the three tools. However, not every action performed by the participants is productive. There has to be a differentiation between the actions that lead to the construction of the Statechart and the actions that were not productive, e.g. errors, unnecessary actions and actions to improve the Statechart visually.

**Editor Intuitiveness** Without going into the details of what constitutes an error (as this will be discussed in Section 8.2), a metric was applied to calculate the non-productive overhead of actions. The minimum number of actions (this was only empirically validated) needed to construct the Statechart specified in the experiment's handout was recorded and is displayed in Table 8.2.

With these numbers, the ratio between the amount of total actions and the mini-

## 8. Analysis of Statechart Modeling Processes

mum amount of actions needed to create a Statechart can be calculated. This gives a measure of the editor's intuitiveness of use. If a user can access the editor's full potential, the ratio would be close to one. The higher the ratio, the higher the discrepancy between the possibilities of the editor and the average user's application of them. The WYSIWYG editor has a ratio of 2.288, indicating that users made more than double the actions needed to complete the specified Statechart. This indicates a lot of potential shortcuts which could be accessed by more experienced users. A better ratio of 1.405 is found with the *KIEL-macros* editor. The experiment subjects used the potential of this editor well, which might be explained by the restricted set of commands available. The textual editor KIEL-KIT's ratio of 2.292 indicates that the users did not use the full set of options available to them. Reviewing the experiment's video recordings, it was noted that the subjects avoided mouse usage. When researching the minimum amount of actions needed, it was found that more mouse usage could reduce the total actions needed. This is especially true if "copy & paste" is compared to copying elements manually by rewriting them. The longer the text to be copied, the more advantage for marking elements with the mouse and pasting them via mouse click.

## 8.2. Errors Made During Modeling

What is an error? Surely, a mistyped word or term has to be considered erroneous, but what about actions that lead to the same outcome, but require different actions? Is there an ideal creation process, maybe one that requires the least action to generate the wanted outcome?

As mentioned in Subsection 6.3.2, there are different categories for the user actions. The total amount of actions is composed of actions the user made in four categories:

- productive actions (actions that lead to the creation of the specified Statechart)
- *error* actions (actions that do not lead to the creation of the specified Statechart and need actions to undo them)
- *unnecessary* actions (actions that do not lead to the creation of the specified Statechart, but need no further actions to undo them)
- *nicefy* actions (actions which make the Statechart visually more pleasing)

The average of time needed per tool, as well as the amount of errors made, can be found in Table 8.3. The ratio of these two gives the mean time between errors. The numbers show a similarity between the WYSIWYG editor and the KIEL-macros editor, with an advantage for the KIEL-macros editor. The KIEL-KIT editor has a higher error rate and subsequently falls behind the other two. The error rate is mostly due to typing errors, as they happened frequently during the textual editing process. These errors are quickly made but also quickly corrected. If the total number of error actions is related to the total number of actions, a measure for the

| Tool                               | Avg. Time<br>Needed        | Avg. Amount of<br>Errors Made | Avg. Time<br>Between Errors | Ratio<br>Unnecessary to<br>Error Actions |
|------------------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------------------|
| WYSIWYG<br>KIEL-macros<br>KIEL-KIT | 207.05<br>173.21<br>159.66 | $2.18 \\ 1.55 \\ 5.5$         | $94.8 \\ 111.6 \\ 29.0$     | $2.63 \\ 2.87 \\ 1.18$                   |

Table 8.3.: Various editor characteristics

impact of error actions on the efficiency is gained. This measure is called *inefficiency* I and represented by Modeling Metric 6 in Chapter 4.

The amount of unnecessary actions varied between the tools. The KIEL-macros editor had the most unnecessary actions, amounting to about 31 % of all actions done. There was no difference between creating and modifying. Next, 19.5 % of the actions done in the WYSIWYG editor to create the specified Statechart were unnecessary. This increased to about 25 % during the modification of the Statechart. The least percentage of unnecessary actions were seen in the KIEL-KIT editor, where the unnecessary actions amounted to 14 % of the total actions on average during creation, increased to 17.3 % during the modification part of the experiment. The ratio between the total number of unnecessary actions and the total number of actions is measured by Metric *inefficiency II* (See Modeling Metric 7 in Chapter 4). The inefficiency ratios can be found in Table 8.4.

The high amount of unnecessary actions seen in the editing process with the KIELmacros editor can be explained by user actions. Watching the experiment's video footage, one can conclude that the process of selecting a state is impeded by the fact that it is necessary to click very accurately on the state border. If the participant misses, he does not always realize that he has to reposition his mouse cursor. It was often seen that the user's growing frustration provoked an excessive amount of mouse clicks, which were recorded as unnecessary actions. Generally, the number of unnecessary actions was higher than the number of error actions. The ratio between both can be found in Table 8.3.

## 8.3. Modeling Efficiency

Efficiency is defined as the ratio of benefits to costs. Transported to the modeling process, the cost could be translated into the amount of total actions or the time needed to complete the assignment. The benefit would be the amount of productive actions that the subject took or the time taken for these actions. As the time needed for the productive actions is (theoretically) identical to the total amount of actions,

## 8. Analysis of Statechart Modeling Processes

|                  | Editor  |             |          |
|------------------|---------|-------------|----------|
|                  | WYSIWYG | KIEL-macros | KIEL-KIT |
| Efficiency       | 0.64    | 0.58        | 0.72     |
| Inefficiency I   | 0.08    | 0.11        | 0.13     |
| Inefficiency II  | 0.21    | 0.31        | 0.15     |
| Inefficiency III | 0.07    | 0.00        | 0.00     |





Figure 8.1.: Efficiency spread shown for each tool

either could be chosen.

 $\text{Efficiency, Tool}_{i} = \frac{\text{Amount of Productive Actions, Tool}_{i}}{\text{Total Amount of Actions, Tool}_{i}}$ 

The average efficiency is displayed in Table 8.4, the data spread is shown in Figure 8.1. Naturally, the quotient is the same as the percentage shown in Figure 6.29 for productive actions. Together with the ratios inefficiency I and II, the percentage should amount to 100 %. The discrepancy seen with the WYSIWYG editor stems from a number of actions only seen in this kind of editors, called "nicefy" actions (see Section 8.4).

The number of error actions does not hurt the efficiency as bad as the number of unnecessary actions does. With error actions amounting from 8 % to 13 % of the total actions, the editors stay close together. However, the number of unnecessary actions takes up to 31 % of the total actions done with the KIEL-macros editor. Compared to the 15 % of the KIEL-KIT editor, this is more than double the time spent performing unproductive actions.

## 8.4. Modifications to Improve the Layout

The process of creating or modifying a Statechart in the WYSIWYG editor always includes some actions—called *nicefy* actions here—where components of the Statechart are moved to different locations without changing the structure of the Statechart. This has various reasons: States might be in the way of new states to be added, labels might be unreadable because of crossing transitions, etc.

The data acquisition for this aspect was done as a side-effect of the error action recording, as it could not be decided when a movement of states and/or transition was to be considered erroneous and when it was necessary for the creation process.

An example for nicefy actions can be seen in Figure 8.2. The Statechart shown is the product of a task given to all students who participated in the second experiment.



(b) After Task Modify

Figure 8.2.: Statechart created and modified with the WYSIWYG editor during the experiment.

## 8. Analysis of Statechart Modeling Processes

In the chart shown in Subfigure (a), a hierarchical state is to be added in place of the simple state X. In order to make room for this hierarchical state, the participant had to move the initial state as well as the states Y and Z. This could have been circumvented by leaving enough space around state X during the creation of the Statechart. The participants used on average 13.2 nicefy actions while creating the Statechart and 14.6 nicefy actions while modifying it. The ratio between nicefy actions and total actions is called *inefficiency III*. Measured with Modeling Metric 8 from Chapter 4, this amounts to 5% of the total actions used to create, and almost 10~% of the actions used to modify the chart. Combined, 7~% of all actions in the WYSIWYG editor were done to improve the layout of a Statechart, as seen in Table 8.4. As explained in Section 4.2, the percentage of nicefy actions is necessary zero for the KIEL-macros editor because there are no components where the layout can be improved. Actions to improve the code layout in the KIEL-KIT editor were not recorded. The 0 % value seen in Table 8.4 for the KIEL-KIT editor is therefore an approximated value, as code improvement actions were infrequent and the total number of actions was very high.

# 9. Conclusion and Future Work

In this work, aesthetic criteria of Statecharts were rated and transformed into quantitative measures. Significant aesthetic criteria were identified, validated with empirical data, and combined into rating formulas. Two different models were proposed, a preference measurement and a performance measurement. The combination of several criteria allows users of these formulas to generate one overall measure for examined Statecharts. Also the user performance with three different editors was empirically related to editor characteristics. This helps to identify reasons for the user performance. Seen in the editing process using the WYSIWYG editor was that actions to improve the Statechart layout nearly double when a user has to modify an already existing Statechart. This indicates that methods which reduce the visual improvement actions are useful to reduce the total needed actions. Also seen in the results is the commonly known fact that an intuitive user interface reduces the amount of unnecessary actions.

## Synthesis

The intuitiveness is not the only desired property of a Statechart editor; an efficient editing process is also wanted. The application of the modeling metrics that were defined in Section 4.2 indicated that the structural editing process has advances in efficiency over the WYSIWYG paradigm that is commonly used. However, a more intuitive interface is needed to access the full capabilities of this approach. The number of unnecessary actions outweighed the number of error actions more than two to one in both approaches with a graphical user interface, indicating a high influence on the efficiency. Other influences that were identified include the number of nicefy actions. The total number of errors should not be used as a measurement for editing performance, as the number of errors made in the textual editor was higher than the number of errors made in the other two editors. Yet, Statechart creation and modification was quicker in the textual editor, denoting a better performance. The reason for this is the nature of errors made. A more detailed look shows the difference: The kind of errors made in the textual editor are mostly typing errors, while the number of errors in the other two editors consist mainly of errors related to adding, modifying or deleting the wrong state. Further research might identify other correlations in the error data, as the collected data is very detailed and had to be condensed for this work.

The detailed data collection offered many opportunities to choose between different metrics. The selected ones fit the observations of user ratings in the original experiment. This indicates that the selection process of aesthetic criteria was conducted

### 9. Conclusion and Future Work

correctly.

The dependent variables discussed in this thesis were not correlated, i.e. none could be represented by the other. This indicted that a pleasing layout and a good comprehensibility do not necessarily go hand-in-hand. The separation led to the composition of two different models for the two dependent variables *awarded points* and *needed time*. The aesthetic criteria selected were not all used in the final models, as not all could be verified to have a significant influence on the user rating. Furthermore, there was intercorrelation between some of the significant metrics, reducing the number of usable metrics even more. However, the formulas for the calculation of awarded points and needed time fit the actual user ratings rather well. They offer a possibility to describe the influence of the analyzed Statechart layout aesthetics on the human user.

## **Encountered Problems**

The collected data for numerous aesthetic criteria was meticulously tested and validated. However, even if the collected data is valid and withstands rigorous inspection, it has some flaws. The design of the experiment did not incorporate a strict separation of the independent variables researched in this thesis. This changing of several independent variables at the time leads to correlated data, which in turn reduces the expressiveness of the discoveries. Therefore, the composed model is less conclusive than it would be with data generated for the sole purpose of identifying single aesthetic criteria.

The usage of unspecific data also implies that there can be no null hypothesis scientific hypothesis testing scheme for the effects of aesthetic criteria on Statechart ratings (which normally would be used for hypothesis testing), as there is no control group. The results can therefore not be gained by a statistical test for significance of difference on two groups of test subjects.

However, even if the data set is not ideal for this thesis, it was possible to extract a lot of information. One has to keep in mind the original source of the data. Furthermore, as the variables were brought together, the intercorrelation between the variables had to be tested, which led to a high number of variables that could not be considered.

It seems that the complexity of a Statechart overshadows all metrics regarding the time that was needed to understand it. Layout has less influence on the understanding of a Statechart than the number of states and transitions. If one looks at the metrics, nothing seems to be uncorrelated with complexity.

Comparing the explanatory value of the objective user rating model with the explanation for the time given by the number of states or number of transitions alone, an advantage for the single metrics can be seen. This seems to indicate that the complexity of a Statechart, as expressed by the number of states and the number of transitions, outweighs the rather special metrics, such as Statechart flow or the usage of Statechart drawing space (although the placement on a straight line was proven to be significant).

The preference of a user towards key-centered or mouse-centered input affects her or his editing speed with the different editors. The low number of participants might have a negative effect on the distribution of preferences.

## Findings

This thesis led to a series of findings regarding the aesthetic criteria of Statechart layout. The following list will give a short guide to the creation of "better" Statecharts.

- 1. Use Shorter Transition Lengths in Higher Complexity Statecharts: The research done indicated that shorter transition lengths improve the subjective user rating for higher complexity Statecharts. Simple complexity Statecharts were rated independent of their transition lengths.
- 2. Use Straight Transitions: The use of straight transitions is beneficial to the rating of a Statechart, at least at higher complexity levels.
- 3. Include White Space in Your Statechart: Even if short straight transitions are beneficial to the user rating, don't forget to keep white space in your Statecharts, at least for charts of higher complexity. The results show that users actually prefer less white space in Statecharts of simple complexity, which might be because of the simplicity of design. In higher complexities, this influences the understandability and the rating of a Statechart, so a reasonable minimum distance between state borders should be kept. Too much white space is assumed to be detrimental to the understanding. However, the influence could not be shown in this research, as the data lacked higher node border distances.
- 4. *Prefer Oblong Statechart Design*: Users prefer oblong Statecharts and so should you. Width to height ratios close to one were shown to lessen the understand-ability of Statecharts. Rather than drawing square Statecharts, go wide or narrow. The next item encourages this preference even more:
- 5. Place States on a Straight Line: If states are placed on a straight line, it is easier to follow them through a sequence of actions in the Statechart. This makes the Statechart easier to understand. Even better, if they are connected with short, straight transitions! This does not affect the subjective rating of a Statechart, but the next item (also leading to straighter Statecharts) does:
- 6. *Keep Directional Change Between Consecutive Transitions Low*: This does not influence the understandability much, but makes the Statechart more pleasing to the eye and in turn affects the rating the Statechart receives.
- 7. Keep Intersections of Statechart Elements to a Minimum: As expected, a high number of intersection faults leads to a decline in user rating, at least in simple complexity Statecharts. The number of intersection faults does influence the

### 9. Conclusion and Future Work

understandability of the Statecharts. The results indicate that users have no problem with a few intersection faults. However: The higher the number of intersection faults, the more time is needed to compensate for them.

The following conclusion can be drawn from the above mentioned pointers: Whenever possible, design Statecharts in a sequential way, giving users the idea of a directional flow in the chart. Don't overcrowd a Statechart with states and transitions, just to make it fit on a single page. Use abstraction, if needed, to generate the needed space.

With the identification of significant aesthetic criteria, reasons for the experiment's participants preference of the ADL could be derived. The layout algorithm behind the ADL generates short transition lengths, as it places the states in a sequential manner and avoids backwards transitions. Simple complexity Statechart of ADL design have a high width to height ratio, which was perceived as favorable by the participants. In higher complexity, Statecharts with a high ratio were awarded less points. this was no differentiating feature, as the Statecharts according to the ADL shared their width to height ratio with many other charts. The placement of final states at the right border was rewarded by the participants with a high rating, even if the placement was not always consistent. In the ADL, labels are placed in such a way that they don't intersect each other. As intersecting components degrade the Statechart's rating significantly, their absence gives the ADL an advantage in rating.

The ADL also performed excellent in the understandability testing. The following reasons can be found for its good performance: Of the significant metrics that were not related to the complexity of a Statechart, the distance to a normal line had the best explanation for the needed time. This implies that Statecharts created in a linear fashion are easier to understand. In the experiment, the Statecharts laid out according to the ALL and the LLL, to a lesser extent the ones according to the ADL and the ADBL followed this design. However, the absence of intersection faults (which were present in the LLL)and the use of straight transitions (which were not used in the ALL) favored Statecharts laid out according to the ADL and the ADBL. Although the significance of initial and final state placement could not be verified for general Statechart layout, it might be possible that the reading direction acts in favor of the "left to right" approach seen in the ADL Statecharts and rewards it with better understandability times. This, however, is not always applicable; the aesthetic criteria found may in part only apply to users from a Western culture. Developers from other cultures will need to modify them as appropriate.

The application of the developed models to Statecharts is initially limited to charts that resemble the Statecharts used in the experiment. Industrial Statecharts are usually significantly more complex than the Statecharts analyzed in this thesis. However, all relevant Statechart features, such as hierarchy and orthogonality, were applied. It is plausible that the findings apply to smaller sized hierarchical substates that denote either a hierarchy or concurrency of state machines in industrial Statecharts. As Statechart can be drawn with a high level of abstraction, it is also likely that the findings might apply to large industrial Statechart that are composed in such a way (e.g. composed of a large number of smaller Statecharts with many hierarchy levels).

Not all actions in the creation of a Statechartare productive . Errors and unnecessary actions, as well as actions to improve the visual quality of a Statechart are always part of the design process. The number of error actions does not hurt the efficiency as bad as the number of unnecessary actions does. Error actions amount from 8 % to 13 % of the total actions. The amount of unnecessary actions varied greatly between the analyzed tools. The KIEL-macros editor had the most unnecessary actions (31 %, almost a third of the total number of actions). Next was the WYSIWYG editor. The least percentage of unnecessary actions were seen in the KIEL-KIT editor (15 %). This can be accounted to the intuitiveness of the interface, see below for a proposed improvement in the KIEL-macros editor. Textual editors just don't leave much room for imagination. In graphical editors, the user is tempted to "play" with extra features which, quite simply, is time wasted that could be spent on Statechart creation. Another reason for the better performance of the structure-based editors when modifying a Statechart could be the time spent on the nicefy actions. These affected the time needed to modify a given Statechart with the WYSIWYG editor far worse than the time needed to create a Statechart.

## **Future Application and Improvement**

Two applications for the found metrics present itself: A tool could, on request by a user, apply the metrics to a Statechart and give advice on the lowly rated Statechart layout criteria. Another possibility is the automated application of layout metrics after manual Statechart creation, following a set of rules devised from the described metrics and the analysis of user ratings in Chapter 7.

The first variant implies that the user has complete freedom to draw a Statechart, and the tool he uses could offer assistance when needed. This could be a stylechecker which can be selected as a menu item, or an extra window, showing the compliance of the current Statechart with several aesthetic criteria (measured by the found metrics). The checking could be done after each movement of objects in the drawing frame, however it should be easy to turn off and on, so it would not strain the users patience with possible latency between editing actions. This checking could give the user hints on how to optimize the drawing, or even show critical regions in the Statechart, for example by highlighting them with a different color. It should be noted that the optimization of one criteria can rapidly deteriorate other aesthetic criteria, so a hint should be given to the user, which criteria he should prioritize. The other approach lets the user draw a Statechart to her or his own liking and lets an algorithm do the optimization afterwards. This would imply that the Statechart design of the user would be overruled by the algorithm in favor of a statistically "better" Statechart design. To avoid discontent, the algorithm could be implemented with user-changeable parameters, so it could be tweaked to the user's liking. In such tools, the application of structural metrics (e.g. usage of substates) as well as layout metrics could also be an option. Structural metrics have been well researched by various authors (for example Cruz-Lemus et al. [17], Appelgren and

### 9. Conclusion and Future Work

Hvannberg [6], Genero et al. [26]) and their findings could be applied to Statechart editing tools.

Regarding editors, future implementations should be designed with more intuitiveness of interface in mind. The problem with mouse positioning mentioned in Section 8.2 could be mitigated by the enlargement of the click targets. An extension by three pixels to either side of an element's borders could ease the use of the KIEL-macros editor by reducing unnecessary clicks.

There are still factors missing (or couldn't be identified because of the data's correlation), the goodness-of-fit leaves room for more explanatory factors. However, if these could be found they would compose a statistical ideal model that might not be suitable for everyone. Personal preferences differ from developer to developer.

Further experiments could be conducted to examine the found correlations. Specifically, experiments should be planned with two subject groups (experimental and control group), and especially designed Statecharts, where only one independent variable is changed. The sample size should be larger to make a more universal statement. This would also reduce the problem of intercorrelation between the variables. Research on *feature selection* is ongoing and wide spread, so in addition to specifically generated data, one could use sophisticated selection methods for the independent variables under observation, such as described in Akay [1].

The data acquisition and validation took exceptionally long, especially for the modeling metrics. This was caused by the manual acquisition of the data. In future experiments, an automated recording of the number of user actions could save time. Furthermore, this would reduce the errors made by the person transcribing the actions.

# A. Bibliography

- Kadri Ulaş Akay. A note on model selection in mixture experiments. Journal of Mathematics and Statistics, 3(3):93–99, 2007.
- [2] Paul David Allison. Multiple Regression: A Primer. Pine Forge Press, Thousand Oaks, CA., 1999.
- [3] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0. Cambridge University Press, New York, NY, USA, 2004. ISBN 0521540186.
- [4] Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University Press, New York, NY, USA, 2005.
- [5] Charles André. SyncCharts: A visual representation of reactive behaviors. Technical Report RR 95-52, rev. RR (96-56), I3S, Sophia-Antipolis, France, Rev. April 1996. http://www.i3s.unice.fr/~andre/ CAPublis/SYNCCHARTS/SyncCharts.pdf.
- [6] My Appelgren and Ebba Thora Hvannberg. Statechart metrics for usability evaluation. In Proceedings of the International COST294 Workshop on User Interface Quality Models, held in conjunction with the Tenth IFIP TC13 International Conference on Human-Computer Interaction (INTERACT '05), pages 23–29, Rome, Italy, September 2005.
- [7] ArgoUML. Tigris.org. Open source software engineering tools, 2006. http: //argouml.tigris.org/.
- [8] Jürgen Bortz. Statistik für Human- und Sozialwissenschaftler. Springer, Heidelberg, 1977.
- [9] Jürgen Branke. Dynamic graph drawing. In M. Kaufmann and Dorothea Wagner, editors, *Drawing Graphs: Methods and Models*, volume 2025 of *Lecture Notes in Computer Science*. Springer Verlag, 2001.
- [10] Stina Bridgeman and Roberto Tamassia. Difference metrics for interactive orthogonal graph drawing algorithms. Journal of Graph Algorithms and Applications, 4(3):47–74, 2000.
- [11] Rodolfo Castelló, Rym Mili, and Ioannis G. Tollis. A framework for the static and interactive visualization for statecharts. *Journal of Graph Algorithms and Applications*, 6(3):313–351, 2002.

- A. Bibliography
- [12] Allan Chang. Statistical toolkit, 2003. http://department.obg.cuhk. edu.hk/researchsupport/Minimum\_correlation.asp.
- [13] Larry B. Christensen. Experimental Methodology. Allyn and Bacon, Needham Heights, MA, 5. edition, 1991.
- [14] Micheal K. Coleman and D. Stott Parker. Aesthetics-based graph layout for human consumption. Software – Practice and Experience, 26(12):1415–1438, December 1996.
- [15] Isabel F. Cruz and Robert Tamassia. Tutorial: How to visualize a graph: Specification and algorithms. EEE Symposium on Visual Languages (VL '94), 1994.
- [16] José A. Cruz-Lemus, Marcela Genero, José A. Olivas, Francisco P. Romero, and Mario Piattini. Predicting UML statechart diagrams understandability using fuzzy logic-based techniques. In SEKE, pages 238–245, 2004.
- [17] José A. Cruz-Lemus, Marcela Genero, Sandro Morasca, and Mario Piattini. Using practitioners for assessing the understandability of UML statechart diagrams with composite states. In Advances in Conceptual Modeling - Foundations and Applications, volume 4802 of Lecture Notes in Computer Science, pages 213–222, Berlin, Heidelberg, 2007. Springer.
- [18] Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. ACM Transactions on Graphics, 15(4):301-331, October 1996. ISSN 0730-0301. http://www.acm.org/pubs/toc/Abstracts/0730-0301/234538.html.
- [19] Tom DeMarco. Controlling Software Projects: Management, Measurement and Estimation. Yourdon computing series. Yourdon Press, New York, USA, 1982.
- [20] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algorithms for drawing graphs: An annotated bibliography. *Computational Geometry: Theory and Applications*, 4:235–282, June 1994. http://www.cs.brown.edu/people/rt/papers/gdbiblio.pdf.
- [21] Peter Eades and Kozo Sugiyama. How to draw a directed graph. Journal of Information Processing, 13(4):424–437, 1990. ISSN 0387-6101.
- [22] Esterel Studio User Manual. Esterel Technologies, 5.2 edition, July 2004.
- [23] John Fox. An R and S-PLUS Companion to Applied Regression. SAGE Publications, Thousand Oaks, CA., 2002.
- [24] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by forcedirected placement. Software – Practice and Experience, 21(11):1129–1164, 1991. ISSN 0038-0644.

- [25] Emden R. Gansner and Stephen C. North. An open graph visualization system and its applications to software engineering. *Software—Practice and Experience*, 30(11):1203–1234, 2000. ISSN 00380644.
- [26] Marcela Genero, David Miranda, and Mario Piattini. Defining and validating metrics for UML statechart diagrams. In Object-Oriented Technology ECOOP 2002 Workshop Reader, volume 2548 of Lecture Notes in Computer Science, pages 147–153, Berlin, 2002. Springer.
- [27] Carsten Görg, Mathias Pohl, Ermir Qeli, and Kai Xu. Visual representations. In A. Kerren er al., editor, *Human-Centered Visualization Environments 2006*, volume 4417 of *Lecture Notes in Computer Science*, pages 163–230, Berlin, Heidelberg, 2007. Springer.
- [28] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8(3):231–274, June 1987.
- [29] David Harel and Amir Pnueli. On the development of reactive systems. Logics and models of concurrent systems, pages 477–498, 1985.
- [30] David Harel and Gregory Yashchin. An algorithm for blob hierarchy layout. The Visual Computer, 18:164–185, 2002.
- [31] Weidong Huang and Peter Eades. How people read graphs. In APVis '05: Proceedings of the 2005 Asia-Pacific symposium on Information visualisation, pages 51–58, Darlinghurst, Australia, 2005. Australian Computer Society, Inc. ISBN 1-920-68227-9.
- [32] Eduard Imhof. Positioning names on maps. *The American Cartographer*, 2(2): 128–144, 1975.
- [33] Konstantinos G. Kakoulis and Ioannis G. Tollis. An algorithm for labelling edges of hierachical drawings. In Giuseppe Di Battista, editor, *Graph Draw*ing (Proceedings GD '97), Lecture Notes in Computer Science, pages 169–180. Springer-Verlag, 1997.
- [34] The KIEL Project (Kiel Integrated Environment for Layout). Project homepage, 2006. http://www.informatik.uni-kiel.de/rtsys/kiel/.
- [35] Tobias Kloss. Automatisches Layout von Statecharts unter Verwendung von GraphViz. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science, May 2005.
- [36] Henk Koning, Claire Dormann, and Hans van Vliet. Practical guidelines for the readability of IT-architecture diagrams. In SIGDOC '02: Proceedings of the 20th annual international conference on Computer documentation, pages 90–99, New York, NY, USA, 2002. ACM. ISBN 1-58113-543-2.

- A. Bibliography
- [37] Th. Kreppold. Modellierung mit Statemate MAGNUM und Rhapsody in Micro C. Berner & Mattner Systemtechnik GmbH, Otto-Hahn-Str. 34, 85521 Ottobrunn, Germany, Dok.-Nr.: BMS/QM/RL/STM, Version 1.4, August 2001.
- [38] Robert W. Krut, jr. and David P. Wood. Evaluation of process modeling improvements. Technical report, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, 1991.
- [39] Florence Maraninchi. The Argos language: Graphical representation of automata and description of reactive systems. In *IEEE Workshop on Visual Lan*guages, October 1991.
- [40] Mathworks Inc. Simulink Simulation and Model-Based Design. The Mathworks, Inc., Natick, MA, 6.5r2006b edition, September 2006. http://www.mathworks.com/access/helpdesk/help/pdf\_doc/ simulink/sl\_using.pdf.
- [41] Jerry L.L. Miller and Maynard L. Erickson. On dummy variable regression analysis. Sociological Methods & Research, 2(4):409–430, 1974.
- [42] Raymond H. Myers. Classical and Modern Regression with Applications. Duxbury Press, Boston, 1986.
- [43] Achilleas Papakostas and Ioannis G. Tollis. Efficient orthogonal drawings of high degree graphs. Algorithmica, 26(1):100–125, 2000.
- [44] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. *IEEE Trans. Pattern Analysis And Machine Intelligence*, 27(8):1226–1238, 2005. ISSN 0162-8828.
- [45] Lutz Prechelt. Kontrollierte Experimente in der Softwaretechnik: Potenzial und Methodik. Springer, Berlin, 2001.
- [46] Steffen Prochnow. Efficient Development of Complex Statecharts. PhD thesis, Christian-Albrechts-Universität zu Kiel, Faculty of Engineering, Kiel, Germany, 2008.
- [47] Steffen Prochnow and Reinhard von Hanxleden. Comfortable modeling of complex reactive systems. In Proceedings of Design, Automation and Test in Europe (DATE'06), Munich, Germany, March 2006.
- [48] Steffen Prochnow and Reinhard von Hanxleden. Enhancements of Statechartmodeling—the KIEL environment. In Proceedings of the ARTIST 2007 International Workshop on Tool Platforms for Modeling, Analysis and Validation of Embedded Systems, held in conjunction with the 19th International Conference on Computer Aided Verification (CAV 2007), Berlin, Germany, July 2007. With accompanying presentation.

- [49] Steffen Prochnow and Reinhard von Hanxleden. Statechart development beyond WYSIWYG. In Proceedings of the ACM/IEEE 10th International Conference on Model Driven Engineering Languages and Systems (MoDELS'07), Nashville, TN, USA, October 2007.
- [50] Helen C. Purchase. Metrics for graph drawing aesthetics. Journal of Visual Languages and Computing, 13(5):501–516, 2002.
- [51] Helen C. Purchase. Which aesthetic has the greatest effect on human understanding? In *Proceedings of Graph Drawing Symposium, Di Battista, G. (ed)*, volume 1353 of *Lecture Notes in Computer Science*. Springer Verlag, 1997.
- [52] Helen C. Purchase, Robert F. Cohen, and Murray James. Validating graph drawing aesthetics. In F. Brandenburg, editor, *Proceedings of Graph Drawing Symposium*, volume 1027 of *Lecture Notes in Computer Science*, pages 435–446. Springer Verlag, 1996.
- [53] Helen C. Purchase, Robert F. Cohen, and Murray James. An experimental study of the basis for graph drawing algorithms. ACM Journal of Experimental Algorithms, 2(4), 1997.
- [54] Helen C. Purchase, Matthew McGill, Linda Colpoys, and David Carrington. Graph drawing aesthetics and the comprehension of UML class diagrams: An empirical study. In ACM International Conference Proceeding Series archive, Australian symposium on Information visualisation, pages 129–137, 2001.
- [55] Helen C. Purchase, David Carrington, and Jo-Anne Allder. Graph layout aesthetics in UML diagrams: User preferences. *Journal of Graph Algorithms and Applications*, 6(3), 2002.
- [56] Rational Rose Realtime. IBM. http://www.rational.com/rosert.
- [57] Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421–444, 1987. ISSN 0097-5397.
- [58] The Object Management Group. UML Homepage. http://www.uml.org/.
- [59] World Wide Web Consortium (W3C). W3C SVG homepage, 2005. http: //www.w3.org/Graphics/SVG/.
- [60] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cognitive measurements of graph aesthetics. *Information Visualization*, 1(2):103–110, 2002. ISSN 1473-8716.
- [61] Mirko Wischer. Textuelle Darstellung und strukturbasiertes Editieren von Statecharts. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science, February 2006.

- A. Bibliography
- [62] World Wide Web Consortium (W3C). XML homepage. http://www.w3. org/XML/.
- [63] Pinhas Yoeli. The logic of automated map lettering. *The Cartographic Journal*, 9(2):99–108, 1972.

The Statecharts shown on the following pages are the basis for all data collected on aesthetic criteria. Shown are groups of five, sharing the same model m. Each group consists of five layouts l: Alternating Dot Layout (ADL) (l1), Alternating Dot Layout Backwards (ADBL) (l2), Alternating Linear Layout (ALL) (l3), Linear Layer Layout (LLL) (l4), and Arbitrary Layout (AL) (l5). The charts are divided into the three complexity categories simple, hierarchical, and parallel (c1,c2,c3).

## Simple Statecharts



Figure B.1.: Different layouts of simple complexity Statecharts, model 1 of 5



Figure B.2.: Different layouts of simple complexity Statecharts, model 2 of 5



Figure B.3.: Different layouts of simple complexity Statecharts, model 3 of 5



Figure B.4.: Different layouts of simple complexity Statecharts, model 4 of 5



Figure B.5.: Different layouts of simple complexity Statecharts, model 5 of 5



## **Hierarchical Statecharts**

Figure B.6.: Different layouts of hierarchical complexity Statecharts, model 1 of 5



Figure B.7.: Different layouts of hierarchical complexity Statecharts, model 2 of 5



Figure B.8.: Different layouts of hierarchical complexity Statecharts, model 3 of 5



Figure B.9.: Different layouts of hierarchical complexity Statecharts, model 4 of 5



Figure B.10.: Different layouts of hierarchical complexity Statecharts, model 5 of 5

## Parallel Statecharts



Figure B.11.: Different layouts of parallel complexity Statecharts, model 1 of 5



Figure B.12.: Different layouts of parallel complexity Statecharts, model 2 of 5



Figure B.13.: Different layouts of parallel complexity Statecharts, model 3 of 5



Figure B.14.: Different layouts of parallel complexity Statecharts, model 4 of 5



Figure B.15.: Different layouts of parallel complexity Statecharts, model 5 of 5

# C. Collected Data

The following tables represent the original data that was used in the analysis of Statechart aesthetics and Statechart development methods.

| 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 1          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| л                          | o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | מ            |
| $^{\text{Lds}}N$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |
| $^{\rm Ld}N$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            |
| $\mathrm{^{LS}N}$          | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            |
| ĿГ                         | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ŝ            |
| IL <sup>rr</sup>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |
| IFTL                       | 444444444400000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n            |
| TTAI                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            |
| ILIN                       | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D            |
| IF                         | 4 4 4 4 4 4 4 4 4 7 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -            |
| s <sub>N</sub>             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,            |
| $_{\rm SH}{}_{\rm N}$      | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D            |
| $ss_N$                     | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,            |
| лик                        | $^{+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40           |
| D <sup>NR</sup>            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °.           |
| D <sub>N</sub> A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | °.           |
| D <sup>IVI</sup>           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 T 4        |
| ~u                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ں<br>1       |
| $\mathbf{D}^{\mathbf{I}}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            |
|                            | 557.05<br>557.05<br>557.05<br>557.05<br>557.05<br>557.05<br>557.05<br>557.05<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>133<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0          |
| NBMAX                      | ນດ້ວຍວ່ອງອີດອີດ<br>ມີດີດີດີດີດີດີດີດີດີດີດີດີດີດີດີດີດີດ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0            |
|                            | ດ້ອງພິຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸຍຸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| NIMAN                      | $\begin{array}{c} 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 16.43\\ 11.6\\ 16.43\\ 11.6\\ 16.43\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 11.3\\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44           |
| div                        | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| NBAVG                      | 244<br>244<br>244<br>244<br>244<br>244<br>244<br>244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01.4         |
| SITAN                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|                            | \$\$222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ø            |
| $\mathbf{P}_{\mathbf{F}}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| $\mathbf{P}_{\mathbf{I}}$  | 55995555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del>7</del> |
|                            | (4,0,0,1)<br>(4,0,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1,0,1)<br>(4,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33           |
| ∀∩s                        | $\begin{array}{c} 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ó            |
|                            | $\begin{array}{c} 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.          |
| $^{\mathbf{I}}\mathbf{US}$ | 44444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ò            |
|                            | $\begin{array}{c} 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\ 44,0.4\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33           |
| $s_{\Omega S}$             | $\begin{array}{c} 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14.04\\ 14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ò            |
| 115                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n            |
|                            | $\begin{array}{c} 3.3.46\\ 0.0.55333346\\ 0.0.5533346\\ 0.0.5533346\\ 0.0.5533346\\ 0.0.5533346\\ 0.0.5533346\\ 0.0.5533333\\ 0.0.553333\\ 0.0.553333\\ 0.0.553333\\ 0.0.553333\\ 0.0.553333\\ 0.0.553333\\ 0.0.55333\\ 0.0.55333\\ 0.0.55333\\ 0.0.55333\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0.5533\\ 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3            |
| ини                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
|                            | 144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>144.03<br>131.89<br>144.03<br>131.89<br>144.03<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>131.89<br>13 | 4.0          |
| тяг                        | $\begin{smallmatrix} 1 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 \\ 1 & 4 & 4 & 4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4            |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| əmiT                       | $\begin{smallmatrix} 181\\1175\\1175\\1175\\1175\\1175\\1175\\1175\\1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0)           |
| Points                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Participant                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Fxperiment                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| Layout                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c            |
| IsboM                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٦            |
| Complexity                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            |
| rt                         | G-m1-11         G-m1-12         G-m1-13         G-m1-14         G-m1-14 <td< td=""><td>Ĩ</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ĩ            |
| Chart                      | 2-m1-11<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11           |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |

|                                     |                      | -        | ~            | -        | _             |              |                      |                                                   |       | -        | -        | _            |              |                      | -        | _            |                      |                      | -        | -        |                      |                | _                |                      | -        | _                |                      |          | -                | ~        | ~          |                      |                | -       | 1         |
|-------------------------------------|----------------------|----------|--------------|----------|---------------|--------------|----------------------|---------------------------------------------------|-------|----------|----------|--------------|--------------|----------------------|----------|--------------|----------------------|----------------------|----------|----------|----------------------|----------------|------------------|----------------------|----------|------------------|----------------------|----------|------------------|----------|------------|----------------------|----------------|---------|-----------|
| $\mathbf{T}^{\mathbf{N}}$           | 00<br>               |          |              |          |               |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          | ი ი<br>              |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                | 03      | page      |
| $\mathrm{^{LdS}N}$                  |                      |          |              |          |               |              |                      | 00                                                |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      | -              | -       | rt r      |
| $^{\text{Ld}}N$                     |                      |          |              |          |               |              |                      |                                                   |       | 0        |          |              |              |                      |          |              |                      |                      |          |          | 00                   |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                | 0       | next      |
| <sup>TS</sup> N                     | 00                   | 0        | 2            | 0        | 010           | CN C         | 10                   | <b>о</b> с                                        |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         | uo        |
|                                     | 11                   |          |              |          |               |              | 12                   | 50.15<br>50.15                                    | 3 2   | 15       | .15      | 5            | <u>9</u> 2   | 12                   | .15      | 5            | 9 E                  | 12                   | .15      | .15      | 50.15                | 12             |                  |                      |          |                  |                      |          |                  |          | 27         | 27                   | 27             | .27     | ted       |
| ĿГ                                  | 38.<br>38.           | 38       | 38           | 38       | 800           | xi e         | 50                   | 50                                                | 50    | 50       | 50       | 50           | 002          | 50                   | 50       | 50           | 202                  | 50                   | 50       | 50       | 50                   | 50             | 80               | 0 x 0                | 80       | 80               |                      | 8 8      | 80               | 80       | 56         | 200                  | 56             | 56.     | tinı      |
| IL <sup>rr</sup>                    |                      |          | -            |          |               |              | - 0                  | 0 0                                               |       | 0        | 0        | 0            |              | 0                    | 0        | 0            |                      | 0                    | 0        | 0        |                      | 0              | 0                | - 0                  | 0        | 0                |                      |          | 0                | 0        | 0          |                      | 0              | 0       | Continued |
| $^{\rm IFTL}$                       | ഗവ                   | ŋ        | ŋ            | ŋ        | ທ່            | ഗ്           | 0 0                  | 9 9                                               | 9     | 9        | 9        | 9            | 0 0          | 9                    | 9        | 9            | 9                    | 9                    | 9        | 9        | 99                   | 9              | 0                | 0 0                  | 0        | 0                |                      |          | 0                | 0        | 9          | 9                    | 9              | 9       |           |
| $\mathbf{TT}^{\mathbf{TT}}$         |                      |          |              |          |               |              | - 0                  | 0 0                                               |       | 0        | 0        | 0            |              | 0                    | 0        | 0            |                      | 0                    | 0        | 0        | 0 0                  | 0              | 0                | 0 0                  | 0        | 0                |                      |          | 0                | 0        | -          |                      |                | 1       |           |
| $IE^{IN}$                           | 00                   | 0        | 0            | 0        | 0 0           | $\supset$    | 0 0                  | 0 0                                               |       | 0        | 0        | 0 0          |              | 0                    | 0        | 0            |                      | 0                    | 0        | 0        |                      | 0              | 0                | 0 0                  | 0        | 0 0              |                      |          | 0                | 0        | 0          |                      | 0              | 0       |           |
| IF                                  | ~ ~                  | 1-       | 1            | -1       | r- 1          | 1-1          | - 9                  | 9                                                 | 9 9   | 9        | 9        | 9            | 0 9          | 9                    | 9        | 9            | 900                  | 9                    | 9        | 9        | 99                   | 9              | 0                | 0 0                  | 0        | 0 0              |                      |          | 0                | 0        | r-1        |                      | - 1-           | 1-      |           |
| $\mathbf{s}_{N}$                    | ~ ~                  | 1        | 1            | -1       | 1-1           | - 1          | - 1-                 | 1-1                                               | - 1-  | 1-       | -1       | r-1          | - 1-         | - 1-                 | 7        | 1-1          | - 1-                 | - 1-                 | 1        | 1-       |                      | - 1-           | 1-1              |                      | 7        | 1-1              | - 1-                 | - 1-     | -1               | 1-       | r-1        |                      | - 1-           | 1-      |           |
| SHN                                 | 00                   | 0        | 0            | 0        | 0 0           | $\sim$       | 0 0                  | 0 0                                               |       | 0        | 0        | 0            |              | 0                    | 0        | 0            |                      | 0                    | 0        | 0        | 0 0                  | 0              | 0                | 0 0                  | 0        | 0                |                      |          | 0                | 0        | 0          |                      | 0              | 0       |           |
| $ss_N$                              | ~ ~                  | 1-       | 1            | -1       | r- 1          | - 1          | - 1-                 | 1-1                                               | - 1-  | 1-       | 1-       | r- 1         | - 1-         | - 1-                 | 1-       | 1-1          | - 1                  | - 1-                 | 1-       | 1-       |                      | - 1-           | 1-1              |                      | 1-       | r 1              | - 1-                 | - 1-     | -1               | 1-       | r-1        |                      | - 1-           | 1-      |           |
| ЪИВ                                 | 45<br>45             | 45       | 45           | 45       | 4 <u>5</u>    | 45           | 16                   | 16                                                | 16    | 16       | 16       | 16           | 16           | 16                   | 16       | 16           | 16                   | 16                   | 16       | 16       | 16                   | 16             | 0                | 0 0                  | 0        | 0 0              |                      |          | 0                | 0        | 58<br>58   | x x                  | 28<br>10<br>10 | $^{28}$ |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$ | $^{45}_{45}$         | 45       | 45           | 45       | 40            | 45           | $16^{4.0}$           | $16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\$ | 16    | 16       | 16       | 16           | 1 10         | 16                   | 16       | 16           | 16                   | 16                   | 16       | 16       | 16                   | 16             | 0                | 0 0                  | 0        | 0                |                      |          | 0                | 0        | 5 8<br>5 8 | x x                  | 8<br>7<br>8    | $^{28}$ |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{W}}$ | 45<br>45             | 45       | 45           | 45       | 4<br>19<br>19 | 45           | 16 - 16              | 16                                                | 16    | 16       | 16       | 16           | 019          | 16                   | 16       | 16           | 1 P                  | 16                   | 16       | 16       | 16                   | 16             | 0                | 0 0                  | 0        | 0 0              |                      |          | 0                | 0        | 5 8<br>5 8 | x x                  | 28<br>10       | $^{28}$ |           |
| $\mathbf{D}^{\mathbf{M}}$           | 51                   | 51       | 51           | 51       | 51            | 212          | 51<br>52             | 22<br>22                                          | 5 6   | 25       | $^{25}$  | 5 G          | л с<br>И с   | 5 6<br>6 6           | $^{25}$  | 52<br>122    | 0 1<br>7 7           | 5 6<br>5 6           | 25       | 25       | 22<br>22<br>22       |                |                  |                      |          |                  | 21 0                 | 10       |                  |          |            | x x                  |                |         |           |
|                                     | 44<br>44             | 44       | 44           | 44       | 44            | 44           |                      | 14                                                |       |          |          |              | + -          |                      |          |              | 14                   |                      |          |          |                      |                |                  | 0 0                  |          |                  |                      |          |                  |          |            |                      |                |         |           |
| $D^{I}$                             | 0.0                  | 2        | N            | 2        | 0             | NC           | 101                  | 2                                                 | 10    | 2        | 2        | 20           | 10           | 101                  | 2        | 2            | 20                   | 10                   | N        | 2        |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | 65.82<br>65.82       | 5.8      | 5.8          | 50       | 00 0          | ю ю<br>ю     | 00                   | 00                                                | o co  | 6        | 9        | 6            | o c          | 6                    | 9        | 6            |                      | 6                    | 9        | 9        | 66                   | 6              | Ξ,               | - <del>-</del>       | Ξ        | ÷ ;              |                      |          | 4                | Ξ        | r-1        | 12                   | - 1-           | 1-      |           |
| NB <sub>MAX</sub>                   | 99                   | 9        | 9            | 9        | 9 0           | 900          | D                    |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | ~ ~                  | ~        | ~            | ~        | ~             | ~ ~          |                      |                                                   |       |          |          | <b></b>      |              |                      |          | <b>.</b>     |                      |                      |          |          |                      |                | ~                | ~ ~                  | ~        | ~ ~              | ~ ~                  | - ~      | ~                | ~        | <u> </u>   | ~ ~                  |                | ~       |           |
| NB <sup>MIN</sup>                   | $^{42}_{42}$         | 4        | 4            | 4        |               |              |                      |                                                   |       |          |          |              | οŭ           |                      |          |              | ŏй                   |                      |          |          |                      |                |                  |                      | Ξ        | ÷;               | 4 ÷                  |          | Ä                |          |            |                      |                | 49      |           |
|                                     | 4.4                  | 4        | 4.           | 4        | 4             | 4            | 57.49                | 57.49                                             | 57.49 | 57.49    | 57.49    | 57.49        | 57.40        | 57.49                | 57.49    | 57.49        | 57.49<br>57.40       | 49                   | .49      | .49      | 57.49<br>57.49       | 49             |                  |                      |          |                  |                      |          |                  |          | .03        | 60.02                | 8              | .02     |           |
| NBAVG                               | 51                   | 51       | 51           | 51       | 51            | 212          | 271                  | 10                                                | 2 2   | 57       | 57       | 101          | 0 1          | 22                   | 57       | 101          | 5 7 7                | 22                   | 57       | 57       | 272                  | 57             | 13               | 13                   | 13       | 13               | 2 5                  | 2 12     | 13               | 13       | 60.        | 0.09                 | 60             | 60      |           |
|                                     |                      |          |              |          |               |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
| $\mathbf{P}_{\mathbf{F}}$           | 88 88                | 38       | 38           | 38       | ĝ             | ŝ            | 200                  | 22                                                | 292   | 76       | 76       | 92           | 0/2          | 292                  | 76       | 20           | 92                   | 22                   | 76       | 76       | 76                   | 22             | 35               | 0 10<br>77 70        | 35       | 33               | 6<br>6<br>6          | 3 8      | 35               | 35       | 11         | 22                   | 1              | 12      |           |
| -d                                  | 60                   | 9        | 9            | 9        | 90            |              |                      | 69 1<br>60 1                                      |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  | $^{48}_{481}$        |          |                  | 4 4<br>8 7<br>7 8    |          |                  | 48 1     | 4.         | 4 4<br>7 7           | 34 - 1         | 4 1     |           |
| $\mathbf{b}^{\mathrm{I}}$           | 44                   | 4        | 4            | 4        | ব ৰ           |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          | က၊         |                      |                |         |           |
|                                     | 8.39<br>8.39         | 8.39     | 3.39         | 3.39     | 8.39          | 8.39         | 0.09<br>17.46        | 17.46                                             | .46   | 7.46     | 7.46     | 7.46         | 746          | 7.46                 | 17.46    | 17.46        | 17.46                | 17.46                | 17.46    | 17.46    | 17.46<br>17.46       | 17.46          | 20.55            | 20.55<br>20.55       | 20.55    | .55              | 0.00<br>7.75         |          | .55              | .55      | 7.93       | 7.93                 | 7.93           | 7.93    |           |
| vus                                 |                      |          |              |          |               |              | -                    |                                                   |       | -        |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | 8.39<br>8.39         | 8.30     | 8.30         | 8.30     | 8             | ກີດ<br>ກ່າ   | 0.33<br>7.46         | 7.46                                              | 7.46  | 7.46     | 7.46     | 7.46         | 7 46         | 7.46                 | 7.46     | 7.46         | 7.46<br>7.46         | 17.46                | 17.46    | 17.46    | 17.46                | 17.46          | 20.55            | 20.55<br>20.55       | 20.55    | 20.0             | 20.05                | 2.0      | 0.55             | 0.55     | 7.95       | 7.93                 | 2.6            | 7.93    |           |
| $_{T}$ US                           |                      |          |              |          |               |              | н                    |                                                   |       | -        | -        |              |              |                      | Η        |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | 8.39<br>8.39         | 3.39     | 3.39         | 3.39     | 6.30<br>      | 6.00         | .46                  | 7.46                                              | 7.46  | 7.46     | 7.46     | 7.46         | 7.46         | 7.46                 | 7.46     | 7.46         | 7.46                 | 17.46                | 17.46    | 17.46    | 17.46<br>17.46       | 17.46          | .55              | 20.55                | .55      | .55              | 0.00                 | 222      | .55              | .55      | .93        | 20.<br>20.<br>20.    | .93            | .93     |           |
| sus                                 |                      |          |              |          |               |              | -                    |                                                   |       | 1        | 17       |              |              | 1                    | 17       | 1            |                      |                      | 1        |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | 0.75<br>0.75         | .75      | .75          | .75      | 5.5           | 75           | 5.47                 | 5.47                                              | 47    | 5.47     | 5.47     | 5.47         | 5.47<br>7.47 | 5.47                 | 5.47     | 5.47         | 5.47<br>5.47         | 5.47                 | 5.47     | 5.47     | 5.47<br>5.47         | 47             | .78              | 78                   | .78      | . 78             | 2 0 0                | 2 8      | 78               | .78      | .28        | 2 X X                | 28             | .28     |           |
| мни                                 | 00                   | 0        | 0            | 0        | 0 0           |              | ວທ                   | ហេរ                                               | מנ    | ŝ        | Ŋ        | ທີ່          | Оĸ           | ററ                   | ю        | ມດາ          | Оĸ                   | വ                    | Ŋ        | ŝ        | ມ                    | ഹ              | 00               | 20                   | 0        | 00               | N C                  | 10       | 2                | 0        | 0          |                      | 0              | 0       |           |
|                                     | $^{42}_{42}$         | 42       | 42           | 42       | 42            | 242          | 3 m                  | <i>с</i> о с                                      | ი     | . ന      | ŝ        | <b>с</b> о с | 0 m          | ი                    | ŝ        |              | თი                   | ი                    | 0        | e        | നന                   | ი              |                  |                      |          |                  |                      |          |                  |          | 95         | 0<br>0<br>0<br>0     | 95             | 95      |           |
| тыт                                 | 126.42<br>126.42     | 126.     | 126.         | 126.     | 126.          | 26.          | 02.                  | 02.                                               | 02.   | 02.      | 102.     | 102.         | 201          | 03                   | 102.     | 102.         | 02.0                 | 02                   | 02.      | 102.     | 102.                 | 03             | 152              | [52<br>[52           | 152      | 52               | 102                  | 22       | 52               | 152      | 87.        | × α<br>2 - τ         | 87             | 87.     |           |
| IGE                                 |                      |          |              |          |               |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
|                                     | 0                    |          | ŝ            | 89       | Ξ.            | 118          | 60                   | 5<br>2                                            | 4     |          | $^{48}$  | 1-1          |              | ŗ                    | 22       | က္           |                      | 201                  | 5        | ñ        | 71                   | 2              | ļ                | 227<br>91            | 8        | 0                | ກຸດ                  | 0.1-     | 6                |          | <u> </u>   | م <u>د</u>           | . 7            | 0       |           |
| əmiT                                | 310                  |          |              |          |               |              |                      | 135                                               | 104   |          |          |              | 104          |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          | 183        |                      | 284            |         |           |
| $_{\rm strio}$                      | 4 8                  |          |              | -<br>2   |               |              |                      | ю с<br>С                                          |       |          |          | ~ ~          |              |                      |          |              |                      | <br>                 |          |          | 0 0                  |                |                  | 00                   |          |                  |                      |          |                  |          |            | x 4                  |                |         |           |
| Participant                         | 20                   |          | 12           |          |               | Ξ.           |                      | 23                                                |       |          | 2 12     |              |              | -                    | . 12     |              | . L4                 | 17                   | 10       |          | 200                  |                | 2                | 21.0                 |          | 22               |                      |          | 19               |          |            | × ⊂                  |                |         |           |
| Experiment<br>Experiment            | 5 1<br>1 1           |          |              |          |               |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
| leboM<br>tuove.I                    |                      | -        | Ļ            |          |               |              |                      | 010                                               |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |
| Complexity                          |                      | Ч        | -            |          |               |              |                      |                                                   |       | н        |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  | Ч        | -          |                      |                | ч       |           |
| <b>6</b> 1                          | -15                  | -15      | -15          | -12      | <u>-</u>      | - <u>1</u> 2 | <del>2</del> 7       | 7                                                 | 77    | Ę        | Ę.       | <b>=</b> =   | 7 7          | ; <del>;</del>       | -12      | 5            | 2 5                  | 19                   | -12      | -12      | 12                   | មុ             | -13              | <u></u>              | -13      | -13              | n<br>n<br>n          | 2 19     | -13              | -13      | -14        | 14                   | -14            | -14     |           |
| Chart                               | c1-m1-l5<br>c1-m1-l5 | c1-m1-l5 | c1-m1-l5     | c1-m1-l5 | cl-ml-l5      | c1-m1-l5     | c1-m1-l5<br>c1-m2-l1 | c1-m2-l1                                          | -m2   | c1-m2-l1 | c1-m2-l1 | c1-m2-l1     | c1-m2-l1     | c1-m2-11<br>c1-m2-11 | c1-m2-l2 | c1-m2-l2     | c1-m2-12<br>c1-m2-13 | c1-m2-12<br>c1-m2-12 | c1-m2-l2 | c1-m2-l2 | c1-m2-l2<br>c1-m2-l2 | c1-m2-l2       | c1-m2-l3         | c1-m2-l3<br>c1-m2-l3 | c1-m2-l3 | c1-m2-l3         | c1-m2-13<br>c1-m2-13 | c1-m2-l3 | c1-m2-l3         | c1-m2-l3 | c1-m2-l4   | c1-m2-14<br>c1-m2-14 | c1-m2-l4       | -m2     |           |
| C                                   | 5 <del>5</del>       | с1-      | с <u>1</u> - | c1.      | Ċ.            | 55           | 5-5                  | c1.                                               | 3 5   | c1.      | c1       |              | 55           | 5 5                  | с1-      | с <u>1</u> . | 55                   | 55                   | с1-      | c1.      | 55                   | 5 <del>5</del> | с <del>]</del> . | 55                   | c1.      | с <del>]</del> . | 55                   | 55       | с <del>і</del> . | c1-      | cl.        | 55                   | c1-            | c1.     |           |
|                                     |                      |          |              |          |               |              |                      |                                                   |       |          |          |              |              |                      |          |              |                      |                      |          |          |                      |                |                  |                      |          |                  |                      |          |                  |          |            |                      |                |         |           |

| $\mathbf{I}_{\mathbf{N}}$   | 6        | <b>n</b> 0 | 000               | 50         | 50                                      | 6        | 6        | <b>б</b>     | nσ           | 6        | 6        | 6        | 6        | ກດ                 | 00         | 0                                        | 6            | 6        | 6            | 6           | ົ                                      | 50                   | 6        | 6           | n 0                                                                              | 0                    | 6            | 6            | 6        | ກວ                   | 0        | 6        | 6        | 6        | o 0              | 00                   |   |
|-----------------------------|----------|------------|-------------------|------------|-----------------------------------------|----------|----------|--------------|--------------|----------|----------|----------|----------|--------------------|------------|------------------------------------------|--------------|----------|--------------|-------------|----------------------------------------|----------------------|----------|-------------|----------------------------------------------------------------------------------|----------------------|--------------|--------------|----------|----------------------|----------|----------|----------|----------|------------------|----------------------|---|
| $\mathrm{Tas}^{N}$          |          |            |                   |            | - 4                                     | 4        | 4        | 4 4          | 4            | 4        | 4        | 4        | 4        |                    | с с        | າຕ                                       | ŝ            | n        | က            | က           | n c                                    | 0 00                 | ŝ        | ŝ           | со с                                                                             | າຕ                   | c            | ŝ            | က        | n ⊂                  |          | 0        | 0        | 0        | 0 0              | 00                   |   |
| $^{\mathrm{Ld}}\mathrm{N}$  | 0        | 0 0        |                   |            |                                         | 0        | 0        | 0 0          |              | 0        | 0        | 0        | 0        | 0 0                |            | 0                                        | 0            | 0        | 0            | 0           | $\supset$                              |                      | 0        | 0           | 0 0                                                                              | 0                    | 0            | 0            | 0        | ⊃ o                  | 0        | 6        | 6        | 6        | <b>б</b> с       | 0 0                  |   |
| $\mathrm{rs}_{\mathrm{N}}$  | ~        | x 0        | 00                | 0 0        | 0 10                                    | ഹ        | ŋ        | ມ            | с rc         | Ŋ        | ŋ        | ŋ        | ມ        | 99                 | o u        | 9                                        | 9            | 9        | 9            | 9           | 9                                      | 0 0                  | 9        | 9           | 99                                                                               | 9                    | 9            | 9            | 9        | 00                   |          | 0        | 0        | 0        | 0 0              | 0 0                  |   |
|                             |          |            |                   |            | 19                                      |          | 64       | 64           | 52           | 64       | 64       | 64       | 64       |                    |            |                                          |              |          |              |             | 53                                     | 200                  | 29       | 29          | 33                                                                               | 50                   | 29           | 29           | 53       | 67.                  |          |          |          |          |                  |                      | 1 |
| FL                          | 56.      | 50.        | 00.<br>100.       | 0 u<br>0 u | 0.7                                     | 12       | 77.      | 17.          | - 1-         | 77       | 77.      | 77.      | 17.      | 5.5                | 56         | 31.                                      | 31.          | 31.      | 31.          | 31.         |                                        | 5 6                  | 31.      | 31.         | 5.5                                                                              | 5.5                  | 31.          | 31.          | 31.      | 3T.                  |          | 001      | 100      | 100      | 100              | 00                   |   |
| IL <sup>rr</sup>            | 0        | 0          |                   |            | c                                       | -        | -        |              |              | -        | -        | -        | -        | 0                  |            | 0                                        | 0            | 0        | 0            | 0           | -                                      |                      | 0        | 0           | 0 0                                                                              | 0                    | 0            | 0            | 0        |                      |          | 0        | 0        | 0        | 0 0              | 0 0                  |   |
| $IE_{TL}$                   | 9        | 9          | 0 9               | 0 0        | - c                                     |          | Ч        |              |              |          |          |          | -        |                    |            |                                          | -            | -        |              |             |                                        |                      |          |             |                                                                                  |                      | г            |              |          | - c                  | 10       | 2        | 0        | 0        | 20               | 101                  |   |
| $\mathbf{IF}_{\mathbf{TT}}$ |          |            |                   |            |                                         | 0        | 0        | 0 0          |              | 0        | 0        | 0        | 0        | 0 0                |            | 0                                        | 0            | 0        | 0            | 0           | $\supset$                              |                      | 0        | 0           | 0 0                                                                              | 0                    | 0            | 0            | 0        |                      |          | 0        | 0        | 0        | 0 0              | 0 0                  |   |
| $IE^{LN}$                   | 0        | 0 0        |                   |            |                                         | 0        | 0        | 0 0          |              | 0        | 0        | 0        | 0        | 0 0                |            | 0                                        | 0            | 0        | 0            | 0           | $\supset$                              |                      | 0        | 0           | 0 0                                                                              | 0                    | 0            | 0            | 0        |                      |          | 0        | 0        | 0        | 0 0              | 0 0                  |   |
| IF                          | - 1      | 1-1        | - 1               | - 1        | - 0                                     | 101      | 5        | 010          | 10           | 0        | 0        | 2        | 0        |                    |            |                                          | Ч            | Ч        | -            |             |                                        |                      | -        | -           |                                                                                  |                      | Г            | -            |          | - 0                  | 10       | 101      | 0        | 0        | 010              | 101                  |   |
| <sup>s</sup> N              | - 1      | 1-1        | - 1               | - 1        | - 1-                                    | - 1-     | 1-       | 1-1          | - 1-         | -1       | 1-       | -1       | ŀ-1      | - 1                | - 1        | - 1-                                     | 1-           | 1        | -            | <u>г</u> -1 | - 1                                    | - 1-                 | -1       | 1-1         | 1-1                                                                              | - 1-                 | 1-           | 1-           | 1-1      | - 1                  | - 1-     | - 1-     | 1-       | 1-       | 1-1              | - 1-                 |   |
| $sh_N$                      | 0        |            | ⊃ ⊂               | ⊃ ⊂        | - C                                     |          | 0        | 00           |              |          | 0        | 0        | 0        |                    |            |                                          | 0            | 0        | 0            | 0           | $\supset$                              | - C                  |          | 0           |                                                                                  |                      | 0            | 0            | о (<br>  |                      | • •      | , o      | 0        | 0        | 00               | ) O                  |   |
| $ss_N$                      |          | с г        | - r               | - r        | - [-                                    |          |          | r- r         | - 1-         | -1       |          | -        | -        | с г                | - 1        | - [-                                     | 1            | 1        |              | [~ ]        | ~ t                                    | - [-                 | -1-      | [~ ]        | с r                                                                              | - [-                 | 1            | -1           | [- I     |                      | - 1-     | . [~     | ~        |          | <u>с</u> т       | - [-                 |   |
| ЪИВ                         | 1        |            |                   |            |                                         |          |          | 50           |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          | -        | -        |                  |                      |   |
| $D^{NR}$                    | 1        |            |                   |            |                                         |          |          | 20           |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          | 0        | 0        | -        |                  | ) O                  |   |
| $D^{NW}$                    | 1        |            |                   |            |                                         |          |          | 50           |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              | 5 00     |                      |          | 0        | 0        | 0        | 00               | 0 0                  |   |
| $\mathbf{D}^{\mathbf{M}}$   | 1        |            |                   |            |                                         |          |          | 50           |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      | 10       | 12       | 12       | 12       | 12               | 121                  |   |
| $\mathbf{D}^{\mathbf{I}}$   | 32       | 61 C       | 0 0               | 2 6        | 1 0                                     | 2.0      | 76       | 76           | 2 9          | 76       | 76       | 20       | 20       | 20 02<br>20 17     | 0 0<br>1 C | 0 00<br>17 10                            | $^{28}_{28}$ | 28       | $^{50}_{28}$ | 5 6         | 20 0                                   | 0 00                 | 28       | $^{5}_{28}$ | 8 8<br>5 75                                                                      | 0 00<br>10 10        | $^{28}_{28}$ | $^{28}_{28}$ | 5 00     | × ⊂                  |          | 0        | 0        | 0        | 00               | 0 0                  |   |
|                             | 11       | 55         | 75                | 12         | 52                                      | 52       | $^{25}$  | 50<br>50     | 220          | 25       | 25       | 25       | 52       | 2 0                |            | 62                                       | 62           | 62       | 62           | 62          | 202                                    | 2 29                 | 62       | 62          | 2 2                                                                              | 020                  | 62           | 62           | 62       | 7 C<br>9 F           | e e      | 13       | 13       | 13       | ; ;              | 13                   |   |
| NBMAX                       |          |            |                   |            | 53                                      | 53.      | 53.      | 53.          |              | 53.      | 53.      | 53.      | 53.      |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  |                      |   |
| dit                         |          |            |                   |            | ×                                       | 80       | 38       | 80           | gœ           | 80       | 38       | 80       | 80       | 1                  | 1 1        | 16                                       | 91           | 91       | 91           | 31          | 1.                                     | 1 5                  | 91       | 91          | 6 6                                                                              | 91                   | 91           | 91           | 91       | <u>ا</u> 1           |          |          |          |          |                  |                      |   |
| NBMIN                       | 49       | 49         | 40                | 4 G        | 52.(                                    | 52.0     | 52.(     | 52.08        | 202          | 52.0     | 52.(     | 52.0     | 22.0     | 15.5               | о<br>1 н   | 15.5                                     | 15.9         | 15.9     | 15.9         | 15.         | 15.5                                   | 1 10                 | 15.5     | 15.9        | 15.5                                                                             | 15.0                 | 15.9         | 15.9         | 15.5     | 13.5                 | e e      | 13       | 13       | 13       | ; ;              | 13                   |   |
| an                          | 02       |            |                   |            |                                         |          |          |              |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  |                      |   |
| NBVAG                       | 60.0     | 00.0       |                   |            | 52.2                                    | 52.4     | 52.4     | 52.47        | 100          | 52.47    | 52.47    | 52.47    | 52.47    | 24 5               |            | 424                                      | 42.5         | 42.0     | 42           | 42          | 7 6                                    | 42.33                | 42       | 42          | 47<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24 | 42.33                | 42.5         | 42.5         | 42       |                      | e e      | 13       | 13       | 13       | ; ;              | 13                   |   |
| and an                      |          |            |                   |            |                                         |          |          |              |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  |                      |   |
|                             | 5        | 5          | - [               | - [        | - 13                                    | 5        | 5        | 22<br>52     | 3 5          | 5        | 22       | ы<br>С   | ល        | 2 12               | эĔ         | о ю                                      | 5            | 5        | 5            | 2           | 2                                      | 0 20                 | 5        | 22          | ស្តូ អ្                                                                          | ្ល                   | 52           | 53           | ខ្ល      | ი<br>ი ლ             | 2 9      | 2 9      | 90       | 106      | 9 5              | 90                   |   |
| $\mathbf{P}_{\mathbf{F}}$   |          |            |                   |            |                                         |          |          |              |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  |                      |   |
| $\mathbf{b}^{\mathrm{I}}$   | 34       | က်င်       | ňċ                | ້າ ຕໍ      | , <u> </u>                              | 10       | 101      | 101          |              | 10       | 10.      | 10.      | 10       |                    | 5 7        | n n                                      | ñ            | ñ        | ñ            | č č         | m d                                    | 130                  | 130      | 130         | 130                                                                              | 130                  | 130          | 130          | 130      | - n<br>1             | i e      | 6        | ñ        | ŝ        | ñ                | 39<br>39             |   |
|                             | 7.93     | 6.6        | 000               | 50         | 6.18                                    | 6.18     | 6.18     | 6.18<br>6.18 | 01.0<br>91.9 | 6.18     | 6.18     | 6.18     | 6.18     | 6.6                | 10         | 61                                       | .91          | .91      | .91          | .91         | 6.6                                    | 14.91                | .91      | .91         | 6.6                                                                              | 16.71                | 7.91         | 7.91         | 7.91     | 7.91                 | 23.50    | 59       | .59      | .59      | .59              | .59<br>.59           |   |
| AUR                         |          |            |                   |            |                                         | 9        | 9        |              |              |          |          |          | ,        |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      | -            | Η            |          | 17<br>73             |          | 23.      |          | 23.      |                  |                      |   |
|                             | 7.93     | 7.93       | 200.7             | 2.5        | 8 S S                                   | 5.18     | 5.18     | 6.18         | 6 18<br>9 18 | 6.18     | 6.18     | 6.18     | 6.18     | 7.91               | 102        | 16.7                                     | 7.91         | 7.91     | 7.91         | 7.91        | 1.91                                   | 16.7                 | 7.91     | 7.91        | 7.91                                                                             | 16.7                 | 7.91         | 7.91         | 7.91     | 7.91                 | 202      | 23.59    | 3.59     | 23.59    | 3.59<br>2.59     | 23.59<br>23.59       |   |
| $\mathbf{T}$ US             |          |            |                   |            |                                         |          | Ŭ        |              |              |          |          |          | ,        |                    |            |                                          | -            | H        | -            |             |                                        |                      | -        | H           |                                                                                  | ÷                    | H            | H            | -        |                      |          |          |          |          |                  |                      |   |
|                             | 7.93     | . 93       | <br>              | 5 G        | 0 n n n n n n n n n n n n n n n n n n n | 6.18     | 6.18     | 6.18         | 91.0         | 6.18     | 6.18     | 6.18     | 6.18     | 17.91              | 10.        | 17.91                                    | .91          | .91      | .91          | 7.91        | 7.91                                   | 16.7                 | 7.91     | 7.91        | 7.91                                                                             | 7.91                 | 7.91         | .91          | 7.91     | 17.91<br>93 50       | 23.50    | 23.59    | 3.59     | 23.59    | 5.59             |                      |   |
| sus                         | 1-1      | (~ I       | - 1               | ~ 1        |                                         | 0        | Ű        | 00           |              |          | Ű        | 0        | , 0      |                    |            |                                          | 17           | 1        | 1            | -           |                                        |                      | H        | 1           |                                                                                  |                      | 11           | 1            | 1        | - 6                  | 10       | 101      | 8        | 20       | 5<br>5<br>3<br>3 | 5 6                  |   |
|                             | .28      | 28         | 0 0               | 0 0        | 0, 89                                   | .68      | .68      | .68          | 8            | .68      | .68      | .68      | .68      | .47                | 4 - 1-     | 47                                       | .47          | .47      | .47          | .47         | .47                                    | 47                   | .47      | .47         | .47                                                                              | 47                   | .47          | .47          | .47      | 10                   | 01       | 3.19     | 3.19     | .19      | .19              | .19                  |   |
| янм                         |          | 00         | ) C               |            |                                         | 0        | 0        | 00           |              | 0        | 0        | 0        | 0.       | 4 4                | 1, 2       | 1 7                                      | ব            | ব        | ন            | 4.          | 4.4                                    | ক ব                  | ন        | 4           | 4 4                                                                              | 1 4                  | ন            | ব            | ব •      | 4° 0°                | ) m      | က        | က        | က        | 000              | ົ້                   |   |
|                             | .95      | 6.9        | 0 u<br>0 u        | 0 u        | 220                                     | 55       | 55       | ក<br>ភូមិ    | 2.0          | 55       | 55       | 55       | 55       | 99.<br>99.         | 0 4<br>0 4 | 99                                       | .66          | .66      | 99.          | 99          | 99                                     | 99                   | 99       | .66         | 99.9                                                                             | 99                   | .66          | .66          | 99       | 00.<br>7 8 0         | 2 0      | 48       | .78      | .78      | 1 28             | 41.78                |   |
| лят                         | 87       | 8 0        | 0 0               | 0 0        | 145                                     | 145      | 145      | 145          | 145          | 145      | 145      | 145      | 145      | 120                | 190        | 120                                      | 120          | 120      | 120          | 120         | 120                                    | 120                  | 120      | 120         | 120                                                                              | 120                  | 120          | 120          | 120      | 171                  | 141      | 141      | 141      | 141      | 141              | 141<br>141           |   |
|                             |          |            |                   |            |                                         |          |          |              |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  |                      |   |
|                             | 76       | 30         | 005               | PT         | 34                                      | 33       | 13       | 85           | 2 22         | 80       |          |          | 0        |                    | 0 0        | 86                                       | 01           | 86       | 69           |             |                                        | 12                   | 98       |             | 72                                                                               | 72                   | 62           | 46           | 72       | 00                   | 000      | 80       | $^{24}$  | 44       | 20               | 80                   |   |
| eanto i<br>9miT             | 7        |            |                   |            |                                         |          |          | 4 °          |              |          |          |          |          |                    |            | - 4                                      |              |          |              |             |                                        |                      |          | -           |                                                                                  |                      |              |              |          |                      |          |          |          |          |                  | 9 9                  |   |
| Participant<br>Points       | 18       |            | 1 0               | _          |                                         |          |          | ۲- ç         |              |          |          |          |          |                    |            | - 1 -                                    |              |          |              |             |                                        |                      |          | 20          |                                                                                  |                      | 13 -1        |              |          |                      |          |          |          |          |                  | - 17                 |   |
| Experiment<br>Transitient   | 1        |            |                   | N C        |                                         |          |          |              |              |          |          | 2        |          |                    |            |                                          |              |          |              |             | 21 0                                   |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          |          | -                | 10                   |   |
| Layout                      | 4        | 4 -        | 4 -               |            |                                         |          |          | ഗാ           |              |          |          |          |          |                    |            |                                          |              |          |              |             |                                        |                      |          |             |                                                                                  |                      |              |              |          |                      |          |          |          | e        | <b>с</b> , с     | იო                   |   |
| IsboM                       | 0        | CN 0       | 2                 | 10         | 10                                      |          |          | 010          | 10           | 0        | 0        | 2        | 01       | ი.                 |            |                                          |              |          |              |             |                                        |                      |          | co          |                                                                                  |                      |              | co           | n d      | ი.                   |          |          | co       | n        | ი.               | იო                   |   |
| Complexity                  | 4        | 4 -        |                   | <br>       | + ⊢<br>+ ∽                              | 20       |          | ມ<br>        | າ<br>ວ ທ     | 1        | 5 1      | 5<br>1   | ດ.<br>ເບ |                    |            |                                          |              |          |              |             |                                        |                      |          | 2           |                                                                                  |                      | 2 1          | 2            | <br>     | <br>N 0              |          |          | 3 1      | 3        | ი.<br>ი          | <br>                 |   |
| rt                          | c1-m2-l4 | c1-m2-14   | c1-mz-14          | c1-m2-14   | c1-m2-14<br>c1-m2-15                    | c1-m2-l5 | c1-m2-l5 | c1-m2-l5     | c1-1112-10   | c1-m2-15 | c1-m2-l5 | c1-m2-l5 | c1-m2-l5 | c1-m3-l1           | c1-m2 ]1   | c1-m3-l1                                 | c1-m3-l1     | c1-m3-l1 | c1-m3-l1     | c1-m3-l1    | c1-m3-l1                               | c1-m3-11<br>c1-m3-12 | c1-m3-l2 | c1-m3-l2    | c1-m3-l2                                                                         | c1-m3-12<br>c1-m3-12 | c1-m3-l2     | c1-m3-l2     | c1-m3-l2 | c1-m3-l2<br>c1-m3-l3 | c1-m3-l3 | c1-m3-l3 | c1-m3-l3 | c1-m3-l3 | c1-m3-l3         | c1-m3-l3<br>c1-m3-l3 |   |
| Chart                       | :1-n     | 4 i        | 4 i<br>1 :<br>1 : |            |                                         | :1-n     | 1-n      | -1-n         |              | :1-m     | 1-n      | n-lo     | -1-n     | 4 1<br>1<br>1<br>1 |            | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | :1-n         | :1-n     | :1-n         | -1-n        | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                      | :1-m     | n-1:        | 4 4<br>1 7                                                                       | 1-1-1                | :1-n         | :1-n         | :1-n     | 4 H                  | 1-1-     | :1-n     | 1-n      | :1-n     | -1-n             | 1-1                  |   |
| 0                           |          | 5          | 0                 |            | 50                                      | , 0      | 0        | 0 0          |              | 0        | 0        | J        | J        | 0 0                | . (        | 50                                       | 0            | 0        | J            | J           | 0                                      | 00                   | 0        | 0           | 5                                                                                | 50                   | 0            | 0            | 0        | 50                   |          | , 0      | 0        | 0        | 5                | 50                   | I |

|                            | 1        | ~        | ~        | _        | -        | ~             | ~        | •        | റെ                      |                       |              | -        |                       |              |                |          | -        | •        | ~ .      |                      |                | ~        | _                                                                |                                                                                                  |            | -        | റെ                |                      |                | •        | _                                                                |                   |                | -        | ~            |                      | 1                 |
|----------------------------|----------|----------|----------|----------|----------|---------------|----------|----------|-------------------------|-----------------------|--------------|----------|-----------------------|--------------|----------------|----------|----------|----------|----------|----------------------|----------------|----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|----------|-------------------|----------------------|----------------|----------|------------------------------------------------------------------|-------------------|----------------|----------|--------------|----------------------|-------------------|
| $^{\rm L}N$                | 00       |          |          |          |          |               |          |          |                         |                       |              | 00       | 00 0                  |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              |                      | page              |
| $_{\rm Tqs}N$              |          | -        | -        | _        | _        | -             | _        | _        |                         |                       |              | -        |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              | 0 10                 | xt 1              |
| $N^{LL}$                   | 00       | 0        | -        | -        | 0        | -             | 0        | -        |                         |                       | . 0          |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              |                      | ne                |
| $^{\text{LS}}N$            | 0        | 0        | o        | o        | o        | 0             | o        | 6        | တင                      | 00                    | 0            | 1-       | r- 1                  | - r          | - [-           | . [~     | 1-       | 1-       | r- 1     | - 1                  | - 1-           | 1-       | r~ r                                                             | - 1                                                                                              | - [-       | 1-       | 1-1               | - [-                 | -1-            | 1-       | r~ r                                                             | - 1               | - 1-           | 1-       | <b>P</b>     | - 0                  | uo                |
|                            |          | _        | . 93     | .93      | . 93     | . 93          | . 93     | . 93     | 6                       | 6.6                   | .93          | 62.11    | 62.11                 | 3 7          |                | 62.11    | 62.11    |          | Ξ        | 11                   | 1              | . 77     | 1.1                                                              | 12                                                                                               | 1          | . 77     | 1.1               | 1                    | 17             | 42       | 1.1                                                              | 12                | 1              | 11.      | 14           | 29.77                | ued               |
| FL                         | 100      | 100      | 46       | 46       | 46.      | 46.           | 46.      | 46.      | 46.                     | 40.4                  | 46.          | 62       | 62                    | 07.0         | 16             | 58       | 62       | 62.      | 62.      | 0 0                  | 60             | 29       | 50                                                               | 200                                                                                              | 9 6<br>1 6 | 29       | 50                | 202                  | 53             | 29       | 53                                                               | 202               | 60             | 29       | 53           | 100                  | tin               |
| $IE_{L}L$                  | 0        | 0        | 4        | 4        | 4        | 4             | 4        | 4        | 4 4                     | 4                     | 4            | 0        | 0                     |              |                | 0        | 0        | 0        | 0        |                      | 0              | 0        | 0 0                                                              |                                                                                                  | 0          | 0        | 0 0               |                      | 0              | 0        | 0                                                                |                   | 0              | 0        | 0            | 0 0                  | Continued on next |
| $^{\rm IE_{TL}}$           | 7        | 0        | ŋ        | ŋ        | ŋ        | ŋ             | ŋ        | 5<br>C   | ഗഗ                      | с rc                  | n n          | 9        | 9                     | 9 9          | 2              | 9        | 9        | 9        | 9        | 00                   | 101            | 0        | 010                                                              | N C                                                                                              | 101        | 0        | 010               | 4                    |                | -        |                                                                  |                   |                | 1        | -            | - 0                  | ľ                 |
| $^{\rm TT}$ IF $^{\rm TT}$ | 0        | 0        | -        | Ч        | г        | -             | г        |          |                         |                       |              | 0        | 0 0                   |              |                | -        | -        | -        | 0 0      |                      | 0              | 0        |                                                                  |                                                                                                  |            | -        |                   |                      | -              | -        |                                                                  |                   | 0              | 0        | 0            | 0 0                  |                   |
| IFTN                       |          | 0        | 0        | 2        | 0        | 0             | 0        | 2        | 01 0<br>01 0            | 10                    | 1 01<br>1 01 | 0        | 00                    |              |                | 00       | 0        | 0        | 00       |                      |                | -        |                                                                  |                                                                                                  | 1 CI       | -        | 00                |                      |                | _        |                                                                  |                   |                | _        |              |                      |                   |
| IF                         |          |          | 12       | Η        | Н        | 7 12          | Η        | 1        |                         | 10                    |              | Ň        | ~ `                   |              |                | ~        | ~        | Ň        | ~ `      |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                | - 1      |                                                                  |                   |                | ~        | ~            |                      |                   |
| <sup>s</sup> N             |          |          |          |          |          |               |          |          |                         | - [-                  |              |          |                       |              |                |          |          |          | 00       |                      |                |          |                                                                  |                                                                                                  | - 1-       |          |                   | - [-                 |                |          |                                                                  |                   |                |          |              | - 1-                 |                   |
| <sup>SH</sup> N            |          | ~        | ~        | ~        | ~        | ~             | ~        | ~        |                         |                       |              | ~        | ~ I                   | - r          |                |          | ~        | ~        | ~ I      |                      |                | ~        | - 1<br>- 1                                                       |                                                                                                  |            | ~        |                   |                      |                | ~        | - 1                                                              |                   |                | ~        | ~ 1          | ~~                   |                   |
| <sup>ss</sup> N            |          | È        | `<br>.0  | `<br>.0  | `<br>.0  | 0             | .0       |          |                         | `<br>- )c             |              | `<br>    | <br>                  | <br>         | )<br>Nor       | `<br>    | `<br>.0  | `<br>    | <br>     |                      | •<br>• m       | `<br>m   | n r                                                              | -<br>                                                                                            | -<br>n m   | `<br>m   | <br>              | •<br>• •             | è<br>m         | ~<br>~   | ~ `<br>~ ~                                                       | -<br>             | è<br>n m       | 'n       | ~ ·          | <br>                 |                   |
| D <sup>NB</sup>            |          |          |          |          |          | і<br>Сі<br>Сі | й<br>2   | й<br>20  | ດີເດີ<br>ເດີຍ           | 1<br>7<br>7<br>7<br>7 | ାର୍ମ<br>୨୦୦  |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          | 333<br>0.03       |                      | ເດີ<br>ເຫ      | сі<br>m  |                                                                  |                   | । নি<br>১ ল    | 3<br>3   | 61 i<br>00 i | n O                  |                   |
| D <sup>NR</sup>            |          | 0        |          |          |          | ы<br>Б        | 2<br>2   | 6<br>2   | ດີດ<br>ທີ່ດີ            | 1<br>7<br>7<br>7      | ାର୍ମ<br>୨୦୦  | -        | 6<br>7<br>6<br>7<br>6 |              |                |          |          |          | 6 56     |                      |                |          |                                                                  | 5<br>5<br>7<br>7<br>7<br>7<br>7                                                                  |            |          | 333<br>333<br>333 | 1 61<br>0 00         | ເດີ<br>ເຫ      | сі<br>Ю  | 610<br>000                                                       | 2 C<br>7 C<br>7 C | າ ຕິ<br>ວິດາ   | 3        | 61 i<br>00 i | n O                  |                   |
| D <sup>NV</sup>            |          |          |          |          |          |               |          |          | ม<br>2.0<br>2.0         |                       |              |          |                       |              |                |          |          |          |          |                      | 53             |          | 23                                                               |                                                                                                  |            | 2 23     |                   | 4 či<br>4 ⊂          | 18<br>18       | 5<br>0   | 8<br>0                                                           | й й<br>N С        | ដ              | 2        | 20           | N M                  |                   |
| $\mathbf{D}^{\mathbf{M}}$  |          |          |          |          |          |               |          | 2 25     |                         |                       |              |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          | 0 22              |                      |                |          | 0 22                                                             |                   |                |          |              | 8 7                  |                   |
| $\mathbf{D}^{\mathbf{I}}$  | [        | 0        | 3        | 2        | 5        | 0             | 3        | 0        | ò ò                     | 10                    | id           | õ        | ທີ່                   | ດັນ          | ້ນ             | ້ທີ      |          |          |          |                      |                |          | 20                                                               |                                                                                                  |            | 20       |                   |                      |                |          |                                                                  |                   |                |          |              | 0 0                  |                   |
|                            | 13       | 13       | 62       | 62       | 62       | 62            | 62       | 62       | 62<br>62                | 100                   | 62           | .67      | 67                    | 10.11        | 19.1           | 7.67     | 7.67     | 77.67    | .67      | 0 K                  | 130.75         | .75      | .75                                                              | 130.75                                                                                           | 130.75     | .75      | 130.75            | 130.75               | 130.75         | 130.75   | 130.75                                                           | 130.75            | 130.75         | 130.75   | .75          | 13                   |                   |
| NBMAX                      |          |          |          |          |          |               |          |          |                         |                       |              | 77       | 1-1                   | 21           |                | - 1-     | 77       | 77       | 51       | 130                  | 130            | 130      | 130                                                              | 130                                                                                              | 130        | 130      | 130               | 130                  | 130            | 130      | 130                                                              | 130               | 130            | 130      | 130          | 130.                 |                   |
|                            |          |          |          |          |          |               |          |          |                         |                       |              | 15       | 122                   | 30.15        | 2 10           | 12       | 15       | 15       | 122      | 0.10                 | 7.72           | 7.72     | 7.72                                                             | 7 7 2                                                                                            | 7.72       | 72       | 7.72              | 7.72                 | 7.72           | 7.72     | 7.72                                                             | 7 7 2             | 7.72           | 7.72     | 72           | 2                    |                   |
| NIMAN                      | 13       | 13       | 50       | 50       | 50       | 50            | 50       | 50       | 50                      | 202                   | 50           | 36.      | 36.                   | 30.L         | 36.15          | 36.1     | 36.15    | 36.1     | 36.1.    | δ0.<br>1 0.          | 17.            | 17.      | 1.1                                                              |                                                                                                  | 17.        | 17.      | 1.7               | 12                   | 17.            | 17.      | 1.1                                                              |                   | 17             | 17.      | 14           | 17.<br>13            |                   |
|                            |          |          | 74       | 74       | 74       | 74            | 74       | 74       | 77                      | 17                    | 77           | 32       | 33                    | 22           | 38             | 38       | 32       | 32       | 33       | - 5<br>2             | <del>ب</del> ب | 4        | 4.                                                               | 4 2                                                                                              | * 4        | 4        | 4 -               | * 4                  | · <del>م</del> | 4        | 4.                                                               | 4                 | • 7            | 4        | 4            | 4                    |                   |
| NBAVG                      | 13       | 13       | 55.      | 55.      | 55.      | 55.           | 55.      | 55.      | 55.74<br>55.74          | 2.5                   | 55.          | 55.      | 55.                   | с л<br>г о   |                | 55.      | 55.      | 55.      | 55.      | 00.<br>80.0          | 58.            | 58.      | 50.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>1 | ю и<br>хох                                                                                       | 5.80       | 58.      | 58.4              | 0.00                 | 58.            | 58.      | 50.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>100.<br>1 | ю и<br>хох        | 280            | 58.      | 58.          | 58.<br>13            |                   |
| uit                        |          |          |          |          |          |               |          |          |                         |                       |              |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              |                      |                   |
| J _                        | 90       | 106      | 77       | 17       | 77       | 11            | 77       | 11       | 11                      | - 1-                  | 12           | $^{48}$  | 84                    | 84 ¢         | 9 X            | 48       | $^{48}$  | $^{48}$  | 84       | 64 S                 | 3 23           | 82       | 82                                                               | 2 8                                                                                              | 3 23       | 82       | 88                | 2 10                 | 26             | 76       | 9 2                                                              | 0 2               | 292            | 76       | 20           | 92                   |                   |
| $\mathbf{p}_{\mathbf{F}}$  |          | 39 1     |          |          |          | 38            | œ        | 8        | 00 0                    | 0 00                  | ) 00         | e        |                       | <b>თ</b> ი   | ാന             | ი        | e        | e        |          | 10                   | - 1-           | -1       | 1-1                                                              | - 1-                                                                                             | - 1-       | -1       | 1-1               | - 1-                 | -1-            | ~        | 1-1                                                              | - 1-              | - 1-           | 4        | 5            | ~ ∞                  |                   |
| $\mathbf{P}_{\mathbf{I}}$  |          |          |          |          |          | ŝ             | ŝ        | ŝ        | со с                    | ົ້                    |              |          |                       |              |                |          |          |          |          |                      | - 22           |          | 1-1                                                              | - 1                                                                                              |            |          | 1-1<br>1-1        | -                    |                | -        |                                                                  | - 1-              |                | Η        | -            | 177<br>58            |                   |
|                            | 23.59    | 23.59    | 9.67     | 9.67     | 9.67     | 9.67          | 9.67     | 9.67     | 9.67<br>6.7             | 2.6.7                 | 9.67         | 5.45     | 5.45                  | 0.40<br>8 45 | 242            | 5.45     | 5.45     | 5.45     | 5.45     | 0.40                 | 18.48          | 18.48    | 8.48                                                             | 18.48                                                                                            | 18.48      | 18.48    | 8.48              | 18.48                | 18.48          | 18.48    | 8.48                                                             | 18.48             | 18.48          | 18.48    | 8.48         | 22.27                |                   |
| $v_{\rm US}$               |          |          |          |          |          | •             |          |          |                         |                       |              |          |                       |              |                |          |          |          |          | -                    |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              | - (1                 |                   |
|                            | 23.59    | 23.59    | 9.67     | 9.6      | 9.67     | 9.6           | 9.67     | 9.67     | 9.67<br>67              | 0.0                   | 9.67         | 5.45     | 5.45                  | บ.45<br>ศ.ศ  | 542<br>745     | 5.45     | 5.45     | 5.45     | 5.4      | 0.40                 | 18.48          | 18.48    | 8.48                                                             | 18.48                                                                                            | 18.48      | 8.48     | 8.48              | 18.48                | 18.48          | 8.48     | 18.48                                                            | 18.48             | 18.48          | 8.48     | 18.48        | 8.48<br>2.27         |                   |
| $_{T}$ US                  | ~        | (1       |          |          |          |               |          |          |                         |                       |              |          |                       | <u> </u>     |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              | - 0                  |                   |
|                            | 3.55     | 23.59    | 9.67     | 9.67     | 9.67     | 9.67          | 9.67     | 9.67     | 9.67<br>6.7             | 79.67                 | 9.67         | 5.45     | 5.45                  | 0.40<br>8.40 | 14             | 145      | 5.45     | 5.45     | 5.45     | 0.40<br>2.40<br>2.8  | 84.8           | 8.48     | 84.0                                                             | 2<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 18.48      | 8.48     | 8.48              | 18.48                | 18.48          | 8.48     | 84.0                                                             | 18.48<br>18.48    | 8.48           | 8.48     | 8.48         | 2.27                 |                   |
| sus                        | 6        | 0        | -        | -        |          |               |          | -        |                         |                       |              |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                | -        |              | 57.<br>72.           |                   |
|                            | 3.19     | 3.19     | 0.3      | 0.3      | 0.3      | 0.3           | 0.3      | 0.3      | n 0                     |                       | 0.3          | 1.06     | 1.06                  | 00.1         | 90.1           | 1.06     | 1.06     | 1.06     | 1.06     | 1.00<br>1 6 1        | 4.61           | 4.61     | 4.61                                                             | 10.4                                                                                             | 4.61       | 4.61     | 4.61              | 1.61                 | 4.61           | 4.61     | 4.61                                                             | 101               | 4.61           | 4.61     | 4.61         | 4.61<br>3.28         |                   |
| янм                        |          |          |          |          |          |               |          |          |                         |                       |              |          |                       |              |                |          |          |          |          |                      |                | 1        | ~                                                                |                                                                                                  |            | 1        |                   |                      | ~              | 1        |                                                                  |                   |                | 1        |              |                      |                   |
|                            | .78      | .78      | 36       | .36      | .36      | .36           | 36       | .36      | .36                     | 36                    | .36          | .28      | 28                    | 8 6          | 200            | 28       | .28      | .28      | 28       | 520                  | 01             | .01      | 0.1                                                              | 5.5                                                                                              | 010        | .01      | 0.1               | 5.5                  | 01             | .01      | 01                                                               | 5.5               | 010            | .01      | .01          | 117.01               |                   |
| лят                        | 141      | 141      | 104      | 104      | 104      | 104           | 104      | 104      | 104                     | 104                   | 104          | 142      | 142                   | 147<br>1 2   | 140            | 142      | 142      | 142      | 142      | 1 1 1                | 117            | 117      | 117                                                              |                                                                                                  | 117        | 117      | 117               |                      | 117            | 117      | 117                                                              |                   | 117            | 117      | 117          | 137                  |                   |
|                            |          |          |          |          |          |               |          |          |                         |                       |              |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            |          |                   |                      |                |          |                                                                  |                   |                |          |              |                      |                   |
| əmiT                       | 95       |          |          | 210      | 35       | 5             | 53       | 222      | 223<br>163              | 2 6                   |              | 84       | 22                    | 06           | 3 10           | 626      | 65       | 85       | 93       | Ś                    | 48             | 68       | 54                                                               | 1 8                                                                                              | 129        | 66       | 05                | Ξ                    | 21             | 116      | 520                                                              | 513               | 34             |          |              | 144                  |                   |
| stnio <b>T</b>             | 0        |          | က်       |          |          |               |          |          | 17 - 17<br>17 - 17<br>1 |                       |              |          | 90                    |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  | 0 0        |          |                   |                      |                | ς<br>Π   |                                                                  |                   |                |          |              | -                    |                   |
| Participant                | 22       |          |          | υ<br>ν   |          |               | 22 -     |          |                         | 1 0<br>1 0<br>1       |              | ς<br>ε   |                       |              | <del>،</del> ۲ |          |          | 9        |          |                      | 000            |          |                                                                  | N R                                                                                              |            | 9        | -1                |                      |                |          |                                                                  |                   |                | 20 -     |              | 6                    |                   |
| Experiment                 |          | 0        | -        | -        |          |               |          |          |                         |                       |              | 1        |                       |              |                |          |          | 0        | 0        | N -                  |                |          |                                                                  |                                                                                                  |            | 0        | 010               |                      |                |          |                                                                  |                   |                |          | 0            | - 1                  |                   |
| tuoyaJ                     | с        | e        | 4        | 4        | 4        | 4             | 4        | 4        | 4 4                     | ₽ 4                   | 4            |          |                       |              |                |          |          |          |          |                      |                |          |                                                                  |                                                                                                  |            | Ч        |                   | - 0                  | 2              | 2        | 2                                                                | 2 1               | 10             | 0        | 2            | 0 10                 |                   |
| [əpo]<br>Model             | 3        | 1 3      | 1 3      | 1 3      | 13       | 13            | 1 3      | 1 3      | იი<br>                  | ი ო<br>               | ) (C)        | 1 3      | იი<br>                | იი<br>       | ი თ.<br>       | ი ო<br>  | 1 3      | 1 3      | со<br>—  | η-<br>- σ            | - <del>-</del> | 1 4      | 4 -                                                              | <br>-                                                                                            | . 4        | 1 4      | 4 -               | 4 4                  | 4              | 1        | - 4                                                              | <br>-             | • <del>•</del> | 1 4      | 4            |                      |                   |
| Complexity                 | 6        | <br>ന    | 4        | 4        | 4        | 4             | 4        | 4        | 4.4                     | + 1<br>1              | . 4          | 5        | ົ່                    | о́н<br>. г   | , г<br>, г     | ຸ່       | 5        | 5        | ົ່       | 0 -                  |                | 1        |                                                                  |                                                                                                  | . –        | 1        |                   | - 0                  | ⊐<br>. ∩       | 2        | 01 0                                                             |                   | <br>1 01       | 5        | 210          |                      |                   |
| art                        | n3-l     | n3-l     | n3-l     | n3-l     | n3-l     | n3-l          | n3-l     | n3-l     | n3-l                    | 1-2-1                 | n3-l         | n3-l     | n3-l                  | n3-l         | 1-2-1          | n3-l     | n3-l     | n3-l     | n3-l     | n3-1                 | n4-l           | n4-l     | n4-l                                                             | n4-1                                                                                             | n4-l       | c1-m4-l1 | c1-m4-l1          | n4-1<br>n4-1         | n4-l           | n4-l     | n4-l                                                             | n4-1              | n4-l           | n4-l     | n4-l         | n4-l<br>n4-l         |                   |
| Chart                      | c1-m3-l3 | c1-m3-l3 | c1-m3-l4 | c1-m3-l4 | c1-m3-l4 | c1-m3-l4      | c1-m3-l4 | c1-m3-l4 | c1-m3-l4                | c1-m3-l4              | c1-m3-l4     | c1-m3-l5 | c1-m3-l5              | c1-m3-l5     | c1-m3-l5       | c1-m3-l5 | c1-m3-l5 | c1-m3-l5 | c1-m3-l5 | c1-m3-15<br>c1-m4-11 | c1-m4-l1       | c1-m4-l1 | c1-m4-l1                                                         | c1-m4-l1                                                                                         | c1-m4-l1   | cl-n     | c1-m4-l1          | c1-m4-l1<br>c1-m4-l2 | c1-m4-l2       | c1-m4-l2 | c1-m4-l2                                                         | c1-m4-12          | c1-m4-l2       | c1-m4-l2 | c1-m4-l2     | c1-m4-l2<br>c1-m4-l3 |                   |
|                            |          | -        | -        | 2        | 2        | 2             | -        | Ċ        |                         |                       | 2            | -        | -                     |              |                | 2        | -        |          | -        |                      | 2              | -        |                                                                  |                                                                                                  | 2          | -        |                   | -                    | 2              | ·        |                                                                  |                   | -              | -        |              | -                    | r                 |

| _                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $^{\rm L}N$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathrm{TAS}^{N}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| N <sup>PT</sup>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $^{\text{IS}}N$                            | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | $\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                            | $\begin{array}{c} 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ыг<br>Ib <sup>rr</sup>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IFTL<br>IFTL                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IE <sup>TN</sup>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IF                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <sup>S</sup> N                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <sup>SH</sup> N                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $^{SS}N$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ЪИВ                                        | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$        | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\mathbf{D}^{\mathbf{N}\mathbf{V}}$        | $\begin{smallmatrix} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & $                                                                                                                                                            |
| $\mathbf{D}^{\mathbf{M}}$                  | 4444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $D^{I}$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | $\begin{array}{c}13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NBMAX                                      | 33333333333333222<br>11554444<br>125444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            | 50,000,000,000,000,000,000,000,000,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NIMAN                                      | $\begin{array}{c} 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| an                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| - <b>-</b>                                 | $\begin{array}{c} 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NBAVG                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathbf{P}_{\mathbf{F}}$                  | $\begin{smallmatrix} 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\ 67\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | $\begin{smallmatrix} 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 558 \\ 560 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 660 \\ 66$                                                                                                                                                            |
| $\mathbf{P}_{\mathbf{I}}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | $\begin{array}{c} 222222222222222222222222222222222222$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sup>US</sup>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | $\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i$ |
| ${}^{\mathbf{L}}\mathbf{\Omega}\mathbf{S}$ | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | $\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i$ |
| s∩s                                        | $\begin{array}{c} 222222222222222222222222222222222222$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 110                                        | 8,28<br>8,28<br>8,28<br>8,28<br>8,28<br>8,28<br>8,28<br>8,28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            | $\begin{array}{c} 3.328\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.288\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.333\\ 3.$                                                                                                                                                                                                                   |
| мнв                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | $\begin{array}{c} 337,56\\ 337,56\\ 557,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,56\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\ 577,26\\$                                                                                                                                                                                                                                                       |
| TRL                                        | $\begin{array}{c} 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.37\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\ 1.31\\$                                                                                                                                                                  |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | $\begin{array}{c} 3.344 \\ 7.5 \\ 7.5 \\ 1005 \\ 1171 \\ 1171 \\ 1171 \\ 1173 \\ 1173 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1178 \\ 1$                                                                                                                                                                                                                  |
| amiT                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| striod                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Participant                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Experiment                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Гауоиt<br>Гауоиt                           | 4444444444444444444444444444444444000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Complexity                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chart                                      | $\begin{array}{c} c_1 \cdot m_{d+1} \\ d_1 \\ c_1 \cdot m_{d+1} \\ d_1 \\ c_1 \cdot m_{d+1} \\ d_1 \\ d_2 \\ c_1 \cdot m_{d+1} \\ d_1 \\ d_1 \\ d_2 \\ c_1 \cdot m_{d+1} \\ d_1 \\$                                                                                                                                      |
| Che                                        | │ ┿ ┿ ┿ ┿ ┿ ┿ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄ ╄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| aesthetics            |
|-----------------------|
| echart                |
| of                    |
| the analysis of State |
| the                   |
| Ц                     |
| ta used in tl         |
| Data                  |
| C.1.:                 |
| Table -               |
|                       |

| $\mathbf{I}_{\mathbf{N}}$           | 6              | 6       | 6        | 6        | 6          | 6        | 6        | 6        | 6        | <b>б</b> | 6           | 6              | 50                 | 5 0                   | 500         | 500               | 0 0              | n 0              | 6        | 6        | 6            | 6        | n 0                                                                     | ກດ                                                                                               | n 0.        | 6        | 6        | 6           | 50                      | 6         | 6           | 6        | 6,          | 12         | 2 2          | 15             | 12                         | 12            | 12       | page      |
|-------------------------------------|----------------|---------|----------|----------|------------|----------|----------|----------|----------|----------|-------------|----------------|--------------------|-----------------------|-------------|-------------------|------------------|------------------|----------|----------|--------------|----------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------|----------|----------|-------------|-------------------------|-----------|-------------|----------|-------------|------------|--------------|----------------|----------------------------|---------------|----------|-----------|
| $_{\rm Las}N$                       | 4.             | 4       | 4        | 4        | 4          | 4        | 0        | 0        | 0        | 0        | 0           | 0              | 0                  |                       |             |                   |                  |                  | 0        | 0        | 0            | 0        | 0 0                                                                     |                                                                                                  | 2           | 9        | 9        | 9           | 99                      | 9         | 9           | 9        | 9           | 21 (       | C1 C         | 4 C            | 101                        | 0             | 7        |           |
| $^{\text{Ld}}N$                     |                |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             |                         |           |             |          |             |            |              |                | 00                         |               | 0        | next      |
| $^{\text{IS}}N$                     | 101            | S       | ŋ        | ŋ        | ŋ          | ŋ        | 0        | 0        | 0        | 0        | 0           | 0 0            | 0 0                |                       |             |                   | 0 0              | 0                | 6        | 6        | 6            | 6        | n 0                                                                     | 50                                                                                               | 0.03        | ŝ        | ŝ        | ကျ          |                         | က         | ŝ           | ŝ        | ς<br>α      | 10         | 10           | 10             | 10                         | 10            | 10       | uo        |
|                                     | . 22           | .77     | . 22     | 22       | 22         | . 22     |          |          |          |          |             |                |                    |                       |             | с<br>Ц            | 0 Y              | 929              |          |          |              |          |                                                                         |                                                                                                  | 3 6         | - 73     | . 73     | 13          | 2 F                     |           |             |          |             |            |              |                | 8<br>6<br>6<br>7<br>6<br>7 |               |          | ued       |
| ĿГ                                  | 50.            | 50      | 50       | 50       | 50         | 50       | 80       | 80       | 80       | 80       | 80          | 808            | $\hat{\mathbf{x}}$ | $\sum_{n=1}^{\infty}$ |             | 200               | 4 7<br>7 7       | 1 4              | 43.      | 43.      | 43.          | 43.      | 43.                                                                     | 4.0.                                                                                             | , <u>1</u>  | 65.      | 65.      | 65.         | 65.<br>8 5.             |           | 65.         | 65.      | 65          | 77         | 2 5          | 4 C            | 24<br>14<br>14             | $^{24}$       | $^{24}$  | $_{tin}$  |
| IELL                                | 0              | 0       | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0           | 0              | 0                  | 0                     |             | ⊃ c               | 4 C              | 10               | 101      | 0        | 0            | 2        | 010                                                                     | 21 0                                                                                             | 1 03        | ŝ        | co       | с о         | ი<br>ი                  | ი<br>ი    | c           | co       | m,          |            |              |                |                            | г             | 1        | Continued |
| $IF_{TL}$                           | 101            | S       | ŋ        | ŋ        | ŋ          | ŋ        | Г        | Г        | Ч        | -        | -           |                | - ,                |                       |             |                   | 7 4              | 44               | 4        | 4        | 4            | 4        |                                                                         |                                                                                                  |             | ŝ        | ŋ        | ມ           | ഗഗ                      | ່າບ       | ŋ           | ŋ        | n o         | 21 (       | C1 C         | 4 C            | 101                        | 0             | 0        |           |
| IFT                                 |                | 0       | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0           | 0              |                    |                       |             |                   |                  |                  | 0        | 0        | 0            | 0        |                                                                         |                                                                                                  |             | 1        | 1        |             |                         |           | ) 1         | 1        |             |            |              | ) C            |                            | 0             | 0        |           |
| IE <sup>LN</sup>                    | 5              | ے<br>۵  | 2<br>2   | ы<br>го  | 20         | 2        | -        | -        | -        | -        | _           | _ ,            | _,                 |                       |             | - r               | - 1-             | - 1-             |          | ~        | -            | ۲.       | - I                                                                     | - 1                                                                                              |             |          |          |             | ດເ                      |           |             |          |             |            |              | 0 0            | , _<br>, _                 |               | 8        |           |
| IF<br>                              | ~ 1            | ~       | -1       | -1       | -1         | 4        | 2        | -1       | -1       | -1       | 5           | <b>N</b>       | - 1                | - 1                   | - 1         | 1-                | - 1-             | - 1-             | - 1-     | 1        | 4            | -1       | r-1                                                                     | - 1                                                                                              | - 1-        | -1       | -1       | 1-1         | 1-1                     | - 1-      | 4           | -1       | r-1         | 4,         | 4 -          | <del>,</del> 1 | t 4                        | 4             | 4        |           |
| s <sub>N</sub><br>sh <sub>N</sub>   | 0              | 0       | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        | 0           | 0              |                    | -                     |             |                   |                  |                  | 0        | 0        | 0            | 0        | 0                                                                       |                                                                                                  |             | 0        | 0        | 0           | 0 0                     | 0         | 0           | 0        | 0 0         | ກ          | <br>ກິດ      | <br>0 0        | າ<br>າ ຕາ                  | 3 1           | 3 1      |           |
| ss <sub>N</sub>                     | 5              | 2       | 1-       | 1-       | 1-         | 1-       | 1        | 1        | -1       | -1       | <b>b</b> -1 | r 1            | - 1                | - 1                   | - 1         | - 1               | - 1-             | - 1-             | - 1-     | 1-       | 1-           | -1       | r-1                                                                     | - 1                                                                                              | - 1-        | 1        | 1-       | 1-1         |                         | - 1-      | 1-          | 1-       | r -         | = :        | = =          | 15             | 12                         | 11            | Ξ        |           |
| лив                                 | 44             | 44      | 44       | 44       | 44         | 44       | 0        | 0        | 0        | 0        | 0           | 0              | 0                  | ⊃ <                   |             | <u>ا</u> د        | - 1-             | - 1-             | 17       | 17       | 17           | 17       | 51                                                                      |                                                                                                  | 22          | 52       | 52       | 22          | 2 2                     | 22        | 52          | 52       | 22          | -          | -            | > <            | 0                          | 0             | 0        |           |
| D <sup>N2</sup>                     | 44             | 44      | 44       | 44       | 44         | 44       | 0        | 0        | 0        | 0        | 0           | 0              | 0                  | <b>-</b> 0            |             | 1 C               | - 1-             | - 1-             | 17       | 17       | 17           | 17       |                                                                         | - 1-                                                                                             | - 22        |          |          |             | 202                     |           |             |          |             | 64         | 64<br>64     | 7 U            | 64                         | 64            | 64       |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{V}}$ | 44             | 44      | 44       | 44       | 44         | 44       | 0        | 0        | 0        | 0        | 0           | 0              | 0                  | -                     |             | , ⊂               | - 1-             | - 1-             | 17       | 17       | 17           | 17       | 14                                                                      | - 1 -                                                                                            | 52          | 52       | 52       | 22          | 2 5<br>2 6              | 20<br>20  | 52          | 52       | 22          |            | ດ ແ<br>ດ     |                | 222                        | 55            | 55       |           |
| D <sup>IVI</sup>                    | 45             | 45      | 45       | 45       | 45         | $^{45}$  | 12       | 12       | 12       | 12       | 12          | 12             |                    |                       |             |                   |                  | 100              | 22       | 22       | $^{22}_{22}$ | 22       | 5 5                                                                     |                                                                                                  | 14          |          |          |             |                         |           |             |          |             |            |              |                | ເ                          | 53            | 53       |           |
| DI                                  | 71             | 71      |          |          | 71         | 71       | 0        | 0        | 0        | 0        | 0           | 0              |                    |                       |             |                   |                  | 50               |          | 29       | 29           | 29       | 29                                                                      | 67.0                                                                                             | n 00        | 68       | 68       | 89          | x x                     | 89        | 68          | 68       | 89          | 23         | 5 C C        | 0 0<br>0 10    | 33.5                       | 53            | 53       |           |
| D-                                  | 22             | 2       | 5<br>L   | ñ        | ñ          | 2        | e<br>S   | က္       | ņ        | က္       | n,          | က္ဖ            | n o                |                       | ņ,          | n c               |                  |                  | 0        | 0        | 0            | 0        | 0                                                                       |                                                                                                  | 2 00        | 80       | 80       | 00          | xoo                     | 000       | 80          | 80       | 00 00       | x          | xo           | 0 0            | 0 00                       | 00            | 8        |           |
| VWIAI                               | 73.05          | 73.0    | 73.C     | 73.0     | 73.C       | 73.C     | -        | Η        | -        | -        | -           | - 1            |                    |                       |             | - 9               | 20               | ے د              | 9.0      | 0        | S            | 0        | 0                                                                       | 0 0                                                                                              | 2 22        | 85.8     | 85.8     | 85.8        | с и<br>Короли<br>Короли | 85.8      | 85.8        | 85.8     | 85.8<br>8.0 |            |              | .) (1          | 0 80<br>7 70               | (7)           | er)      |           |
| $NB^{MWX}$                          | 74             |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             |                         |           |             |          |             |            |              |                |                            |               |          |           |
| NTTAL                               | 36.7           | 36.7    | 36.7     | 36.7     | 36.7       | 36.7     | 13       | 13       | 13       | 6        | <u></u>     | <u></u>        | <u>.</u>           | <u>.</u>              | 20          | υţ                | - 1-             | - 1-             | 12       | 17       | 17           | 17       | - I                                                                     |                                                                                                  | ±-<br>23.3  | 23.3     | 23.3     | 23.3        | 23.3                    | 23.3      | 23.3        | 23.3     | 23.3        | 27 O       | 27 C<br>29 C | 00             | 0.0<br>0.7                 | 3.2           | 3.2      |           |
| NB <sup>WIN</sup>                   |                |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             | 1                 | - 1-             | - 1-             | . 1-     | 1        | 1-           | 1-1      | I                                                                       | - 1                                                                                              |             |          |          |             |                         |           |             |          |             |            |              |                |                            |               |          |           |
| NB <sup>VAC</sup>                   | 18.7           |         |          |          |            |          | 13       | 13       | 13       | 13       | 13          | e 13           | <u></u>            | 20                    | 2 2         | 2 C<br>2 C<br>2 C |                  | 50.67            | 50.6     | 50.67    | 50.67        | 50.6     | 0.00                                                                    | 50.67                                                                                            | 45.0        | 45.0     | 45.0     | 42.0<br>1.0 | 45.06<br>45.06          | 45.0      | 45.0        | 45.0     | 45.0        | 11.0       | 11.01        | 20             | 11.01                      | 11.0          | 11.0     |           |
| SILAN                               |                | 7       | ~        | 7        | 1          |          |          |          |          |          |             |                |                    |                       |             |                   | -                |                  |          | -,       |              |          |                                                                         |                                                                                                  |             | ~        | *        | 1           |                         |           |             | 4        |             |            |              |                |                            |               |          |           |
| _                                   | 103            | 2       | 33       | 3        | 23         | 33       | 80       | 88       | 88       | 8        | 20<br>20    | ž ž            | ž š                | x                     | o o         | x c               | 2 2              |                  | 20       | 0        | 8            | 8        | 8                                                                       | 81                                                                                               | 2 1-        | ~        | 4        | 1-1         |                         | - 1-      | 4           | 4        | r 9         | 23         |              |                | 20                         | 00            | 00       |           |
| $\mathbf{P}_{\mathbf{F}}$           |                |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             | -        | _        |             |                         |           | -           | _        |             |            |              |                |                            | Ч             | Г        |           |
| $\mathbf{P}_{\mathbf{I}}$           |                | Ξ       | Ξ        | 111      | 111        | 1        |          |          | 39       |          |             | 39             |                    |                       |             | 200               |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             | 61<br>61                |           |             |          |             |            |              |                | 50                         |               |          |           |
|                                     | 3.61           | 5.61    | 3.61     | 3.61     | 3.61       | 3.61     | 3.93     | 3.93     | 3.93     | 3.93     | 3.93        | 3.93           | 5.93               | 5.93                  | 0.00        | 5.93<br>7 7 9     | 102              | 52               | 0.52     | 0.52     | 0.52         | 0.52     | 0.52                                                                    | 10.52                                                                                            | 487         | 9.48     | 9.48     | 9.48        | 9.48<br>48              | 9.48      | 9.48        | 9.48     | 9.48        | 0.63       | 0.63         | 0.00<br>6.00   | 5.63                       | 5.63          | 5.63     |           |
| ∀∩S                                 |                | -       | -        | -        | -          |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             |                         |           |             |          |             |            |              |                |                            | -             | -        |           |
| _                                   | 3.61           | 3.6     | 3.61     | 3.61     |            | 3.61     | 23.93    | 23.93    | 23.93    | 6.<br>0. | 23.93       | 23.93          | 23.93              | 23.93                 | 5           | 0<br>0<br>0<br>0  | о с              | 0.5              | 0.52     | 0.52     | 0.52         | 0.52     | 0.0                                                                     | 10.52                                                                                            | 64.6        | 9.48     | 9.48     | 9.48        | 9.48<br>0.48            | 9.48      | 9.48        | 9.48     | 9.48        | 58.99      | ກັດ<br>ກ່າ   | 0 0<br>0 0     | 58.99                      | 58.99         |          |           |
| $_{T}$ US                           |                | _       | -        | -        |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             | 00       | αn.      | n n         | നന                      |           | <b>2</b> 00 | ~        | ~           |            |              |                |                            |               |          |           |
| -                                   | .3.61          |         |          |          |            | 3.6      | 23.93    | 3.9      | 3.9      | 6.<br>C  | 6.6         | 6.0            |                    | 5.0                   | 0<br>0<br>0 | 0,0<br>1<br>1     | ο<br>Ω<br>Ο<br>Ο | 0.0              | 0.5      | 0.5      | 0.5          | 0.5      | 0.0                                                                     | 0<br>0<br>0                                                                                      | 9.48        | 9.4      | 9.43     | 9.4         | 9.48<br>0.48            | 9.48      | 9.48        | 9.48     | 9.48        | 0<br>0     | 0 10<br>0 10 | ວ່ນ<br>ກ່ຽ     | 9.51<br>9.51               | 9.5           | 9.5      |           |
| s∪s                                 |                |         | -<br>    |          | -<br>      | ~        | 10       | 5        | ю        | 0        | 0           |                | ~ `                | ~ `                   |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             |                         | 101       | 5           | 2        | 2           | 4,         | 4 -          | <del>,</del> , | t 4                        | 4             | 4        |           |
|                                     | 3.03           | 0       | 3.0      | 3.0      | 3.0        | 3.0.     | 3.15     | 3.15     | 3.1      | 3.1      | 3.1         | с.<br>1.<br>1. |                    |                       | <br>        | 3.10              | 100              | 0.26             | 0.2      | 0.2      | 0.26         | 0.2      | 0.2                                                                     | 07.0                                                                                             | 1.02        | 1.02     | 1.02     | 1.02        | 1.02                    | 1.02      | 1.02        | 1.02     | 1.02        | ۰.<br>۱.   | 1.54         | - н<br>- н     | 1.5                        | $1.5^{\circ}$ | 1.5      |           |
| мнк                                 | ~              | ~       | -1       | -1       | -1         | 4        | 5        | 2        | 0        | 2        | 2           | 2              | 21                 |                       | N           | N <del>.</del>    | <del>,</del> 1   | <del>ا ج</del> ا | . 4      | 4        | 4            | 4        | 4,                                                                      | d' -                                                                                             | + o         | 6        | 6        | 6           | റെ                      | ი<br>ი    | 6           | 6        | <b>6</b> 1  | <b>-</b> 1 |              | - 1            | - 1-                       | 4             | -1       |           |
|                                     | 1.1            | 1.1     | 1.1      | 1.1      | 1.1        | 1.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2         | 0.2            | 0.12<br>0          | 0.12                  |             | л с<br>О и        | у с<br>i c       | 10               | 5.2      | 5.2      | 35.2         | \$5.2    | 50.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>2 | о<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 10.4        | 0.4      | 0.4      | 0.4         | 4.00                    | 10.4<br>0 | 0.4         | 0.4      | 0.4         | 5.4<br>4.5 | 5.6<br>7.4   | 0 0<br>7 7     | 43.47                      | 3.4           | 3.4      |           |
| TRL                                 | 13             | -0<br>- | 13       | 13       | 13         | 13       | 11       | 11       | Ξ        | Π        | 1           | = :            | =;                 | = :                   | 1:          | 10                | υox              | Joc              | 1 00     | 00       | v0           | x        | vu (                                                                    | N O                                                                                              | 10          | 10       | 10       | 3;          | 29                      | 19        | 10          | 10       | 1.          | 4.4        | 77           | 1, ∠           | r d'                       | 4             | 4        |           |
|                                     |                | n       | ŝ        | 0        | 0          |          | 10       | त्त      | 10       | 10       | ~           | ~              | n                  |                       |             | _                 |                  |                  | 6        |          | 0            | m        | त्स न                                                                   | ÷                                                                                                | <del></del> | 0        | 6        |             | <del></del>             | ۰<br>۱ m  | 4           | .0       |             | ~ ~        | m            | ~              | -                          | 50            | 0        |           |
| əmiT                                | 207            |         |          |          |            |          |          |          | 175      |          |             |                |                    |                       |             |                   |                  |                  | 139      |          | 36           |          |                                                                         |                                                                                                  |             |          |          |             | 214                     |           |             |          |             | 26,1       |              | 170            |                            | 45            | õ        |           |
| $_{ m strio}$                       |                |         |          |          |            |          |          |          | 4        |          |             |                |                    |                       |             |                   |                  | n oc             |          |          |              | -<br>2   |                                                                         |                                                                                                  |             |          |          |             | n oc                    |           |             |          |             |            | ю и<br>С     |                | с                          | 4             |          |           |
| Participant                         | 5              |         |          |          |            |          |          |          | 9        |          |             |                |                    |                       |             |                   |                  | 202              |          |          | 2 12         |          |                                                                         | =                                                                                                |             |          |          |             | г 17<br>г 7             |           |             |          |             |            | 23           |                |                            | 2 12          |          |           |
| Layout<br>Experiment                | 2 1            |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             | പറ<br>ഗ ഗ               |           |             |          |             |            |              |                |                            | 1             | 1        |           |
| leboM                               |                |         |          |          |            |          |          |          |          |          |             |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             |          |          |             |                         |           |             |          |             |            |              |                |                            | -             |          |           |
| Complexity                          | -              | -       | г        | -        | -          | -        | г        | г        |          | -        | -           |                |                    |                       |             |                   |                  |                  |          |          |              |          |                                                                         |                                                                                                  |             | -        | ٦        |             |                         |           |             |          |             |            |              | 4 C            | 101                        | 0             | 0        |           |
| ŧ                                   | c1-m5-l2       | 5-12    | 5-12     | 5-12     | 5-12       | 5-12     | 5 - 13   | 5-13     | 5-13     | 5-13     | 5-13        | 5-13           | 5-13               | 5-13                  | 0-10        | 5-13<br>8-13      | 2-14<br>2-14     | 5-14             | 5-14     | 5-14     | 5-14         | 5-14     | 5-14                                                                    | 5-14<br>8                                                                                        | 5-15        | 5-15     | 5-15     | 5-15        | c1-m5-l5<br>c1 m5 l5    | 5-15      | 5-15        | 5-15     | 5-15        | 11         | 1-1          | 11             | 1-1                        | 1-11          | 1-11     |           |
| Chart                               | 1-m;           | l-'n    | c1-m5-l2 | c1-m5-l2 | c1-m5-l2   | c1-m5-l2 | c1-m5-l3 | c1-m5-l3 | c1-m5-l3 | c1-m5-l3 | c1-m5-l3    | c1-m5-l3       | c1-m5-l3           | c1-m5-13              | c1-m0-13    | c1-m5-13          | c1-m5-l4         | c1-m5-l4         | c1-m5-l4 | c1-m5-l4 | c1-m5-l4     | c1-m5-l4 | c1-m5-l4                                                                | c1-m5-14                                                                                         | c1-m5-l5    | c1-m5-l5 | c1-m5-l5 | c1-m5-l5    | c1-m5-l5<br>c1 m5 l5    | c1-m5-l5  | c1-m5-l5    | c1-m5-l5 | c1-m5-l5    | c2-m1-11   | c2-m1-l1     | c2-m1-11       | c2-m1-11<br>c2-m1-l1       | c2-m1-l1      | c2-m1-l1 |           |
| Ŭ                                   | - <sup>-</sup> | U.      | 0        | 0        | . <u>.</u> | 0        | Ū        | 0        | 0        | U.       | υ           | ່ບ່            | ບ່                 | ບ່                    | ບ່          | ບ່ີ               | 5                | ت ز              | บี       | Ü        | 0            | 0        | :<br>                                                                   | ບີ                                                                                               | ت ز         | U.       | ΰ        | 0           | 0 0                     | ່ບີ       | °,          | 0        | 0           | 0          | 0.0          | ງ ໃ            | ່ວ່                        | ŭ             | °,       | I         |

| T                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5        |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| N <sup>T</sup>                             | 888888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 1      |
|                                            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0        |
| T <sub>A</sub> N                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6        |
| <sup>TS</sup> N                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                            | 24<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| ĿГ                                         | 44444444444444446666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | õ        |
| $IE_{LL}$                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        |
| $^{\rm IF_{IL}}$                           | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4        |
| 1FT                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        |
| IETN                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10       |
| IF                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |
| <sup>S</sup> N                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14       |
| <sup>SH</sup> N                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ლ<br>    |
| $ss_N$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =        |
| Ъив                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63       |
| $\mathbf{D}^{\mathbf{N}\mathbf{W}}$        | ى<br>تى تى ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| $\mathbf{D}^{\mathbf{M}}$                  | 00004444444400000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52       |
| $D^{I}$                                    | $\begin{array}{c} 111111111111111111111111111111111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144      |
| -u                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                            | $\begin{array}{c} 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\ 38\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.9     |
| NBMAX                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                            | $\begin{array}{c} 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2]     |
| NB <sup>MIN</sup>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|                                            | $\begin{array}{c} 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 11111\\ 111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .86      |
| NBAVG                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21       |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| $\mathbf{P}_{\mathbf{F}}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15       |
|                                            | $\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1        |
| $\mathbf{P}_{\mathbf{I}}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |
|                                            | $ \begin{array}{c} 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 15.63\\ 1$                                                                                                                                                        | .31      |
| AUR                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |
|                                            | $\begin{array}{c} 58,99\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ 55,899\\ $                                                                                                                                                                                            |          |
| ${}^{\mathbf{I}}\mathbf{\Omega}\mathbf{S}$ | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79       |
|                                            | 2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22       |
| sus                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4        |
|                                            | $\begin{array}{c} 1.54\\ 1.54\\ 1.54\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554\\ 1.554$                                                                                                                                                        | 4        |
| мни                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ξ.       |
|                                            | $\begin{array}{c} 4,4,7,4,4,4,7,4,4,4,4,4,4,4,4,4,4,4,4,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80       |
|                                            | $\begin{array}{c} 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 43.47\\ 44.19\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 1191\\ 119$                                                                                                            | 34.3     |
| лят                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0        |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| əmiT                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| striod                                     | 00 x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Participant                                | $\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Experiment                                 | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| tuovaJ                                     | H H H Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŋ        |
| IsboM                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Complexity                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ť                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-15     |
| Chart                                      | 2-ml-ll<br>2-ml-ll<br>2-ml-ll<br>2-ml-ll<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-ml-l2<br>2-m | c2-m1-l5 |
|                                            | 1 ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10       |

| -                                 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>1</sup> N                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tq2N                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $^{\text{TS}N}$                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>LLS</sup> N                  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 335 11<br>335 13<br>335 13<br>335 13<br>335 11<br>17<br>11<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ĿГ                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88888255555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IE <sup>rr</sup>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $^{\rm IF_{TL}}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000000444444444446666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathbf{IF}_{\mathbf{TT}}$       | 000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $IE^{II}$                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| या                                | ਧਾ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s <sub>N</sub><br>sh <sub>N</sub> | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ss <sub>N</sub>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| N~~<br>D^{NB                      | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D <sup>NR</sup>                   | 667<br>667<br>667<br>667<br>661<br>661<br>661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 661<br>661<br>755<br>661<br>755<br>661<br>755<br>755<br>755<br>755<br>755<br>755<br>755<br>755<br>755<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D <sup>NY</sup>                   | 557<br>557<br>557<br>557<br>557<br>577<br>577<br>577<br>577<br>577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $D^{M}$                           | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 600<br>600<br>600<br>600<br>600<br>600<br>600<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81<br>81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DI                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46<br>46<br>46<br>46<br>46<br>46<br>46<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -u                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NBMAX                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\13\\1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| an                                | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ע<br>ע מ מ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NB <sup>WIN</sup>                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000000447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | य व व व व व व ल ल ल                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NBAVG                             | 11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.93<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.193<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.93<br>11.1.1.93<br>11.1.1.93<br>11.1.1.93<br>11.1.1.93<br>11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{b}^{\mathbf{k}}$         | $\begin{array}{c} 1150\\ 1150\\ 1150\\ 1150\\ 1150\\ 150\\ 150\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $ \begin{array}{c}     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     50 \\     $ | $\begin{array}{c} 112\\ 112\\ 112\\ 112\\ 112\\ 112\\ 112\\ 112$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{P}_{\mathbf{I}}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ∀∩s                               | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 115.65\\ 15.65\\ 15.655\\ 15.655\\ 15.655\\ 15.655\\ 15.655\\ 15.655\\ 15.655\\ 12.39\\ 12.39\\ 12.39\\ 12.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.39\\ 112.$                                     |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 65.03\\ 76.26\\ 776.26\\ 76.26\\ 76.26\\ 76.26\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 81.43\\ 8$ |
| $^{I}$ US                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $s_{\Omega S}$                    | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | තිතිතිතිතිතිති හි පරිගේ පරිගේ පරිගේ සිස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස්ස                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   | ក់ កំ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 1.1.56\\ 1.1.56\\ 1.1.56\\ 1.1.56\\ 0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0.0.18\\ 0$                                     |
| яни                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 8 8 1 8 8 8 1 8 8 8 1 8 8 8 1 8 8 8 1 8 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 1 8 8 1 8 1 8 8 1 8 1 8 8 1 8 1 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TRL                               | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>134<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                      |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| əmiT                              | 84<br>80<br>80<br>80<br>87<br>87<br>87<br>60<br>60<br>60<br>171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1126<br>1126<br>126<br>136<br>1365<br>365<br>365<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 147\\ 45\\ 113\\ 56\\ 1143\\ 92\\ 992\\ 992\\ 993\\ 993\\ 9394\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71\\ 71$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| strioA                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Participant                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Experiment                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.8.8.8.8.8.8.4.4.4.4.4.4.4.4.6.6.6.8.8.8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 100627                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ləboM<br>tuoyeJ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Complexity<br>Model               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IsboM                             | c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-11 2<br>c2-m2-12 2<br>c2-m2-11 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2<br>c2-m2-12 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 2, 2, 3, 2, 4, 2, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 4, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                                      |          |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      | 1         |
|--------------------------------------|----------|------------|-----------------|------------|-----------------------|------------------------|----------------------|-----------------|----------|--------------|----------|----------|----------|----------|----------|----------------------|----------------------|----------|----------|----------|--------------|---------------------------------------------------|----------|----------|-------------------------|----------------------|----------|----------|----------|------------|--------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------------------|-----------|
| 1 <sup>N</sup>                       | 12       | 21 C       |                 | 21 C       | 12                    | 10                     | 12                   | 12              | 12       | 21 S<br>01 O |          |          |          |          |          | 22                   |                      |          |          |          |              |                                                   |          |          | 0 12                    |                      |          |          |          |            |                                                                                                  |          |          |          | 22       | 121                  | page      |
| <sup>Tq2</sup> N                     |          |            | -               |            |                       |                        |                      | 0               | _        |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
| 1 <sup>d</sup> N                     |          |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      | next      |
| <sup>TS</sup> N                      |          |            |                 |            |                       |                        |                      | 10              |          |              |          |          |          |          |          |                      |                      |          |          | 10       |              |                                                   |          | Ū        | 00                      |                      | Ū        | Č        | <u> </u> |            |                                                                                                  |          |          |          |          |                      | l on      |
|                                      | 3.17     | 3.17       | 5               | 3.17       | 0.14<br>212           | 12                     | 5.32                 | 25.32           | 5.32     | л 32<br>9,32 | 5 K      | 5.32     | 5.32     | 5.32     | 0.07     | 2 C<br>2 C<br>2 C    | 5.32                 | 25.32    | 5.32     | 5.32     | 5.32<br>9.32 | 5.32                                              | 5.32     | ъ        | ഗഗ                      | о ю                  | 5<br>L   | ъ        | ഹ        | ດມ         | ່າເ                                                                                              | 8.28     | 8.28     | 8.28     | 8.28     | 18.28                | neo       |
| FL                                   | ×        | x 0        | x) (X           | x 0        | 0 00                  | 0 00                   | 00                   | 2               | 0        | C1 C         | 10       | 101      | 0        | 0        | 21 (     | N C                  | 10                   | 101      | 0        | 010      | 21 0         | 10                                                |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      | Continued |
| IE <sup>rr</sup>                     | 1        | ມ -<br>ມ   | <br>            | <br>       | <br>                  | <br>                   |                      |                 |          |              | <br>     |          | 1        |          | <br>     |                      |                      |          | 1        |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      | Co        |
| IF <sub>TL</sub><br>IF <sub>TL</sub> |          |            |                 |            |                       |                        | 0                    |                 | 0        |              |          |          | 0        | 0        |          |                      |                      |          | 0        | 0        |              |                                                   | 0        |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
| IE <sup>LN</sup>                     | -        |            | -               |            |                       |                        |                      |                 |          | 0 0          |          |          |          |          |          |                      |                      |          | 0        | 0        | 0 0          | 00                                                | 0        | 0        | 0 0                     |                      | 0        | 0        | 0        |            |                                                                                                  | 0        | 0        | 0        | 0 0      | 50                   |           |
| <br>IF                               | 6        | n 0        | 00              | n 0        | סמ                    | ησ                     | 2                    | 2               | 2        | C1 C         | 10       | 10       | 0        | 2        | 21 0     | 2 10                 | 10                   | 101      | 0        | 2        | 21 0         | 10                                                | 2        | 0        | 0 0                     |                      | 0        | 0        | 0        | <b>-</b> 0 |                                                                                                  | 9        | 9        | 9        | 9        | 0 9                  |           |
| $s_N$                                | 14       | 14         | <b>1</b>        | 14         | 14                    | 14                     | 14                   | 14              | 14       | 14           | 14       | 14       | 14       | 14       | 4        | 14                   | 14                   | 14       | 14       | 14       | 14           | $14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$ | 14       | 14       | 14                      | 14                   | 14       | 14       | 14       | 4          | 14                                                                                               | 14       | 14       | 14       | 14       | $14 \\ 14$           |           |
| $\mathrm{sh}_{\mathrm{N}}$           | n        | n r        | n               | m          | 0 m                   | ი ო                    | ი<br>ი               | ŝ               | n        |              | റന       | იი       | n        | n        | n o      | n 0                  |                      | ,<br>100 | e        | ς<br>α   | m            | იო                                                | n        | co       | ς<br>α                  | იი                   | С        | ω        | ς<br>α   | n c        | ი ი                                                                                              | 0        | ę        | n        | n d      | იო                   |           |
| $ss_N$                               |          |            |                 |            |                       |                        |                      | 11              |          |              |          |          |          |          |          | = =                  |                      |          |          | :::      | = =          | 11                                                | 11       | 11       | ==                      | 11                   | 11       | 11       | Ξ;       |            | 1 =                                                                                              | 11       | 11       | 1        | = =      | 11                   |           |
| лив                                  | 1        |            |                 |            |                       |                        |                      | x               |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          | 0 0                     |                      |          |          |          |            |                                                                                                  |          | 0        | 0        | 0 0      | 101                  |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$  | 1        |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          | 20 20<br>20 20<br>20 20 |                      |          |          |          |            |                                                                                                  |          | 4        | 4        | 4.4      | 14                   |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{V}}$  | 1        |            |                 |            |                       |                        |                      | 55              |          |              |          | 55       |          |          |          | 47                   |                      |          |          |          | 47           |                                                   |          |          | 48                      |                      |          |          | 48       |            | 4<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |          | 4        | 4        | 4.       | 14                   |           |
| $\mathbf{D}^{\mathbf{M}}$            |          |            |                 |            |                       |                        |                      | 53              |          |              |          |          |          |          |          | 40                   |                      |          |          |          | 46           |                                                   |          |          | 233<br>233              |                      |          |          | -        | -          |                                                                                                  |          |          |          | ມີ       | പറ                   |           |
| $\mathbf{D}^{\mathbf{I}}$            | 179      | 172        |                 | 172        | 1 12                  | 122                    | - 20                 | 53              | ທີ       | ເດີຍ         | 5 10     | 5.0      | ŝ        | 50       |          | 4 4                  | 4                    | 46       |          | 46       |              |                                                   |          |          | 84<br>8 7               |                      |          |          |          |            |                                                                                                  |          |          |          | 4        | 1 4                  |           |
|                                      | .98      | 86.0       | 80.0            | 86.9       | o o                   | 0,00                   | 38                   | $\frac{38}{38}$ | 30       | 800          | 0 00     | 38       | 38       | 38       | 200      | 8 8<br>8 8           | 8000                 | 38       | 38       | 38       | 8000         | 8 8<br>8                                          | 38       | 13       | 13                      | 13                   | 13       | 13       | 13       | 2 5        | 13.5                                                                                             | 35       | 35       | 30       | 35       | 35<br>35             |           |
| NBMAX                                | 59       | 60         | 0,0             | 60         | 0 K<br>D C            | 5 LC<br>0 LC           | 5                    |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
|                                      | 04       | 0.4        | .04             | 0.4        | 7<br>7                | 70                     | n<br>i<br>i          | ci.             | ci.      | ci c         | i c      | i ci     | 2        | ci i     | Ņ        |                      |                      |          |          |          |              |                                                   |          | 85       | ю<br>с                  | 0.20                 | .85      | 85       | 35.      | х<br>с г   | 9 %                                                                                              | 86       | .86      | 86       | 8.<br>80 | 7.86                 |           |
| NIMBN                                | 14       | 4.4        | 1<br>7          | 4          | 14                    | 14                     | 10                   | ŝ               | ς<br>Ω   | с с          | റന       | က        | ŝ        | ŝ        | .n (     |                      |                      | 0        | 0        | 0        | 0 0          | 0 0                                               | 0        | 4        | 4 -                     | 4                    | 4        | 4        | 4.       | 4 -        | 44                                                                                               | 1        | 1-       | -1       | 1-1      | - 1-                 |           |
|                                      | .26      | 50         | 8               | 50         | 07.0                  | 28                     | 6                    | .01             | 01       | 11.01        | 5.5      | 11.01    | 11.01    | 6        | 5.5      | n<br>N X             | 82                   | 82       | .58      | .58      | 80.<br>20. 1 | 9 K                                               | 58       | .29      | 53                      | 29                   | .29      | .29      | .29      | 67.0       | 29                                                                                               | 25       | .25      | .25      | 33       | 23.25                |           |
| NBAVG                                | 25.      | 0 1<br>0 1 | 010             | 0 0        | л с<br>И с            | 220                    | 3 =                  | Ξ               |          | = =          | 12       | 12       | 11       | =        |          |                      | 10                   | 19       | 10       | 2;       |              | 101                                               | 10       | 0        | တင                      | 00                   | 0        | 0        | 00       | ກເ         | ກດ                                                                                               | 53       | 23       | с<br>С   | 80       | 53.0                 |           |
|                                      |          |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
| $\mathbf{P}_{\mathbf{F}}$            | 119      | 119        | 61 T            | 119        | 110                   | 119                    | 150                  | 150             | 150      | 150          | 150      | 150      | 150      | 150      | 150      | 202                  | 202                  | 20       | 50       | 50       | 000          | 3 2                                               | 50       | 153      | 153                     | 153                  | 153      | 153      | 153      | 153        | 153                                                                                              | 150      | 150      | 150      | 150      | 150                  |           |
| $\mathbf{P}_{\mathbf{I}}$            | 13       | n 13       | 2               | 13         | 0 f                   | 9 6                    | 50                   | 50              | 50       | 202          | 000      | 50       | 50       | 20       | 50       | 100                  | 120                  | 150      | 150      | 150      | 202          | 120                                               | 50       | 53       | 00 10<br>10 10          | 23                   | 53       | 53       | 53       | 202        | 22.5                                                                                             | 46       | 46       | 46       | 46       | 40<br>46             |           |
| u                                    | 35       | 5 2        | <u>.</u>        | <u>ה</u> ה | <u></u>               | 2 2                    |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
| ∀∩s                                  | 11.0     | 11         |                 | 11.        |                       |                        | 15.1                 | 15.3            | 15.      | 15.1         | 2 10     | 15.5     | 15.5     | 15.      | 15.      | 0 F                  | 15.1                 | 15.5     | 15.5     | 15.5     | 15.5         | 15.2                                              | 15.5     | 13.0     | 13.0                    | 13.0                 | 13.6     | 13.6     | 13.0     | 1 n        | 2 2                                                                                              | x        | %        | ×.       | xi o     | 8.69<br>8.69         |           |
|                                      | 43       | 64.        | .43             | 43         | 9 f                   | ÷.4                    | 9.49                 |                 | 64       | 64<br>67     | 575      | 5 79     | .64      | 64       | 59.      | 63.64                | 5 7                  | 63.64    | 63.64    | .64      | 59.5         | 5 75                                              | 64       | ø        | 61.8<br>61 e            | o oc                 | ø.       | œ        | ø.       | xoo        | o oc                                                                                             | 20.      | .07      | -02      | 6.5      | 0.70                 |           |
| $^{\mathbf{T}}\mathbf{US}$           | 81       | 200        | i a             | 50 G       | 0 2                   | 0 2                    | 63.                  |                 | 63.      | 63.          |          | 63.      | 63.      | 63.      | 63.      | 63.                  | 63                   | 63       | 63       | 63       | 63.          | 63                                                | 63       | 61       | 61                      | 61                   | 61       | 61       | 61       | 19         | 19                                                                                               | 67       | 67       | 67       | 67       | 01/0                 |           |
|                                      | 3.59     | 60.        |                 | 62.        | , n<br>1<br>1<br>1    | 000                    | <u>5</u> 4           | 4.              | 4        | 4            | i 4      | 4        | 4.       | 4        | 4.       | 4. 4                 | 4                    | 4        | 4.       | 4.       | 4.           | i 4                                               | 4        | .95      | .95                     | 26.                  | .95      | .95      | .95      |            | 0.26                                                                                             | .15      | .15      | .15      | 15       | 4.15                 |           |
| sus                                  |          |            |                 |            |                       |                        |                      |                 | -        | n 0          |          |          | 0        | 0        | ກເ       | ກວ                   | 50                   |          |          | 0        | ດ່           |                                                   |          |          |                         |                      | 1-       | 1-       |          |            | - [-                                                                                             |          |          |          |          |                      |           |
|                                      | .59      | . 59       |                 | 5.5        | . 0<br>7 0            | 5 C C C                |                      | 56              | 56       |              | 200      |          | 56       |          | 200      | 200                  | 56                   |          | 56       | 56       | 500          |                                                   | .56      | .48      | .48                     | 48                   | .48      | .48      | .48      | 24×        | 4<br>2<br>8<br>7<br>8<br>7<br>8                                                                  | 0.26     | 0.26     | 0.26     | 0.26     | 0.20                 |           |
| янм                                  |          |            |                 |            |                       |                        |                      | -               | _        |              |          |          | -        |          |          |                      |                      |          | -        |          |              |                                                   |          |          |                         |                      | -        |          |          |            |                                                                                                  |          |          |          |          |                      |           |
|                                      | 98.92    | 6.0        | 20              | 6.0        | 20                    | 60                     | 14                   | .14             | .14      | 44.14        | 14       | 44.14    | .14      | 44.14    | .14      | 44.14<br>44.14       | 14                   | 44.14    | .14      | .14      | 44.14        | 44.14                                             | .14      | .33      |                         | 333                  | .33      | .33      | .33      |            | 38                                                                                               | 37       | .37      | .37      | 37       | 59.37<br>59.37       |           |
| TRT                                  | 86       | ຄິດ        | ຄິ              | ຄິດ        | 5 0                   | n G                    | 4                    | 44              | 4        | 4 4          | 14       | 4        | 4        | 4        | 4        | 4 4                  | 4                    | 44       | 44       | 4.       | 4 -          | 44                                                | 4        | 154      | 154.                    | 154                  | 154      | 154      | 154      | 107        | 154                                                                                              | 20       | 50       | Ω,       | 0, 0     | 0 KO                 |           |
|                                      |          |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          |                      |           |
| əmiT                                 | 102      | 225        | 144<br>00       | 93         | 20T                   | -                      | 345                  | 115             | 230      | 293<br>°F    | 600      | 144      | 78       | 101      | 5        | 105                  | 153                  | 191      | 182      | 132      | 45           | 53                                                |          | 118      | 270<br>126              | 203                  | 322      | 158      | 216      |            |                                                                                                  |          | 322      | 170      | 198      | $101 \\ 101$         |           |
| strioA                               | 9        |            |                 |            |                       | ç                      |                      | 9               |          |              |          |          |          |          |          | 1 9                  |                      |          |          |          |              | - ?                                               |          |          | 40                      |                      |          |          |          | e<br>P     |                                                                                                  | 4-       |          |          |          | κα                   |           |
| Participant                          | H        | 17         | ° 3             | 21         | 0 f 6                 | 1                      | ŝ                    | 80              | 10       | 4 c          | 4 X      | 15       | 9        | 4        | ¢        | 1 1                  |                      |          | Г        |          | 21           |                                                   |          |          | -                       | - 1                  | Η        |          | 23       |            |                                                                                                  | $^{24}$  |          |          | 16       | 10                   |           |
| Experiment                           |          |            |                 |            |                       |                        |                      | -               |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          | - 0                  |           |
| Model<br>Layout                      |          |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          | 0 CC<br>77 77        |           |
| Complexity                           | 1        |            |                 |            |                       |                        |                      |                 |          |              |          |          |          |          |          |                      |                      |          |          |          |              |                                                   |          |          |                         |                      |          |          |          |            |                                                                                                  |          |          |          |          | 201                  |           |
| 4                                    | -15      | -12        | 1               | -12        | 1<br>1<br>1<br>1<br>1 | 12                     | 23                   | -11             | E :      | ==           | 15       | Ę        | -11      | -11      | I S      | 1 2                  | 10                   | 121      | -12      | -12      | 12           | 12                                                | -12      | -13      | <u> </u>                | 1 2                  | -13      | -13      | -13      | 2 2        | 2 1                                                                                              | 1-14     | -14      | -14      | -14      | -14                  |           |
| Chart                                | c2-m2-15 | c2-m2-l5   | -m <sup>2</sup> | c2-m2-15   | c2-m2-15<br>c2-m2-15  | c2-1112-10<br>c2-m2-15 | c2-m2-10<br>c2-m3-l1 | c2-m3-l1        | c2-m3-l1 | c2-m3-l1     | c2-m3-l1 | c2-m3-l1 | c2-m3-l1 | c2-m3-l1 | c2-m3-l1 | c2-m3-12<br>c9-m3-19 | c2-m3-l2<br>c2-m3-l2 | c2-m3-l2 | c2-m3-l2 | c2-m3-l2 | c2-m3-l2     | c2-m3-12<br>c2-m3-12                              | c2-m3-l2 | c2-m3-l3 | c2-m3-l3<br>52 m3 l3    | c2-m3-l3<br>c2-m3-l3 | c2-m3-l3 | c2-m3-l3 | c2-m3-l3 | c2-m3-l3   | cz-m3-13<br>c2-m3-13                                                                             | c2-m3-l4 | c2-m3-l4 | c2-m3-l4 | c2-m3-l4 | cz-m3-14<br>c2-m3-14 |           |
| Ŭ                                    | C D      |            | U C             |            | ່ິ                    | 3 8                    | 3.0                  | 0               | 0        | 50           | 38       | 5 0      | 0,27     | 0        | . 7 C    | 00                   | 5 0                  | 0 0      | 0        | 0        | 0 0          | 3 8                                               | 0        | 0        | 33                      | 3 6                  | C D      | 0        | 0        | 50         | 3 6                                                                                              | 10       | C N      | 0        | 0        | 3 13                 | I         |

| aesthetics             |
|------------------------|
| Statechart             |
| <u> </u>               |
| used in the analysis o |
| the                    |
| in                     |
| used in t              |
| Data                   |
| C.1.:                  |
| Table                  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
| 60.65         15.26         50         150           60.65         16.26         50         150         150           60.65         16.26         50         150         150           60.65         16.26         50         150         150           60.65         16.26         50         150         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         10           60.65         16.26         150         50         1           60.65         16.26         150         50         1           60.65         16.36         150         50         1           60.65         16.3 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  |                                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| 1                                   | ~ ~             |                      | ~      | ~        | ~        | ~ -        |                      |               |          | ~        | ~      | ~`       | ~           |              |                       |                |                       | ~        | ~      | ~        | ~ .      | ~ -       | ~ ~                  | . ~      | ~        | ~ -               | • ••                 | ~~       | ~        | ~        | ~          | ~ .            | ~ -        |                                         |                             | ~~       | ~           | L         |
|-------------------------------------|-----------------|----------------------|--------|----------|----------|------------|----------------------|---------------|----------|----------|--------|----------|-------------|--------------|-----------------------|----------------|-----------------------|----------|--------|----------|----------|-----------|----------------------|----------|----------|-------------------|----------------------|----------|----------|----------|------------|----------------|------------|-----------------------------------------|-----------------------------|----------|-------------|-----------|
| <sup>⊥</sup> N                      | 0 12            | 12                   | 2 12   |          |          | 219<br>219 |                      | 10            | 121      | 3 12     |        | 33<br>12 |             |              |                       |                |                       |          |        |          |          |           |                      |          |          |                   | 3 F2                 |          |          |          | 2 :<br>2 : | 81<br>81<br>81 | <u>n</u> : | 35                                      | 1 11<br>1 11<br>1 11        | 0 13     | 0 13        | page      |
| TqN<br>TqN                          | 12              | 00                   | 0      | 0        | 0        | 0 0        |                      |               | 0        | 0        | 0      | 0        | 0           | ⇒ ¢          |                       |                | 0                     | 0        | 0      | 0        | 0        |           |                      | 0        | 0        |                   | 00                   | 0        | 0        | 0        | 0          | 0              |            |                                         | 00                          | -<br>ო   |             | next      |
| TSN                                 | 0               | 20                   | 0      | 0        | 0        | 0 9        | 2 9                  |               | 01       | 6        | 6      | 6        | 6           | ກດ           | ກວ                    | nσ             | 0                     | 6        | 0      | 0        | 0        | 2 9       | 2 9                  | 2 9      | 9        | 0                 | 2 9                  | 0        | 01       | 10       | 01         | 0              | 2 9        |                                         | 10                          | 0 1      | 0           | u uo      |
|                                     | 5               | 29                   | 67 ]   |          |          |            |                      |               |          | 8        | 8      | 58       | 80          |              | n<br>N<br>N<br>N<br>N |                |                       |          |        |          |          |           |                      |          | -        |                   |                      | 1        |          |          |            |                |            |                                         |                             | 08       | 8           | o pa      |
|                                     | 90<br>15 f      | 15.0                 | 15.6   |          | 15.6     |            | 1 ю.<br>1 ю.         |               | 15.0     | 61.58    | 61.5   | 61.5     | 61.5        | 5.5          | 5 5                   |                | 61.5                  | 61.58    | 20.31  | 20.31    | 20.0     | 20.31     | 20.31                | 20.31    | 20.0     | 20.31             | 20.31                | 20.31    | 20.3     | 20.31    | 20.31      | 20.5           | 20.31      | 0,0                                     | 20.0                        |          | 83.(        | Continued |
| ET<br>IE <sup>rr</sup>              | 0 -             |                      | 1      | 1        | 1        |            |                      |               | н        | 0        | 0      | 0        | 0           | -            |                       |                | 0                     | 0        | 0      | 0        | 0        | -         |                      | 0        | 0        | 0 0               | 0 0                  | 0        | 0        | 0        | 0          | 0              | -          |                                         | 0                           | 0        | 0           | ont       |
| $IE_{TL}$                           | О К             | າດ                   | ŋ      | ŋ        | ŋ        | ທ່         | Оĸ                   | с rc          | ŝ        | 4        | 4      | 4        | 4.          | 4.4          | 4 4                   | # <del>1</del> | 4                     | 4        | 0      | 0        | 2        | 21 0      | 0 10                 | 101      | 0        | CN C              | 10                   | 0        | 0        | 0        | 2          | 210            | 21 0       | 10                                      | 10                          | 0        | 0           | 0         |
| IF <sub>T</sub>                     | 00              | 0                    | 0      | 0        | 0        | 0 0        |                      |               | 0        | 0        | 0      | 0        | -           |              |                       |                | 0                     | -        | 0      | 0        | 0        |           |                      | 0        | 0        | 0 0               | 0                    | 0        | 0        | 0        | 0          | 0              |            |                                         | 0                           | 0        | 0           |           |
| IL <sup>LN</sup>                    | 00              | , 0<br>, 0           | 9<br>9 | 9<br>9   | 9<br>9   | 9 0 0      | ے د<br>ہ ہ           | ່ວເ           | 9        | 4<br>C   | 40     | 4        | 4 ·         | 4 ₹          | 4 7<br>7 0            | , d            | 4 0                   | 4<br>C   | 5<br>0 | 0        | 0<br>0   | )<br>) // | 20                   | 10       | 0        | 00<br>01 0        | 10<br>10             | 2        | 5        | 5        | 0<br>0     | 0<br>0         | )<br>) //  | ) (<br>) (                              | 1 CI                        | 0        | 0           |           |
| IE<br>N <sup>2</sup>                | 4 -             | 17                   | 14     | 4        | 4        | 4          | 4 7                  | 1 7           | 4        | 14       | 4      | 4        | 4           | 4            | 4 7                   | 1 7            | . 4                   | 14       | 14     | 4        | 4        | 4 -       | 4 7                  | 5        | 4        | 4 -               | 1 7                  | 14       | 4        | 14       | 4          | 4              | 4 -        | <del>7</del> -                          | 17                          | 14       | 4           |           |
| sh <sub>N</sub>                     | с, с<br>с, с,   | ົຕ                   | с<br>С | с<br>С   | 3        | с<br>С     | ი.<br>ი              | , .<br>, .,   | ς<br>α   | с<br>С   | 3      | ŝ        |             |              | ກ.ຕ                   | ი.             | ,<br>                 | ŝ        | с<br>С | с<br>С   | ი<br>ი   |           | n                    | ,<br>,,  | с<br>С   |                   | ົຕ                   | 3        | ŝ        | ŝ        | с<br>С     |                |            | 00                                      | າຕ                          | ŝ        | ŝ           |           |
| $ss_N$                              | = =             | : =                  | 11     | 11       | 11       | = :        | 1 :                  | 1 =           | 11       | 11       | 11     | 11       | ;;;         | = =          | 1 :                   | 1 =            | 11                    | 11       | 11     | 11       | ; ;      | 1:        | 1 =                  | : 1      | Ξ        | = =               | 1 1                  | 11       | 11       | 11       | 1          | =;             | 1:         | 1:                                      | : ::                        | 11       | 11          |           |
| лив                                 | 0 -             |                      | 1      | 1        | 1        |            |                      |               | П        | 42       | 42     | 42       | 42          | 47           | 54 5                  | 4 6            | 42                    | 42       | 0      | 0        | 0 0      |           |                      | 0        | 0        |                   | 0                    | 0        | 0        | 0        | 0          | 0 0            | 0 0        |                                         | 0                           | 0        | 0           |           |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$ | 20              | 101                  | 0      | 0        | 0        | 00         | 2 10                 | 10            | 101      | 3 75     | 3 75   | 3 75     | 22          | 2 i<br>2 i   | 2 K<br>0 K            | 2 12           | 22                    | 3 75     | 7 67   | 29 2     |          | 19        | 20                   |          |          | 29                |                      |          | 61       | 61       | 61         | 61             | 19         | 101                                     | 610                         | 555      | 55          |           |
| $D^{NV}$                            | 6 42<br>2       | ष ८व<br>स च्ल        | ন      | ন        | ন        | নি         | ਗ ਦ<br>ਗ ਦ           | ।<br>सित्त    | াবা      | 6 63     | 999    | 00<br>00 | 9<br>9      |              |                       | 5 6<br>5 6     | 000                   | 6 63     | 6 57   |          |          |           |                      | 6 57     |          | 6 57<br>г 7       |                      |          | 9 50     | 9 50     | 001<br>01  | 0<br>0<br>0    | 5 G        | ດຍ<br>ກ່ວ                               | 5 10<br>10<br>10            | 4 46     | 46          |           |
| $\mathbf{D}^{\mathbf{M}}$           | 41 46<br>2 4    | 101                  | 0      | N        | N<br>N   | N 0        | י ר                  | 10            | เณ       | 55 66    | -      | -        | -           |              | 55 00<br>55 66        |                | 155 66                |          |        |          |          |           | 55 56                |          |          | 200<br>200<br>200 |                      |          |          |          |            |                |            | 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 | 0 00<br>14 - <del>4</del> 4 | 6 54     | ю<br>9      |           |
| $D^{I}$                             |                 | - ~                  | ~      | ×        | ×        | ~          | na                   |               | ~        | 115      | Η      |          |             |              | 4 155<br>4 155        |                |                       |          |        |          |          |           |                      |          |          |                   |                      |          |          |          |            |                |            | -                                       | , 4                         | 8        | ~<br>4      |           |
|                                     | 13              | 32.48                | 32.48  | 2.48     | 32.48    | 32.48      | 24.2                 | 32.48         | 32.48    | 103.4    | 03.4   | 103.4    | 103.4       | 103.4        | 103.4                 | 103.4          | 103.4                 | 103.4    | 50     | 20       | 5        | 0 v       | 5 G                  | 5.0      | 201      | 0 4               | 20<br>20             | 56       | 50       | 50       | 2          | 5              | 0 v        | 0 1                                     | 20                          | H        | H           |           |
| NBMAX                               |                 |                      |        |          |          |            |                      |               |          | 7        | 7      |          |             | <br>- 1      |                       |                |                       |          |        |          |          |           |                      |          |          |                   |                      |          |          |          |            |                |            |                                         |                             | 10       | 10          |           |
| NB <sup>WIN</sup>                   | 4.85<br>275     | 13.7                 | 13.7.  | 13.7.    | 13.7.    | 13.7       | 201                  | 13.75         | 13.7     | 11.1     | 11.1   | 11.1     |             |              |                       | 2111           | 11.17                 | 11.17    | 3.2    | 3.2      | 3.2      | 200       | 0 0                  | 3.2      | 3.2      | 57 C              | 0,0                  | 0        | 0        | 0        | 0          | 0              | -          |                                         | 0                           | 4.85     | <b>4</b> .8 |           |
| NIMAN                               | 94              |                      | _      | ~        | 6        | റെ         |                      |               |          | 5<br>L   | ي<br>ت | ي<br>ت   | <u>ب</u> ور | ດັ           | ក្ម                   |                |                       |          |        | 8        | × ×      | x         | x x                  | 2 20     | 20       | 20 0              | <u>0</u>             | 76       | 7        | 7        | -97        | 5              | 76.        | - 1                                     | - 1-                        | 29       | 67          |           |
| NBAVG                               | 8.5             | 21.5                 | 21.9   | 21.9     |          | 21.5       |                      | 21.9          | 21.9     | 32.15    | 32.15  | 32.15    | 32.15       | 32.15        | 32.15                 | 32.15          | 32.15                 | 32.15    | 13.38  | 13.38    | 13.38    | 13.38     | 2 6                  | 13.38    | 13.      | 13.38             | 12.5                 | 12.97    | 12.9     | 12.6     | 12.0       | 12             |            | 10.01                                   | 12.5                        | 6        |             |           |
|                                     |                 |                      |        |          |          |            |                      |               |          |          |        |          |             |              |                       |                |                       |          |        |          |          |           |                      |          |          |                   |                      |          |          |          |            |                |            |                                         |                             |          |             |           |
| $\mathbf{P}_{\mathbf{F}}$           | 153             | 157                  | 157    | 157      | 157      | 157        | 187                  | 157           | 157      | 176      | 176    | 176      | 176         | 91           | 0/1                   | 921            | 176                   | 176      | 150    | 150      | 120      | 120       | 120                  | 150      | 150      | 120               | 20                   | 50       | 50       | 50       | 20         | 20             | 000        |                                         | 303                         | 155      | 155         |           |
| ь<br>БI                             | 53              | 212                  | 51     | 51       | 51       | 51         | 1 1                  | 1 12          | 51       | 6        | 6      | 6        | <b>б</b>    | 5            | ກວ                    | nσ             | 0                     | 6        |        | 20       |          |           |                      |          |          |                   | 20                   |          |          |          | 150        |                | 150        |                                         |                             | 54       |             |           |
| P,                                  | 13              | - 1-                 | 37     | 37       | 37       | 1-1        | - 1-                 | - 1-          | 22       | 18       | 8      | 8        | s e         | 9.18<br>0.18 | xx                    | o œ            | 2 00                  | 8        | 34     | 54       | 55       | 4.5       | 7 7                  |          |          |                   | _                    | -        | _        | -        |            |                |            |                                         |                             |          |             |           |
| ۷ <sub>US</sub>                     | 16.13           | 11.67                | 11.67  | 11.67    | 11.67    | 11.67      | 10.11                | 11.67         | 11.67    | 9.18     | 9.18   | 9.18     | 9.18        | ກ່           | 9.18<br>0.18          | 01.0           | 9.18                  | 9.18     | 13.64  | 13.64    | 13.64    | 13.64     | 13.64                | 13.64    | 13.64    | 13.64             | 13.64                | 13.64    | 13.64    | 13.64    | 13.64      | 13.64          | 13.64      | 10.04                                   | 13.0                        | 14.9     | 14.9        |           |
|                                     | 5.02<br>3.7     |                      | 2.7    | 3.7      | .7       | 1-1        | 0                    | - 1-          | 3.7      | 7.08     | 7.08   | .08      | 7.08        | 2.02         | ×<br>×                | 200            | 7.08                  | 7.08     | 7.37   | .37      | 7.37     | 7.37      | 7.37                 | .37      | .37      | 7.37              | .37                  | .37      | .37      | .37      | 7.37       | 7.37           | 10.1       | 10.1                                    | 37                          | L.23     | .23         |           |
| $_{T}$ US                           | 65.             | - 1-                 | 1-     | 1-       | 1-       | 133        | 1                    | - 1-          | -1       | 9        | 9      | 9        | 9           | 0            | 66                    | ິ              | 9 0                   | 9        | ŋ      | ມ        | ທີ່      | ດະ        | ດແ                   | ы<br>С   | ю ı      | юи                | ົທ                   | 5        | 5        | ŋ        | ມ<br>ເ     | ມ              | ົ<br>ເ     | οч                                      | າທ                          | .0       | 9           |           |
|                                     | 9.27<br>6.45    | 6.45                 | 6.45   | 6.45     | 6.45     | 6.45       | 0.40<br>A 7          | 6.45          | 6.45     | 3.05     | 3.05   | 3.05     | 3.05        | 3.05         | 3.U5<br>2.05          | 3.05           | 3.05                  | 3.05     | 7.96   | 7.96     | 7.96     | 7.96      | 7.96                 | 7.96     | 7.96     | 7.96              | 7.96                 | 7.96     | 7.96     | 7.96     | 7.96       | 7.96           | 7.96       | 1.90                                    | 7.96                        | 8.86     | 8.86        |           |
| $s_{\Omega S}$                      | 1-1             | - 1-                 | 4      | 4        | 4        | 1-1        | - 1-                 | - 1-          | -1-      | e        | n      | <b>с</b> |             |              | იი                    | <b>ი</b> .     | , თ                   | e        | 1      |          |          |           |                      |          |          |                   |                      | 1        | -        | -        | _          |                |            |                                         |                             | 4        | 4           |           |
| 3111 44                             |                 | 0.1                  | 0.1    | 0.1      | 0.1      | 0.1        | 1.0                  | 0.1           | 0.1      | 1.93     | 1.9    | 1.9      | 1.9         | 1.93         | 1.93                  | 10             | 1.93                  | 1.93     | 1.61   | 1.61     | 1.61     | 19.1      | 1.61                 | 1.61     | 1.6      | 1.6               | 1.61                 | 1.6      | 1.6      | 1.6      | 1.6        | 1.6            | 9 9<br>1 - | 10.1                                    | 1.6                         | 1.54     | 1.5         |           |
| мнк                                 |                 | 2 02                 | 33     | ŝ        | 33       |            | 2 9                  | 2 22          |          | 6        | 6      | 6        | 6           | 20           | 20                    | 0              | 6                     | 6        | 2      | 42       | 42       | 74.<br>7  | 42                   | 42       | 42       | 42                | 42                   | .42      | .42      | .42      | 42         | 2              | מ וי       | 4.5                                     | 10                          | 2        | 4           |           |
| <b>731 T</b>                        | 153.83<br>36 83 | 36.8                 | 36.8   | 36.8     | 36.8     | 36.8       | 5.05<br>2.05<br>2.05 | 30.0          | 36.8     | 01.C     | 01.C   | 01.09    | 01.0        |              | 101.09                | 50             | 01.09                 | 101.09   | 47.4   | 47.4     | 47.4     | 47.42     | 41.4                 | 47.4     | 47.4     | 47.4              | 47.4                 | 47.4     | 47.4     | 47.4     | 47.4       | 47.42          | 47.42      | 4                                       | 47.42                       | .48.67   | 48.6        |           |
| TRL                                 | -               |                      |        |          |          |            |                      |               |          | -        | -      | -        |             |              |                       |                |                       | -        |        |          |          |           |                      |          |          |                   |                      |          |          |          |            |                |            |                                         |                             | -        | -           |           |
|                                     | L.              | 124                  | 80     | 75       | 85       | 24         | 10                   | # 02<br>-1 -0 |          | 96       | 60     | $^{92}$  | 89          | 20           | 108                   | 8              |                       |          | 07     | 13       | 45       | 90        | 144<br>131           | 62       | 98       | 98                | 46                   | 20       | 03       | 73       | 176        | 80             | 77         |                                         |                             |          | 285         |           |
| etnio¶<br>Time                      | -               |                      |        |          |          | - 1        |                      |               |          |          |        |          |             |              | יי<br>קיי             |                | ı                     |          |        |          |          |           | 4 C                  |          |          |                   |                      |          |          |          | -0         |                |            | 1                                       |                             | 9-       |             |           |
| Participant                         |                 | 13 1                 |        |          |          |            | 12                   |               |          | 18       |        | 9        |             |              | ກີ                    |                |                       |          | 12     | 13       | 14       | 1 :       | - 23                 | 21       | 16       | 22                |                      | 15       |          |          | 19         |                | 20         |                                         |                             |          | ņ           |           |
| Experiment                          | ~ ~             |                      |        |          |          | 0 0        | N C                  | 10            | 2        |          |        |          |             |              |                       |                |                       |          |        | -        | ·        |           | - 0                  | 101      |          |                   | 1                    |          |          |          |            |                |            |                                         |                             |          |             |           |
| Layout<br>Model                     | 44              | . 4                  | 4 4    |          |          | 4.         |                      |               |          |          |        |          |             |              |                       |                |                       |          |        |          |          |           |                      |          |          |                   | - 0<br>- 10          |          |          |          |            |                |            |                                         |                             |          |             |           |
| Complexity                          | 0 0             | 101                  |        |          | 0        | 20         |                      |               |          |          |        |          | 01          | 21 0         | C) (C)                | 10             | 101                   | 2        | 0      |          |          |           |                      |          |          | CN C              | 10                   | 0        | 0        | 0        | 2          | 2              | 21 0       | 10                                      | 10                          | 0        | 0           |           |
| t                                   | 4-13            | 4-14                 | 4-14   | c2-m4-l4 | 4-14     | 4-14       | 4-14                 | c2-m4-l4      | 4-14     | c2-m4-l5 | 4-15   | 4-15     | 4-15        | 4-15         | 4-15                  | 4-15           | 4-15                  | c2-m4-l5 | 5-11   | 5-11     | 5-11     |           | 2-11                 | 5-11     | 5-11     | 5-11<br>5 -11     | c2-m5-l1<br>c2-m5-l2 | 5-12     | 5-12     | 5-12     | c2-m5-l2   | 5-12           | 2-12       | 10-17                                   | 5-12                        | c2-m5-l3 | 5-13        |           |
| Chart                               | c2-m4-l3        | c2-m4-l4<br>c2-m4-l4 | 2-m    | 2-m      | c2-m4-l4 | c2-m4-l4   | c2-m4-l4             |               | c2-m4-l4 | :2-m     | :2-m   | c2-m4-l5 | c2-m4-l5    | cZ-m4-15     | c2-m4-l5<br>c2-m4-l5  | c2-m4-l5       | -<br>-<br>-<br>-<br>- | 2-m      | :2-m   | c2-m5-l1 | c2-m5-l1 | c2-m5-l1  | c2-m5-11<br>c2-m5-11 | c2-m5-l1 | c2-m5-l1 | c2-m5-l1          | 2-m                  | c2-m5-l2 | c2-m5-l2 | c2-m5-l2 | -2-m       | 2-m            | cZ-m5-lZ   | 21-011-70                               | c2-m5-l2<br>c2-m5-l2        | 2-m      | :2-m        |           |
| 0                                   | 00              | 0 1                  | U<br>U | 0        | U<br>U   | 0          | U C                  | 5 0           | 0        | U<br>U   | U<br>U | U<br>U   | U           | 0            | 00                    |                | , 0                   | U<br>U   | U<br>U | 0        | U        | 0         | 00                   | , 0      | 0        | 00                | J U                  | U        | 0        | U        | U          | 0              | 0          | 0                                       | 0 1                         | U        | 0           | I         |

| Statechart aesthetics |
|-----------------------|
| of                    |
| sed in the analysis c |
| Je                    |
| in the a              |
| in'                   |
| Π                     |
| Data                  |
|                       |
| C.1                   |
| $\bigcirc$            |
| Table                 |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |
|                       |

| <sup>1</sup> N              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathrm{^{LdS}N}$          | 0000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>Ld</sup> N             | $\begin{smallmatrix}&&&1\\1&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&\\&&&&&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $^{\text{LS}}N$             | $\begin{smallmatrix} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & $ | $100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 99<br>, 99<br>, 48<br>, 48<br>, 48<br>, 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ĿГ                          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88888855555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c}7&7\\7&2&9\\2&2&2&2\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $IE^{\Gamma\Gamma}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $^{\rm IETL}$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0000044444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * 4 4 4 4 4 7 7 7 7 7 7 7 7 7 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $_{\mathrm{TT}}\mathrm{AI}$ | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $IE^{LN}$                   | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IF                          | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00000044444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| s <sub>N</sub>              | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{smallmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $_{\rm SH}{}_{\rm N}$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o co co co co d d d d d d d d d d d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $ss_N$                      | ==============                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| лив                         | 00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\mathbf{D}^{NR}$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33 33 33 33 33 33 33 33 33 33 33 33 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 722\\ 722\\ 722\\ 722\\ 722\\ 722\\ 722\\ 722$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D <sup>NV</sup>             | 4 4 4 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 666<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D<br>D <sup>W</sup>         | 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $D^{I}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | 1325555133133133133133133133133133133133133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 111111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8895555<br>8995555<br>8995555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>895555<br>8955555<br>8955555<br>8955555<br>8955555<br>8955555<br>8955555<br>8955555<br>8955555<br>8955555<br>89555555<br>8955555<br>89555555<br>89555555<br>8955555555<br>8955555555<br>8955555555<br>895555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NBMAX                       | যয়য়                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44444000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | כם כם כם כם כם כם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             | 31111112882222222<br>3111113882222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31<br>31<br>32<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NIMBN                       | 1.5 $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$ $1.5$                                                                                                                                                                                                                                                                                                                                                                          | 15.<br>15.<br>15.<br>15.<br>16.<br>16.<br>16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| div                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5AV                         | 000000044444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4444666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 229.35<br>29.35<br>29.35<br>29.35<br>29.35<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>111.23<br>112.23<br>111.23<br>112.23<br>111.23<br>112.23<br>111.23<br>112.23<br>111.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23<br>112.23                                                                                                                                              |
| NBAVG                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * * * * * * 000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\mathbf{P}_{\mathbf{F}}$   | $\begin{array}{c} 155\\ 155\\ 155\\ 155\\ 155\\ 155\\ 125\\ 125\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{P}_{\mathbf{I}}$   | 554<br>554<br>554<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549<br>549                      | $\begin{array}{c} 49\\ 49\\ 49\\ 49\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -а                          | စစစစစစစစ်လက်ကိုက်ကို                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ∀∩s                         | 14.99<br>14.99<br>14.99<br>14.99<br>14.99<br>14.99<br>14.99<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.35<br>12.3                                                                                                          | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>0.87<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6<br>19.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 115                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ŧ                           | 4 4 4 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7<br>7.0.7 | 811.43<br>811.43<br>811.43<br>811.43<br>801.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>800.94<br>80                                                                                                                                              |
| $_{T}$ US                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | x x x x x x x x x y y y y y y y y y y y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>00.78<br>0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.59<br>3.59<br>3.59<br>3.59<br>3.59<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>11.97<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s∪s                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | 1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>1.54<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15<br>0.15                                                                         | 1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15<br>1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| мнв                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | 69<br>67<br>67<br>67<br>67<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117<br>117<br>117<br>117<br>117<br>688<br>688<br>688<br>688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 600<br>600<br>600<br>600<br>600<br>600<br>600<br>600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7117                        | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 56.<br>56.<br>56.<br>95.<br>95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95.689<br>95.689<br>95.688<br>95.688<br>95.688<br>95.688<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.51<br>57.55<br>57.51<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.55<br>57.555 |
| лят                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | a xo nxova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000 0000000 00000 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| əmiT                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41<br>81<br>81<br>75<br>75<br>75<br>75<br>75<br>155<br>155<br>163<br>163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $_{\rm stnio}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 - 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Participant                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11<br>11<br>11<br>11<br>11<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Experiment                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| tuoval                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 888888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Complexity<br>Model         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| "Hivelamo'                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| بد                          | c2-m5-13<br>c2-m5-13<br>c2-m5-13<br>c2-m5-13<br>c2-m5-13<br>c2-m5-13<br>c2-m5-13<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-14<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15<br>c2-m5-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $c_{2,m_{1}-1}^{2,m_{2}-1}$ ,<br>$c_{2,m_{2}-1}^{2,m_{2}-1}$ ,<br>$c_{2,m_{2}-1}^{2,m_{2}-1}$ ,<br>$c_{2,m_{1}-1}^{2,m_{1}-1}$ ,<br>$c_{3,m_{1}-1}^{2,m_{1}-1}$ ,<br>$c_{3,m_{1}-1}^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chart                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| ÷ I                                  | 6        | 6              | مر           | م            | م م                  |                | , <i>ი</i> , | 6        | 61       | 6                 | ຄຸດ                      | n 0                  | , o                  | 6        | 6        | 6        | 6        | 6        | 6        | ი<br>ი                  | 61                    | 6        | 6        | 6        | o -                                                                              | იი                     | , o                  | 6          | 6]           | <u>_</u>       | סמ                   |                      | 61       | 6        | 6          | 6                                                                                                 | იი                   | 0            |
|--------------------------------------|----------|----------------|--------------|--------------|----------------------|----------------|--------------|----------|----------|-------------------|--------------------------|----------------------|----------------------|----------|----------|----------|----------|----------|----------|-------------------------|-----------------------|----------|----------|----------|----------------------------------------------------------------------------------|------------------------|----------------------|------------|--------------|----------------|----------------------|----------------------|----------|----------|------------|---------------------------------------------------------------------------------------------------|----------------------|--------------|
| <sup>L</sup> N                       | 1 16     | = ;<br>= ;     |              |              |                      |                | 4 21<br>0 0  | 0 16     | 0        |                   |                          |                      |                      |          |          |          |          |          |          |                         | 0 10<br>11 12         |          |          |          |                                                                                  | 0<br>1 0<br>1 0        | 6 19<br>9            |            | -            | 10<br>10<br>10 |                      |                      | 3 16     | 3 19     | -          | 21 ;<br>m (                                                                                       | 2 2<br>n m           | on next page |
| T <sub>AS</sub> N                    | 0        | 0              | -            | -            | -<br>                | .σ             | ົດ           | -<br>6   | -<br>6   | ວ<br>ດ            | <br>ກູດ                  | ο<br>ο σ             |                      | 0        | 0        | 0        | 0        | 0        |          |                         |                       | 0        | 0        | -<br>0   |                                                                                  |                        | 4 A<br>0 0           | 0          | <br>         |                |                      |                      | 0        | 0        | 0          | 0                                                                                                 |                      | ext :        |
| T4N                                  | x        | <i>∞</i> 00    | x            | x            | $\infty \subset$     |                | 0            | 0 1      | 0 1      | <br>0 (           |                          | 0 1 0                |                      | 14       | 14       | 14       | 14       | 14       | 4.       |                         | 4 4                   | 14       | ŝ        | <i>ი</i> |                                                                                  |                        |                      | <i>с</i> о | с<br>С       |                | ۰ <u>د</u>           | 16                   | 16       | 16       | 16         |                                                                                                   | 0 0                  | n ne         |
| $\mathrm{^{LS}N}$                    |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  | 0.00                   |                      | .0         |              |                |                      |                      |          |          |            | ~ ~                                                                                               | ~ ~ ~                |              |
|                                      | 3.2      | 43.22          | N d<br>n d   | 20           | n o                  |                | 50<br>50     | 0        | 0        | 0                 |                          |                      | 0                    | 2.98     | 42.98    | 42.98    | 42.98    | 42.98    | 42.98    | 42.93                   | 42.98<br>42.98        | 2.98     | 73.50    | 73.56    | 73.50                                                                            | 73.00                  | 73.56                | 73.56      | 73.50        | 73.56<br>72 EE |                      |                      | 41.68    | 41.68    | 1.68       | 1.68                                                                                              | 1.68                 | nee          |
| FL                                   | 4        | ব :<br>_       | रा र<br>-    | य' •<br>-    | 4° C                 | 10             | 10           | 2        | ~        | ณ (               | .N C                     | 10                   |                      |          |          |          |          |          |          |                         |                       |          |          | -        | г- г<br>                                                                         |                        | - 1-                 | -          | <u>г</u> -1  | г- г<br>       | - 7                  | r বা                 | 4        | 4        | ব          | 4                                                                                                 | ক ক                  | Continued    |
| IL <sup>rr</sup>                     | 0        | 0 0<br>0 0     | )<br>20      | )<br>0       |                      |                |              | -        | -        |                   |                          |                      | , –                  | 4<br>0   | ~<br>~   | თ<br>თ   | ന<br>പ   | ಣ<br>ಈ   | ი თ<br>  | න<br>අප                 | ი თ<br>ო თ            | - CT     | 1        | 2        | 0 0<br>1 - 1                                                                     | - 1-<br>- 1-           | - 1-                 | 5          | сі і<br>Г- 1 | 0 0<br>0 1     | - 10<br>1 0          | 0<br>1<br>0          | 5        | 50       | י וס<br>מי | ເດ<br>ເດ                                                                                          | 0 10<br>0 10         | Co           |
| IF <sub>TL</sub><br>IF <sub>TL</sub> |          | -              |              |              |                      |                | 0            | 0        | 0        | 0                 |                          |                      | 0                    | 0        | 0        | 0        | 0        |          |          |                         |                       | 0        | 0        | 0        | 0.0                                                                              |                        |                      | 0          | 0            |                |                      |                      | 0        | 0        | 0          |                                                                                                   |                      |              |
| IE<br>IE <sup>LN</sup>               | 0        | 0              | ⊃ <          | > <          |                      |                | 0            | 0        | 0        | 0                 |                          |                      | 0                    | 0        | 0        | 0        | 0        | 0        | 0        | -                       |                       | 0        | 0        | 0        | 0 0                                                                              |                        | 0                    | 0          | 0            | 0 0            |                      | 0                    | 0        | 0        | 0          | 0                                                                                                 | - 0                  |              |
| <br>IF                               | 9        | 9              | 0            | 0            | - م                  |                |              | г        |          |                   |                          |                      |                      | 1-       | 1-       | 1-       | -1       | -1       | 1-1      | - 1                     | - 1-                  | 1        | 6        | 6        | <u></u> боо                                                                      | n 0                    | 0                    | 6          | 6            | n 0            | -1 מ                 | - 1-                 | 1-       | 1-       | 1-1        | 1-1                                                                                               | - 1-                 |              |
| $s_N$                                | 20       | 50             |              |              | 0.20                 | 000            | 202          | 20       | 20       | 50                | 20                       | 000                  | 22                   | 20       | 20       | 20       | 20       | 20       | 50       |                         | 50                    | 20       | 20       | 20       | 50                                                                               | 020                    | 22                   | 20         | 20           | 50             | 202                  | 22                   | 20       | 20       | 20         | 50                                                                                                | 50                   |              |
| $\mathrm{sh}_{\mathrm{N}}$           | 4        | 4.             | 4.4          | 4.           | 4 4                  | <del>ا</del> ۲ | 4            | 4        | 4        | 4.                | 4 -                      | # <del>1</del>       | 4                    | 4        | 4        | 4        | 4        | 4        | 4.       | 4 -                     | 4                     | 4        | 4        | 4        | 4 -                                                                              | 4 4                    | 4                    | 4          | 4            | 4              | 44                   | 4                    | 4        | 4        | 4          | 4.                                                                                                | 44                   |              |
| $ss_N$                               | 16       | 16             | 9            | 91           | 19<br>1              | 19             | 16           | 16       | 16       | 16                | 16                       | 919                  | 16                   | 16       | 16       | 16       | 16       | 16       | 16       | 10<br>1                 | 16                    | 16       | 16       | 16       | 16                                                                               | 16                     | 16                   | 16         | 16           | 16             | 191                  | 16                   | 16       | 16       | 16         | 16                                                                                                | 16                   |              |
| лив                                  | 48       | 48             | 84<br>8      | 84<br>8      | 4<br>2<br>2<br>2     | 5 2            | 242          | 54       | 54       | 25 i              | 5<br>4 г                 | 5 2                  | 542                  | 65       | 65       | 65       | 65       | 65       | 65       | 60                      | 65.0                  | 65       | 64       | 64       | 64                                                                               | 64<br>7                | 5 75                 | 64         | 64           | 64<br>8        | 46                   | 46                   | 46       | 46       | 46         | 46                                                                                                | 40<br>46             |              |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$  | -        | -              |              |              |                      |                | 808          |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          | $^{00}$  | 90       | 06                                                                               | 000                    | 06                   | 90         | 06           | 06             | 99                   | 99                   | 66       | 66       | 66         | 99                                                                                                | 00<br>99             |              |
| $\mathbf{D}^{\mathbf{N}\mathbf{V}}$  | 66       | 99             | 99           |              |                      |                | 121          |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         | 87.0                  |          |          |          | 8 9                                                                              | x x<br>4 4             | 8 4                  | $^{84}$    | 84           | 80 0           |                      |                      | -        | 60       |            |                                                                                                   | 09<br>90             |              |
| $\mathbf{D}^{\mathbf{M}}$            | I        | 64             |              |              | 40<br>73             |                | -            |          | -        |                   |                          | 2 2                  |                      |          |          |          |          |          |          |                         | 808                   |          | 91       |          |                                                                                  | -<br>5 -<br>5 -<br>5 - |                      |            |              |                |                      | 20                   | -        |          |            |                                                                                                   | 50<br>20             |              |
| $D^{I}$                              | 64       | 64             | 67<br>7      | 0<br>7<br>7  | 407                  | 12             | 12           | 71       | 71       | 51                | 25                       | 12                   | 17                   | 86       | 86       | 86       | 86       | 86       | 86       | 80<br>x                 | 86                    | 86       | 132      | 132      | 132                                                                              | 132                    | 132                  | 132        | 132          | 132            | 202                  | 20                   | 59       | 59       | 50         | 50                                                                                                | 59<br>29             |              |
|                                      | 36       | 36             | 92           | 99           | 20<br>13<br>20       | 2 6            | 13           | 13       | 13       | 13                | n r                      | 2 6                  | 13                   | 46       | 46       | 46       | 46       | 46       | 46       | 46                      | 40<br>46              | 46       | 25       | 25       | 41.25                                                                            | 0.10                   | 41.25                | 41.25      | 52           | 10<br>10<br>10 |                      | 88                   | 38       | 38       | 38         | 38                                                                                                | x x<br>x x           |              |
| NBMAX                                |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          | 41.      | 41.      | 41.                                                                              | 41.                    | 41.                  | 41.        | 41.          | 41.            | -                    |                      |          |          |            |                                                                                                   |                      |              |
| dit                                  |          |                |              |              | Ξ                    | :-             | :=           | 1.11     | 11       | = :               | 11                       |                      | 12                   | 8.14     | 14       | 14       | 14       | 14       | 4        | 4 -                     | 14                    | 14       | 61       | 7.61     | 7.61                                                                             | 10.7                   | 7.61                 | 7.61       | 7.61         | 7.61           |                      | 10                   | 2        | 2        | 2          | 2                                                                                                 | 20                   |              |
| NIWAN                                | 0        | 0              | ⊃ ⊂          | ⊃ ⊂          |                      | i 4            | . 4          | 4.       | 4        | 4.                | 4.4                      | 1 4                  | 4                    | 18.      | 18.14    | 18.14    | 18.      | 18.14    | 18.14    | 18.14                   | 18.14                 | 18.14    | 7.61     | 2        | <u>г</u> г                                                                       | - 1-                   | - 1-                 | 1-         | <u>-</u> -1  | - r            | 0.0                  | 9 0<br>0<br>0        | 3.2      | 3.2      | n          | n o                                                                                               | ກໍຕໍ                 |              |
|                                      | 83       | 83             | ŝ            | ŝ            | 3 2                  | # 7            | 77           | 74       | 9.74     | 4                 | 9.74<br>0.74             | 14                   | 9.74                 | 17       | 17       | 17       | 17       | 17       | 11       |                         | 17                    | 17       | .41      | 41       | 41                                                                               | 41                     | 14                   | 41         | 41           | 41             | 15                   | 3 23                 | 25       | 25       | 25         | 52                                                                                                | 52<br>52<br>72       |              |
| NB <sup>∀ΛC</sup>                    | 11.      | Ξ:             | ;;           | ;;           | -i 0                 | 'nσ            | 9.74         | 9.       | 9.       |                   | ກ່ວ                      | 'nσ                  | . 6                  | 32.      | 32.17    | 32.17    | 32.      | 32.17    | 32.17    | 32.17                   | 32.17                 | 32.17    | 22.      | 22.41    | 22.41                                                                            | 22                     | 22.41                | 22.41      | 22.41        | 22.41          | 14                   | 14.                  | 14.      | 14.      | 14.        | 14.                                                                                               | 14.25<br>14.25       |              |
|                                      |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   |                      |              |
| $\mathbf{b}^{\mathbf{k}}$            | 50       | 22             | 0,5          | 0, 2         | 200                  |                | 22           | 52       | 52       | 22                | 222                      | 100                  | 32                   | 51       | 51       | 51       | 51       | 51       | 51       | 51                      | 151                   | 51       | 89       | 89       | 68 68                                                                            | n<br>n<br>n<br>n       | 68                   | 89         | 89           | 68 0           | 202                  | 3 23                 | 50       | 50       | 50         | 20                                                                                                | 20                   |              |
|                                      |          |                |              |              |                      |                | 22           |          |          |                   | 1 -<br>2 -<br>2 -<br>2 - |                      |                      |          |          |          |          |          |          |                         | 20                    |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   | 20 T                 |              |
| $\mathbf{P}_{\mathbf{I}}$            |          | 9<br>9<br>9    |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   |                      |              |
| ¥og                                  | 19.6     | 19.6           | - 19.0       | 19.0         | ты.<br>19.6          | 5.19           | 5.19         | 5.19     | 15.19    | 5.19              | 5.19                     | 15.19                | 5.19                 | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46     | 8.46                    | 8.46<br>8.46          | 8.46     | 1.81     | 11.81    | 11.81                                                                            |                        | 1.81                 | 1.81       | 1.81         | 11.81          | 18.68                | 8.6                  | 18.68    | 18.68    | 18.68      | 18.68                                                                                             | 18.68                |              |
| ∀US                                  | 4        | 94             | 4.5          | 4.           | 94<br>88<br>1        |                |              |          |          |                   |                          |                      |                      |          |          | 9        | 9        |          |          |                         |                       | 9        | -        | -        |                                                                                  |                        |                      | Η          | _            |                |                      |                      |          |          |            |                                                                                                   | 00 00                |              |
| $^{T}$ US                            | 80.9     |                | 80.9<br>80.9 | 80.9<br>80.9 | 80.9<br>83.6         | 833.0          | 83.68        | 83.6     | 83.68    | 83.68             | 83.68<br>83.68           | 83.68                | 83.68                | 79.6     | 79.66    | 79.66    | 79.66    | 79.66    | 79.66    | 79.66                   | 79.66                 | 79.6     | 82.57    | 82.57    | 80<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 2 6                    | 82.57                | 82.57      | 82.57        | 82.57          | 82.18                | 82.18                | 82.18    | 82.18    | 82.18      | 82.18                                                                                             | 82.1                 |              |
| -118                                 |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          | _          | _                                                                                                 |                      |              |
| sus                                  | 11.9     | 11<br>11<br>11 | 11           | 11           | 11.97<br>0.65        | 0              | 9.65         | 9.65     | 9.65     | 9.65              | 9.65<br>0.65             | 9.65                 | 9.65                 | 3.56     | 3.56     | 3.56     | 3.56     | 3.56     | 3.56     | 3.56                    | 3.56                  | 3.56     | 4.38     | 4.38     | 4.38                                                                             | 4 4                    | 4.38                 | 4.38       | 4.38         | 4.38           | * E                  | 11.21                | 11.2     | 11.2     | 11.2       |                                                                                                   | 11.2                 |              |
| ~115                                 | 64       |                | 64<br>7      |              |                      |                |              | 5        | 5<br>2   | ល                 | 5.20<br>2.12             | с<br>С               | 22                   | 2        | 77       | 1        | -1       | -        | 5        | - 1                     | - 1-                  | 2        | 90       | 90       | 99                                                                               | 0 0                    | 1.56                 | 99         | 90           | 99             | 220                  |                      |          | .75      | υ          | .75                                                                                               | .75                  |              |
| янм                                  | 1.6      |                |              |              |                      |                | -            | 1.2      |          |                   |                          |                      |                      | 0.7      | 0.1      | 0.7      | 0.1      | 0.1      | 0.0      | $\overline{\mathbf{D}}$ | 0 0                   | 0.1      | 1        | -        |                                                                                  |                        |                      | 1.         |              |                |                      |                      | 1.7      | 1.7      |            |                                                                                                   |                      |              |
| anm                                  | -        |                |              |              | - c                  | 10             | 101          | 0        | 2        | 20                | N C                      | 10                   | 101                  | 4        | 4        | 4        | 4        | 4        | 4.       | 4.                      | <del>1</del> 4        | 4        | 6        | 6        | റെ                                                                               | ກອ                     | ົດ                   | 6          | 6            |                | -1 מ                 | - 1-                 | 4        | 4        | 1-1        | 5                                                                                                 | - 1-                 |              |
|                                      | 57.51    | 1.12           | 0 L<br>0 L   | 21           | 0 / 0<br>3 3 3 5     |                | 33.3         | 33.3     | 33.3     | с<br>СС 0<br>СС 0 |                          |                      | 33.5                 | 55.1     | 55.1     | 55.14    | 55.1     | 55.14    | 55.1     | 55.14<br>77 14          | 55.14                 | 55.1     | 39.4     | 39.49    | 39.4                                                                             | 39.4<br>30.4           | 39.4                 | 39.4       | 39.4         | 39.4           | 2 0 0<br>2 0<br>7 0  | <br>                 | 58.3     | 58.3     | 58.3       | 5<br>28<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 58.37<br>58.37       |              |
| TRL                                  |          |                |              |              | -                    |                |              | 1        | -        | - 1               |                          |                      |                      |          |          |          |          |          |          |                         |                       |          | Г        | 1        |                                                                                  |                        |                      | 1          | -            |                | -                    |                      |          |          |            |                                                                                                   |                      |              |
|                                      | 6        | <u>x</u>       |              | >            | σ                    | 0 <del>-</del> | . 0          | ø        | -        | 00                | N 14                     | 50                   | a                    | ņ        | 5<br>L   | -        | ы        | x        | 4        | 2                       |                       |          | 4        | ņ        | ç                                                                                | ņ                      | 2                    | 4          | 0            | o              | -1                   | - ∞                  |          | H        |            | 01                                                                                                | - 1-                 |              |
| $\operatorname{smiT}$                | 2 189    |                |              |              |                      | 231            |              | 258      |          | 168               |                          | 202 1                |                      |          |          |          | 3 295    |          |          |                         | ~                     |          |          | 233      |                                                                                  | 2 1 2 3                |                      |            | 3 130        |                |                      | 238                  |          | 191      |            |                                                                                                   | 137                  |              |
| Points                               |          | 4 0<br>0 7     |              |              |                      | s «<br>s «     | 2-10         | 4 -7     | 2 -7     | γ°<br>x           | ം<br>പ                   | 5 4<br>7 7           |                      |          |          |          | 7 3      |          |          |                         |                       |          |          |          | 0 0                                                                              |                        |                      |            | 4 -6         |                |                      | - 01<br>0 00         |          | 1 6      |            |                                                                                                   | 2 4<br>2 4           |              |
| Experiment<br>Participant            | -        |                | 2 10         |              | л –                  |                | Г            |          | 1 2      |                   | н<br>1<br>1              |                      |                      |          |          | -        | 1 7      |          |          |                         | র্<br>গণ              | 0        | 1 9      |          |                                                                                  |                        | 5<br>7               |            |              | 11<br>7 7      |                      | 1 23                 |          | -        |            |                                                                                                   | 2 13<br>2 14         |              |
| Layout                               |          |                |              |              |                      |                | <br>იი       |          |          |                   |                          |                      |                      |          |          | 4        |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   |                      |              |
| ləbolM                               |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   | 2 0                  |              |
| Complexity                           |          |                |              |              |                      |                |              |          |          |                   |                          |                      |                      |          |          |          |          |          |          |                         |                       |          |          |          |                                                                                  |                        |                      |            |              |                |                      |                      |          |          |            |                                                                                                   | ი ი<br>              |              |
| rt                                   | c3-m1-l2 | c3-m1-l2       | c3-m1-l2     | c3-m1-l2     | c3-m1-12<br>c3-m1-13 | c3-m1-l3       | c3-m1-13     | c3-m1-l3 | c3-m1-l3 | c3-m1-l3          | c3-m1-l3                 | ca-m1-l3<br>c3-m1-l3 | c3-m1-13<br>c3-m1-13 | c3-m1-l4 | c3-m1-l4 | c3-m1-l4 | c3-m1-l4 | c3-m1-l4 | c3-m1-l4 | c3-m1-14                | c.3-m1-14<br>c3-m1-14 | c3-m1-l4 | c3-m1-l5 | c3-m1-l5 | c3-m1-l5                                                                         | c3-m1-15<br>c3-m1-15   | c3-m1-l5<br>c3-m1-l5 | c3-m1-l5   | c3-m1-l5     | c3-m1-l5       | cə-mu-tə<br>c3-m2-l1 | c3-m2-11<br>c3-m2-11 | c3-m2-l1 | c3-m2-l1 | c3-m2-l1   | c3-m2-l1                                                                                          | c3-m2-11<br>c3-m2-11 |              |
| Chart                                | 3-m      | .3-m           | 8-B          | 9-B          | 3-m<br>3-m           |                | 3-n          | 3-m      | 3-m      | 3-n               | 9-B                      |                      | 3-m                  | 3-m      | 3-m      | 3-m      | 3-m      | 3-m      | .3-m     | n-n                     | 3-H                   | 3-m      | 3-m      | 3-m      | 3-n<br>3                                                                         | 3-m<br>3-m             | 3-n                  | -3-m       | 3-m          | 3-n<br>3       | 3-m                  | 3-n                  | 3-m      | 3-m      | 3-m        | 3-m                                                                                               | 3-m<br>3-m           |              |
| 0                                    | 0        | U              | 0            | 0            | 00                   | υ c            | ່ບ           | U        | U        | 0                 | υi                       | ່ວ                   | ່ວ່                  | U)       | U        | U        | U        | U        | U        | υ                       | υΰ                    | Ú        | C        | U        | U                                                                                | υċ                     | ່ວ່                  | U          | U            | υi             | υċ                   | ່ວ່                  | Ú        | c        | U          | U                                                                                                 | ပပ                   | I            |

| aesthetics    |
|---------------|
| Statechart    |
| of            |
| ne analysis - |
|               |
| int           |
| a used        |
| Dat           |
| C.1.:         |
| Table         |

| <sup>⊥</sup> N                      | 61                                                | 6        | 6          | 6        | 6        | 6          | م<br>م     | ກຸດ                  | 6           | 6        | റെ         | <u>,</u> 5           | 6        | 60       | ກ່ວ               | ຸດ                   | 6        | 60       | ې د          | ກຸດ                                                                               | 6        | 61          | ກຸດ                  | 6        | 6,0          | ກຸດ                  | 0        | 61       | 6            | იეთ                  | 61          | 6]          | 6        | ດຸດ                                                                                         |
|-------------------------------------|---------------------------------------------------|----------|------------|----------|----------|------------|------------|----------------------|-------------|----------|------------|----------------------|----------|----------|-------------------|----------------------|----------|----------|--------------|-----------------------------------------------------------------------------------|----------|-------------|----------------------|----------|--------------|----------------------|----------|----------|--------------|----------------------|-------------|-------------|----------|---------------------------------------------------------------------------------------------|
|                                     | <br>                                              | 3 1      | 3          | 3 1      | 3 1      | с<br>1     | <br>ი ი    | ⊣<br>ກ ແ             | . –<br>. –  | 3 1      | 00         |                      | 0        | 00       |                   | 0                    |          |          | ດ ະ<br>ດ     | າຕ                                                                                |          | ມ<br>ມ      |                      |          |              |                      | 0 00     | 8        | 8 0          | n −<br>αα            | 0 80        | 8           | 8        |                                                                                             |
| TASN                                |                                                   | 0        | 0          | 0        | 0        | 0          | _          |                      | 0           | 0        | <b>о</b> с | ກດ                   | 6        | 00       | 50                | ົດ                   | 6        | 00       |              |                                                                                   | 0        | 0.0         |                      | 0        | 0            |                      |          | 0        | 0            |                      | 0           | 0           | 0        |                                                                                             |
| <sup>Td</sup> N                     | 0.0                                               | .0       | 0          | .0       | 0        |            |            | 0.0                  |             |          |            | 81 O                 |          |          | 0 T 0             |                      |          | 0 19     | तग च         | + <del>.</del> +                                                                  | -        | <del></del> |                      | त्त      | <del>.</del> |                      |          | _        |              |                      | -           | _           | _        |                                                                                             |
| $^{\text{IS}}N$                     | ΞΞ                                                |          |            |          |          |            | 16         |                      |             | Ч        | <u> </u>   |                      | -        | <u> </u> |                   |                      | Ū        |          | 4 -          |                                                                                   | 14       | è-          | 1 -                  |          | <u>-</u> ,   |                      |          | -        |              | -i                   | -           | Η           | -        |                                                                                             |
|                                     | $41.68 \\ 41.68$                                  | 1.68     | 1.68       | 1.68     | 1.68     | 1.68       | 1.68       | 89.1                 | 1.68        | 41.68    | _          |                      |          |          | ~ ~               |                      | 0        |          |              |                                                                                   |          | 42.72       | 42.72<br>42.72       |          | 2.72         | 42.72<br>74.87       | 4.87     | 74.87    | 74.87        | 14.81<br>74 87       | 74.87       | 74.87       |          | 74.87<br>32 43                                                                              |
| FL                                  | 44                                                | 4        | 4          | 4        | 4        | 4          | 4          | 4 4                  | 4           | 4        | A ;        | 101                  | Ä        | Ä ;      | ≓ 7               | 10                   | Ξ        | 23       | 4 4          | 47<br>77                                                                          | 42.      | 4.4         | 4 4                  | 4        | 42.          | 4 1-                 | 74       | ŕ        | <u>г</u> - 1 | 4.4                  | -1-         | ŕ           | ř-1      | 44<br>74<br>74                                                                              |
| $IE_{LL}$                           | 0 0                                               | 0        | 0          | 0        | 0        | 0          | 010        | 0 10                 | 2           | 0        | 0          |                      | 0        | 0        |                   | 0                    | 0        | 0,       |              |                                                                                   | -        |             |                      | -        |              | - 0                  | 0        | 0        | 0 0          | 0 10                 | 2           | 0           | 0        | 0 0                                                                                         |
| $IF_{TL}$                           | ມີ                                                | 4        | 4          | 4        | 4        | 4          | 4.         | 4 4                  | 4           | 4        |            |                      |          |          |                   |                      | Ч        | - 0      | 0 0          | 00                                                                                | 9        | 94          | 0 0                  | 9        | 90           | 0 10                 | ഹ        | Ŋ        | ມ            | ດແ                   | ŝ           | Ŋ           | ю I      | ഗഗ                                                                                          |
| 1FTT                                | 0 0                                               | 0        | 0          | 0        | 0        | 0          | 0 0        |                      | 0           | 0        | 0 0        |                      | 0        | 0 0      |                   | 0                    | 0        | 0 0      |              | 0 0                                                                               | 0        | 0 0         |                      | 0        | 0 0          |                      | 0        | 0        | 0 0          |                      | 0           | 0           | 0        | 0 0                                                                                         |
| IETN                                | 0 0 2                                             | 0        | 0          | 0        | 0        | 0          |            |                      | 00          | 0        |            |                      |          |          |                   |                      | 0        |          |              |                                                                                   | 0        | 0 0<br>N N  |                      |          | 0 0<br>N 1   |                      |          | 0        | 0 0<br>N 1   |                      |             | 0           | 0<br>N   |                                                                                             |
| IF                                  | 0.0                                               | Š        | Š          | Š        | č        | _          | _          |                      |             | Š        |            | <br>                 |          |          |                   |                      | _        | _        |              |                                                                                   | <u> </u> | ~ ~         |                      |          | ~            |                      |          | <u> </u> | ~            |                      |             | <u> </u>    | _        | ~ ~                                                                                         |
| s <sub>N</sub>                      | 1 20                                              | 120      | 5          | 120      | 50       | 5          | 8          | 2 2                  | 1<br>2<br>1 | 13       | 88         | 50                   | ій<br>   | 56       |                   | ័ត                   | 1 20     | 1 20     |              | 507                                                                               | 1 20     | 200         | 202                  | 5        | 56           | 2 2                  | ័ត       | 5        | 56           | 2 2                  | 1<br>2<br>1 | 5           | 5        | 3 6                                                                                         |
| sh <sub>N</sub>                     | 0.0                                               | 7        | 5          | 7        | 5        | со і       | о г        | a a<br>0 (0          |             | 5        | (O (       | a 4                  |          | с<br>ч   | 0 (í              | r 7                  | 5        | о с<br>1 | 0 0          | - 10<br>1 - 17                                                                    | 5        | ю и<br>1    | a 4                  |          | ю (          | a a<br>0 (0          | · ~      | 5        | - T          | a a<br>0 (0          |             | 5           | 7        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| ssN                                 |                                                   |          |            |          |          |            |            | 9 19<br>0 19         |             |          |            | 3 T6                 |          |          | 2 T0              |                      |          |          | 0 T 0        |                                                                                   |          |             | 16                   |          |              | 919                  |          |          |              | 9 19<br>1 19         |             | 1 16        | н<br>-   | 16<br>16                                                                                    |
| D^AB                                | 5 46<br>5 46                                      | 7 4(     | 7 46       | 7 4(     | 7 46     | 7 46       | 146        | 7 46<br>7            | 7 46        |          |            |                      |          |          |                   |                      |          |          |              |                                                                                   |          | 02 0        |                      |          |              |                      |          | _        | 40,1         | 4 0<br>7 0<br>7 7    |             | 1<br>2<br>7 | بې<br>بې | ч<br>Ч                                                                                      |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$ | 99 (                                              | .9       | 9          | .9       | .9       | 6          |            | 6                    | 6           | -        | 808        | 0.00                 |          | 80       |                   | 808                  |          |          | 25           | -                                                                                 | -        | 202         | -                    | -        |              | 0.48                 | -        | 8 64     | 20 0         | 507<br>297           |             | 3 64        | 8 64     | 3<br>9<br>2<br>2                                                                            |
| $D^{NW}$                            | 60                                                |          |            |          |          | _          |            | 55                   | _           | 61       | 22 i       | 4 2                  |          | 1 23     |                   | 1 73                 |          | L 73     |              |                                                                                   |          | 99 9        |                      |          |              |                      |          |          | 582          |                      |             |             | 55       | 2 2 2 2<br>2 7 2 2                                                                          |
| $\mathbf{D}^{\mathbf{M}}$           | 59                                                |          |            |          |          |            | 000        |                      | -           | 60       | 77         | 4 4                  | -        |          | 77                |                      |          |          |              | 99                                                                                |          | . 66        |                      |          | 99           |                      |          |          |              | 200                  |             |             |          | 5.0                                                                                         |
| $D^{I}$                             | 59<br>59                                          | 60       | 60         | 60       | 60       | 09         | 09         | 00                   | 60          | 60       | 616        | 122                  | 12       | 61       | 25                | 121                  |          | 22       | 99           | 99                                                                                | 66       | 99<br>99    | 00<br>99             | 66       | 99           | 1100                 | 110      | 110      | 110          | 110                  | 110         | 110         | 110      | 110                                                                                         |
|                                     | 38<br>38                                          | 38       | 38         | 38       | 38       | 38         | 800        | 0 00<br>0 00         | 38          | 38       | 13         | 2 2                  | 13       | 13       | n c               | 13                   | 13       | 13       | 500          | 80                                                                                | 89       | 89          | 5 0 X                | 89       | 89           | n<br>x<br>x          | 8        | 88       | 80 80        | x<br>x<br>x          | 8           | 88          | 88       | 8 8                                                                                         |
| хамаи                               |                                                   |          |            |          |          |            |            |                      |             |          |            |                      |          |          |                   |                      |          | ;        | 44.89        | 44.69                                                                             | 44.89    | 44.89       | 44.89                | 44.89    | 44.          | 55,88<br>88,88       | 55.88    | 55.      | 55.          | 00.00<br>55.88       | 55.88       | 55.88       | 55.88    | 37.                                                                                         |
| an                                  | ~ ~                                               |          |            |          |          |            |            |                      |             |          | ມ          | ດີເດ                 | 5        | .25      | 0 L<br>2 L<br>2 L | ູ່ມູ                 | .25      | n<br>N   | x o          | 0 00                                                                              | 8        | 00 0        | o oc                 | 80       | 00 00        | 0 9                  | 9        | 9        | 9            | <u>و</u> د           | 9           | 19          | 9        | 46                                                                                          |
| NUM                                 | 3.2<br>3.2                                        | 0        | 0          | 0        | 0        | 0          | 0          |                      | 0           | 0        | 4.         | 4.25                 | 4        | 4.       | 4 4               | 4.25                 | 4.2      | 4.25     | 87.0         | 0.00                                                                              | 8.28     | 8.28        | 0 00                 | 80       | 8.28         | 2 0 0                | 13.4     | 13.4     | 13.4         | 13.46                | 13.46       | 13.4        | 13.46    | 13.4                                                                                        |
| NB <sup>MIN</sup>                   | տտ                                                | n        | <i>с</i> о | n        | с<br>С   | <b>с</b> ( | <b>ო</b> ი | ი.<br>ი              |             | e        | ມ          | ດແ                   | 20       | ມດູ      | Ωи                | ານ                   | ъ        | ю,       |              |                                                                                   |          |             |                      |          |              |                      |          |          |              |                      |             |             |          |                                                                                             |
| DAV                                 | 14.25<br>14.25                                    | 3.3      | 3.3        | 3.3      | 3.3      | 3.3        | က်စ        | 0 C<br>0 C           | 3.33        | .3.33    | - I<br>- I | 1.75                 | 1.75     | 1.75     | - r<br>           | 11.75                | 1.7      | 11.75    | 25.91        | 5.9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 25.91    | 25.91       | 25.91                | 5.9      | 25.91        | 20.4<br>20.4         | 50       | 29       | 60           | ກູດ                  | 6           | 60          | 60       | 29<br>13 3                                                                                  |
| NBAVG                               |                                                   | Η        | -          | Η        | -        | -          |            |                      |             | -        |            |                      |          |          |                   |                      | -        | - (      | .N C         | N CN                                                                              | C I      | CN C        | N (N                 |          | (1)          | NO                   | 1 (1     | C.1      | CN (         | NO                   |             | CA          | 24       | N -                                                                                         |
|                                     | ~ ~                                               | _        | _          | _        | _        | _          | _          |                      | _           | _        | ~          |                      | ~        | ~        |                   |                      | ~1       | ~        | ~ ~          | ~ ~                                                                               | ~        | ~ ~         | ~ ~                  | ~        | ~ ~          | ~ -                  |          |          | <b></b> .    |                      |             |             |          |                                                                                             |
| $\mathbf{b}^{\mathbf{k}}$           | $150 \\ 150$                                      | ŭ        | ñ          | ŭ        | ñ        | ю.         | ы<br>С     | ດີທີ                 | ŭ           | õ        | 15         | 1 2                  | 155      | 10.1     | С Ч               | 15                   | 152      | 15       | С Ч          | 12.5                                                                              | 155      | 10,1        | č i i                | 155      | 155          | 100<br>100           | 4        | 4        | 4.           | 44                   | 4           | 4           | 4        | 150                                                                                         |
| $\mathbf{P}_{\mathbf{I}}$           | 50<br>50                                          | 150      | 150        | 150      | 150      | 150        | 50         | 202                  | 150         | 150      | 52         | 222                  | 52       | 52       | 2 2               | 52                   | 52       | 52       | 49           | 49<br>49                                                                          | $^{49}$  | 49          | 49<br>49             | 49       | 49           | 49<br>94             | 24       | $^{24}$  | $^{27}_{24}$ | 77                   | 24          | $^{24}$     | $^{24}$  | 24                                                                                          |
| a                                   | $68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\ 68 \\$ |          | 68         |          |          |            |            |                      |             |          | 5.2        | 1 2                  |          | 5.2      |                   | 1 2                  | 1        | 5.5      | 4, -         | 1 4                                                                               | 4        | 4           | 4 4                  | 4        | 4, -         | 4 00                 |          | 33       |              | <u>.</u><br>         |             | 33          | 33       | <u>0</u> 5                                                                                  |
| ∀∩s                                 | 18.6                                              | 18.6     | 18.6       | 18.6     | 18.6     | 18.68      | 18.68      | 18.68                | 18.68       | 18.68    | 15.21      | 15.21                | 15.21    | 15.21    | 15.21             | 15.2                 | 15.21    | 15.21    | 9.14         | 0.1                                                                               | 9.14     | 9.14        | 9.14<br>9.14         | 9.14     | 6.6          | 9.14                 | 9.93     | 9.93     | 9.93         | 9.93                 | 9.93        | 9.6         | 9.93     | 9.93<br>18.37                                                                               |
| 110                                 | <u>8</u> 8                                        | 18       | 18         | 18       | 18       | 8          | × ×        | <u>o</u> <u>x</u>    | 8           | 18       | 80         | 0 00                 | 80       | 80       | x a               |                      |          |          | 0.0          |                                                                                   | .0       |             | 0 0                  |          | 90           |                      | 62       | 32       | 33           | 2 8                  | 12          | 32          | 32       | 2 2                                                                                         |
| $\mathbf{T}^{\mathbf{DS}}$          | 82.18<br>82.18                                    | 82.      | 82.18      | 82.      | 82.18    | 82.18      | 82.18      | 82.18                | 82.18       | 82.18    | 83.68      | 83.68                | 83.68    | 83.68    | 83.08<br>82 68    | 83.68                | 83.68    | 83.68    | 80.6         | 80.6                                                                              | 80.6     | 80.6        | 80.6<br>80.6         | 80.6     | 80.          | 80.0<br>91.62        | 91.      | 91.62    | 91.62        | 91.62                | 91.62       | 91.62       | 91.62    | 91.62<br>80.07                                                                              |
| 115                                 |                                                   | _        | П          | П        |          |            |            |                      |             |          |            | - 1-                 |          |          |                   |                      |          |          | о н          | 2 10                                                                              | 10       | លេរ         | o io                 | 5        | 55.          |                      |          |          |              | 43                   |             | .43         |          |                                                                                             |
| S                                   | 11.2                                              | 11.2     | 1.2        | 11.2     | 11.2     | 11.2       |            | 17.11                | 1.2         | 11.2     | 0.0        | 9.67                 | 9.67     | 9.67     | 9.07              | 9.67                 | 9.67     | 9.67     | 4.00<br>4.00 | 4 4<br>9 10                                                                       | 4.55     | 4.55        | 4.00                 | 4.55     | 4.           | 3.43                 | . e      | 3.43     | 3.43         | 0.5<br>7<br>7        | 3.4         | 3.4         | 3.4      | 3.43<br>10 99                                                                               |
| $s_{\Omega S}$                      | ມ                                                 | ŝ        | ŝ          |          |          |            |            |                      |             |          |            | ດທ                   | 0.0      | ມດາ      | ли                | າມ                   | ы        | ъ        |              |                                                                                   |          |             |                      |          |              | 4                    | - 1-     | -1       | <u>ь</u> т   | - 1-                 | -1-         | 4           | <b>N</b> | Γ σ                                                                                         |
|                                     | $1.75 \\ 1.75$                                    | 1.75     | 1.7        | 1.7      | 1.75     | 1.75       | 1.75       | 1.75                 | 1.75        | 1.75     | 1.25       | 1.25                 | 1.2      | 1.2      | 1.2               | 1.2                  | 1.2      | 1.2      | 0.0<br>9     | 0.0                                                                               | 0.6      | 0.6         | 0.6                  | 0.6      | 0.6          | 0,0<br>1 - 0         | 1.67     | 1.67     | 1.67         | 70.1<br>1.67         | 1.67        | 1.67        | 1.67     | 1.67<br>1.69                                                                                |
| янм                                 |                                                   |          |            |          |          |            |            |                      |             |          |            |                      |          |          |                   |                      |          | ·        |              |                                                                                   |          |             |                      |          |              |                      |          |          |              | • • •                |             |             |          |                                                                                             |
|                                     | 58.37<br>58.37                                    | 8.37     | 8.37       | 8.37     | 8.37     | 8.37       | 6.3        | 0.00                 | 8.37        | 8.37     | 3.24       | 3.24                 | 3.24     | 3.24     | 2.24              | 27.0                 | 3.24     | 3.24     | 2 T 2        | 117                                                                               | 7.17     | 7.17        | 7.17                 | 7.17     | 7.17         | 180                  | 0.80     | 0.86     | 98.0         | 0,00                 | .86         | 0.86        | 0.86     | 70.86<br>56.01                                                                              |
| лят                                 | ñ ñ                                               | 5        | ñ          | 5        | õ        | ഹ          | ທີ່        | õ ŭ                  | ŝ           | õ        | 13         | 9 F                  | 135      | 13.      | 10°               | 133                  | 13.5     | 13:      | ດິຍ          | ົ່ດ                                                                               | 50       | ່ທີ່ມີ      | 0 0                  | 20       | ີ່ດີ         | 10                   | 1        | 7        | йÄ           | 1                    | 1           | 7           | 7        | <u> </u>                                                                                    |
|                                     |                                                   |          |            |          |          |            |            |                      |             |          |            |                      |          |          |                   |                      |          |          |              |                                                                                   |          |             |                      |          |              |                      |          |          |              |                      |             |             |          |                                                                                             |
| əmiT                                | 186                                               | 166      | 213        | 397      | $^{240}$ | 283        | 215        | 134                  | 203         |          |            | 226                  | 273      | 249      |                   | 141                  | 140      | 0        | 328          | [00]                                                                              | 295      | 268         | 177                  | 84       | 193          | s<br>r               | 292      | 214      | 123          | 303                  | 221         |             |          | 167                                                                                         |
| Points                              |                                                   |          |            |          |          |            |            | 9 9<br>9 0           |             |          |            | 6 r;                 |          |          |                   |                      |          |          | א וע<br>- ני |                                                                                   |          | 9 -<br>9    |                      |          |              |                      |          |          |              | 0 4<br>0 0           |             | 4           |          | -                                                                                           |
| Particip                            |                                                   | 12 -     |            |          |          | 17         |            |                      |             |          |            | 21 -                 |          | 22       |                   | 10                   |          |          | י<br>המ      |                                                                                   |          | 0 0         |                      |          |              |                      |          |          |              | י<br>הס              |             |             |          | x                                                                                           |
| Experiment<br>Batalisite            | 0 0                                               |          | -          |          |          |            |            | 2 10                 |             |          |            |                      |          |          |                   | 101                  |          | 0,       |              |                                                                                   |          | c           |                      |          | 0 0          |                      |          |          |              |                      |             |             | 0        |                                                                                             |
| tuoveJ                              |                                                   | 0        | 0          | 0        | 0        | 0          | 2 10       | 2 0                  | 2           | 0        | с<br>С     | 0 00                 |          | с<br>С   | n r               |                      | ŝ        | ი -      | 4 -          | 44                                                                                | 4        | 4 -         | 44                   | 4        | 4 -          | 4 v.                 | ഹ        | ю        | ທ່           | ດທ                   | ы<br>С      | ю           | ນ        | -<br>د                                                                                      |
| lsboM                               | 0 0                                               |          |            |          |          |            |            |                      |             |          |            |                      |          |          |                   |                      |          |          |              |                                                                                   |          |             |                      |          |              |                      |          |          |              |                      |             |             |          |                                                                                             |
| Complex                             | იი<br>                                            |          |            |          |          |            |            |                      |             |          |            |                      |          |          |                   |                      |          |          |              |                                                                                   |          |             |                      |          |              |                      |          |          |              |                      |             |             |          |                                                                                             |
| ť                                   | 2-l1<br>2-l1                                      | c3-m2-l2 | c3-m2-l2   | c3-m2-l2 | c3-m2-l2 | c3-m2-l2   | c3-m2-l2   | c3-m2-12<br>c3-m2-12 | c3-m2-l2    | c3-m2-l2 | c3-m2-l3   | cə-mz-13<br>c3-m2-13 | c3-m2-l3 | c3-m2-l3 | c3-m2-13          | c3-m2-13<br>c3-m2-13 | c3-m2-l3 | c3-m2-l3 | c3-m2-14     | c3-m2-14<br>c3-m2-14                                                              | c3-m2-l4 | c3-m2-l4    | c3-m2-14<br>c3-m2-14 | c3-m2-l4 | c3-m2-l4     | c3-m2-14<br>c3-m2-15 | c3-m2-l5 | c3-m2-l5 | 2-15         | c3-m2-15<br>c3-m2-15 | c3-m2-l5    | c3-m2-l5    | 2-15     | c3-m2-l5<br>c3-m3-l1                                                                        |
| Chart                               | c3-m2-l1<br>c3-m2-l1                              | 3-m      | 3-m        | 3-m      | 3-m      | 3-m        | E H        | u - H                | 3-n         | 3-m      | 3-n        | H - H                | 3-m      | -m_      | E A               | 1 <u>-</u>           | 3-m      |          | E E          | - H                                                                               | 3-m      | E H         | - H                  | 3-m      | 3-m          | u - H                | - H      | 3-m      | c3-m2-l      | u - H                | 3-n         | 3-m         | c3-m2-l  | c3-m2-l<br>c3-m3-l                                                                          |
|                                     |                                                   |          | ÷.5        | ÷.,      | ÷.,      | 1.1        | -14 6      |                      |             |          | -14 6      | 1.5                  |          |          |                   |                      | ÷.,      |          |              | 3 33                                                                              | 100      |             | 1. 11                |          |              |                      | - 73     | 10       | 83           | 5 °                  |             | ~           | 12       | ** *                                                                                        |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 10.09\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 10.99\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\ 8.76\\$                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 4 4 4 4 6 0 0 0 0 0 0 0 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>11<br>50<br>11<br>50<br>11<br>50<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.97 18.37 50<br>80.97 18.37 150<br>80.97 18.37 100000000                            |
| 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{smallmatrix} 1150 \\ 1150 \\ 150 \\ 50 \\ 50 \\ 50 \\ 50 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.97 18.37<br>80.97 18.37<br>80.37 18.37 18.37<br>80.37 18.37<br>80.37 18.37<br>80.37 18.37<br>80.37 18.37<br>80.37 18.37<br>80.37 18.37 18.37<br>80.37 18.37 18.37<br>80.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 18.37 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30 19.30     |
| 4 4 4 4 4 6 0 0 0 0 0 0 0 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{smallmatrix} 150\\150\\150\\55\\50\\55\\50\\55\\50\\50\\50\\50\\50\\50\\50\\5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 4 4 4 6 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{smallmatrix} 150 \\ 150 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 550 \\ 55$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.97 18.37<br>80.97 18.37<br>10.37 10.00<br>10.37 10.00<br>10.30<br>10.30 10.00<br>10.30                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52<br>52<br>52<br>52<br>53<br>55<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80.97 18.37 50<br>80.97 18.37 50<br>80.97 18.37 50<br>80.97 18.37 150<br>80.97 18.37 1000000000000000000000000000000000000                                                                        |
| $\begin{smallmatrix} 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 50\\1150\\1150\\1150\\1150\\1150\\1150\\1150\\1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80.97 18.37 50<br>80.97 18.37 150<br>80.97 18.37 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 100<br>80.97 100 |
| $\begin{smallmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & $                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1150\\ 1150\\ 1150\\ 1150\\ 1150\\ 1150\\ 1150\\ 1150\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.97 18.37 150<br>80.97 18.37 190<br>80.97 18.37 190<br>80.97 18.37 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 190<br>80.97 100<br>80.97 100<br>80.90 100<br>80.90 100<br>80.90 100<br>80.90 100<br>80.90 100<br>80.90 10 |
| $\begin{smallmatrix} & 0 \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & + \\ & $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 150\\150\\150\\150\\150\\150\\150\\150\\150\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.97 18.37 150<br>80.97 18.37 150<br>81.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00000004444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ииии</b> оооооооо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 150\\150\\150\\150\\150\\150\\150\\150\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80.97 18.37 150<br>80.97 18.37 150<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 00000044444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.97 18.37 150<br>80.97 18.37 150<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c}1150\\150\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.97 18.37 150<br>80.97 18.37 150<br>80.97 18.37 150<br>80.97 18.37 150<br>80.97 18.37 150<br>83.99 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 150\\150\\150\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\52\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80.97 18.37 150<br>80.97 18.37 150<br>80.97 18.37 150<br>80.97 18.37 150<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150<br>150<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.97 18.37 150<br>80.97 18.37 150<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150     150     52     52     52     52     52     52     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5 | 80.97 18.37 150<br>80.97 18.37 150<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 4 4 4 4 3 3<br>7 4 4 5 3<br>7 5 3<br>7 5 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7 5<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150     52     52     52     52     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     5     | 80.97 $18.37$ $15083.92$ $14.35$ $5283.92$ $14.35$ $5283.92$ $14.35$ $5283.92$ $14.35$ $5283.92$ $14.35$ $5283.92$ $14.35$ $5282.02$ $14.35$ $52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4, 4, 4, 4, 4, 4, 5, 33<br>7, 4, 3, 4, 4, 4, 5, 33<br>7, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2222<br>2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 7 7<br>2 7 7<br>2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.92 14.35 52<br>83.92 14.35 52<br>83.92 14.35 52<br>83.02 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.92 14.35 52<br>83.92 14.35 52<br>83.02 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4.33<br>4.33<br>4.33<br>4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83 00 14 35 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70. 11. 12. 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.33<br>1 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.35 $52$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83.92 14.35 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27.42 13.17 43<br>97.49 19.17 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.06 50 151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27.42 13.17 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.06 9.06 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19.90 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01 79 11 06 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 00 00 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I 06:II 7/:I6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 12.29 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.90 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 81.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.66 12.29 55.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | × i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.90 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.20 91.72 11.90 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CC 67.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AL.12 II.30 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| aesthetics                                                  |  |
|-------------------------------------------------------------|--|
| Table C.1.: Data used in the analysis of Statechart aesthet |  |
| of                                                          |  |
| analysis                                                    |  |
| $_{\mathrm{the}}$                                           |  |
| in'                                                         |  |
| used                                                        |  |
| Data                                                        |  |
| C.1.:                                                       |  |
| Lable                                                       |  |

| N <sub>TT</sub>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>Tq</sup> N                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>TSN</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -~N                                  | 79.92<br>779.92<br>779.92<br>779.92<br>779.92<br>779.92<br>739.92<br>739.92<br>739.92<br>739.56<br>739.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>733.56<br>73.                                                                                                                                                    |
| ĿГ                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IELL                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IF <sub>TL</sub><br>IF <sub>TL</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IE <sup>TN</sup>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - EI                                 | アアアアアキキキキキキキキキらららららららららっこ11111117アアアアで                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| s <sub>N</sub>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathrm{sh}_{\mathbf{N}}$           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ss_N$                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| лив                                  | 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\mathbf{D}^{\mathbf{N}\mathbf{R}}$  | $\begin{array}{c} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $D^{NV}$                             | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $D^M$                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{D}^{\mathbf{I}}$            | $ \begin{array}{c} 171\\171\\171\\171\\171\\171\\171\\171\\171\\171\\171\\27577\\27577\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\277\\2777\\2777\\2777\\2777\\27777$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NBMAX                                | $\begin{array}{c} 5501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501\\ 55501$ 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500 55500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      | $\begin{smallmatrix} & 2&2&2&2\\ & 2&2&2&2&2\\ & 2&2&2&2&2&2\\ & 2&2&2&2&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NB <sup>MIN</sup>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NBAVG                                | 27,06<br>27,06<br>27,06<br>27,06<br>27,06<br>27,06<br>27,06<br>27,06<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,67<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>13,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57<br>14,57     |
|                                      | 118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ь <sup>ь</sup>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbf{b}^{\mathrm{I}}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ∀∩s                                  | $\begin{array}{c} 111111111111111111111111111111111111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 115                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $_{T}$ US                            | $\begin{array}{c} 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91.72\\ 91$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                      | 4.26<br>4.26<br>4.26<br>4.26<br>4.26<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75<br>10.75 |
| sus                                  | 4 4 4 4 4 4 00000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                      | 1.178<br>1.178<br>1.178<br>1.178<br>1.178<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175<br>1.175     |
| мни                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      | $\begin{array}{c} 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.1.1\\ 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| лят                                  | 711.7771.7771.7777.7777.77777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| əmiT                                 | $\begin{array}{c} 1.76\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.78\\ 1.76\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\ 1.16\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| striod                               | » n n n n n n n n n n n n n n n n n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Participant                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Experiment                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ГароМ<br>Тауоиt                      | 8、8、8、8、8、4、4、4、4、4、4、4、4、4、4、4、4、4、4、4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Complexity                           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ц.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7                                    | c3-m3-15<br>c3-m3-15<br>c2-m3-15<br>c2-m3-15<br>c2-m3-15<br>c2-m3-15<br>c2-m3-15<br>c2-m4-11<br>c2-m4-11<br>c2-m4-11<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-12<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-13<br>c2-m4-14<br>c2-m4-13<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-m4-14<br>c2-                                                                                                                                                                                                                                                                                                                                                       |
| Chart                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | _ ا        | ć    | ć    | ¢    | ¢    | ć    | <u> </u>    | ~ ·            | ~ ~                         | . ~         | ć      | ć      | ~      | ~      | ~ ·       | ~ ·        | ~ ~    | ~ ~    | ~ ~          | . ~         |             | ¢    | ÷.               | ~ ·          | ~ ~         |                          |      | ć    | ~           | ~ ·            | ~ ~          |              | . ~    | ¢    | ¢      | ~ ·        | ~ ·         | ~ ~                   | 1.     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------|------|------|------|------|------|-------------|----------------|-----------------------------|-------------|--------|--------|--------|--------|-----------|------------|--------|--------|--------------|-------------|-------------|------|------------------|--------------|-------------|--------------------------|------|------|-------------|----------------|--------------|--------------|--------|------|--------|------------|-------------|-----------------------|--------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 3 19       | 3 19 | 3 19 | 8 10 | 8 10 | 8 10 | 8           | 22 2           | n 0.                        | 1 22        | 8 16   |        |        |        |           |            |        |        |              |             | 101         | 3 10 | 51               | 51 ;<br>6 ;  | 51 5<br>m n | 1 <u>-</u><br>1 <i>-</i> | 1 22 | 3 15 | 51<br>m     | 51 ;<br>m (    |              |              | 101    | 0 19 | 0 15   | 0 16       | 11 H        |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 0          | 0    | 0    | 0    | 0    | 0    | 0           | 0 0            |                             | 0           | 0      |        |        |        |           |            |        |        |              |             | 0           | 0    | 0                | 0            | 0 0         |                          | 0    | 0    | 0           | 0 0            | ກດ           | ი თ.         | -<br>ი | 6    | -<br>6 | ი<br>ი     | ം<br>റെ     | ກດ                    |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | <i>с</i> о | e    | e    | -    | -    | 1    | -           |                |                             |             | 1      | -      | 9      | 9      | 9         | . 9        |        | 0,0    | 0 0          | ى<br>ت      | 9           | 9    | 9                | 9            | 9           |                          | 9    | 9    | 9           |                |              |              |        |      | 0      | 0          | 10          | <br>- 0               |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>LIS</sup> N          | 7 1        | 7 1  | 7    | 7 1  | 7 1  | 7 1  | 1           |                |                             | - 1-        | 7 1    |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      | S      | ស្រ        | ມດູ         | ດທ                    |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              | 0.0          | 18.9   | 18.9 | 18.9   | 18.9       | 18.9<br>0   | ام. س<br>8.9          | 0.00   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |            | -    | -    | 1    | 1    | -    | _           |                |                             | . –         | 1      |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        | 0    | _      | _          | _ ·         |                       | in the |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 9          | 9    | 9    | 6    | 6    | 6    | 6           | o 0            | ກອ                          | 0           | 6      | 6      | 9      | 9      | 6         | -<br>9     | 500    | 0      | ۔<br>ص       | -<br>-      |             | 9    | 9                | 6            | <br>9 0     |                          |      | 9    | 9           | 9,0            |              |              | -      | -    | -      | -          |             |                       | 0      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 0          | 0    | 0    | 0    | 0    | 0    | 0           | 0              |                             | 0           | 0      | 0      | 0      | 0      | 0         | 0          | 0 0    | -      |              |             | 0           | 0    | 0                | 0            | 0 0         |                          | 0    | 0    | 0           | 0              |              |              | 0      | 0    | 0      | 0          | 0 0         | 0 0                   |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $IE^{IN}$                 | 0          | 0    | 0    | 0    | 0    | 0    | 0           | 0              |                             | 0           | 0      | 0      | 0      | 0      | 0         | 0          | 0 0    | ⊃ ¢    |              |             | 0           | 0    | 0                | 0            | 0 0         |                          | 0    | 0    | 0           | 0 0            |              |              | 0      | 0    | 0      | 0          | 0 0         | 0 0                   |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IF                        | 4          | 1-   | 1    |      |      |      | 10          | 10             |                             |             |        |        |        |        | 9         | 9          | 90     | 0 0    | 0 9          | 9           | 9           | 9    | 9                | 9            | 99          | c<br>C                   | 9    | 9    | 9           | 9,0            |              |              |        | 1    | г      |            |             |                       |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 20         | 20   | 20   | 20   | 20   | 20   | 20          | 20             | 202                         | 202         | 20     | 20     | 20     | 20     | 20        | 20         | 50     | 070    | 0.2          | 202         | 20          | 20   | 20               | 20           | 20          | 202                      | 20   | 20   | 20          | 20             |              | 202          | 20     | 20   | 20     | 20         | 20          | 202                   |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 6          | 6    | 6    | 6    | 6    | 6    | -<br>-<br>- | 977<br>000     | ব ব<br>ব ব                  | ' 7'<br>) 0 | 6      | 6<br>4 | 9<br>7 | 0<br>7 | . ہے<br>م | . ہے<br>1  | 9<br>7 | 7" T   | ব ব<br>০ ৩   | ' 7<br>) (C | 0<br>9<br>9 | 6    | -<br>-<br>-<br>- | 00<br>77 -   | 7" 7<br>0 0 | 1 7<br>7 (C              | 99   | 6    | 9<br>7      | 9 0<br>7 7     | ד ד<br>ס נו  | ד ק<br>ס נס  | 00     | 6 4  | 6      | - 4<br>- 7 | 9 7<br>9 7  | 00<br>14              |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |            |      |      |      |      |      |             |                | <br>2 0                     |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      | 1           | <br>           | <br>о и      | <br>         | 2      | 5 1  | 5 1    | 5          | ດ.<br>      | л г<br>2 г            |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                         | 5 4        | 54   | 54   | 3.6  | 3.6  | 3 6  | 3.0         | ი<br>ი<br>ი    | 0 0<br>0 0                  |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            | ол<br>С     | οų<br>SÖ              |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 31 6       | 31 6 | 31 6 | 35 7 | 35 7 | 35 7 | 35 7        | 10 i<br>10 i   | 0<br>7 ~ 7                  | -           | -      | -      |        |        |           |            |        |        |              | - 1-        |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            | 2 S<br>2 S  | ບ 00<br>ປຸ <u>ເ</u> ຊ |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 1          |      |      |      |      |      | -           |                | 0 6                         | -           | -      | -      | -      | -      | -         | -          |        |        | 0 9          | 29          | -           | -    | -                | -            |             |                          | -    | -    | -           |                | -            | -            | -      | -    | -      | 47         | 7.          | 7 7<br>7 7            |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | I          |      |      |      |      |      |             |                | 2 2                         |             | -      | -      | -      | -      |           |            |        |        |              |             |             | -    | -                | -            |             |                          | -    | -    |             |                | -            |              |        |      |        | 22         | 22          | 22                    |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $D^{I}$                   | I          |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              | -           |             | •    | Ť                | Ť            |             |                          |      | ·    | ·           | •              |              | `            | `      | `    | `      |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 10.1       | 10.1 | ±0.1 | 59.5 | 59.5 | 59.5 | 59.5        | 0.00           | 0.00                        | 59.5        | 59.5   | 59.5   | ñ      | ñ      | ñ         | ñ          | ñ d    | n d    | 50           | o rī        | n m         | ñ    | ñ                | ñ            | ñ ñ         | n r                      | n m  | ñ    | ñ           | m i            |              |              | H      | Ξ    | Ξ      | ÷.         | 22          |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBMAX                     |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      | _      |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 9.2        | 9.2  | 9.23 | 1.12 | 1.15 | 1.12 | 1.1         | 11             | 12                          | 1.1         | 1.12   | 1.15   | 3.0    | 3.0    | 3.0       | с<br>0.0   |        |        | 0.0          | 000         | 3.05        | 0    | 0                | 0            | 0 0         |                          | 0    | 0    | 0           |                | 7 7<br>7 7   | + 7<br>+ 7   | 4.4    | 4.4  | 4.4    | 4.4        | 4.4         | 44                    |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBMIN                     | -1         | -1   | 4    |      |      |      | -           |                |                             |             |        |        | 9      | 9      |           |            |        | 0      | 0 0          |             | . 9         | 6    | 6                | o (          | റം          | n 0.                     | 6    | 6    | <u>с</u>    | <b>ი</b>       |              |              |        |      |        |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DA¥a.                     | 23.0       | 23.0 | 23.0 | 29.7 | 29.7 | 29.7 | 29.7        | 29.7           | 2.9.7                       | 29.7        | 29.7   | 29.7   | 14.0   | 14.0   | 14.0      | 14.0       | 14.0   | 14.0   | 14.0         | 14.0        | 14.0        | 13.8 | 13.8             | 13.8         | 13.8        | 2 00                     | 13.8 | 13.8 | 13.8        | 13.8           | ю о<br>Т Г   | 2 00         | 11.8   | 11.8 | 11.8   | 11.8       | 11.8        | 11.8                  |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NBN                       |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                         | 33         | 33   | 33   | 41   | 41   | 41   | 11          | 44             | # <del>1</del> <del>1</del> | 11          | 41     | 41     | 00     | 00     | 0         | 0          |        | 20     |              | 3.6         | 00          | 20   | 00               | 00           |             |                          | 0    | 20   | 00          |                |              | 18           | 10     | 52   | 52     | 22         | 525         | 2 22                  |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{P}_{\mathbf{F}}$ | I          |      |      |      |      |      | о<br>С      | രം             | າ າ<br>ກີດ                  | ່<br>ດີ     | ,<br>6 |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{P}_{\mathbf{I}}$ |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 0.11       | 0.11 | 0.11 | 0.94 | 0.94 | 0.94 | 0.94        | 0.94           | 0.94<br>0.94                | 0.94        | 0.94   | 0.94   | 9.29   | 9.29   | 9.29      | 9.29       | 9.29   | 9.29   | 9.29<br>0.29 | 9.29        | 9.29        | 9.29 | 9.29             | 9.29         | 9.29        | 9.29                     | 9.29 | 9.29 | 9.29        | 9.29           | 14.0<br>14.0 | 14.6         | 14.6   | 14.6 | 14.6   | 14.6       | 14.6        | 14.0<br>14.6          |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۷US                       |            |      |      |      | Η    | -    |             |                |                             |             | -      | _      | _      |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              | n o          | 6      | 6    | 6      | 6          | റം          | ກຸດ                   |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jog                       | 81.5       | 81.5 | 81.5 | 87.3 | 87.3 | 87.3 | 87.3        | 84.00<br>84.00 | 0 0<br>0 0<br>0 0           | 87.3        | 87.3   | 87.3   | 79.1   | 79.1   | 79.1      | 79.1       | 79.1   | 1.9.1  | 79.1<br>70   | 1.67        | 79.1        | 79.1 | 79.1             | 79.1         | 79.1        | 1.67                     | 79.1 | 79.1 | 79.1        | 79.1           |              | - 1-         | 83.7   | 83.7 | 83.7   | 83.7       | 83.7        |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |            |      |      |      | 80   | 00   | 80          | 00 0           | 0 00                        | 00          | 80     | 80     | ~      | ~      | _         |            |        |        |              |             |             |      |                  |              |             |                          |      | -    |             |                |              |              |        |      |        |            |             |                       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soc                       | 5.5        | 5.5  | 50   | 4    | 4    | 4    | 4           | 4.4            | 4 4                         | 4           | 4      | 4      | 12.0   | 12.5   | 12        | 12         |        |        | 12           | 12          | 12.5        | 12.3 | 12.5             | 12           | 12          | 10                       | 12   | 12.5 | 12.5        | 12             | 200          | 0,0          | 6      | 9.2  | 6.0    | 6          |             | 20                    |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115                       |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          | 15   | 42   | 5           | 52             |              | 10           |        | 0    | 2      | ~          | ~ ~         | N CI                  |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | янм                       | ō          | ö    | ö    | ÷    | -    | ÷    | ÷           |                |                             | -           | ÷      | ÷      | ÷      | ÷      | ÷         | i,         | ÷.     | ÷.     |              |             | i –i        | ÷    | ÷                | ÷,           | -i -        |                          | ÷    | ÷    | ÷           |                |              |              | -      | Η    | H      | -          |             |                       |        |
| Complexity       Complexity         0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                              |                           | 47         | 47   | 47   | 11   | 11   | 11   | 11          | = :            | 1 =                         | 11          | 11     | 11     | 23     | 23     | 23        | 23         |        | n 1    | 2 2          | 22          | 233         | 53   | 23               | ເບ           | ະ ຄ         |                          | 233  | 53   | 0<br>0<br>0 | 00 10<br>10 10 | ກີດ<br>ມີ    |              | 23     | 53   | 53     | 53         |             | 0 C<br>0 C            |        |
| Complexity       Complexity         Complexity       C | тыт                       | 46.        | 46.  | 46.  | 76.  | 76.  | 76.  | 76.         | 76.            | 76.                         | 76.         | 76.    | 76.    | 51.    | 51.    | 51.       | 51.        | 51.    | 51.    | 51.          | 2.5         | 51.         | 51.  | 51.              | 51.          | 51.         | 2 2                      | 51.  | 51.  | 51.         | 51.            | 102.         | 32.          | 132.   | 132. | 132.   | 132.       | 132.        | 132.                  |        |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ide                       |            |      |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000 1                    | 96         | 67   |      |      | 92   | 71   | 00          | 6.0            | 2 2 2                       | 09          | 61     |        |        | 77     | 30        | 40         | 60     | × 5    | 28 T 8       | 99          | 0           | 40   | 83               | 23           | 91          | 40                       | 44   | 95   | 22          | 0              | 000          | 040          | 24     | 69   | 53     | 40         |             |                       |        |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |            |      |      | 4    |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            | ņ           |                       |        |
| 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 16         | 22   |      |      |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| میمیمیمیمیمیمیمیمیمیمیمیمیمیمیمیمیمیمی                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | I          |      |      | Ч    | -    | г    | -           | 0              | 2 0                         | 10          | 0      | 0      | -      |        | -         |            |        |        |              |             |             | 1    | -                |              |             |                          |      |      |             |                |              |              |        |      |        |            |             | 0 10                  |        |
| ουμανουμαιών Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 4          | 4    | 44   | 5    |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 3 4        | 34   | 34   | 34   |      |      |             |                |                             |             |        |        |        |        |           |            |        |        |              |             |             |      |                  |              |             |                          |      |      |             |                |              |              |        |      |        |            |             |                       |        |
| O har                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | -14        | -14  | -14  | -15  | -15  | -15  | -15         | មុំ            | <u>-</u>                    | -12         | -15    | -15    | Ę      | Ę.     | Ę:        | <b>;</b> : | 7:     | 7 -    | ;;           | : =         | Ę           | -12  | -12              | -12          | <u>5</u>    | 19                       | 12   | -12  | 12          | <u>1</u> 2     | <u>-</u>     | <u>;</u>     | : ei   | -13  | -13    | -13        | <u>6</u>    | çi<br>Çi              |        |
| D O S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jart                      | -m-4-      | -m4- | -m4- | -m4- | -m4- | -m4- | -m4.        | -m4            | -H4-                        | -m-         | -m4-   | -m4-   | -m5    | -m5    | -m5       | -m5        | -n5    | ά<br>H | 6 H<br>- H   | - <u>1</u>  | -m5-        | -m5- | -m5.             | - <u>m</u> 5 | - m5        | - 12<br>- 12             | -m5- | -m5- | -m5.        | 'n.            | άų<br>H      | - 12<br>- 12 | -m5-   | -m5- | -m5-   | -m5.       | -m5         | ά<br>μ                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | G                         | C3         | ċ    | ċ    | ċ    | сÿ   | ċ    | ĉ           | ς; ς           | 3 3                         | ე ფ         | ċ      | Ċġ     | ċ      | ċ      | ŝ         | ι<br>Υ     | ġ      | ŝ      | ල ල්         | 3 13        | ŝ           | сÿ   | ĉ                | ς;<br>Υ      | ΰť          | 3 ල්                     | ŝ    | Ċ    | ġ           | ι<br>Ϋ́ς       | ŝĉ           | 3 ල්         | 9 vý   | сÿ   | Ċ      | Ċ          | :<br>?<br>? | 3 ფ                   |        |

| л                                   | $19 \\ 19$                                        |          |          |          |          |          |       | 19      | 19       | 19       | 19      | 19       | 19       | 19       | 19       | 19       | 19       | 19       | 19       |
|-------------------------------------|---------------------------------------------------|----------|----------|----------|----------|----------|-------|---------|----------|----------|---------|----------|----------|----------|----------|----------|----------|----------|----------|
| $^{\text{LdS}N}$                    | 99                                                |          |          |          |          |          |       | 9       | 9        | 11       | 11      | 11       | 11       | 11       | 11       | 11       | 11       | 11       |          |
| <sup>Tq</sup> N                     | 00                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| <sup>TS</sup> N                     | $13 \\ 13$                                        | 13       | 13       | 13       | 13       | 13       | 13    | 13      | 13       | 80       | 80      | x        | 80       | x        | 80       | 80       | x        | 80       | 80       |
|                                     |                                                   | .34      |          |          |          |          |       |         |          | ٢.       |         |          |          |          |          |          |          | ٢.       |          |
| FL                                  | 46<br>46                                          | 46       | 46       | 46       | 46       | 46       | 46    | 46      | 46       | 68       | 68      | 68       | 68       | 68       | 68       | 68       | 68       | 68       | 68       |
| IELL                                | 00                                                | 0        | 0        | 0        | 0        | 0        | 0     | 0       | 0        | 0        | 0       | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
| $^{\rm IF_{TL}}$                    | $10 \\ 10$                                        | 10       | 10       | 10       | 10       | 10       | 10    | 10      | 10       | 4        | 4       | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        |
| TTAI                                | 00                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| IF <sub>TN</sub>                    | 10 0<br>10 0                                      |          |          |          | 0 0      |          |       |         |          |          |         |          |          |          |          |          |          | 6 0      |          |
| IE<br>S.J                           | 20 1<br>20 1                                      | _        | _        | _        | _        | _        | _     | _       | _        | _        | _       | _        | _        | _        | _        | _        | _        | _        | _        |
| s <sub>N</sub><br>sh <sub>N</sub>   | 4 4 2 2                                           | 42       | 42       | 42       | 42       | 42       | 42    | 42      | 42       | 42       | 42      | 42       | 42       | 42       | 42       | 42       | 42       | 4        | 4        |
| ss <sub>N</sub>                     | $^{16}$                                           | 16       | 16       | 16       | 16       | 16       | 16    | 16      | 16       | 16       | 16      | 16       | 16       | 16       | 16       | 16       | 16       | 16       | 16       |
| лив                                 | $46 \\ 46$                                        |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| D <sup>NR</sup>                     | 99                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| $\mathbf{D}^{\mathbf{N}\mathbf{V}}$ | $62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\$ | 62       | 62       | 62       | $^{62}$  | 62       | 62    | 62      | 62       | 81       | 81      | 81       | 81       | 81       | 81       | 81       | 81       | 81       | 81       |
| $\mathbf{D}^{\mathbf{M}}$           | $62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\$ | 62       | 62       | 62       | 62       | 62       | 62    | 62      | 62       | 83       | 83      | 83       | 83       | 83       | 83       | 83       | 83       | 83       | 83       |
| $D^{I}$                             | $62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\ 62 \\$ | $^{62}$  | $^{62}$  | $^{62}$  | 62       | $^{62}$  | 62    | $^{62}$ | 62       | $^{96}$  | $^{96}$ | 96       | $^{96}$  | 96       | $^{96}$  | $^{96}$  | 96       | $^{96}$  | 96       |
| D-                                  | ოო                                                | က္       | က္       | က္       | က္       | က္       | က္    | က္      | က္       | ņ        | e<br>Si | က္       | ņ        | က္       | ņ        | e<br>Si  | က္       | ņ        | e<br>C   |
| VVIA                                | 43.3<br>43.3                                      | 43.      | 43.      | 43.      | 43.      | 43.      | 43.   | 43.     | 43.      | 54.1     | 54.1    | 54.1     | 54.1     | 54.1     | 54.1     | 54.1     | 54.1     | 54.1     | 54.1     |
| NB <sub>MAX</sub>                   |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          | -        |
| NT 141                              | 11.7                                              | 11.7     | 11.7     | 11.7     | 11.7     | 11.7     | 11.7  | 11.7    | 11.7     | 11.4     | 11.4    | 11.4     | 11.4     | 11.4     | 11.4     | 11.4     | 11.4     | 11.4     | 11.4     |
| NBMIN                               |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| 5AV av                              | 24.58<br>24.58                                    | 24.5     | 24.5     | 24.5     | 24.5     | 24.5     | 24.5  | 24.5    | 24.5     | 27.6     | 27.6    | 27.6     | 27.6     | 27.6     | 27.6     | 27.6     | 27.6     | 27.6     | 27.6     |
| NBAVG                               |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| _                                   | 152<br>152                                        | 22       | 22       | 22       | 22       | 22       | 22    | 22      | 22       | 68       | 68      | 89       | 68       | 89       | 68       | 68       | 89       | 39       | 68       |
| $\mathbf{P}_{\mathbf{F}}$           |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| $\mathbf{P}_{\mathbf{I}}$           | 50                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          | ñ        | ñ        | ñ        | õ        |
|                                     | 11.2<br>11.2                                      | 11.2     | 11.2     | 11.2     | 11.2     | 11.2     | 11.2  | 11.2    | 11.2     | 0.28     | 0.28    | 0.28     | 0.28     | 0.28     | 10.28    | 10.28    | 0.28     | 0.28     | 0.28     |
| VUS                                 |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          | 3 1(     | 3 10     |
| -                                   | 77.53<br>77.53                                    | 7.5      | 7.5      | 7.5      | 7.5      | 7.5      | 7.5   | 7.5     | 7.5      | 0.5      | 0.5     | 0.53     | 0.5      | 0.53     | 0.5      | 0.5      | 0.53     | 0.53     | 0.53     |
| $_{T}$ US                           |                                                   |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| G                                   | 5.87<br>5.87                                      | 5.8      | 5.8      | 5.8      | 5.8      | 5.8      | 5.8   | 5.8     | 5.8      | 3.8      | 3.8     | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      |
| sus                                 | 99                                                | 9        | 9        | 9        | 9        | 9        | 9     | 9       | 9        | 4        | 4       | 4        | 4        | 4        | 4        | 4        | 4        | 4        | 4        |
|                                     | 0.56                                              | 0.5      | 0.5      | 0.5      | 0.5      | 0.5      | 0.5   | 0.5     | 0.5      | 1.4      | 1.4     | 1.4      | 1.4      | 1.4      | 1.47     | 1.4      | 1.47     | 1.47     | 1.4      |
| ЯНМ                                 |                                                   |          |          |          |          |          |       |         |          | 9        | 9       | 9        | 9        | 9        | 9        | 9        | 9        | 9        |          |
|                                     | 50.9                                              | 6.03     | 6.03     | 6.03     | 6.03     | 6.03     | 6.03  | 6.03    | 6.03     | 3.4      | 3.4     | 3.4      | 3.4      | 3.4      | 3.4      | 3.4      | 3.4      | 3.4      | 3.4      |
| лят                                 | цу цу                                             | цj       | шу       | цj       | шу       | шу       | шj    | шу      | шj       | 1        | 1       | 12       | 1        | 12       | 1        | 1        | 12       | 12       | 1        |
|                                     | 0.0                                               |          | 2        |          | 8        | e        | -1    | 0       |          | 0        | ъ       | 6        | 2        | 6        | 0        | ъ        | 6        | 9        |          |
| ${}^{\mathrm{smiT}}$                | 332<br>223                                        |          |          |          | $^{98}$  |          |       |         |          | 46       | $^{21}$ | 31       | 41       | 49       | 260      | 14       | 39       | $^{21}$  |          |
| strioA                              | 4 9                                               |          |          |          |          |          | 9     |         |          | ლ<br>ი   |         |          |          |          |          |          |          |          |          |
| nami aqxu<br>tasticipant            | 1 	 9 	 1 	 23                                    |          |          |          |          |          | 2 14  |         |          |          |         |          |          |          | 2        |          |          |          | ~        |
| Experiment<br>Layout                | 44                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          |          |
| ləbolM                              | ഗവ                                                |          |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          | ъ        |
| Complexity                          |                                                   | 33       |          |          |          |          |       |         |          |          |         |          |          |          |          |          |          |          | 30       |
| r                                   | 15-14<br>15-14                                    | 15-l4    | 15-l4    | 15-l4    | 15-14    | 15-l4    | 15-14 | 15-l4   | 15-14    | 15-15    | 15-15   | 15-15    | 15-15    | 15-15    | 15-15    | 15-15    | 15-15    | 15-15    | 15-lE    |
| Chart                               | c3-m5-l4<br>c3-m5-l4                              | c3-m5-l4 | c3-m5-l4 | c3-m5-l4 | c3-m5-l4 | c3-m5-l4 | 3-m   | :3-m    | c3-m5-l4 | c3-m5-l5 | :3-m    | c3-m5-l5 |
| Ŭ                                   | 100                                               | 0        | J        | J        | J        | 9        | J     | 9       | J        | J        | 9       | 0        | J        | 0        | J        | 9        | 0        | 5        | 5        |

| Tool   | Create/<br>Modify | Experiment    | Participant | $\operatorname{Time}$ | Mouseclicks     | Mousedrags | Keystrokes | Macrokeys                           | Error<br>Mouseclicks | Error<br>Mousedrags | Error<br>Keystrokes | Error<br>Macrokeys | Unnecessary<br>Mouseclicks | Unnecessary<br>Mousedrags            | Unnecessary<br>Keystrokes           | Unnecessary<br>Macrokeys              | Nicefy<br>Mousedrags                |
|--------|-------------------|---------------|-------------|-----------------------|-----------------|------------|------------|-------------------------------------|----------------------|---------------------|---------------------|--------------------|----------------------------|--------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|
| 1      | 1                 | 1             | 1           | 455                   | 145             | 21         | 17         | 0                                   | 21                   | 41                  | 1                   |                    | 0                          | 52                                   | 2                                   | 0                                     | 0                                   |
| 1      | 1                 | 1             | 2           |                       | 116             |            | 22         | 0                                   | 17                   | 32                  | 3                   |                    | 0                          | 25                                   | 1                                   | 4                                     | 0                                   |
| 1      | 1                 | 1             |             | 438                   | 127             |            | 18         | 0                                   | 2                    | 7                   | 0                   |                    | 0                          | 22                                   | 2                                   | 1                                     | 0                                   |
| 1      | 1                 | 1             |             | 668                   |                 | 18         | 9          | 0                                   | $\frac{4}{2}$        | 9                   | 1                   |                    | 0                          | 20                                   | 1                                   | 0                                     | 0                                   |
| 1<br>1 | 1<br>1            | 1<br>1        |             | $240 \\ 170$          | 91<br>76        | 21<br>10   | $14 \\ 15$ | $\begin{array}{c} 0\\ 0\end{array}$ | 2<br>0               | $\frac{3}{0}$       | 1<br>0              |                    | 0<br>0                     | $\begin{array}{c} 17\\14\end{array}$ | $2 \\ 0$                            | $\frac{2}{3}$                         | $\begin{array}{c} 0\\ 0\end{array}$ |
| 1      | 1                 | 1             | 7           |                       | 86              | 10<br>26   | 13<br>12   | 0                                   | $\frac{0}{2}$        | 4                   | 0                   |                    | 0                          | 14                                   | 2                                   | 3<br>2                                | 0                                   |
| 1      | 1                 | 1             |             | 256                   | 92              |            | 14         | 0                                   | 0                    | 4<br>0              | 0                   |                    | 0                          | 22                                   | 1                                   | 2<br>4                                | 0                                   |
| 1      | 1                 | 1             | 9           |                       | 77              |            | 13         | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 10                                   | 1                                   | 1                                     | 0                                   |
| 1      | 1                 | 1             | 10          |                       | 122             |            | 15         | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 48                                   | 1                                   | 4                                     | 0                                   |
| 1      | 1                 | 1             | 11          | 372                   | 104             |            | 19         | 0                                   | 8                    | 13                  | 1                   |                    | 0                          | 23                                   | 1                                   | 4                                     | 0                                   |
| 1      | 1                 | 1             | 12          | 485                   | 148             | 31         | 22         | 0                                   | 11                   | 20                  | 1                   | 10                 | 0                          | 55                                   | 1                                   | 2                                     | 0                                   |
| 1      | 1                 | 1             |             |                       | 98              | 32         | 12         | 0                                   | 4                    | 4                   | 0                   |                    | 0                          | 19                                   | 1                                   | 0                                     | 0                                   |
| 1      | 1                 | 1             |             |                       | 98              |            | 14         | 0                                   | 2                    | 1                   | 0                   |                    | 0                          | 20                                   | 0                                   | 2                                     | 0                                   |
| 1      | 1                 | 1             | 15          | 345                   | 92              |            | 20         | 0                                   | 3                    | 9                   | 0                   |                    | 0                          | 23                                   | 1                                   | 6                                     | 0                                   |
| 1      | 1                 | 1             | 16          |                       | 117             |            | 9          | 0                                   | 4                    | 20                  | 0                   |                    | 0                          | 17                                   | 1                                   | 0                                     | 0                                   |
| 1<br>1 | 1<br>1            | 1<br>1        | 17          | 412<br>243            | 104             | 29<br>13   | $12 \\ 12$ | 0<br>0                              | $2 \\ 0$             | $4 \\ 0$            | 0<br>0              |                    | 0<br>0                     | 16     2                             | 4                                   | $\begin{array}{c} 0 \\ 1 \end{array}$ | 0                                   |
| 1      | 1                 | 1             |             |                       | 70<br>131       | $13 \\ 27$ | 12<br>23   | 0                                   | 6                    | 14                  | 0                   |                    | 0                          | 2<br>60                              | $\begin{array}{c} 0\\ 4\end{array}$ | 1<br>6                                | 0<br>0                              |
| 1      | 1                 | 1             |             | 305                   | 81              |            | 23<br>16   | 0                                   | 4                    | 8                   | 1                   |                    | 0                          | 7                                    | 40                                  | 3                                     | 0                                   |
| 1      | 1                 | 1             |             | 173                   | 97              | 11         | 17         | 0                                   | 3                    | 3                   | 0                   |                    | 0                          | 18                                   | 0                                   | 4                                     | 0                                   |
| 1      | 1                 | 1             |             | 318                   | 85              | 27         | 14         | 0                                   | 4                    | 9                   | 2                   |                    | Ő                          | 11                                   | 2                                   | 0                                     | Ő                                   |
| 1      | 1                 | 1             |             |                       | 37              | 18         | 21         | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 3                                    | 0                                   | 0                                     | 0                                   |
| 1      | 1                 | 1             |             | 241                   | 43              | 13         | 23         | 0                                   | 2                    | 0                   | 0                   | 6                  | 0                          | 14                                   | 2                                   | 0                                     | 0                                   |
| 1      | 1                 | 2             |             | 309                   | 78              | 27         | 4          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 51                                   | 5                                   | 1                                     | 0                                   |
| 1      | 1                 | 2             |             | 131                   | 59              |            | 8          | 1                                   | 6                    | 0                   | 0                   |                    | 1                          | 21                                   | 0                                   | 1                                     | 0                                   |
| 1      | 1                 | 2             |             | 163                   | 47              | 21         | 3          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 11                                   | 3                                   | 0                                     | 0                                   |
| 1      | 1                 | 2             | 4           |                       | 39              | 18         | 5          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 5                                    | 1                                   | 2                                     | 0                                   |
| 1      | 1                 | 2             |             | 108                   | 49              | 14         | 7          | 0                                   | 2                    | 5                   | 0                   |                    | 0                          | 18                                   | 2                                   | 2                                     | 0                                   |
| 1<br>1 | 1<br>1            | $\frac{2}{2}$ | 6           | 86<br>247             | $\frac{31}{36}$ | 9<br>38    | $1 \\ 4$   | $\begin{array}{c} 0\\ 0\end{array}$ | 0<br>0               | 0<br>0              | 0<br>0              |                    | 0<br>0                     |                                      | 0<br>11                             | 0<br>0                                | $\begin{array}{c} 0\\ 0\end{array}$ |
| 1      | 1                 | 2             |             | 165                   | $50 \\ 52$      | 19         | 4<br>6     | 0                                   | 2                    | 3                   | 0                   |                    | 0                          | 9<br>12                              | 0                                   | 1                                     | 0                                   |
| 1      | 1                 | 2             |             | 131                   | 49              | 13<br>14   | 2          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 12                                   | 0                                   | 0                                     | 0                                   |
| 1      | 1                 |               |             | 223                   | 49              | 16         | 8          | 0                                   | 4                    | 7                   | 0                   |                    | 0                          | 11                                   | 3                                   | 0                                     | 0                                   |
| 1      | 1                 |               |             | 140                   | 54              |            | 5          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 25                                   | 2                                   | 0                                     | 0                                   |
| 1      | 1                 |               | 12          |                       | 59              | 8          | 13         | 0                                   | 6                    | 9                   | 2                   |                    | 0                          | 21                                   | 1                                   | 0                                     | 0                                   |
| 1      | 1                 | 2             | 13          | 216                   | 68              | 20         | 14         | 0                                   | 5                    | 17                  | 0                   | 12                 | 0                          | 17                                   | 0                                   | 1                                     | 0                                   |
| 1      | 1                 |               |             | 165                   | 44              | 13         | 4          | 0                                   | 0                    | 0                   | 0                   | 0                  | 0                          | 11                                   | 0                                   | 0                                     | 0                                   |
| 1      | 1                 |               |             | 150                   |                 | 12         | 4          | 0                                   | 0                    | 0                   | 0                   | 0                  | 0                          | 8                                    | 0                                   | 1                                     | 0                                   |
| 1      | 1                 |               |             | 124                   | 44              |            | 5          | 0                                   | 1                    | 3                   | 0                   |                    |                            | 4                                    | 3                                   | 2                                     | 0                                   |
| 1      | 1                 |               |             | 194                   |                 | 16         | 3          | 0                                   | 0                    | 0                   | 0                   |                    |                            | 23                                   | 0                                   | 0                                     | 0                                   |
| 1      | 1                 |               |             | 195                   |                 | 18         | 3          | 0                                   | 0                    | 0                   | 0                   |                    | 0                          | 12                                   | 5                                   | 0                                     | 0                                   |
| 1      | 1                 | 2             | 19          | 317                   | 83              | 18         | 12         | 0                                   | 7                    | 15                  | 0                   | 4                  | 0                          | 36                                   | 3                                   | 3                                     | 0                                   |

Table C.2.: Data used in the analysis of Statechart development methods

 $Continued \ on \ next \ page$ 

| Tool          | Create/<br>Modify | Experiment    | Participant | Time                                      | Mouseclicks     | Mousedrags    | Keystrokes      | Macrokeys                           | Error<br>Mouseclicks                   | Error<br>Mousedrags | Error<br>Keystrokes | Error<br>Macrokeys | Unnecessary<br>Mouseclicks            | Unnecessary<br>Mousedrags | Unnecessary<br>Keystrokes           | Unnecessary<br>Macrokeys              | Nicefy<br>Mousedrags                  |
|---------------|-------------------|---------------|-------------|-------------------------------------------|-----------------|---------------|-----------------|-------------------------------------|----------------------------------------|---------------------|---------------------|--------------------|---------------------------------------|---------------------------|-------------------------------------|---------------------------------------|---------------------------------------|
| 1             | 1                 |               |             | 236                                       | 52              | 17            | 9               | 6                                   | 10                                     | 8                   | 0                   |                    | 6                                     | 8                         | 0                                   | 2                                     | 0                                     |
| 1             | 1                 | 2             | 21<br>22    | 94                                        | 33              | 10            | 4               | 0                                   | 0                                      | 0                   | 0                   |                    | 0                                     | 9                         | 0                                   | 1                                     | 0                                     |
| 1<br>1        | 1<br>1            | $\frac{2}{2}$ | 22<br>23    | $\begin{array}{c} 150 \\ 128 \end{array}$ | $42 \\ 40$      | 15<br>18      | $\frac{4}{7}$   | $\begin{array}{c} 0\\ 0\end{array}$ | 0<br>0                                 | 0<br>0              | 0<br>0              | 0<br>0             | 0<br>0                                | $9 \\ 22$                 | $2 \\ 3$                            | $\begin{array}{c} 1 \\ 0 \end{array}$ | $\begin{array}{c} 0 \\ 0 \end{array}$ |
| 1             | 1                 | $\frac{2}{2}$ |             | $120 \\ 155$                              | 40<br>29        | 10<br>14      | 6               | 0                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 22<br>9                   | 0<br>0                              | 0                                     | 0                                     |
| 2             | 1                 | 1             |             | 221                                       | 42              | 1             | 21              | 7                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 16                        | 1                                   | 2                                     | 0                                     |
| 2             | 1                 | 1             |             | 374                                       | 47              | 8             | 20              | 10                                  | 5                                      | 4                   | 0                   | 3                  | 3                                     | 22                        | 3                                   | 0                                     | 1                                     |
| 2             | 1                 | 1             | 3           | 120                                       | 50              | 4             | 33              | $\overline{7}$                      | 3                                      | 1                   | 0                   | 4                  | 0                                     | 25                        | 2                                   | 3                                     | 0                                     |
| 2             | 1                 | 1             |             | 457                                       | 53              | 0             | 36              | 9                                   | 3                                      | 0                   | 0                   | 2                  | 1                                     | 29                        | 0                                   | 1                                     | 1                                     |
| 2             | 1                 | 1             |             | 584                                       | 67              | 2             | 23              | 8                                   | 2                                      | 4                   | 0                   | 0                  | 1                                     | 31                        | 2                                   | 0                                     | 0                                     |
| 2             | 1                 | 1             |             | 609                                       | 46              | 5             | 27              | 9                                   | 6                                      | 5                   | 0                   | 7                  | 3                                     | 16                        | 0                                   | 0                                     | 1                                     |
| 2             | 1                 | 1             | 7           |                                           | 77              | 5             | 27              | 5                                   | 4                                      | 0                   | 1                   | 8                  | 0                                     | 37                        | 2                                   | 0                                     | 0                                     |
| $\frac{2}{2}$ | 1<br>1            | 1<br>1        |             | $285 \\ 370$                              | $\frac{55}{70}$ | $\frac{1}{7}$ | $\frac{32}{31}$ | 6<br>11                             | $\frac{2}{8}$                          | $1 \\ 14$           | 0<br>0              |                    | $\begin{array}{c} 0\\ 3\end{array}$   | $28 \\ 21$                | 0<br>0                              | $\begin{array}{c} 0 \\ 1 \end{array}$ | $\begin{array}{c} 0 \\ 1 \end{array}$ |
| 2             | 1                 | 1             |             | 370                                       | 70<br>59        | 4             | 17              | 11                                  | 6                                      | 5                   | 0                   | 13                 | 3<br>4                                | 21                        | 4                                   | 0                                     | 0                                     |
| 2             | 1                 | 1             |             | 520                                       | 75              | 0             | 36              | 11                                  | 1                                      | 0                   | 0                   | 0                  | 1                                     | 48                        | 0                                   | 1                                     | 3                                     |
| 2             | 1                 | 1             |             | 472                                       | 87              | 5             | 20              | 13                                  | 4                                      | 4                   | 0                   | 0                  | 4                                     | 66                        | 0                                   | 0                                     | 2                                     |
| 2             | 1                 | 1             | 13          | 245                                       | 34              | 0             | 41              | 8                                   | 2                                      | 3                   | 0                   | 5                  | 0                                     | 4                         | 0                                   | 0                                     | 2                                     |
| 2             | 1                 | 1             |             | 651                                       | 94              | 8             | 29              | 7                                   | 3                                      | 0                   | 1                   | 3                  | 1                                     | 65                        | 1                                   | 1                                     | 1                                     |
| 2             | 1                 | 1             |             | 270                                       | 69              | 0             | 29              | 8                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 22                        | 0                                   | 1                                     | 0                                     |
| 2             | 1                 | 1             |             | 324                                       | 56              | 3             | 24              | 8                                   | 1                                      | 0                   | 0                   | 0                  | 1                                     | 28                        | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 1             |             | 443                                       | 33              | 5             | 20              | 8                                   | 2                                      | 0                   | 0                   | 0                  | 2                                     | 7                         | 0                                   | 0                                     | 0                                     |
| $\frac{2}{2}$ | 1<br>1            | 1<br>1        | 18<br>19    | 228<br>623                                | 29<br>113       | $\frac{8}{2}$ | $23 \\ 58$      | 10<br>11                            | $\begin{array}{c} 9 \\ 10 \end{array}$ | $\frac{4}{9}$       | $\frac{3}{0}$       | 7<br>20            | $\frac{4}{3}$                         | $\frac{4}{73}$            | 0<br>1                              | $\frac{2}{6}$                         | $\begin{array}{c} 0 \\ 1 \end{array}$ |
| $\frac{2}{2}$ | 1                 | 1             |             | 415                                       | 70              | 2<br>6        | 21              | 9                                   | 4                                      | 9<br>1              | 0                   | 20                 | 3<br>4                                | 45                        | 1                                   | 0                                     | 0                                     |
| $\frac{2}{2}$ | 1                 | 1             | 20<br>21    |                                           | 64              | 7             | 29              | 8                                   | 9                                      | 4                   | 2                   | 5                  | 7                                     | 36                        | 1                                   | 0                                     | 1                                     |
| 2             | 1                 | 1             |             | 249                                       | 50              | 6             | $\frac{-6}{25}$ | 9                                   | 4                                      | 2                   | 0                   |                    | 2                                     | 21                        | 0                                   | $\overset{\circ}{2}$                  | 0                                     |
| 2             | 1                 | 1             |             | 345                                       | 65              | 6             | 22              | 11                                  | 5                                      | 3                   | 1                   | 2                  | 4                                     | 30                        | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 1             | 24          | 908                                       | 82              | 0             | 50              | 12                                  | 5                                      | 5                   | 0                   | 9                  | 2                                     | 37                        | 0                                   | 6                                     | 2                                     |
| 2             | 1                 | 2             | 1           | 62                                        | 16              | 0             | 6               | 3                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 6                         | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 2             | 2           | 86                                        | 15              | 3             | 7               | 3                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 9                         | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 2             | 3           | 74                                        | 21              | 0             | 11              | 3                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 17                        | 0                                   | 0                                     | 0                                     |
| $\frac{2}{2}$ | 1<br>1            | $\frac{2}{2}$ |             | $\begin{array}{c} 100 \\ 165 \end{array}$ | 13              | $0 \\ 2$      | 10<br>6         | $\frac{3}{3}$                       | 0                                      | 0<br>0              | 0                   | 0<br>0             | 0                                     | 6                         | $\begin{array}{c} 0\\ 2\end{array}$ | 0                                     | 0<br>0                                |
| 2             | 1                 | $\frac{2}{2}$ |             | 1100                                      | $17 \\ 24$      | 2<br>3        | 8               | 3<br>5                              | $\begin{array}{c} 0 \\ 4 \end{array}$  | 6                   | 0<br>0              |                    | $\begin{array}{c} 0 \\ 2 \end{array}$ | $\frac{5}{9}$             | 20                                  | 0<br>0                                | 0                                     |
| $\frac{2}{2}$ | 1                 | 2             |             | 213                                       | 35              | 2             | 6               | 3                                   | -<br>-<br>0                            | 0                   | 0                   |                    | 0                                     | 21                        | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 2             | 8           |                                           | 18              | 0             |                 | 3                                   | 0                                      | 0                   | 0                   |                    | 0                                     | 9                         | 0                                   | 0                                     | Ő                                     |
| 2             | 1                 | 2             |             |                                           | 11              | 2             |                 | 3                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 4                         | 1                                   | 0                                     | 0                                     |
| 2             | 1                 |               | 10          | 90                                        | 23              | 0             | 9               | 3                                   | 2                                      | 1                   | 0                   | 4                  | 0                                     | 11                        | 0                                   | 0                                     | 0                                     |
| 2             | 1                 |               |             | 112                                       | 23              | 0             | 6               | 5                                   | 2                                      | 1                   | 0                   |                    | 2                                     | 13                        | 0                                   | 0                                     | 0                                     |
| 2             | 1                 |               | 12          | 73                                        | 18              | 2             | 6               | 3                                   | 0                                      | 0                   | 0                   |                    | 0                                     | 8                         | 0                                   | 0                                     | 0                                     |
| 2             | 1                 |               | 13          | 79                                        | 13              | 0             | 10              | 3                                   | 0                                      | 0                   | 0                   |                    | 0                                     | 8                         | 0                                   | 0                                     | 0                                     |
| 2             | 1                 |               |             | 142                                       | 15              | 2             |                 | 3                                   | 0                                      | 0                   | 0                   |                    | 0                                     | 8                         | 0                                   | 0                                     | 0                                     |
| 2             | 1                 | 2             | 15          | 44                                        | 14              | 0             | 10              | 3                                   | 0                                      | 0                   | 0                   | 0                  | 0                                     | 6                         | 0                                   | 0                                     | 0                                     |

Table C.2.: Data used in the analysis of Statechart development methods

| Tool          | Create/<br>Modify | Experiment    | Participant     | $\operatorname{Time}$ | Mouseclicks          | Mousedrags                          | Keystrokes | Macrokeys     | Error<br>Mouseclicks                | Error<br>Mousedrags | Error<br>Kevstrokes | Error<br>Macrokevs | Threeseary | Mouseclicks                           | Unnecessary<br>Mousedrags           | Unnecessary<br>Keystrokes | Unnecessary<br>Macrokeys | Nicefy<br>Mousedrags                |
|---------------|-------------------|---------------|-----------------|-----------------------|----------------------|-------------------------------------|------------|---------------|-------------------------------------|---------------------|---------------------|--------------------|------------|---------------------------------------|-------------------------------------|---------------------------|--------------------------|-------------------------------------|
| 2             | 1                 |               | 16              | 106                   | 13                   | 0                                   | 10         | 3             | 0                                   | 0                   |                     |                    | )          | 0                                     | 6                                   | 0                         |                          | 0                                   |
| 2             | 1                 | 2             | 17              | 89                    | 10                   | 2                                   | 6          | 3             | 0                                   | 0                   |                     |                    | )          | 0                                     | 4                                   | 0                         | 0                        | 0                                   |
| 2             | 1                 | 2             | 18              | 80                    | 12                   | 1                                   | 8          | 3             | 0                                   | 0                   |                     |                    | )          | 0                                     | 4                                   | 1                         | 0                        | 0                                   |
| $\frac{2}{2}$ | 1<br>1            | $\frac{2}{2}$ | 19<br>20        |                       | 33                   | $\begin{array}{c} 0\\ 2\end{array}$ | 12<br>6    | $\frac{3}{5}$ | $\begin{array}{c} 0\\ 2\end{array}$ | 0                   |                     |                    |            | $\begin{array}{c} 0 \\ 2 \end{array}$ | $\frac{28}{8}$                      | 0                         | $3 \\ 0$                 | 0                                   |
| 2<br>2        | 1                 |               | $\frac{20}{21}$ | 100<br>64             | $     \frac{14}{9} $ | 2<br>3                              | 6          | 3<br>3        | $\frac{2}{0}$                       | 0                   |                     |                    | )          | 2<br>0                                | 0<br>5                              | 0<br>1                    | 0                        | $\begin{array}{c} 0\\ 0\end{array}$ |
| 2             | 1                 |               | $\frac{21}{22}$ | 55                    | 12                   | 2                                   | 6          | 2             | 0                                   | 0                   |                     |                    |            | 0                                     | 7                                   | 0                         | 0                        | 0                                   |
| 2             | 1                 |               | 23              | 65                    | 7                    | 3                                   | 5          | 3             | 0                                   | 0                   |                     |                    |            | 0                                     | 3                                   | 1                         | 0                        | 0                                   |
| 2             | 1                 | 2             |                 | 110                   | 11                   | 0                                   | 11         | 3             | 0                                   | 0                   |                     |                    |            | 0                                     | 5                                   | 0                         | 0                        | 1                                   |
| 3             | 1                 | 1             | 1               | 367                   | 11                   | 6                                   | 177        | 1             | 14                                  | 5                   | 2                   | 58                 | 3          | 0                                     | 2                                   | 0                         | 6                        | 0                                   |
| 3             | 1                 | 1             |                 | 270                   | 18                   | 13                                  | 168        | 1             | 10                                  | 0                   | C                   |                    |            | 0                                     | 6                                   | 5                         | 25                       | 0                                   |
| 3             | 1                 | 1             |                 | 597                   | 3                    | 4                                   | 306        | 1             | 21                                  | 0                   |                     |                    |            | 0                                     | 1                                   | 0                         | 40                       | 0                                   |
| 3             | 1                 | 1             |                 | 444                   | 1                    |                                     | 253        | 7             | 13                                  | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         | 41                       | 0                                   |
| 3             | 1                 | 1             |                 | 234                   | 3                    | 1                                   | 166        | 10            | 6                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         | 25                       | 0                                   |
| $\frac{3}{3}$ | 1<br>1            | 1<br>1        | 6<br>7          | 303<br>211            | $\frac{5}{1}$        | $\frac{3}{1}$                       | 242<br>179 | 2<br>11       | $\frac{8}{1}$                       | 0                   |                     |                    |            | 0<br>0                                | 0<br>0                              | 0<br>0                    |                          | $\begin{array}{c} 0\\ 0\end{array}$ |
| 3             | 1                 | 1             | 8               | 461                   | 12                   | 1<br>5                              | 114        | 4             | 14                                  | 3                   |                     |                    |            | 0                                     | 3                                   | 0                         |                          | 0                                   |
| 3             | 1                 | 1             |                 | 413                   | 5                    | 0                                   | 282        | 6             | 18                                  | 0                   |                     |                    |            | 1                                     | 0                                   | 0                         | 53                       | 0                                   |
| 3             | 1                 | 1             |                 | 337                   | 1                    | 0                                   | 334        | 1             | 21                                  | 0                   |                     |                    |            | 0                                     | Ő                                   | 0                         | 56                       | Ő                                   |
| 3             | 1                 | 1             |                 | 272                   | 2                    | 0                                   | 233        | 9             | 9                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         | 19                       | 0                                   |
| 3             | 1                 | 1             | 12              | 363                   | 29                   | $\overline{7}$                      | 226        | 3             | 12                                  | 4                   | 1                   | 4                  | 7          | 1                                     | 14                                  | 0                         | 26                       | 0                                   |
| 3             | 1                 | 1             |                 |                       | 5                    | <b>2</b>                            | 154        | 6             | 3                                   | 0                   |                     |                    |            | 0                                     | 1                                   | 0                         |                          | 0                                   |
| 3             | 1                 | 1             |                 | 355                   | 17                   | 6                                   | 161        | 4             | 15                                  | 3                   |                     |                    |            | 1                                     | 8                                   | 2                         | 33                       | 0                                   |
| 3             | 1                 | 1             |                 | 213                   | 6                    | 0                                   | 174        | 2             | 13                                  | 2                   |                     |                    |            | 0                                     | 1                                   | 0                         | 4                        | 0                                   |
| 3             | 1                 | 1             |                 | 571                   | 4                    | 3                                   | 136        | 7             | 6                                   | 0                   |                     |                    |            | 0                                     | 2                                   | 2                         | 7                        | 0                                   |
| 3             | 1                 | 1             |                 | 553                   | 1                    | 2                                   | 174        | 9             | 6                                   | 0                   |                     |                    |            | 2                                     | 0                                   | 1                         | 14                       | 0                                   |
| $\frac{3}{3}$ | 1<br>1            | 1<br>1        | 18<br>19        | $262 \\ 257$          | $\frac{2}{22}$       | 0<br>0                              | 177<br>119 | $\frac{8}{6}$ | $\frac{5}{9}$                       | $0 \\ 2$            |                     |                    |            | 0<br>0                                | $\begin{array}{c} 0\\ 9\end{array}$ | 0<br>0                    | $\frac{34}{23}$          | $\frac{3}{0}$                       |
| 3             | 1                 | 1             |                 | 292                   | 11                   | 5                                   | 112        | 6             | 3                                   | 1                   | C                   |                    |            | 0                                     | 0                                   | 2                         | 23<br>13                 | 1                                   |
| 3             | 1                 | 1             |                 | 592                   | 1                    | 0                                   | 188        | 9             | 4                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         | 50                       | 0                                   |
| 3             | 1                 | 1             |                 | 391                   | 6                    |                                     | 266        | 1             | 10                                  | 1                   |                     |                    |            | 0                                     | 1                                   | 1                         | 50                       | 0                                   |
| 3             | 1                 | 1             |                 | 289                   | 1                    | 0                                   | 123        | 8             | 10                                  | 0                   |                     |                    | 1          | 0                                     | 0                                   | 0                         |                          | 1                                   |
| 3             | 1                 | 1             | 24              | 623                   | 11                   | 0                                   | 334        | 1             | 20                                  | 1                   | C                   |                    |            | 0                                     | 4                                   | 0                         | 25                       | 0                                   |
| 3             | 1                 | 2             | 1               | 77                    | 2                    | 4                                   | 37         | 1             | 3                                   | 1                   | 1                   |                    | 7          | 0                                     | 0                                   | 0                         | 0                        | 0                                   |
| 3             | 1                 |               |                 | 72                    | 4                    | <b>2</b>                            | 62         | 0             | 5                                   | 0                   |                     |                    | 7          | 0                                     | 1                                   | 1                         |                          | 0                                   |
| 3             | 1                 |               |                 | 116                   | 0                    |                                     | 102        | 1             | 5                                   | 0                   |                     |                    |            | 1                                     | 0                                   | 0                         |                          | 0                                   |
| 3             | 1                 |               |                 | 144                   | 2                    | 0                                   | 79         | 0             | 4                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         |                          | 0                                   |
| 3             | 1                 |               | 5               |                       | 0                    | 0                                   | 72         | 0             | 2                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         |                          | 0                                   |
| 3             | 1                 |               | 6               |                       | 0                    | 0                                   | 77         | 0             | $2 \\ 2$                            | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         |                          | 0                                   |
| $\frac{3}{3}$ | 1<br>1            |               |                 | 90<br>121             | $\frac{1}{2}$        | $\begin{array}{c} 0\\ 0\end{array}$ | 90<br>39   | 0<br>0        | $\frac{2}{2}$                       | 0<br>1              |                     |                    |            | 0<br>0                                | 0<br>0                              | 0<br>0                    |                          | $\begin{array}{c} 0\\ 0\end{array}$ |
| 3             | 1                 |               |                 | $121 \\ 121$          | 2<br>4               | 0                                   | 39<br>71   | 1             | 6                                   | 1                   |                     |                    |            | 1                                     | 0                                   | 0                         |                          | 0                                   |
| 3             | 1                 |               | 10              |                       | 1                    | 0                                   | 83         | 0             | 6                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         |                          | 0                                   |
| 3             |                   |               | 11              |                       |                      |                                     |            |               | 3                                   | 0                   |                     |                    |            | 0                                     | 0                                   | 0                         |                          | 0                                   |
|               |                   |               |                 |                       |                      |                                     |            |               |                                     |                     |                     |                    |            |                                       |                                     |                           |                          |                                     |

Table C.2.: Data used in the analysis of Statechart development methods

| Tool          | Create/<br>Modify | Experiment    | Participant     | Time                                      | Mouseclicks          | Mousedrags                            | Keystrokes           | Macrokeys                             | Error<br>Mouseclicks                  | Error<br>Mousedrags                   | Error<br>Keystrokes | Error<br>Macrokeys                  | Unnecessary<br>Mouseclicks          | Unnecessary<br>Mousedrags               | Unnecessary<br>Keystrokes           | Unnecessary<br>Macrokeys               | Nicefy<br>Mousedrags |
|---------------|-------------------|---------------|-----------------|-------------------------------------------|----------------------|---------------------------------------|----------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------|-------------------------------------|-------------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------|----------------------|
| 3             | 1                 | 2             |                 | 97                                        | 9                    | 0                                     | 68                   | 0                                     | 4                                     | 0                                     | 0                   | 17                                  | 0                                   | 3                                       | 0                                   | 0                                      | 0                    |
| $\frac{3}{3}$ | 1<br>1            | $\frac{2}{2}$ | $\frac{13}{14}$ | $\frac{70}{92}$                           | $\frac{5}{2}$        | $\frac{2}{2}$                         | $     46 \\     79 $ | $\begin{array}{c} 1\\ 0\end{array}$   | 0                                     | 0<br>0                                | 0<br>0              | 0<br>18                             | 0                                   | $\begin{array}{c} 1 \\ 0 \end{array}$   | $\begin{array}{c} 1\\ 0\end{array}$ | $\begin{array}{c} 0 \\ 12 \end{array}$ | 0                    |
| 3<br>3        | 1                 | $\frac{2}{2}$ | $14 \\ 15$      | 92<br>61                                  | 2                    | 2<br>0                                | 79<br>67             | 0                                     | $4 \\ 0$                              | 0                                     | 0                   | 10                                  | 0<br>0                              | 0                                       | 0                                   | 12                                     | 0<br>0               |
| 3             | 1                 | 2             |                 | 341                                       | 1                    | 0                                     | 52                   | 4                                     | 6                                     | 0                                     | 0                   | 8                                   | 1                                   | 1                                       | 0                                   | 2                                      | 0                    |
| 3             | 1                 | 2             | 17              | 147                                       | 3                    | 0                                     | 76                   | 10                                    | 4                                     | 3                                     | 0                   | 12                                  | 0                                   | 0                                       | 0                                   | 20                                     | 0                    |
| 3             | 1                 | 2             | 18              | 72                                        | 0                    | 0                                     | 67                   | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 0                                       | 0                                   | 5                                      | 0                    |
| 3             | 1                 | 2             | 19              | 69                                        | 6                    | 0                                     | 67                   | 0                                     | 1                                     | 1                                     | 0                   | 1                                   | 0                                   | 0                                       | 0                                   | 23                                     | 0                    |
| 3             | 1                 | 2             | 20              | 79                                        | 4                    | 2                                     | $47 \\ 160$          | 1                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 0                                       | 0                                   | 5                                      | 0                    |
| $\frac{3}{3}$ | 1<br>1            | $\frac{2}{2}$ |                 | 212<br>132                                | $0\\3$               | $\begin{array}{c} 0 \\ 1 \end{array}$ | 160<br>76            | $\begin{array}{c} 10\\ 0 \end{array}$ | $\begin{array}{c} 20\\ 0 \end{array}$ | 0<br>0                                | 0<br>0              | $123 \\ 0$                          | 9<br>0                              | 0<br>0                                  | 0<br>0                              | $23 \\ 31$                             | 0<br>0               |
| 3             | 1                 | 2             | 23              | 1 <u>5</u> 2                              | 0                    | 0                                     | 38                   | 3                                     | 1                                     | 0                                     | 0                   | 7                                   | 0                                   | 0                                       | 0                                   | 0                                      | 0                    |
| 3             | 1                 | 2             |                 | 116                                       | 4                    | 0                                     | 63                   | 0                                     | 4                                     | 0                                     | 0                   | 14                                  | 0                                   | 1                                       | 0                                   | 5                                      | 0                    |
| 1             | 2                 | 1             |                 | 158                                       | 61                   | 11                                    | 29                   | 1                                     | 4                                     | 4                                     | 0                   | 6                                   | 0                                   | 13                                      | 0                                   | 0                                      | 1                    |
| 1             | 2                 | 1             |                 | 200                                       | 99                   | 13                                    | 17                   | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 20                                      | 1                                   | 3                                      | 0                    |
| 1             | 2                 | 1             | 5               |                                           | 135                  | 16                                    | 30                   | 0                                     | 4                                     | 13                                    | 0                   | 10                                  | 0                                   | 34                                      | 0                                   | 4                                      | 0                    |
| 1<br>1        | $2 \\ 2$          | 1             | 6<br>7          | 321<br>313                                | 80                   | 15                                    | 9<br>11              | 0                                     | 0<br>0                                | 0                                     | 0                   | 0                                   | 0<br>0                              | $16 \\ 13$                              | 0                                   | $\begin{array}{c} 0 \\ 2 \end{array}$  | 0                    |
| 1             | 2                 | 1<br>1        | 9               | 313<br>313                                | $     80 \\     75 $ | $17 \\ 15$                            | 11<br>16             | 0<br>0                                | $\frac{0}{2}$                         | $\begin{array}{c} 0 \\ 4 \end{array}$ | 0<br>1              | $\begin{array}{c} 0\\ 2\end{array}$ | 0                                   | 13<br>10                                | $\begin{array}{c} 0\\ 3\end{array}$ | 20                                     | 0<br>0               |
| 1             | 2                 | 1             | 10              | 197                                       | 106                  |                                       | 13                   | 0                                     | 2                                     | 2                                     | 0                   | 0                                   | 0                                   | 29                                      | 5                                   | 1                                      | 0                    |
| 1             | 2                 | 1             | 11              | 325                                       | 87                   | 17                                    | 14                   | 0                                     | 4                                     | 7                                     | 0                   | 3                                   | 0                                   | 7                                       | 0                                   | 0                                      | 0                    |
| 1             | 2                 | 1             | 12              | 236                                       | 112                  |                                       | 29                   | 1                                     | 6                                     | 13                                    | 0                   | 10                                  | 0                                   | 52                                      | 0                                   | 3                                      | 0                    |
| 1             | 2                 | 1             | 13              | 178                                       |                      | 28                                    | 10                   | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 12                                      | 0                                   | 0                                      | 0                    |
| 1             | 2                 | 1             | 14              | 467                                       | 115                  | 27                                    | 16                   | 0                                     | 6                                     | 8                                     | 0                   | 3                                   | 0                                   | 39                                      | 1                                   | 2                                      | 0                    |
| 1<br>1        | $2 \\ 2$          | 1<br>1        | $15 \\ 16$      | $133 \\ 252$                              | 64<br>83             | 19<br>17                              | $\frac{21}{15}$      | $\begin{array}{c} 0\\ 0\end{array}$   | 0<br>0                                | 0<br>0                                | 0<br>0              | 0<br>0                              | 0<br>0                              | $\begin{array}{c} 12 \\ 14 \end{array}$ | $\begin{array}{c} 0\\ 3\end{array}$ | 0<br>0                                 | 0<br>0               |
| 1             | 2                 | 1             | 18              | 150                                       | - 83<br>- 76         | 11                                    | 11                   | 1                                     | 2                                     | 3                                     | 0                   | 0                                   | 1                                   | 3                                       | 3<br>1                              | 1                                      | 0                    |
| 1             | 2                 | 1             | 19              | 170                                       | 98                   | 21                                    | 19                   | 3                                     | 6                                     | 9                                     | 0                   | 4                                   | 0                                   | 17                                      | 1                                   | 5                                      | 0                    |
| 1             | 2                 | 1             | 20              | 155                                       | 52                   |                                       | 23                   | 0                                     | 4                                     | 4                                     | 2                   | 5                                   | 0                                   | 4                                       | 4                                   | 0                                      | 0                    |
| 1             | 2                 | 1             | 21              |                                           | 87                   |                                       | 14                   | 0                                     | 3                                     | 6                                     | 1                   | 3                                   | 0                                   | 18                                      | 1                                   | 4                                      | 0                    |
| 1             | 2                 | 1             | 22              | 193                                       | 70                   | 18                                    | 14                   | 0                                     | 2                                     | 4                                     | 0                   | 2                                   | 0                                   | 7                                       | 0                                   | 2                                      | 0                    |
| 1             | 2                 | 1             |                 | 322                                       | 54                   | 29                                    | 24                   | 6                                     | 4                                     | 1                                     | 1                   | 2                                   | 2                                   | 17                                      | 0                                   | 0                                      | 0                    |
| 1<br>1        | $2 \\ 2$          | $\frac{2}{2}$ |                 | $\begin{array}{c} 101 \\ 140 \end{array}$ | 38                   | 8<br>12                               | $12 \\ 10$           | 0<br>0                                | $\frac{8}{2}$                         | $17 \\ 4$                             | 0<br>0              | 7 1                                 | 0<br>0                              | 49                                      | 0<br>0                              | $\begin{array}{c} 0 \\ 1 \end{array}$  | 0<br>0               |
| 1             | 2                 | $\frac{2}{2}$ |                 | 140<br>244                                |                      | $12 \\ 27$                            | 8                    | 0                                     | 2<br>4                                | 4<br>6                                | 0                   | 2                                   | 0                                   | 9<br>28                                 | 4                                   | 2                                      | 0                    |
| 1             | 2                 | 2             |                 | 182                                       |                      | 11                                    | 6                    | 0                                     | 2                                     | 2                                     | 0                   | 2                                   | 0                                   | 5                                       | 1                                   | 0                                      | 0                    |
| 1             | 2                 |               |                 | 172                                       |                      | 16                                    | 4                    | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 9                                       | 2                                   | 0                                      | 0                    |
| 1             | 2                 | 2             |                 | 223                                       | 51                   | 27                                    | 4                    | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 21                                      | 2                                   | 0                                      | 0                    |
| 1             | 2                 |               |                 | 207                                       |                      | 35                                    | 8                    | 0                                     | 0                                     | 0                                     | 0                   | 0                                   | 0                                   | 44                                      | 8                                   | 4                                      | 0                    |
| 1             | 2                 |               |                 | 247                                       |                      | 31                                    | 8                    | 0                                     | 3                                     | 7                                     | 0                   | 2                                   | 0                                   | 18                                      | 9                                   | 2                                      | 0                    |
| 1             | 2                 |               |                 | 121<br>86                                 |                      | 21                                    | 8                    | 0                                     | 2                                     | 5                                     | 0                   | 3                                   | 0                                   | $\frac{4}{5}$                           | 1                                   | 0                                      | 0                    |
| 1<br>1        | $2 \\ 2$          |               |                 | 86<br>241                                 |                      | 12<br>18                              | $\frac{3}{4}$        | $\begin{array}{c} 0\\ 3\end{array}$   | $\begin{array}{c} 0 \\ 4 \end{array}$ | $\begin{array}{c} 0\\ 3\end{array}$   | 0<br>0              | $\begin{array}{c} 0\\ 2\end{array}$ | $\begin{array}{c} 0\\ 3\end{array}$ | 5<br>11                                 | 0<br>0                              | 0<br>0                                 | 0<br>0               |
| 1             | 2                 |               |                 | 110                                       |                      | 10<br>29                              | 47                   | 0                                     | 4                                     | 0                                     | 0                   | 0                                   | 0                                   | 10                                      | 2                                   | 0                                      | 0                    |
| _             |                   |               |                 |                                           |                      |                                       | •                    |                                       |                                       |                                       |                     |                                     |                                     |                                         |                                     |                                        |                      |

Table C.2.: Data used in the analysis of Statechart development methods

| Tool          | Create/<br>Modify | Experiment    | Participant   | $\operatorname{Time}$                     | Mouseclicks     | Mousedrags                          | Keystrokes      | Macrokeys     | Error<br>Mouseclicks                  | Error<br>Mousedrags | Error<br>Keystrokes | Error<br>Macrokevs | Unnecessary<br>Mouseclicks | Unnecessary<br>Mousedrags | Unnecessary<br>Keystrokes             | Unnecessary<br>Macrokeys               | Nicefy<br>Mousedrags                  |
|---------------|-------------------|---------------|---------------|-------------------------------------------|-----------------|-------------------------------------|-----------------|---------------|---------------------------------------|---------------------|---------------------|--------------------|----------------------------|---------------------------|---------------------------------------|----------------------------------------|---------------------------------------|
| 1             | 2                 |               | 16            | 142                                       | 36              | 20                                  | 5               | 0             | 0                                     | 0                   | 0                   |                    |                            |                           | 1                                     | 0                                      | 0                                     |
| 1             | 2                 | 2             | 18<br>19      | 117                                       | 43              | 15                                  | 5               | 0             | 0                                     | 0                   | 0                   |                    |                            |                           | 2                                     | 1                                      | 0                                     |
| 1<br>1        | $2 \\ 2$          | $\frac{2}{2}$ | 19<br>20      | $\begin{array}{c} 196 \\ 105 \end{array}$ | эө<br>36        | $13 \\ 15$                          | 9<br>4          | $2 \\ 0$      | 61                                    | $16 \\ 2$           | 0<br>0              |                    |                            |                           | $\begin{array}{c} 0 \\ 1 \end{array}$ | $2 \\ 0$                               | $\begin{array}{c} 0\\ 0\end{array}$   |
| 1             | 2                 | 2             | 20<br>21      | 105                                       | $\frac{30}{45}$ | 17                                  | 4<br>6          | 0             | 0                                     | 0                   | 0                   |                    |                            |                           | 3                                     | 2                                      | 0                                     |
| 1             | 2                 | 2             |               | 118                                       | 51              | 14                                  | 5               | 0             | 2                                     | 3                   | 1                   |                    |                            |                           | 1                                     | 0                                      | 0                                     |
| 1             | 2                 | 2             |               | 165                                       | 32              | 22                                  | 7               | <b>2</b>      | 0                                     | 0                   | 0                   |                    | 0                          |                           | 4                                     | 0                                      | 0                                     |
| 2             | 2                 | 1             |               | 158                                       | 47              | 5                                   | 23              | 6             | 2                                     | 3                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 1                                     |
| 2             | 2                 | 1             |               | 427                                       | 82              | 1                                   | 44              | 9             | 3                                     | 2                   | 1                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 1             | 5             |                                           | 49              | 6                                   | 34              | 6             | 2                                     | 1                   | 0                   |                    |                            |                           | 0                                     | 3                                      | 0                                     |
| $\frac{2}{2}$ | $2 \\ 2$          | 1<br>1        | 6<br>7        | $\frac{146}{288}$                         | $\frac{48}{38}$ | $\frac{4}{3}$                       | $20 \\ 53$      | 6<br>10       | $\begin{array}{c} 0 \\ 7 \end{array}$ | 0                   | 0<br>0              |                    |                            |                           | 0<br>0                                | $\begin{array}{c} 0 \\ 14 \end{array}$ | 0                                     |
| 2<br>2        | 2<br>2            | 1             | 9             |                                           | $\frac{38}{57}$ | 3<br>7                              | - 35<br>- 38    | 10            | 1                                     | 5                   | 1                   |                    |                            |                           | 0                                     | 4                                      | $\begin{array}{c} 0 \\ 1 \end{array}$ |
| 2             | 2                 | 1             |               | 486                                       | 55              | 0                                   | $\frac{36}{25}$ | 8             | 4                                     | 8                   | 0                   |                    |                            |                           | 0                                     | 1                                      | 0                                     |
| 2             | 2                 | 1             | 11            | 298                                       | 97              | 9                                   | 49              | 12            | 12                                    | 19                  | 0                   |                    |                            |                           | 4                                     | 5                                      | 1                                     |
| 2             | 2                 | 1             | 12            | 136                                       | 39              | 5                                   | 21              | 8             | 2                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 1                                     |
| 2             | 2                 | 1             | 13            | 287                                       | 49              | 6                                   | 22              | 9             | 4                                     | 4                   | 0                   |                    |                            |                           | 0                                     | 1                                      | 0                                     |
| 2             | 2                 | 1             | 14            | 231                                       | 55              | 9                                   | 30              | 6             | 6                                     | 3                   | 2                   |                    |                            |                           | 0                                     | 1                                      | 0                                     |
| 2             | 2                 | 1             |               | 150                                       | 53              | 5                                   | 25              | 5             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 2                                      | 0                                     |
| 2             | 2                 | 1             |               | 552                                       | 51              | 5                                   |                 | 10            | 3                                     | 4                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 1                                     |
| $\frac{2}{2}$ | $2 \\ 2$          | 1<br>1        | 18<br>19      | $213 \\ 165$                              | $\frac{36}{61}$ | $7 \\ 0$                            | $\frac{26}{30}$ | 14<br>10      | 6<br>0                                | $5\\0$              | $2 \\ 0$            |                    |                            |                           | $1 \\ 0$                              | $\begin{array}{c} 0 \\ 4 \end{array}$  | $2 \\ 0$                              |
| $\frac{2}{2}$ | 2                 | 1             | 20            |                                           | 64              | 2                                   | 34              | 8             | 3                                     | 2                   | 1                   |                    |                            |                           | 0                                     | 4<br>0                                 | 0                                     |
| 2             | 2                 | 1             |               | 119                                       | 53              | 0                                   | 22              | 6             | 0                                     | 0                   | 0                   |                    |                            |                           | Ő                                     | Ő                                      | Ő                                     |
| 2             | 2                 | 1             |               | 300                                       | 53              | 6                                   | 22              | 6             | 2                                     | 1                   | 1                   |                    | 0                          |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 1             | 23            |                                           | 55              | 6                                   | 20              | 6             | 0                                     | 0                   | 0                   | 0                  | 0                          |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 2             | 52                                        | 17              | 1                                   | 8               | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 4             |                                           | 21              | 0                                   | 10              | 4             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 1                                     |
| $\frac{2}{2}$ | $2 \\ 2$          | $\frac{2}{2}$ | $\frac{5}{6}$ | $\begin{array}{c} 68 \\ 67 \end{array}$   | $\frac{26}{12}$ | $\begin{array}{c} 0\\ 2\end{array}$ | 6<br>6          | $\frac{3}{3}$ | 0<br>0                                | 0<br>0              | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| $\frac{2}{2}$ | 2<br>2            | 2<br>2        | 7             | - 07<br>- 74                              | 12              | 2<br>0                              | 16              | э<br>3        | 0                                     | 0                   | 0<br>0              |                    |                            |                           | 0<br>0                                | $\begin{array}{c} 0 \\ 2 \end{array}$  | 0<br>0                                |
| $\frac{2}{2}$ | 2                 | 2             | 9             | 82                                        | 13              | 2                                   | 6               | 6             | 2                                     | 0                   | 0                   |                    |                            |                           | 0                                     |                                        | 1                                     |
| 2             | 2                 | 2             | 10            | 187                                       | 17              | 0                                   | 6               | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 11            | 42                                        | 11              | 1                                   | 10              | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 12            | 100                                       | 21              | <b>2</b>                            | 6               | 5             | 0                                     | 0                   | 0                   | 0                  | 0                          | 11                        | 0                                     | 0                                      | 2                                     |
| 2             | 2                 |               | 13            | 49                                        | 14              | 2                                   |                 | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 |               | 14            | 83                                        | 15              | 3                                   |                 | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | $2 \\ 2$          |               | 15<br>16      | 73                                        | $15 \\ 12$      | 2                                   | 6               | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| $\frac{2}{2}$ | 2                 |               | 16<br>18      | $224 \\ 59$                               | 12<br>15        | $\frac{1}{2}$                       | 8<br>6          | $\frac{5}{3}$ | $\begin{array}{c} 0\\ 0\end{array}$   | 0<br>0              | 0<br>0              |                    |                            |                           | 0<br>0                                | 0<br>0                                 | $2 \\ 0$                              |
| $\frac{2}{2}$ | 2                 |               | 19            |                                           | 13              | 0                                   | 10              | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 |               |               | 169                                       | 20              | 1                                   | 8               | 3             | 0                                     | 0                   | 0                   |                    |                            |                           | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 21            | 43                                        | 14              | 0                                   | 6               | 3             | 0                                     | 0                   | 0                   | C                  | 0                          | 7                         | 0                                     | 0                                      | 0                                     |
| 2             | 2                 | 2             | 22            | 94                                        | 11              | 3                                   | 8               | 3             | 0                                     | 0                   | 0                   | 0                  | 0                          | 2                         | 0                                     | 0                                      | 0                                     |

Table C.2.: Data used in the analysis of Statechart development methods

| Tool          | Create/<br>Modify | $\mathbf{Experiment}$ | Participant    | $\operatorname{Time}$ | Mouseclicks | Mousedrags    | Keystrokes                                | Macrokeys                           | Error<br>Mouseclicks                  | Error<br>Mousedrags                   | Error<br>Kevstrokes | Fror   | Macrokeys                               | Unnecessary<br>Mouseclicks          | Unnecessary<br>Monsedrage | Unnecessary | $\mathbf{Keystrokes}$               | Unnecessary<br>Macrokeys | Nicefy<br>Mousedrags |
|---------------|-------------------|-----------------------|----------------|-----------------------|-------------|---------------|-------------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|---------------------|--------|-----------------------------------------|-------------------------------------|---------------------------|-------------|-------------------------------------|--------------------------|----------------------|
| 2             | 2                 | 2                     | 23             | 43                    | 12          | 2             | 6                                         | 3                                   | 0                                     | 0                                     | (                   |        | 0                                       | 0                                   |                           | 7           | 0                                   | 0                        | 0                    |
| 3             | 2                 | 1                     |                | 360                   | 5           |               | 134                                       | 5                                   | 3                                     | 1                                     | (                   |        | 5                                       | 0                                   |                           | 2           | 2                                   | 15                       | 1                    |
| 3             | 2                 | 1                     |                | 222                   | 1           | 0             | 195                                       | 4                                   | 2                                     | 0                                     |                     | )      | 2                                       | 0                                   |                           | )           | 0                                   | 11                       | 0                    |
| $\frac{3}{3}$ | $2 \\ 2$          | 1<br>1                | 5<br>6         | $165 \\ 150$          | 1<br>1      | 0             | $155 \\ 209$                              | 12<br>7                             | $5 \\ 6$                              | $\begin{array}{c} 0 \\ 1 \end{array}$ |                     | )<br>) | $\begin{array}{c} 10 \\ 19 \end{array}$ | 0<br>0                              |                           | )<br>)      | 0                                   | $\frac{36}{37}$          | $2 \\ 0$             |
| 3<br>3        | 2                 | 1                     |                | 130<br>190            | 1<br>3      | 0             | 209<br>198                                | 10                                  | 10                                    | 1 0                                   |                     | )      | $\frac{19}{25}$                         | 0                                   |                           | )           | 0                                   | 30<br>30                 | 0                    |
| 3             | 2                 | 1                     | 9              | 174                   | 8           | 1             | 150                                       | 9                                   | 6                                     | 0                                     |                     | )      | $\frac{23}{23}$                         | 0                                   |                           | 1           | 1                                   | 25                       | 0                    |
| 3             | 2                 | 1                     | 10             | 149                   | 12          | 3             | 139                                       | 1                                   | 9                                     | 0                                     |                     | )      | 20<br>9                                 | 0                                   |                           | 1           | 0                                   | 12                       | 0                    |
| 3             | 2                 | 1                     | 11             | 178                   | 1           |               | 215                                       | 7                                   | 4                                     | 0                                     |                     | )      | 24                                      | 0                                   |                           | )           | 0                                   | 39                       | 1                    |
| 3             | 2                 | 1                     | 12             | 358                   | 4           | <b>2</b>      | 239                                       | 5                                   | 11                                    | 2                                     | (                   | )      | 55                                      | 0                                   | (                         | )           | 0                                   | 39                       | 0                    |
| 3             | 2                 | 1                     | 13             | 338                   | 14          | 7             | 218                                       | $\overline{7}$                      | 14                                    | 0                                     | (                   | )      | 64                                      | 1                                   | ,                         | 7           | 0                                   | 42                       | 0                    |
| 3             | 2                 | 1                     |                | 183                   | 5           | 1             |                                           | 6                                   | 7                                     | 0                                     | (                   | )      | 16                                      | 0                                   |                           | 1           | 0                                   | 34                       | 0                    |
| 3             | 2                 | 1                     | 15             | 207                   | 6           | 1             | 157                                       | 9                                   | 7                                     | 1                                     |                     | )      | 17                                      | 0                                   |                           | )           | 0                                   | 32                       | 2                    |
| 3             | 2                 | 1                     |                | 195                   | 3           | 0             | 180                                       | 5                                   | 6                                     | 0                                     |                     | )      | 12                                      | 0                                   |                           | )           | 0                                   | 6                        | 0                    |
| 3             | 2                 | 1                     | 18             | 378                   | 1           | 0             | 227                                       | 6                                   | 22                                    | 0                                     |                     | )      | 60                                      | 0                                   |                           | )           | 0                                   | 12                       | 0                    |
| 3             | 2                 | 1                     | 19             | 378                   | 15          | 0             | 188                                       | 6                                   | 15                                    | 3                                     |                     | )      | 41                                      | 0                                   |                           | 2           | 0                                   | 6                        | 0                    |
| $\frac{3}{3}$ | $2 \\ 2$          | 1<br>1                | 20<br>21       | $304 \\ 138$          | 9 $4$       | $\frac{2}{0}$ | $\begin{array}{c} 146 \\ 195 \end{array}$ | 20<br>10                            | 59                                    | $1 \\ 0$                              |                     | 1<br>) | $\frac{12}{28}$                         | 0<br>0                              |                           | 2           | 0                                   | $24 \\ 23$               | $2 \\ 0$             |
| 3<br>3        | 2                 | 1                     |                | $130 \\ 259$          | 4<br>11     | 5             | 195<br>232                                | 10                                  | 9<br>7                                | 1                                     |                     | )      | $\frac{20}{23}$                         | 0                                   |                           | ,<br>1      | 3                                   | $\frac{23}{45}$          | 0                    |
| 3             | 2                 | 1                     | 23             | 147                   | 1           | 0             | 139                                       | 12                                  | 2                                     | 0                                     |                     | )      | 25<br>5                                 | 0                                   |                           | ±<br>)      | 0                                   | 40<br>21                 | 0                    |
| 3             | 2                 | 2                     | 20             | 191                   | 5           | 1             | 52                                        | 3                                   | 4                                     | 0                                     |                     | )      | 11                                      | 2                                   |                           | )           | 0                                   | 6                        | 1                    |
| 3             | 2                 | 2                     | 4              | 66                    | 0           | 0             | 63                                        | 0                                   | 0                                     | Ő                                     |                     | )      | 0                                       | 0                                   |                           | )           | 0                                   | 2                        | 0                    |
| 3             | 2                 | <b>2</b>              | 5              | 49                    | 0           | 0             | 64                                        | 1                                   | 0                                     | 0                                     | (                   | )      | 0                                       | 0                                   | (                         | )           | 0                                   | 13                       | 0                    |
| 3             | 2                 | <b>2</b>              | 6              | 31                    | 0           | 0             | 68                                        | 0                                   | 0                                     | 0                                     | (                   | )      | 0                                       | 0                                   | (                         | )           | 0                                   | 8                        | 0                    |
| 3             | 2                 | 2                     | $\overline{7}$ | 103                   | 0           | 0             | 161                                       | 4                                   | 7                                     | 0                                     | (                   | )      | 17                                      | 1                                   | (                         | )           | 0                                   | 24                       | 1                    |
| 3             | 2                 | 2                     | 9              | 61                    | 1           | 0             | 65                                        | 1                                   | 2                                     | 0                                     | (                   | )      | 4                                       | 0                                   |                           | )           | 0                                   | 4                        | 0                    |
| 3             | 2                 | 2                     | 10             | 49                    | 4           | 0             | 56                                        | 0                                   | 2                                     | 0                                     |                     | )      | 8                                       | 0                                   |                           | 2           | 0                                   | 12                       | 0                    |
| 3             | 2                 | 2                     | 11             | 37                    | 1           | 0             | 80                                        | 0                                   | 6                                     | 0                                     |                     | )      | 15                                      | 0                                   |                           | )           | 0                                   | 12                       | 0                    |
| 3             | 2                 | 2                     | 12             | 156                   | 3           | 2             | 50                                        | 2                                   | 2                                     | 0                                     |                     | )      | 2                                       | 0                                   |                           | )           | 0                                   | 0                        | 0                    |
| 3             | $2 \\ 2$          | $\frac{2}{2}$         | 13             | 86                    | 4           | $\frac{1}{3}$ | 50                                        | 1                                   | $\begin{array}{c} 0 \\ 3 \end{array}$ | 0                                     |                     | )      | 0                                       | 0                                   |                           | 2           | 0                                   | 4                        | 0                    |
| $\frac{3}{3}$ | 2<br>2            | 2<br>2                | 14<br>15       | $71 \\ 84$            | 7<br>1      | 3<br>0        | $\frac{85}{63}$                           | $\begin{array}{c} 1\\ 0\end{array}$ | 3<br>0                                | 0<br>0                                |                     | )<br>) | $\frac{3}{0}$                           | $\begin{array}{c} 1\\ 0\end{array}$ |                           | 1<br>)      | $\begin{array}{c} 1\\ 0\end{array}$ | $11 \\ 13$               | 0<br>0               |
| 3<br>3        | 2                 | $\frac{2}{2}$         | 15<br>16       | 109                   | 4           | 1             | 102                                       | 2                                   | 8                                     | 4                                     |                     | 1      | 21                                      | 2                                   |                           | )           | 0                                   | 13                       | 0                    |
| 3             | 2                 | $\frac{2}{2}$         | 18             | 109                   | 4           | 0             | 102<br>77                                 | 2<br>0                              | 3                                     | 4                                     |                     | L<br>) | 5                                       | 2<br>0                              |                           | )           | 0                                   | 2                        | 0                    |
| 3             | 2                 | 2                     | 19             | 107                   | 2           | 0             | 71                                        | 0                                   | 8                                     | 0                                     |                     | )      | 15                                      | 0                                   |                           | )           | 0                                   | 6                        | 0                    |
| 3             | 2                 | 2                     | 20             | 51                    | 3           | 1             | 43                                        | 2                                   | 2                                     | 0                                     |                     | )      | 2                                       | 0                                   |                           | )           | 0                                   | 3                        | 0                    |
| 3             | 2                 |                       |                | 80                    | 0           | 0             | 108                                       | 0                                   | 10                                    | 0                                     | (                   |        | 28                                      | 0                                   |                           | )           | 0                                   | 9                        | 0                    |
| 3             | 2                 | 2                     | 22             | 72                    | 0           | 0             | 90                                        | 0                                   | 2                                     | 0                                     |                     | )      | 2                                       | 0                                   | (                         | )           | 0                                   | 24                       | 0                    |
| 3             | 2                 | 2                     | 23             | 47                    | 0           | 0             | 94                                        | 2                                   | 0                                     | 0                                     | (                   | )      | 0                                       | 0                                   | (                         | )           | 0                                   | 23                       | 0                    |

Table C.2.: Data used in the analysis of Statechart development methods

## D. Correlation Matrices

The following pages contain the correlation matrices used to decide which metrics to include in the composite model. For a detailed description see Figure 7.5 containing a smaller example. The variables are labeled with the abbreviations designated in Table 4.1.

The matrices contain Spearman's correlation coefficients and scatterplots for every combination of two variables. The small numbers seen around the frame design the values for the plotted data and are not meaningful for the correlation coefficients.

|                                                       | r            | 9 0 9- |      | 9 E I |      | e 10 50    |               | 091 09                                       |                                       | 50 40 60          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 60 100                              |                 | 0 50 40                                                                             |                  |
|-------------------------------------------------------|--------------|--------|------|-------|------|------------|---------------|----------------------------------------------|---------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|-------------------------------------------------------------------------------------|------------------|
|                                                       |              | ٩N     | ٩    | ٩     | AN   | ٩          | AN            | ٩N                                           | ٩                                     | ٩N                | AN<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                     | ٩               | ¥N.                                                                                 | м<br>М           |
|                                                       | 0 2 4 6      | 5      | 0.21 |       | 0.40 | 0.40       | 0.40          | 0.21                                         | 0.31                                  |                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.42                                   | 0.69            | 0.69                                                                                | 0.70             |
|                                                       |              | :      | 0.37 | 5     | 0.69 | 0.69       | 0.69          | 0 28                                         | 0 18                                  | 0.70              | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.70                                   | 0.70            | 0.70                                                                                | 0.70             |
|                                                       | 02468        |        | 0.57 |       | 0.44 | 0.44       | 0.44          | 8                                            |                                       | 0.75              | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.43                                   | 020             | 020                                                                                 | 010              |
|                                                       |              | 5      | 50   | 030   |      | i          | 1             | g 0                                          | ŝ                                     | 0.44              | 027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55                                   | ×               | 2                                                                                   | 2                |
|                                                       | 0 1 2 3 4    | 0.60   | 0.35 | 0.65  | 0.61 | 0.61       | 0.61          | 8 o                                          | 0.56                                  | 5                 | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                      | 0.40            | 0.40                                                                                | 0.43             |
|                                                       |              | 5      | 0.54 | 0.31  | 0.63 | 0.63       | 0.63          | 1                                            |                                       | 0.58              | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.47                                   | 0.49            | 0.60                                                                                | 0.52             |
| -                                                     | 0.0 1.0 2.0  | 0.53   | 0.42 | 0.57  | 0.56 | 0.56       | 0.56          | 0.41                                         | 0.28                                  | 0.37              | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 620                                    | 0.26            | 0.35                                                                                | 0.34             |
| plexity                                               |              | 033    | 0.42 | 0.53  | 0.34 | 0.34       | 0.34          | 0.41                                         | 8                                     | 0.27              | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | :               |                                                                                     |                  |
| e Com                                                 | 0 4 8 12     | 0.43   | 0.62 | 0.59  | 0.78 | 0.78       | 0.78          | 2                                            | 0.26                                  | 0.56              | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.41                                   | 0.54            | 0.61                                                                                | 0.57             |
| r simpl                                               |              | N      | Ŵ    | NN.   | N    | NN.        | Ŵ             | Ŵ                                            | NN.                                   | Ŵ                 | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ž                                      | Ŵ               | ¥                                                                                   | ¥                |
| arts of                                               | -1.0 0.0 1.0 | AN     | W    | ¥.    | N.   | SN N       | Ŵ             | Ŵ                                            | ¥.                                    | Ŵ                 | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¥                                      | W               | S.                                                                                  | W                |
| tatech                                                |              | M      | N    | N     | N    | N          | N             | N                                            | N                                     | N                 | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ¥                                      | N               | ¥                                                                                   | M                |
| ints, S                                               | 0 20 40      | 0.32   |      | 0.42  | 0.83 | 0.83       | 0.83          | ŝ                                            | 0.46                                  | 0.34              | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                   | 0.92            | 0.98                                                                                | 1.00             |
| ent Variable Points, Statecharts of Simple Complexity |              | 0.32   | 1    | 0.42  | 0.83 | 0.83       | 0.83          | (1)                                          | 0.46                                  | 0.34              | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                   | 0.92            | 0.98                                                                                | 1.00             |
| t Varia                                               | 0 20 40      | 0.32   | 1    | 0.42  | 0.83 | 0.83       | 0.83          | 6.1                                          | 0.46                                  | 0.34              | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.50                                   | 0.92            | 0.98                                                                                | DNA              |
| enden                                                 |              | 0.32   | 1    | 0.37  | 0.83 | 0.83       | 0.83          | 5 I                                          | 0.41                                  | 0.34              | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.48                                   | 0.90            | DM                                                                                  | <b>***</b> **    |
| or Dep                                                | 0 20 60      | 0.27   | ×    | 0.51  | 0.82 | 0.82       | 0.82          | 1                                            | 0.22                                  | 0.39              | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.54                                   | ā               | 80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8<br>80 8                        |                  |
| latrix †                                              |              |        | 0.43 | ,     | 0.43 | 0.43       | 0.43          | 14                                           |                                       | 0.77              | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NBMAX                                  |                 |                                                                                     | ****             |
| Correlation Matrix for Dependence                     | 20 40        | 0.28   | 0.49 | 0.35  | 0.73 | 0.73       | 0.73          |                                              | N                                     | 0.80              | NBMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                 |                                                                                     |                  |
| Correl                                                |              |        | 0.56 | 0.21  | 0.56 | 0.56       | 0.56          | ŝ                                            |                                       | NBAVG             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                                                                                     |                  |
|                                                       | 0 50 150     | 0.49   | 63   | ¥.    | 0.40 | 0.40       | 0.40          | 0.41                                         | ЪР                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                                                                                     |                  |
|                                                       |              |        | 5    | 0.44  |      |            |               | ā                                            |                                       | 800<br>800<br>800 | ***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ° 🍦 I                                  |                 | 8 ( <sup>60</sup><br>00 <sup>0</sup> <sup>60</sup><br>00 <sup>0</sup> <sup>60</sup> |                  |
|                                                       | 5 10 15 20   | 0.45   | 0.38 | 0.68  | 1.00 | 1.00       | SUA           |                                              |                                       | 8                 | 0 000<br>000<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                 | <b>8</b> 0°°°                                                                       | 000 <sup>8</sup> |
|                                                       |              | 0.45   | 025  | 0.68  | 1.00 | SUT        | 8°° 0 0 0 000 |                                              |                                       |                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                      |                 |                                                                                     | <b>9</b> 000     |
|                                                       | 6 10 15 20   | 0.45   | 0.25 | 0.68  | SUS  | •••<br>••• |               |                                              |                                       |                   | 0 <b>4</b><br>0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                 | 80°.0°                                                                              | 970 000 T        |
|                                                       |              | 0.48   | 0.27 | WHR   | r. 3 | P. (8      | °. 8          |                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |                   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••••••••••••••••••••••••••••••••••••• | • • • • • • • • | •••••                                                                               |                  |
|                                                       | 80 120       | 2      | TRL  |       | 6    |            |               | <b>°</b> °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° |                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                      |                 |                                                                                     | °°°°             |
|                                                       |              | points |      |       |      |            |               |                                              |                                       |                   | 50 40<br>50 50 50<br>50 50<br>50 50 50<br>50 50 50<br>50 50 50<br>50 50<br>50<br>50 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 |                                        |                 |                                                                                     |                  |

Correlation Matrix for Dependent Variable Points, Statecharts of Simple Complexity

| 0 50 40                                |                                        | 01 8 9 P |              | 01 8 9 1                                 |                                                                                                                                                                                                                        | 00 10 50 |             | 0 5 4 8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 06 02 09 06       |                                                        | 05468     |                                        | 22 0 13<br>0 8 10 13                                                    |
|----------------------------------------|----------------------------------------|----------|--------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------|-----------|----------------------------------------|-------------------------------------------------------------------------|
| N N                                    | AN N                                   | N N      | N            | en e | ¥.                                                                                                                                                                                                                     | ¥.       | M           | N N      | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d N               | N                                                      | v.        | Ч                                      |                                                                         |
| 0.70                                   | 0.70                                   | N N      | NA           | N                                        |                                                                                                                                                                                                                        | 0.38     | 6.          | 5        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32              | 0.28                                                   | 0.51      | NSPT                                   |                                                                         |
| 0.70                                   | 0.70                                   | м<br>М   | N            | NA                                       | 0.60                                                                                                                                                                                                                   | 60<br>81 | 0.25        | 0.59     | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.69              | 0.70                                                   | NPT       |                                        | 8 -<br>9 |
| 010                                    | 010                                    | NA       | NA           | NA                                       | 0.58                                                                                                                                                                                                                   | 0.49     | 81          | 0.58     | 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53              | NST                                                    |           |                                        |                                                                         |
| N N                                    | 7.                                     | NA.      | NA           | NA                                       | 5                                                                                                                                                                                                                      | Č.       |             | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ц                 |                                                        |           |                                        | 20 50 70 90                                                             |
| 0.43                                   | 0.43                                   | NA       | AN           | NA                                       | 0.67                                                                                                                                                                                                                   | 0.67     | 0.64        | 0.22     | IFLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | •<br>•<br>•                                            |           | • • •                                  | •<br>•<br>•                                                             |
| 0.52                                   | 0.52                                   | NA       | AN           | NA                                       | 0.85                                                                                                                                                                                                                   | 814      | 0.31        | IFTL     | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                        |           | •••••••••••••••••••••••••••••••••••••• | 0 2 4 6                                                                 |
| 0.34                                   | 0.34                                   | en N     | AN           | NA                                       | 0.65                                                                                                                                                                                                                   | 0.47     | ЕТТ         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000              | 00 00                                                  |           |                                        |                                                                         |
|                                        |                                        | AN N     | ٩N           | VN N                                     | 0.51                                                                                                                                                                                                                   | IF TN    |             | ••       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •               |                                                        |           |                                        |                                                                         |
| 0.57                                   | 0.57                                   | ¥ N      | AN           | ¥N.                                      | ۳                                                                                                                                                                                                                      | •        |             | 8800     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ****<br>****                                           |           | °°°8                                   |                                                                         |
| W                                      | W                                      | ž        | ş.           | SN                                       | 0 00000000000                                                                                                                                                                                                          | •••      |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        | • •       |                                        |                                                                         |
| Ŵ                                      | W                                      | SN N     | SHN          | •                                        | · ·····                                                                                                                                                                                                                | •••      |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 8 800080 9      | 00000 oo a                                             | •         |                                        | 0                                                                       |
| M                                      | M                                      | SSN      | •            | •                                        |                                                                                                                                                                                                                        | • • •    | • • •       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 e eccese e      |                                                        | • •       |                                        | • •                                                                     |
| 1.00                                   | DNR                                    |          |              |                                          |                                                                                                                                                                                                                        | •        | 8           | °°°°°°8  | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                        |           | ° ° °                                  |                                                                         |
| DNS                                    | A A A A                                |          |              |                                          |                                                                                                                                                                                                                        | •        | 8           | °°°°°°8  | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                        |           | * **<br>***                            | 0 20 40                                                                 |
| - A A A                                | <b>*****</b>                           |          |              |                                          | 0 <sup>00</sup> 0<br>0000<br>00000                                                                                                                                                                                     | •        | р 8<br>8    | °°°°°8   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           | •••••                                  |                                                                         |
|                                        | 1988 9 898 8                           |          |              |                                          |                                                                                                                                                                                                                        | • •      | 8           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           | ° ° °                                  | 20 40                                                                   |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        |          | • •         | •••••••  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | , <sup>8</sup> ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °   |           | • • • • •                              |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        | • 8      |             | 888      | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ····              | ,                                                      |           |                                        |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        |          |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           |                                        |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        | • •      | 8           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           | . 8 8 9                                |                                                                         |
|                                        |                                        |          |              |                                          | 800 000<br>0000 00080                                                                                                                                                                                                  |          |             | 8.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           |                                        |                                                                         |
|                                        | °°°°°                                  |          |              |                                          |                                                                                                                                                                                                                        |          |             | 68 \ ° ° |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | **************************************                 |           |                                        | - <sup>28</sup>                                                         |
| 090<br>090<br>090                      |                                        |          |              |                                          |                                                                                                                                                                                                                        |          |             |          | : .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                        |           |                                        |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        |          |             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           |                                        |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        |          |             | • •      | • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                        |           |                                        |                                                                         |
| ••••                                   | •••                                    |          |              |                                          |                                                                                                                                                                                                                        |          |             | •••••    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 00              | •••                                                    |           |                                        | - w                                                                     |
| ************************************** | ************************************** |          |              |                                          |                                                                                                                                                                                                                        |          | • 8         |          | • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • * • • • •       |                                                        |           |                                        |                                                                         |
|                                        |                                        |          |              |                                          |                                                                                                                                                                                                                        |          |             | <b>6</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                        |           |                                        | - °                                                                     |
| <b>₩</b> <sup>8</sup> /4°              |                                        |          | 0.1 0.0 0.1- |                                          | 88888 8888<br>88888 8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888<br>8888 |          | 0.5 0.1 0.1 |          | 8 8 0<br>8 8 8 8<br>9 8 8 8 8 8 8<br>9 8 8 8 8 8 8<br>9 8 8 8 8 8 8 8 8 8<br>9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | <sup>ĕ</sup> 8, 8 | 8 8 9 8 8<br>8 8 9 9<br>8 8 9 9<br>8 9 9<br>9 9<br>9 9 | ۴ <b></b> | 0 5 4 0                                | - P                                                                     |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 40 80           |                  | 50 60 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 50 30 |      | 001 09 0 |            |      |             | 9°L 9'0 |                                        | 9 0 9- |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|------------|------|-------------|---------|----------------------------------------|--------|-----------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72              | 0.52             | ŝ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33     | 1    |          | ĩ          | 0.75 | 010         |         | 18                                     |        |                       |
| Image: Second Matrix Not Dependent Variable Fright Second Fri | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32              | 0.53             | 0.83      | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.79     | 0.48 | 0.48     | 0.46       | 82.0 | 0.47        |         | 1                                      | 016    | 0 5 10 15<br>         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 |                  | 0.70      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.57     | 0.56 | 0.31     | 2          | 2    | 5           | 1       | 0.64                                   | 0.44   |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                | 0.36      | 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35     | 0.34 |          | 124        |      | 0.32        | 81      | 0.56                                   | 0.47   | 0 5 10<br>- 5<br>- 10 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25              | 0.44             | 8 o       | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23     | I    | 0.24     | ĩ          | 620  | 029         | 0.41    | 0.57                                   | 030    |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                 | 61               | 027       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a<br>o   | 0.22 |          |            | 5    |             | ž       | 027                                    | 0.28   | 0 1 2 3 4             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.26              | 0.34             | 0.47      | 028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75     | 028  | 0.38     | 024        | 0.40 | 8           | :       | 50<br>15                               | 026    |                       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98 O              | 028              | 027       | 026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26     | :    | 0.26     | 0.22       | 0.24 | 028         | 1       | 3                                      | 8. U   | 5<br>5 -              |
| Image: Single state of the | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | 0.31             | 0.26      | 98 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-<br>1  | :    | 0.27     | 16<br>0    |      | 0.29        |         | 024                                    | 0.12   | hievir                |
| Image: Single state of the | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.33              | 0.42             | 0.55      | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.77     | 0.31 | 0.41     | 0.28       | 0.45 | 0.24        | 1       | 9<br>1                                 | 0.24   |                       |
| Image: Single state of the | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73              | 0.53             | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30     | 5    |          |            | 0.78 | 0.22        | ,       | 030                                    |        |                       |
| Image: Single state of the | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73              | 0.53             | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30     | 5    |          |            | 0.78 | 0.22        | ,       | 030                                    |        |                       |
| Image: Single state of the | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.73              | 0.53             | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30     | s.   |          | 2          | 0.78 | 80          |         | 030                                    |        | IdleCII               |
| Image: Single state of the | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85              | 0.83             | 0<br>22   | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54     | 0.19 | 05.0     | 0.26       | 0.85 | 0.12<br>10  | 1       | 0.36                                   | 1      |                       |
| Image: Single state of the | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.97              | 0.88             | 070       | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.36     | 1    | 0.18     | 019        | 0.62 | Ξ           |         | 0.42                                   | 8      |                       |
| Image: Single state of the | DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.98              | 0.84             | 0.16      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35     |      | ž        | ž          | 0.66 | 5           | 1       | 0.37                                   | 2.8    |                       |
| Image: Single state of the | and the second s |                   | 0.84             | 5         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.35     |      | 1        | 5          | 0.67 | ĩ           |         | 0.47                                   | 6      | lianiia               |
| Image: Single state of the | ***<br>***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | ā                | 0.40      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.54     | 1.23 | 0.43     | 0.32       | 0.69 | 0.35        | Ξ       | 0.45                                   | 2      |                       |
| Image: Single state of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 9 ° ° • •        | NBMAX     | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.69     | 0.47 | 0.45     | 0.41       | 1    | 0.44        | 0.27    | 0.22                                   | 0.25   | ומנו וא ו             |
| Image: Single state of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.62     | 17.0 | 0.70     | 0.78       | 0.35 | 0.80        | 87 O    | 0.38                                   |        |                       |
| Image: Single state of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NBAVG    | 0.22 | 0.70     | 0.67       | 0.44 | 0.65        | 5       |                                        | 010    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oo <sup>6</sup> 0 |                  |           | 000 <b>(100 - 100</b> )<br>000 <b>(100 - 100)</b><br>000 <b>(100 - </b> | 8        | ЪР   |          | ŝ          | 5    |             | 0.34    | 0.23                                   |        | 8 -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ана<br>Саро                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                  |           | 0 080 98 <b>8</b> 0<br>0 860 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |      | ₫        | 0.62       | 028  | 0.65        | р.<br>  | :                                      | 0.23   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | - <del>-</del> 9 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>1</b> |      |          | SUA        | 2    | 0.96        | 0.43    | Ξ                                      |        | 2 -                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |          | <b>9</b> % | SUT  | 84          | ,       | 0.47                                   | 12 O   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ege of           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |          |            |      | SUS         | 220     | 024                                    |        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | °••               | 80°° <b>4</b>    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ° 960    |      |          |            | 🔌    | 2000<br>200 |         | 8<br>0                                 |        |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |          |            |      |             |         | TRL                                    | 0.54   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      | 8°.39988 |            |      |             |         | ************************************** | points |                       |

Correlation Matrix for Dependent Variable Points, Statecharts of Higher Complexity

|                                        | 91 EL II      |                | 14 16 18 20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 10 50 30 | )<br>                      | 05468                                            |                                        | 50 60                                  |                                                                                 | 01 9 0 |                                               | 15 14 16 18                                                                                      |
|----------------------------------------|---------------|----------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|--------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0.72                                   | 0.96          | 0.96           | 0.96        | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 950        |                            | 0.48                                             | 070                                    | 5                                      | 0.40                                                                            |        | 0:30                                          | 12 14 16 18                                                                                      |
| 0.48                                   | 12:0          | 12:0           | 12:0        | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 97         | 8                          | 0.65                                             | 0.43                                   | 80                                     | 0.36                                                                            | 0.70   | NSPT                                          |                                                                                                  |
|                                        |               |                |             | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2          | 8                          | 0.64                                             | 0.41                                   | 1                                      | 0.70                                                                            | NPT    |                                               | <b>P</b>                                                                                         |
|                                        | 0.41          | 0.41           | 0.41        | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0     | a I                        | 0.66                                             | 0.38                                   | 1                                      | NST                                                                             |        | •• •                                          |                                                                                                  |
| 0.23                                   | i             | ŝ              | ŝ           | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.24       | 026                        | :                                                |                                        | FL                                     |                                                                                 | °° /   |                                               | 8                                                                                                |
| 0<br>28                                | 0.26          | 0.26           | 0.26        | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                            | 0.31                                             | IFLL                                   | • • • • •<br>• • • • •                 | • • • •                                                                         |        | ••••<br>••••                                  |                                                                                                  |
| 0.46                                   | 0.48          | 0.48           | 0.48        | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | ,                          | IFTL                                             | 00000000000000000000000000000000000000 | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°° |                                                                                 |        | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°        |                                                                                                  |
| 0.2.4                                  | 000           | 0000           | 0000        | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.47       | FT                         | 00                                               |                                        |                                        |                                                                                 |        | 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    |                                                                                                  |
| Ξ                                      | 8 0<br>0      | 8<br>0         | 98<br>0     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IFTN       |                            |                                                  |                                        |                                        |                                                                                 |        |                                               | 0.0 1.0 2.0 3.0                                                                                  |
| 0.54                                   | 0.50          | 0.50           | 0.50        | щ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          | р<br>0                     |                                                  | • 8 • 9<br>• 8 • 9                     |                                        |                                                                                 |        | ໍ ເ <sup>ຈ</sup> ິງຊູ                         |                                                                                                  |
| 0.76                                   | 1.00          | 1.00           | SN          | 0 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                            | 000 000                                          |                                        |                                        |                                                                                 |        | • • • • • • • • • • • • • • • • • • •         | 14 16 18 20                                                                                      |
| 0.76                                   | 1.00          | SHN            |             | 0 0000000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                            | 000 000                                          |                                        |                                        |                                                                                 |        |                                               |                                                                                                  |
| 0.76                                   | SSN           |                |             | o concord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                            | 000 000                                          |                                        |                                        |                                                                                 |        |                                               | 1 13                                                                                             |
| DNR                                    |               |                |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •••        | р<br>Р                     |                                                  |                                        | 20° 2 4 20 0 0                         |                                                                                 | •      |                                               |                                                                                                  |
| <b>*</b>                               |               |                |             | ° ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                            |                                                  |                                        |                                        |                                                                                 | 4      | ** <b>*</b>                                   |                                                                                                  |
| •                                      |               |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ° •        | D<br>D                     |                                                  |                                        |                                        |                                                                                 |        |                                               |                                                                                                  |
| <b>*</b>                               |               |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••        | 0 1<br>0                   |                                                  |                                        |                                        |                                                                                 | 9      | <b>*</b> 8 <b>*</b>                           |                                                                                                  |
|                                        |               |                |             | 80°°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •          |                            | °                                                |                                        |                                        |                                                                                 | •      | **************************************        |                                                                                                  |
|                                        | $\leq$        | $\leq$         | $\leq$      | 00 8000 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 8                          | ° 988 8.                                         |                                        |                                        |                                                                                 |        | , , 89 <b>.</b>                               | 20 60 100                                                                                        |
|                                        |               | $\langle$      |             | ° 9° 8° 9<br>° 8° 9<br>∞ 8° 9<br>∞ ∞ ∞ 08°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •          | 8                          |                                                  |                                        |                                        | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8 | 🤇      |                                               | 8                                                                                                |
|                                        |               |                |             | ್ಲಿ <mark>ಕ್</mark> ರಿಂತ್ ಕ್ರಿಂತ್ ಕ್ರಾಂತ್ ಕ್ರಿಂತ್ ಕ್ರಿಂತ್ ಕ್ರಾಂತ್ ಕ್ರಿಂತ್ ಕ್ರಾಂತ್ ಕ್ರಾಂತ್ ಕ್ರಾಂತ್ ಕ್ರಿಂತ್ ಕ್ರಾಂತ್ ಕ್ರಾ | •          | 8                          | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°           |                                        |                                        |                                                                                 |        |                                               |                                                                                                  |
| 00000000000000000000000000000000000000 |               |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 0 0<br>0 0                 | ° co <b>sis ost</b><br>° ° °<br>° ° °<br>° 80 Bo |                                        |                                        |                                                                                 | • œ    |                                               |                                                                                                  |
|                                        |               | ζ              |             | 000000<br>0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 8                          |                                                  |                                        |                                        |                                                                                 | 4      |                                               | 6<br>6<br>6<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7<br>0<br>7 |
|                                        |               | >              | $\sum$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 8                          |                                                  |                                        |                                        |                                                                                 | • •    | ې<br>پې د د د د د د د د د د د د د د د د د د د |                                                                                                  |
|                                        |               |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | 0<br>0                     | 0000 00<br>0000 00<br>0000 00                    |                                        |                                        | 16                                                                              | •<br>• |                                               | 0 70 80 90                                                                                       |
|                                        | $\overline{}$ | $\overline{>}$ |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /          |                            |                                                  | 8                                      |                                        |                                                                                 | ę –    | • • • • • • • • • • • • • • • • • • •         | 8                                                                                                |
|                                        |               |                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | B                          |                                                  |                                        |                                        |                                                                                 |        | • ; 800                                       | 15                                                                                               |
|                                        |               |                | Z           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •          | •                          |                                                  |                                        | Defl o                                 |                                                                                 |        |                                               |                                                                                                  |
|                                        |               | 30 34 38       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ° 8<br>8 8 | 0.5 0.1 0.0<br>B<br>B<br>B |                                                  |                                        |                                        |                                                                                 |        | St OL 5 0                                     | 8 - 0<br>8 - 0<br>8 - 0<br>0 - 7                                                                 |

|                                                  | 100 300   | ı ———————————————————————————————————— | 0 5 ¢     |         | 50 60  |              | 091 09 0 |          | 09 06 01 |              | 50 60 100 |          | 08 00 0           |              |
|--------------------------------------------------|-----------|----------------------------------------|-----------|---------|--------|--------------|----------|----------|----------|--------------|-----------|----------|-------------------|--------------|
|                                                  | 0.60      | 0.34                                   | 010<br>01 | 68.0    | 0.91   |              | 5        | 1        | 0.44     | 0.64         | 0.36      | 0.58     | 0.77              | 0.79         |
| 0 5 10<br>- 5                                    | 61        | 0.31                                   | 8         | 0.47    | 87.0   | 0.39         | 98.0     | 0.32     | 0.30     |              | 0.42      | 0.58     | 0.42              | 0.46         |
|                                                  | ŝ         | 0.58                                   | :         | 019     | 63     | 033          |          | 0.35     | 0.56     | 2.1          | 0.69      | 2        |                   | ,            |
| 6 10 15<br>                                      | - 18<br>0 | 0.81                                   | 5         | 3       | 87.0   |              |          | 2        |          | 0.36         | 010       | ž        | 010               | <i>I</i> Z 0 |
|                                                  |           | 0.55                                   | 0.25      |         | 2.4    |              |          | ž        | â<br>o   | 0.40         | 1         | 5        |                   | :            |
| 0 1 2 3 4                                        | \$0<br>0  | 0.34                                   | 027       | 80      | 2      | 0.26         | ÷        | 0.28     |          |              | :         | 0.22     | 80<br>0           | 0.26         |
|                                                  | ê,        | 0.33                                   | 227       | 023     | :      | 0:39         | 5        | 2        | 0.57     | 026          | 0.45      | 028      | 8.<br>0           | 刻<br>0       |
| 0.0 1.0 2.0                                      | ,         | :                                      | 720       | 0<br>0  | 5<br>0 | 0.41         | 029      | 5        | 0.36     | 0.36         | 0.36      |          |                   |              |
|                                                  |           | :                                      | 0.26      | N       | N 1    | 0.29         | 033      | 8        | 0.24     | 0.27         | 0.24      |          |                   |              |
| ompley                                           | 023       | 0.33                                   | 0.36      | 0.32    | i      | 0.49         | 0.26     | 0.21     | 0.57     | 0.29         | 0.49      | 0.33     | 0.24              | 0.27         |
|                                                  | 0.61      | 0.35                                   | 80        | 0.39    | 0.92   | 1            | 1        | 1        | 0.46     | 0.66         | 0.38      | 0.58     | 0.77              | 0.79         |
| Statecharts of All Complexities                  | 0.61      | 0.35                                   | 020       | 65:0    | 0.92   | 1            | 1        | 1        | 0.46     | 0.66         | 0.38      | 0.58     | 0.77              | 0.79         |
| statecr                                          | 0.61      | 0.35                                   | 020       | 65:0    | 0.92   | 1            | 1        | 1        | 0.46     | 0.66         | 0.38      | 0.58     | 0.77              | 0.79         |
|                                                  | 0.46      | :                                      | 0.23      | 0.35    | 0.44   | 60.39        | 5        | 019      | 0.35     | 12           | 0.26      | 0.78     | 0.73              | 0.74         |
| lable                                            | 0.52      | 1                                      | Ξ         | 0.48    | 0.72   | 8            | 2        |          | 0.26     | 0.44         | 1         | 0.87     | 0.98              | 0.98         |
| ent Var                                          | 0.54      | 1                                      | 020       | 0.45    | 0.68   | 070          | :        |          | 010      | 0.39         |           | 0.88     | 0.99              | DNA          |
| Correlation Matrix for Dependent Variable 1 ime, | 0.54      |                                        | р.<br>    | 0.44    | 0.68   | 016          | ŝ        |          | 0.21     | 0.35         | 1         | 0.87     | MD                |              |
|                                                  | 0.39      |                                        | P. J      | 0.53    | 0.56   | 0.37         | 0.22     | :        |          | 2            | 5         | ā        |                   |              |
| Matriy                                           | 0.10      | ,                                      | 3         |         | 0.43   | 0.44         | ,        | 0.24     | 0.84     | 0.57         | NBMAX     |          |                   |              |
|                                                  |           | 0.45                                   |           |         | 0.55   | 0.46         | 020      |          | 0.82     | NBMIN        |           |          |                   |              |
| Corre                                            | 8         | 1                                      | · ·       | ,       | 0.43   | 0.49         | ž        | LA LA    | NBAVG    |              |           |          |                   |              |
| 0 50 150                                         |           |                                        | a.        |         | 5      | 1            | 0.02     | ЪР       |          | °°***        |           |          |                   |              |
|                                                  | si a      | ,                                      | 0.23      | 0.45    | 0 Si   | 0.35         | ₫        |          |          |              |           |          |                   |              |
| 5 10 15 20                                       |           |                                        | 0.66      | 0.79    | 2      | SUA          |          |          |          | , <b>, ,</b> |           |          |                   |              |
|                                                  | 0.56      | aro.                                   | :         | 6:0     | SUT    |              |          |          |          | <br>         | •         | <b>*</b> |                   |              |
| 6 10<br>- 20<br>- 20                             | 80        | 6.1                                    | 0.59      | SUS     |        | and a second |          |          |          |              |           |          |                   |              |
|                                                  | N-1       | 0.29                                   | WHR       |         |        |              |          |          |          |              |           |          | , <sup>9</sup> a, |              |
| 40 80 120                                        |           | TRL                                    |           |         |        | - <b>*</b>   |          |          |          |              |           |          |                   |              |
|                                                  | time      | 40 80 130                              |           | 07 01 S |        | 07 OL 5      |          | Ogl Og O | Å.       |              |           |          |                   |              |

Correlation Matrix for Dependent Variable Time, Statecharts of All Complexities

|            | 81 JZ 18 |         | 0 15 16 20 |                                                                                 | 0 1 0 5 0 1 00          |                | 05488                                        |                           | 001 09 02                        |                                                                                             | 01 9 0            |                                        | 20 Jt J8                                |
|------------|----------|---------|------------|---------------------------------------------------------------------------------|-------------------------|----------------|----------------------------------------------|---------------------------|----------------------------------|---------------------------------------------------------------------------------------------|-------------------|----------------------------------------|-----------------------------------------|
| 0.45       | 0.99     | 0.99    | 0.96       | 0.16                                                                            | 5                       | 22             | 010                                          | :                         | a<br>a                           | 0.47                                                                                        | ,                 | 0.34                                   | T *                                     |
| 0.51       | 0.33     | 0.33    | 0.33       | 0.52                                                                            |                         | 24             | 0.45                                         | 0.38                      |                                  | 0.39                                                                                        | 0.63              | NSPT                                   |                                         |
| 0 10       |          | 1       | T          | 0.66                                                                            | 2                       | 5              | 0.63                                         | 0.37                      | 80                               | 0.69                                                                                        | NPT               |                                        |                                         |
| 2          | 0.48     | 0.48    | 0.48       | 0.54                                                                            | 1                       | ŝ              | 0.56                                         | 0.36                      | 0.38                             | NST                                                                                         |                   |                                        |                                         |
| 5          | 0.24     | 929     | 0.24       | i                                                                               | 6.1                     | NO OR          | 1                                            | 1                         | FL                               |                                                                                             |                   |                                        |                                         |
| 030        | 02 O     | 80      | 08 O       | 0.59                                                                            | 027                     | 10<br>10<br>10 | 029                                          | IFLL.                     |                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                   |                                        |                                         |
| 0.50       | 9<br>0   | \$ 0    | \$<br>0    | 0.91                                                                            |                         | 8 O            |                                              |                           |                                  |                                                                                             |                   |                                        |                                         |
| g<br>d     | 88<br>0  | 81<br>0 | 88<br>0    | 0.40                                                                            | 0.47                    | ЕЩ             | 00<br>00000000000000000000000000000000000    |                           | 0000                             | 00 00                                                                                       |                   | 00 00                                  |                                         |
| i          | a, o     | ¢, o    | ¢.<br>Č    | 031                                                                             | IFTN                    |                | 0<br>00<br>000000000000000000000000000000000 |                           | •••                              | 0<br>0<br>0<br>0<br>0                                                                       | а<br>а<br>в ш в в | •••                                    |                                         |
| 0.55       | 016      | 018     | 016        |                                                                                 | *                       | B              |                                              | • 8 8 •<br>• 8 8 •<br>• 8 |                                  |                                                                                             |                   |                                        | • • • • • • • • • • • • • • • • • • •   |
| 0.46       | 1.00     | 1.00    | sz         | 0 0000000 00                                                                    | • • •                   |                | 000 000                                      | • • • • • •               |                                  | m•• ••                                                                                      |                   | 0 0 000                                |                                         |
| 0.46       | 1.00     | SHN     |            | · · · · · · · · · · · · · · · · · · ·                                           | • • •                   |                |                                              | •••                       |                                  |                                                                                             |                   |                                        |                                         |
| 0.46       | NSS      |         |            | 0 0000000                                                                       |                         |                | 000 000                                      |                           |                                  |                                                                                             |                   | 0 0000                                 | 24 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - |
| DNR        |          |         |            |                                                                                 | •••                     | • 8            | 000008                                       |                           | 22000<br>02000<br>02000<br>02000 |                                                                                             | •                 |                                        |                                         |
|            |          |         |            |                                                                                 | •••                     | °<br>° 8<br>•  | 000008<br>000008                             |                           |                                  |                                                                                             |                   | <b>*</b> * <b>*</b>                    |                                         |
|            |          |         |            |                                                                                 | •••                     | •<br>• 8<br>•  |                                              |                           |                                  |                                                                                             |                   | <b>*</b> 8 <b>0</b>                    |                                         |
|            |          |         |            | 80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>8 | •••                     |                |                                              |                           |                                  |                                                                                             | 9                 |                                        |                                         |
|            |          |         |            |                                                                                 |                         | • • • • •      | ° ••••••••••••••••••••••••••••••••••••       |                           |                                  |                                                                                             | •                 |                                        |                                         |
|            |          |         |            |                                                                                 | . • 8                   | 8              |                                              |                           |                                  |                                                                                             |                   |                                        | 8<br>8<br>8                             |
|            |          |         |            | ૾૾૾૾૾                                                                           | •••                     |                | 860 °<br>00<br>00° 680 880<br>888 889        |                           | <b>૾૾૾૾૾</b>                     |                                                                                             | - a <sup>0</sup>  | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                         |
|            |          |         |            | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°                                          | •••                     | ° 80 °         |                                              | ••••                      | 8°% *                            |                                                                                             |                   | , , , , , , , , , , , , , , , , , , ,  |                                         |
| • <b>8</b> |          |         |            |                                                                                 | •••                     |                |                                              |                           |                                  |                                                                                             | • •••             |                                        |                                         |
|            |          |         |            | **************************************                                          | . • •                   |                | 0800000<br>0800000<br>0890000<br>8900000     | 8 8 8                     |                                  |                                                                                             | • w (             | ,                                      |                                         |
|            |          |         |            |                                                                                 | •••                     | 8 8            |                                              |                           |                                  |                                                                                             |                   | 849<br>849                             |                                         |
|            |          |         |            |                                                                                 |                         |                | °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°       |                           |                                  |                                                                                             |                   |                                        |                                         |
|            |          |         |            |                                                                                 | • •                     | . 8            |                                              |                           |                                  |                                                                                             | 8<br>• •          |                                        |                                         |
|            |          |         |            |                                                                                 | • • •                   | 8              |                                              |                           | 8                                |                                                                                             |                   | 8.000 F                                |                                         |
|            |          |         |            |                                                                                 | • 8                     |                |                                              |                           |                                  |                                                                                             |                   |                                        |                                         |
|            |          |         |            |                                                                                 | 0 00 00<br>0 00<br>0 00 | 07 0.1 0.0 2.0 | .8<br>.8                                     |                           |                                  | ar or a o                                                                                   | 8                 | sr or s o                              | 100                                     |

# E. Data Scatterplots

The collected data was displayed in a set of scatterplots to identify linear and non-linear correlations between the dependent and the independent variables. The plots on the following pages show the dataset used in the composition of the multivariate regression formula for both, awarded points and needed time. The variables are labeled with the abbreviations designated in Table 4.1.





























# F. Written Code

### F.1. Files written in R

The following pages contain all R files that were used in the creation of this thesis.

|    | <pre>source("read-data.R") library("car") source("validate-data-functions.R") ######</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>qqnorm(y); qqline(y) dev.off() library("geneplotter") ## from BioConductor</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | # pretest function, does a histogram, density line and boxplot of the given data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | require("RColorBrewer") ## from CRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10 | <pre># plot(data.placement\$initial.y~ data.placement\$initial.x, main="Positions of</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>pdf ("smoothPI.pdf") smoothScatter(date.placement[,2],ylim=c(0,100),nrpoints=Inf, smoothScatter(date.placement[,1],date.placement[,2],ylim=c(0,100),nrpoints=Inf, colramp=colorRampPatette(brewer.pat(9,"Greys")[1:8]), bandwidth=13, xlab="x position (%)", ylab="#", position (%)", cex.axis=1.5, cex.lab=1.5) points(date.placement[,1],date.placement[,2],ylim=c(0,100),pch=20) dev.off()</pre>                                                                                                                                                                                                                                                                                                                                          |
| 20 | #####<br>source("validate-data-consistency.R")<br>#####<br># Plausibility:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>pdf("smoothPF.pdf") smoothPF.pdf") smoothScatter(data.placement[,3],data.placement[,4],ylim=c(0,100),nrpoints=Inf, colramp=colorRampPaiette(brewer.pal(9, "Greys")[1:8]), bandwidth=11, xlab="x colramp=colorRampPaiette(brewer.pal(9, "Greys")[1:8]), bandwidth=11, xlab="x position (%)", ylab="y position (%)", cex.axis=1.5, cex.lab=1.5) points(data.placement[,3],data.placement[,4],ylim=c(0,100),pch=20) dev.off()</pre>                                                                                                                                                                                                                                                                                                             |
|    | <pre>pdf("datavalidation.pdf") 60 source("validate-data-plausibility.R") dev.off() #####</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>library("scatterplot3d") test &lt;- array(NA, c(75,5)) test(.1] &lt;- data.placement(,1] test(,2] &lt;- data.placement(,2] test(,3] &lt;- data.pointest(,2]</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30 | <pre>pdf("sampleboxplot.pdf") par(mai=c(1,2.5,0.5,2.5)) par(mai=c(1,2.5,0.5,2.5)) poxplot(Aesthetics25tine(complexity==3&amp;experiment==2], ylab="time needed (avanced</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>test[,4] &lt;- data.placement[,3] test[,5] &lt;- data.placement[,4] test[,5] &lt;- data.placement[,4] templmis &lt;- lm(test[,3]~test[,1]+test[,5]) templmfs &lt;- lm(test[,3]~test[,5])</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40 | <pre>pdf("samplescatterplots.pdf")<br/>scatterplot(Aesthetics2\$points[complexity==2],Aesthetics2\$trlenavg[complexity<br/>==2], smooth=f.reg.line=F, boxplotes="",col=c("black", "hlack"),<br/>ylab="points (advanced)", xlab="average transition length", main=""<br/>complexity: hierarchical", cex.axis=1.5, cex.lab=1.5, cex.main=1.5)<br/>scatterplot(Aesthetics2\$points(complexity==2],Aesthetics2\$trlenavd[complexity<br/>==2],col=c("black", "black", "black"), ylab="points (advanced)", xlab=""<br/>average transition length", main="complexity: hierarchical", cex.axis=1.5,<br/>dev.off()<br/>dev.off()<br/>y &lt;- rt(200, df = 5)<br/>pdf("sampleqplot.pdf")</pre> | <pre>pdf("scatterplot3d-pos.pdf", width=6.1, height=6)<br/>tempscat3dis &lt;- scatterplot3d(test[,1], test[,2], test[,3], xlab="Statechart x<br/>axis (%)", ylabe="", zlab="points", angle=55, highlight.3d=FALSE, pch=20, y.<br/>margin.add=0.5)<br/>tempscat3dis5plana3d(templmis)<br/>text(6,-2."Statechart y axis (%)", pos=4, srt=55)<br/>test[,3], xlab="Statechart x<br/>axis (%)", ylabe="", zlab="points", angle=55, highlight.3d=FALSE, pch=20, y.<br/>margin.add=0.5)<br/>tempscat3dis5plana3d(templmis)<br/>text(6,-2."Statechart y axis (%)", pos=4, srt=55)<br/>text(6,-2."Statechart y axis (%)", pos=4, srt=55)<br/>text(6,-2."Statechart y axis (%)", pos=4, srt=55)<br/>text(6,-2."Statechart y axis (%)", pos=4, srt=55)</pre> |

F.1.1. validate-data.R

| $\sim$   |
|----------|
| <u> </u> |
|          |
| ions     |
| _        |
| 0        |
| .≃       |
| ÷        |
| ċ        |
| nnc      |
| Ĕ        |
|          |
| Ē        |
| -        |
| ÷        |
|          |
| ata      |
| σ        |
| data-    |
|          |
| 1        |
| ę        |
| -        |
| idate    |
| _        |
| 0        |
| alic     |
| Ē        |
| 5        |
| ~        |
|          |
|          |
| N        |
|          |
|          |
|          |
|          |
| ш        |

lines (dest, lty = 2) #par(mfrow=c(1,1)) par(mfrow=c(3,5)) par (oldpar) par (oldpar) par (oldpar)  $\widehat{\phantom{a}}$ () xoq \_\_\_ .... hist(input[(1+(25\*(i-1))):(25\*i)], xlim = range(dest\$x), xlab=paste(shortnamed)
, "\ncomplexity ",i,sep=""), main = "", ylab = "density", probability = TRUE
, cex.axis=1.9, cex.lab=1.9) # <<<--- this is the vital argument</pre> 80 50 60 complexity 2","complexity 3"),xl="", yl=name, axs=1,...){
boxplot(input[1:25], input[26:50], input[51:75], main="", xlab=xl, ylab=yl, cex
axis=1.3, cex.lab=1.3, ...)
axis(axs, c(1:3), axlbi, cex.axis=1.3) dest <- density(input[(1+(25\*(i-1))):(25\*i)]) # or some smaller width, maybe</pre> pretest = function(input, name, shortname=name, xla="all complexities", yla=name hist(input, xlim = range(dest\$x), xlab=name, main = "", ylab = "density", probability = TRUE,...) # <<<--- this is the vital argument</pre> pretestc = function(input, name, shortname=name, axlbl=c("complexity 1"," IQR <- diff(summary(input[(1+(25\*(i-1))):(25\*i)])[c(5, 2)]) #par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis#par(mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axisdest <- density(input) # or some smaller width, maybe, par(mfrow=c(1,3),mai=c(2,0.8,2,0.2), mgp=c(4.3,1,0)) boxplot(input, ylab=yla, xlab=xla, main="",...) IQR <- diff(summary(input[c(5, 2)])) #axis(4, at = pretty(range(input)))
#mtext("value", 4, 3) #axis(4, at = pretty(range(input))) oldpar <- par(no.readonly=TRUE) #hist(input, main=name, freq=F) #hist(input, main=name, freg=F) #hist(input, axes=FALSE) #hist(input, axes=FALSE) lines (dest, lty = 2) #lines(density(input)) lines (dest, lty = 2) #lines(density(input)) #mtext("value", 4, 3) #par(new = TRUE) #par(new = TRUE) for (i in 1:3) { #par(new=TRUE) #par(new=TRUE) ··· · #axis(4) #axis(4) 1030 40 20

#par(mfrow=c(1,1))

|    | ###<br># Consistency:<br>###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) print("Consistency: Space usage cannot be below 0% or exceed 100%, all data present")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | <pre>if(</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>if (     length(union(data.placement[data.placement&gt;100], data.placement[data.placement</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 | 66<br>66<br>66<br>mary)]) == 0<br>elow 0, all data present")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | == 0 66<br>vg)]) ==<br>in)]) ==<br>ax)]) ==<br>est Neigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30 | <pre>if (     length(data.xyratio(data.xyratio&lt;=0]) == 0 &amp;&amp;     length(data.xyratio[,1]) == 75 &amp;&amp;     length(data.xyratio[i.length(data.xyratio[is.na(data.xyratio)]) == 0     length(data.xyratio[is.na(data.xyratio)]) == 0     length("Consistency: No x-y-ratio below or equal 0, all data present")     print("Consistency: No x-y-ratio below or equal 0, all data present")     so</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ـــــــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40 | <pre>11(<br/>length(union(data.width[data.width&lt;32], data.height[data.height&lt;32])) == 0 &amp;&amp;<br/>length(data.width) == 75 &amp;&amp;<br/>length(data.width[is.na(data.width)]) == 0 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp;<br/>length(data.height) == 0 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp;<br/>length(data.height) == 0 &amp;&amp;<br/>length(data.height) == 75 &amp;&amp; length(data.height) == 75 &amp;&amp; le</pre> | <pre>length(data.distance.bottcom[is.na (data_distance.oottcom)]) == 0 ) print("Consistency: Distance from line cannot be negative, all data present") # missing: state levels # validistung durch draufgucken print("Consistency: State levels - no checking done") # missing: size relations # missing: size relations</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | <pre>if(<br/>length(union(data.spaceusage[data.spaceusage&gt;100], data.spaceusage[data.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>if (     length(union(data.crossing.detail[data.crossing.detail&gt;100], data.crossing.detail     length(data.crossing.detail()]) == 75 &amp; &amp;     length(data.crossing.detail(,1]) == 75 &amp; &amp;     length(data.crossing.detail(,2]) == 75 &amp; &amp;     length(data.crossin</pre> |

# F.1.3. validate-data-consistency.R

print ("Consistency: Intersections cannot be negative, all data present") length(data.crossing.detail[,4]) == 75 &&
length(data.crossing.detail[is.na(data.crossing.detail)]) == 0 \_

missing: flow # 100

print ("Consistency: Flow - no checking done, no data present")

print ("Consistency: Transition bends cannot be negative, all data present") length(data.transbends[,3]) == 75 &&
length(data.transbends[is.na(data.transbends)]) == 0 ş 0 == if (
length(data.transbends[data.transbends<0])</pre>  $length(data.transbends[,1]) == 75 \ \&\&$  length(data.transbends[,2]) == 75 \ \&\&

110

### # Editing

###

length(data.mousekey.beginner[data.mousekey.beginner<0]) == 0 &&</pre> length(data.mousekey.advanced[data.mousekey.advanced<0]) == 0 && if (

120

print ("Consistency: amount of editing actions cannot be negative") if (

length(data.mk.errors.beginner.graph[data.mk.errors.beginner.graph<0]) == 0 && length(data.mk.errors.beginner.struct[data.mk.errors.beginner.struct<0]) == 0 &&</pre> length(data.mk.errors.beginner.graph[is.na(data.mk.errors.beginner.graph)]) == 0 length(data.mk.errors.beginner.text[data.mk.errors.beginner.text<0]) == 0 &&</pre> s S

length(data.mk.errors.beginner.struct[is.na(data.mk.errors.beginner.struct)]) == 0 & &

length(data.mk.errors.beginner.text[is.na(data.mk.errors.beginner.text)]) == 0 &&

length(data.mk.errors.advanced.graph[data.mk.errors.advanced.graph<0]) == 0 && length(data.mk.errors.advanced.struct[data.mk.errors.advanced.struct<0]) == 0 &&</pre>  $length(data.mk.errors.advanced.text[data.mk.errors.advanced.text<0]) == 0 \ \&\&$ 130

0 length(data.mk.errors.advanced.struct[is.na(data.mk.errors.advanced.struct)]) == length(data.mk.errors.advanced.graph[is.na(data.mk.errors.advanced.graph)]) == s S

& & 0 == length(data.mk.errors.advanced.text[is.na(data.mk.errors.advanced.text)]) 0 & &

length(data.mk.erroractions.beginner.graph[data.mk.erroractions.beginner.graph <0]) == 0 &&

length(data.mk.erroractions.beginner.struct[data.mk.erroractions.beginner.struct <0]) == 0 &&

length(data.mk.erroractions.beginner.text[data.mk.erroractions.beginner.text<0])</pre> == 0 & &

length(data.mk.erroractions.beginner.graph[is.na(data.mk.erroractions.beginner. graph)]) == 0 &&

length(data.mk.erroractions.beginner.struct[is.na(data.mk.erroractions.beginner. struct)]) == 0 &&

140

length(data.mk.erroractions.beginner.text[is.na(data.mk.erroractions.beginner. text)]) == 0 &&

length(data.mk.erroractions.advanced.graph[data.mk.erroractions.advanced.graph <0]) == 0 && length(data.mk.erroractions.advanced.struct[data.mk.erroractions.advanced.struct <0]) == 0 &&

length(data.mk.erroractions.advanced.text[data.mk.erroractions.advanced.text<0])</pre> == 0 &&

length(data.mk.erroractions.advanced.graph[is.na(data.mk.erroractions.advanced. graph)]) == 0 &&

length(data.mk.erroractions.advanced.struct[is.na(data.mk.erroractions.advanced struct)]) == 0 &&

length(data.mk.erroractions.advanced.text[is.na(data.mk.erroractions.advanced. text)]) == 0

) print("Consistency: amount of errors and error actions cannot be negative") else (print("!!! Failed check: amount of errors and error actions !!!"))

| <pre>layoutboxplot(data.trlenavg, name="avg. transition length")</pre> | <pre>#pretest(data.xyratio[,1], "xy ratio") oldpar &lt;- par(no.readonly=TRUE) par(mai=c(2,1,2,0.2)) 50 pol(data.xyratio[,1], ylab="statechart width to height ratio", log="y", xlab="</pre>                                                                                                                                                                                                                                                                                                              | <pre>axis(z)<br/>baxis(z)<br/>baxis(z)<br/>baxis(z)<br/>baxis(z)<br/>baxplot(data.xyratio[1:25,1],data.xyratio[26:50,1],data.xyratio[51:75,1], ylab="""<br/>"vg[51:75,1], attachart width to height ratio", log="y"<br/>axis(1, c(1:3), c("complexity 1","complexity 2","complexity 3"))<br/>axis(1, c(1:3), c("complexity 1","complexity 2","complexity 3"))<br/>par(oldpar)<br/>pretest(data.width, "statechart width, overall")<br/>pretest(data.width, "statechart width")<br/>b) c1", vlab="""")<br/>b) c1", vlab=""")<br/>b) c1", vlab=""")<br/>b) c1", vlab=""]<br/>b) c1", vlab="]<br/>b) c</pre> | <pre>#pretest(data.spaceus;<br/>pretestc(data.spaceus;<br/>(Simple)")<br/>layoutboxplot(data.sp</pre> | <pre>pretestc(data.spaceusage.top[,1], "% of chart area used by top-level states</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>precest(data.placement(,), "not. pos. of final state (in %)", cex.axus=z, cex.<br/>lab=2)<br/>pretest(data.placement(,4], "vert. pos. of final state (in %)", cex.axus=z, cex.<br/>lab=2)<br/>plot(data.placement(,2]~ data.placement(,1], main="Positions of initial states",<br/>xlab="Horizontal Position (in %)", ylab="Vertical Position (in %)", ylim =<br/>c(0,100)<br/>plot(data.placement(,4]~ data.placement(,3], main="Positions of final states",<br/>xlab="Horizontal Position (in %)", ylab="Vertical Position (in %)", ylim =<br/>c(0,100)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | <pre>pretestc(data.pointsbeg(,1], "points (beginners)")<br/>layoutboxplot(data.pointsbeg(,"points (beginners)")<br/>pretestc(data.timebeg(,1], "time (beginners)")<br/>layoutboxplot(data.timebeg, "time (beginners)")<br/>pretestc(data.pointsadv(,1], "points (adv. users)")<br/>pretestc(data.pointsadv(,1], "points (adv. users)")<br/>pretestc(data.timeadv(,1], "time (adv. users)")<br/>pretestc(data.timeadv(,1], "time (adv. users)")<br/>layoutboxplot(data.timeadv, "time (adv. users)")</pre> | <pre>oldpar &lt;- par(no.readonly=TRUE) par(mai=c(2,1,2,0.2)) boxplot(data.trlenavg[1:25,1], data.trlenavg[51:75,1], vlab="average transition length", main="", cex.axis=1.3, cex.lab=1.3) axis(1, c(1:3), c("complexity 1","complexity 2","complexity 3"), cex.axis=1.3, par(oldpar) par(oldpar) par(oldpar) par(oldpar) par(mfrow=c(3,3)) boxolot(as.data.trane(data.trlenavg[1:25,1]), main=""***********************************</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       | <pre>pixel")<br/>boxplot(as.data.frame(data.trlenmin[26:50,]), main="min trans length, c2", ylab="<br/>pixel")<br/>boxplot(as.data.frame(data.trlenmin[51:75,]), main="min trans length, c3", ylab="<br/>pixel")<br/>boxplot(as.data.frame(data.trlenmax[1:25,]), main="max trans length, c1", ylab="<br/>pixel")<br/>boxplot(as.data.frame(data.trlenmax[26:50,]), main="max trans length, c2", ylab="<br/>pixel")<br/>boxplot(as.data.frame(data.trlenmax[51:75,]), main="max trans length, c3", ylab="<br/>pixel")<br/>boxplot(as.data.frame(data.trlenmax[51:75,]), main="max trans length, c3", ylab="<br/>pixel")</pre> | <pre>histogram(data.trlenavg[1:55,1], "avg trans length, c1")<br/>histogram(data.trlenavg[26:50,1], "avg trans length, c2")<br/>histogram(data.trlenavg[26:50,1], "min trans length, c3")<br/>histogram(data.trlenmin[1:55,1], "min trans length, c1")<br/>histogram(data.trlenmin[21:55,1], "min trans length, c3")<br/>histogram(data.trlenmin[51:55,1], "max trans length, c3")<br/>histogram(data.trlenmax[1:55,1], "max trans length, c3")<br/>histogram(data.trlenmax[25:50,1], "max trans length, c3")<br/>histogram(data.trlenmax[25;50,1], "max trans length, c3")<br/>histogram(data.trlenmax[21:55,1], "max trans length, c3")<br/>histogram(data.trlenmax[21:55,1], "max trans length, c3")<br/>histogram(data.trlenmax[21:55,1], "max trans length, c3")</pre> |

F.1.4. validate-data-plausibility.R

| 0                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>calce to intrial axis/z)<br/>box()<br/>plot(data.crossing.detail[,4], main="number of label-label crossings", axes=FALSE<br/>"dist.initial )<br/>), xl="distance axis(1, c(1,26,51,75), c("clmll1","c2mll1","c3mll1","c3m515"))<br/>box()<br/>box()</pre>                                                                                         | . e                                                                                      | <pre>line")</pre>                                                                                                                                                                                                                                                                                                                                      | <pre>ple)", cex.axi40 histogram(data.crossing.detail[,5], "total number of distance problems") cla="distance crossingplot(1, "number of transition - node crossings") mple)","dist.NL crossingplot(2, "number of transition - transition crossings") (1:3), xl=" crossingplot(3, "number of theol - label crossings")</pre>                                                                                             | cex. crossingplot (5, par (mfrow=c(1,1) | <pre>ursive)", "diff() pretest(data.flow(/j], "Statechart flow (overall)")<br/>cc(1:3), xl=" pretestc(data.flow(,l], "Statechart flow")<br/>layoutboxplot(data.flow, "Statechart flow")<br/>) oldpar &lt;- bar(no.readonly=TRUE)</pre>                                                                                                                           |   | <pre>160 plot(data.transbends(,2], klab="", ylab="polyline trans.", axes=FALSE, cex=1.3,<br/>cex.lable.6, type="h", lwd=2)<br/>axis(1, c(1,26,51,75), c("clml11","c2ml11","c3m515"), cex.axis=2)<br/>axis(2, cex.axis=1.6)</pre> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>layoutboxplot(data.spaceavg, "avg. node dist.") layoutboxplot(data.spacemi, "inn. node dist.") pretestcat.cldata.spacemi, "min. node dist.") pretestcata.spacemax, "i, "max. node dist.") layoutboxplot(data.spacemax, "max. node dist.") oldpar &lt;- par(no.readonly=TRUE) par(mfrow=c(1,1), mai=c(2,0.8,2,0.2)) pretest(data.distance.initial2[,1], "distance to initial line", cex </pre> | <pre>inab='.3, norizoncar=irvob, yia= all comprexicues , xia= discance to initial<br/>line") pretestc(data.distance.initial2[,1], "distance to initial line", "dist. initial<br/>line", horizontal=FRUE, yl="complexity", axs=2, axlbl=c(1:3), x1="distance<br/>to initial line") lavoutboxplot(data.distance.initial2, "dist. to initial line")</pre> | <pre>to middle line", c plexities", xla="di e to middle line", ws=2, axlbl=c(1:3),</pre> | <pre>distance.middle2, "dist. to middle<br/>nee.all2(,1), "distance to a normal<br/>horizontal=TRUE, yla="all complexit.<br/>all)")<br/>nnce.all2(,1), "distance to a normal<br/>ntal=TRUE, yl="complexity", axs=2, i<br/>nteal=TRUE, yl="complexity", axs=2, i<br/>of stance.all2. "dist. normal line (<br/>distance.all2. "dist. normal line (</pre> | <pre>pretest (data distance simples.1.1), "distance to a normal line (simple)", cex.a346<br/>=1.3, cex.lab=1.3, horizontal=TRUE, yla="all complexities", xla="distance<br/>to a normal line (simple)")<br/>pretestc(data.distance.simple2(,1), "distance to a normal line (simple)", "dist.NL<br/>(simple)", horizontal=TRUE, yl="complexity", axs=2, axlbl=c(1:3), xl="<br/>distance to a normal line (simple)")</pre> | yl yl                                   | <pre>pretestc(data.distance.bottom[,1], "distance to a normal line (recursive)", "dist<br/>NL (rec.)", horizontal=TRUE, yl="complexity", axs=2, axlbl=c(1:3), x1="<br/>distance to a normal line (recursive)")<br/>#layoutboxplot(data.distance.simple2, "dist. normal line (simple)")<br/>layoutboxplot(data.distance.bottom. "dist. normal line (rec.)")</pre> | S | plot(data.crossing.detail[,1], main="number of trans-node crossings", axes=FALSE)<br>axis(1, c(1,26,51,75), c("cimil1","c2mil1","c3mil1","c3m515"))<br>axis(2)                                                                   |

names(data.mk.errors.beginner.actions.by.user.struct) <- c("mouse clicks, beg."," mouse drags, beg.","keystrokes, beg.","key macros, beg") names(data.mk.errors.advanced.actions.by.user.struct) <- c("mouse clicks, adv.","</pre> data.mk.errors.graph[,5:8] <- data.mk.errors.advanced.actions.by.user.graph[,1:4] names(data.mk.errors.advanced.actions.by.user.graph) <- c("mouse clicks, adv."," mouse drags, adv.","keystrokes, adv.","key macros, adv") data.mk.errors.graph <- data.mk.errors.beginner.actions.by.user.graph</pre> names(data.mk.errors.beginner.actions.by.user.graph) <- c("mouse clicks, beg."," #boxplot(data.mousekey.beginner.text, main="Actions, Beginner, KIEL-KIT", xlab=" #boxplot(data.mousekey.advanced.text, main="Actions, Advanced, KIEL-KIT", xlab=" names(data.mousekey.advanced.text) <- c("mouse clicks, adv.","mouse drags, adv #boxplot(data.mousekey.errors.beginner[c(1,3,15),], main="Number Of Actions of Actions of Beginner, KIEL-macros Editor", xlab="Action", ylab="Number Of Actions")
#boxplot(data.mk.errors.advanced.actions.by.user.struct, main="Error Actions, #boxplot(data.mk.errors.beginner.actions.by.user.struct, main="Error Actions, #boxplot(data.mousekey.errors.beginner[c(2,14),], main="Number Of Actions of #boxplot(data.mousekey.errors.advanced[c(2,14),], main="Number Of Actions of Errors, Advanced", xlab="User", ylab="Number Of Actions") Advanced, KIEL-macros Editor", xlab="Action", ylab="Number Of Actions") #boxplot(data.mk.errors.advanced.actions.by.user.graph, main="Error Actions, #boxplot(data.mk.errors.beginner.actions.by.user.graph, main="Error Actions, names(data.mousekey.beginner.text) <- c("mouse clicks, beg.","mouse drags, Beginner, WYSIWYG Editor", xlab="Action", ylab="Number Of Actions") Advanced, WYSIWYG Editor", xlab="Action", ylab="Number Of Actions") xlab="", ylab="number Of actions", las=2) Error Actions, Beginner", xlab="User", ylab="Number Of Actions") #boxplot(data.mousekey.errors.advanced[c(1,3,15),], main="Number Of Act Error Actions, Advanced", xlab="User", ylab="Number Of Actions") boxplot(data.mousekey.text, xlab="", ylab="number Of actions", las=2) Errors, Beginner", xlab="User", ylab="Number Of Actions") mouse drags, beg.","keystrokes, beg.","key macros, beg") mouse drags, adv.", "keystrokes, adv.", "key macros, adv") data.mousekey.text[,5:8] <- data.mousekey.advanced.text[,1:4] data.mk.errors.advanced.actions.by.user.graph[20:24,] <- NA .","keystrokes, adv.","key macros, adv") data.mousekey.text <- data.mousekey.beginner.text .","keystrokes, beg.","key macros, beg") data.mousekey.advanced.text[20:24,] <- NA Action", ylab="Number Of Actions") Action", ylab="Number Of Actions") boxplot (data.mk.errors.graph, 210220plot(data.transbends[,3], xlab="", ylab="spline trans.", axes=FALSE, cex=1.3, cex 230 #boxplot(data.mousekey.beginner, main="Actions, Beginner", xlab="Action", ylab=" #boxplot(data.mousekey.advanced, main="Actions, Advanced", xlab="Action", ylab=" #boxplot(data.mousekey.beginner.graph, main="Actions, Beginner, WYSIWYG-Editor", names(data.mousekey.beginner.struct) <- c("mouse clicks, beg.","mouse drags, beg data.mousekey[,5:8] <- data.mousekey.advanced[,1:4] boxplot(data.mousekey, main="input actions, all editors", xlab="", ylab="number xlab="Action", ylab="Number Of Actions")
#boxplot(data.mousekey.advanced.graph, main="Actions, Advanced, WYSIWYG-Editor", names(data.mousekey.beginner.graph) <- c("mouse clicks, beg.","mouse drags, beg .","keystrokes, beg.","key macros, beg") names(data.mousekey.advanced.graph) <- c("mouse clicks, adv.","mouse drags, adv</pre> #boxplot(data.mousekey.beginner.struct, main="Actions, Beginner, KIEL-macros", #boxplot(data.mousekey.advanced.struct, main="Actions, Advanced, KIEL-macros", names(data.mousekey.beginner) <- c("mouse clicks, beg.","mouse drags, beg."," names(data.mousekey.advanced) <- c("mouse clicks, adv.","mouse drags, adv."," axis(1, c(1,26,51,75), c("clmlll","c2mlll","c3mlll","c3m515"), cex.axis=2) boxplot (data.mousekey.graph, xlab="", ylab="number of actions", las=2) data.mousekey.graph[,5:8] <- data.mousekey.advanced.graph[,1:4] data.mousekey.graph <- data.mousekey.beginner.graph xlab="Action", ylab="Number Of Actions") xlab="Action", ylab="Number Of Actions") .","keystrokes, beg.","key macros, beg") .","keystrokes, adv.","key macros, adv") klab="Action", ylab="Number Of Actions") data.mousekey.advanced.graph[20:24,] <- NA keystrokes, beg.","key macros, beg") keystrokes, adv.","key macros, adv") data.mousekey <- data.mousekey.beginner data.mousekey.advanced[20:24,] <- NA .lab=1.6, type="h", lwd=2) of input actions", las=2) oldpar <- par(no.readonly=TRUE) Number Of Actions") Number Of Actions") par(mai=c(2,4,0.5,0.5)) axis(2, cex.axis=1.6) par(mfrow=c(1,1)) par(oldpar) Editing () xoq () xoq ### ### 180190 170

beg

data.mk.errors.advanced.actions.by.user.struct[20:24,] <- NA data.mk.errors.struct[,5:8] <- data.mk.errors.advanced.actions.by.user.struct data.mk.errors.struct <- data.mk.errors.beginner.actions.by.user.struct adv names(data.mousekey.advanced.struct) <- c("mouse clicks, adv.","mouse drags, ", "keystrokes, adv.", "key macros, adv")

data.mousekey.struct <- data.mousekey.beginner.struct

data.mousekey.advanced.struct[20:24,] <- NA 200

boxplot (data.mousekey.struct, xlab="", ylab="number Of actions", las=2) data.mousekey.struct[,5:8] <- data.mousekey.advanced.struct[,1:4]</pre>

boxplot (data.mk.errors.struct, xlab="", ylab="number Of actions", las=2)

[.1:4]

 $^{240}$ 

#boxplot(data.mk.errors.advanced.actions.by.user.text, main="Error Actions, Advanced, KIEL-KIT Editor", xlab="Action", ylab="Number Of Actions") #boxplot(data.mk.errors.beginner.actions.by.user.text, main="Error Actions, Beginner, KIEL-KIT Editor", xlab="Action", ylab="Number Of Actions")

names(data.mk.errors.beginner.actions.by.user.text) <- c("mouse clicks, beg.","</pre> mouse drags, beg.","keystrokes, beg.","key macros, beg")
names(data.mk.errors.advanced.actions.by.user.text) <- c("mouse clicks, adv.","
mouse drags, adv.","keystrokes, adv.","key macros, adv")</pre>

data.mk.errors.text <- data.mk.errors.beginner.actions.by.user.text

data.mk.errors.text[,5:8] <- data.mk.errors.advanced.actions.by.user.text[,1:4] boxplot(data.mk.errors.text, xlab="", ylab="number Of actions", las=2) data.mk.errors.advanced.actions.by.user.text[20:24,] <- NA

250

boxplot (data.mk.errors.graph+data.mk.errors.struct+data.mk.errors.text, main=" error actions, all editors", xlab="", ylab="number Of actions", las=2) names(data.mk.errors.beginner.graph) <- c("cat.0", "cat.1.1", "cat.1.2", "cat .1.3", "cat.1.4", "cat.1.5", "cat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", "

cat.2.5", "cat.3.1", "cat.3.2")
names(date.mk.errors.advanced.graph) <- c("cat.0", "cat.1.1", "cat.1.2", "cat
1.3", "cat.1.4", "cat.1.5", "cat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", 270
cat.2.5", "cat.3.1", "cat.3.2")</pre>

names (data.mk.errors.beginner.struct) <- c("cat.0", "cat.1.1", "cat.1.2", "cat 1.3", "cat.1.4", "cat.1.5", "cat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", " cat.2.5", "cat.3.1", "cat.3.2") cat.2.5...eat.3.1", "cat.3.2") names (data.mk.errors.advanced.struct) <- c("cat.0", "cat.1.1", "cat.1.2", "cat 1.3", "cat.1.4", "cat.1.5", "cat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", "

cat.2.5", "cat.3.1", "cat.3.2")

260

= names(data.mk.errors.beginner.text) <- c("cat.0", "cat.1.1", "cat.1.2", "cat .1.3", "cat.1.4", "cat.1.5", "aat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", cat.2.5", "cat.3.1", "cat.3.2")

names(data.mk.errors.advanced.text) <- c("cat.0", "cat.1.1", "cat.1.2", "cat. .1.3", "cat.1.4", "cat.1.5", "cat.2.1", "cat.2.2", "cat.2.3", "cat.2.4", cat.2.5", "cat.3.1", "cat.3.2") boxplot(data.mk.errors.beginner.graph[,c(2,3,4,5,7,8,9)], las=2, ylab="number of

boxplot(data.mk.errors.advanced.graph[,c(2,3,4,5,7,8,9)], las=2, ylab="number of errors") errors")

boxplot (data.mk.errors.beginner.struct[,c(2,3,4,5,7,8,9)], las=2, ylab="number

of errors") boxplot(data.mk.errors.advanced.struct(,c(2,3,4,5,7,8,9)], las=2, ylab="number of errors") boxplot(data.mk.errors.beginner.text[,c(2,3,4,5,7,8,9)], las=2, ylab="number of errors") boxplot(data.mk.errors.advanced.text[,c(2,3,4,5,7,8,9)], las=2, ylab="number of errors")

par (oldpar)

|        | 50<br>####                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # read used space for each chart                                                                                                                                                                                             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | # points given and time used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | data.spaceusage <- read.csv("/data/data-space-usage.csv", header=TRUE,row.names<br>=1                                                                                                                                        |
|        | # beginners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>data.spaceusage.simple &lt;- read.csv("/data/data-spaceusage-simple.csv", header=</pre>                                                                                                                                 |
| c<br>- | data.pointstimebeg <- read.csv("/data/data-points-time-beginner.csv", header=<br>TRUE_row.names=1)<br>data.pointsbeg <- data.pointstimebeg[1]<br>data.timebeg <- data.pointstimebeg[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>data.spaceusage.top &lt;- read.csv("/data/data-spaceusage-top.csv", header=TRUE,<br/>row.nemge=1)<br/>data.spaceusage.macrobar &lt;- read.csv("/data/data-spaceusage-macrobar.csv",<br/>header=TRUE, row.names=1)</pre> |
| пт     | # advanced users                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an the second first second for the second                                                                                                              |
|        | data.pointstimeadv <- read.csv("/data/data-points-time-advanced.csv", header=<br>TRUE_row.names=1)<br>data.pointsadv <- data.pointstimeadv[1]<br>data.timeadv <- data.pointstimeadv[2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre># placement of initial and final state in % ### data.placement&lt;-read.csv("/data/data-placement-initial-final-state-normalized.</pre>                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # ###                                                                                                                                                                                                                        |
| 20     | ###<br>transition length of each statechart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\#$ distance between state border and nearest neighbor $^{\#\#}$                                                                                                                                                            |
|        | Here Here Here Here Here Here Here Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | data.spaceavg<-read.csv("/data/data-state-distance-avg.csv", header=TRUE,row.                                                                                                                                                |
|        | a many and the second second and a second second and a second sec | data.specemin<-read.csv("/data/data-state-distance-min.csv", header=TRUE,row.                                                                                                                                                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | naues-1)<br>data.spacemax<-read.csv("/data/data-state-distance-max.csv", header=TRUB,row.<br>names1                                                                                                                          |
|        | data.trlenmax <- data.trlensummary[2]<br>data trlenavo <- data trlenenumary[3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |
| 30     | data:trlendetail <- read.csv("/data/data-transition-length2.csv")<br>###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | سید<br># طistance from a line through the initial state<br># طنط                                                                                                                                                             |
|        | # *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                              |
|        | data.xyratio<-read.csv("/data/data-xyratio.csv", header=TRUE,row.names=1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LKUL, COW DAMES= L)                                                                                                                                                                                                          |
|        | ### 80<br># usage of available space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ###<br>distance from a middle line<br>###                                                                                                                                                                                    |
| 40     | ###                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | data.distance.middle <- read.csv("/data/data-distance-middle.csv", header=TRUE,                                                                                                                                              |
|        | <pre># first, read width and height of each chart data-widthheight</pre> read.csv("/data/data-width-height.csv", header=TRUE, row.names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | row.names=1)                                                                                                                                                                                                                 |
|        | =1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ###<br># distance from a normal line                                                                                                                                                                                         |
|        | data.width <- data.widthheight[,1]<br>data.height <- data.widthheight[,2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ###                                                                                                                                                                                                                          |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>data.distance.all&lt;-read.csv("/data/data-distance-normal-all.csv", header=TRUE,</pre>                                                                                                                                 |
|        | data.area <- data.width * data.height 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | data.distance.simple<-read.csv("/data/data-distance-normal-simple.csv", header=<br>TRUE,row.names=1)                                                                                                                         |

F.1.5. read-data.R

| <pre>data.flow&lt;-read.csv("/data/data-flow.csv", header=TRUE,row.names=1) ### # transition bends # transition bends # transition bends data.transbends &lt;- read.csv("/data/data-transition-bends.csv", header=TRUE,row.</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>####<br/># Editing<br/># Editing<br/># adit ing<br/># edit ing<br/># edit ing<br/>data.mousekey.beginner &lt;- read.csv("/data/mousekey/beginner-summary.csv",<br/>header=TRUE,row.names=1)<br/>data.mousekey.beginner.create &lt;- read.csv("/data/mousekey/beginner-summary-<br/>create.csv, header=TRUE,row.names=1)<br/>data.mousekey.beginner.csv".cow.names=1)</pre> | <pre>data.mousekey.beginner.create.graph &lt;- read.csv("/data/mousekey/beginner-<br/>summary-create-graph.csv", header=TRUE,row.names=1)<br/>data.mousekey.beginner.create.struct &lt;- read.csv("/data/mousekey/beginner-<br/>summary-create-struct.csv", header=TRUE,row.names=1)<br/>data.mousekey.beginner.create.tatt &lt;- read.csv("/data/mousekey/beginner-summary<br/>-create-text.csv", header=TRUE,row.names=1)<br/>data.mousekey.beginner.modify.graph &lt;- read.csv("/data/mousekey/beginner-<br/>summary-modify.graph &lt;- read.csv("/data/mousekey/beginner-<br/>summary-modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>summary-modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>summary-modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>data.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>utata.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>data.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>utat.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>data.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>utat.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>utat.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>utata.mousekey.beginner.modify.struct &lt;- read.csv("/data/mousekey/beginner-<br/>modify-text.csv", header=TRUE,row.names=1)</pre> | <pre>0 data.mousekey.beginner.graph &lt;- data.mousekey.beginner.create.graph + data.<br/>mousekey.beginner.modify.graph<br/>data.mousekey.beginner.struct &lt;- data.mousekey.beginner.create.struct + data.<br/>mousekey.beginner.modify.struct<br/>data.mousekey.beginner.text &lt;- data.mousekey.beginner.create.text + data.mousekey<br/>i.beginner.modify.text</pre> | <pre>data.mousekey.advanced &lt;- read.csv("/data/mousekey/advanced-summary.csv",</pre> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| <pre>data.distance.bottom&lt;-read.csv("/data/data-distance-normal-bottom.csv", header=<br/>TRUE_row.names=1)<br/>data.distance.top&lt;-read.csv("/data/data-distance-normal-top.csv", header=TRUE,<br/>row.names=1)<br/>data.distance.initial2 &lt;- data.distance.initial[1]<br/>data.distance.ail2 &lt;- data.distance.initial[1]<br/>data.distance.ail2 &lt;- data.distance.ail[1]<br/>data.distance.ail2 &lt;- data.distance.ail[1]<br/>data.distance.ail2 &lt;- data.distance.ail[1]<br/>data.distance.ail2 &lt;- data.distance.ail[1]<br/>data.distance.ail2 &lt;- data.distance.ail[1]<br/>data.distance.ain[2 &lt;- data.distance.ail[1]<br/>data.distance.initial2[1,1] &lt;- data.distance.initial[1,2]){<br/>if (data.distance.initial2[1,1] &lt;- data.distance.initial[1,2])<br/>if (data.distance.initial2[1,1] &lt;- data.distance.initial2[1,2])<br/>if (data.distance.initial2[1,1] &lt;- data.distance.initial2[1,2])</pre> | <pre>data.distance.middle2[i,1] &lt;- data.distance.middle[1,2] ) if (data.distance.all[i,1] &gt; data.distance.all[i,2])( data.distance.all2[i,1] &lt;- data.distance.all[i,2])( if (data.distance.simple[i,1] &gt; data.distance.simple[i,2])( data.distance.simple2[i,1] &lt;- data.distance.simple[i,2])( ### 10 15 160 160 160 160 160 160 160 160 160 160</pre>           | <pre>## ### fata.numberofstates &lt;- read.csv("/data/data-number-of-states.csv", header=TRUE, row.names=1) ### 120 # size relations ### data.occupiedspace &lt;- read.csv("/data/data-space-occupied.csv", header=TRUE,row .names=1) #data.sizerel &lt;-read.csv("data-sizerel.csv", header=TRUE,row.names=1) #(no csv generated yet) </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>130 ### # intersections # intersections ### data.crossing&lt;-read.csv("/data/data-intersection-summary.csv", header=TRUE,row. names=1 data.crossing.detail&lt;-read.csv("/data/data-intersection-summary-detail.csv", header=TRUE,row.names=1)</pre>                                                                                                                  | ###<br># £low<br>###<br>140                                                             |

read.csv("../data/mousekey/advanced-summarymodify.csv", header=TRUE,row.names=1) ļ data.mousekey.advanced.modify

data.mousekey.advanced.create.graph <- read.csv("../data/mousekey/advancedsummary-create-graph.csv", header=TRUE,row.names=1)

180

- data.mousekey.advanced.create.text <- read.csv("../data/mousekey/advanced-summary data.mousekey.advanced.create.struct <- read.csv("../data/mousekey/advancedsummary-create-struct.csv", header=TRUE, row.names=1) create-text.csv", header=TRUE, row.names=1)
- data.mousekey.advanced.modify.graph <- read.csv(".../data/mousekey/advanced-
- summary-modify-graph.csv", header=TRUE,row.names=1)
  data.mousekey.advanced.modify.struct <- read.csv("../data/mousekey/advanced-</pre>
- data.mousekey.advanced.modify.text <- read.csv("../data/mousekey/advanced-summ220 summary-modify-struct.csv", header=TRUE, row.names=1) -modify-text.csv", header=TRUE, row.names=1)
- data.mousekey.advanced.graph <- data.mousekey.advanced.create.graph + data. mousekey.advanced.modify.graph
- data.mousekey.advanced.struct <- data.mousekey.advanced.create.struct + data. mousekey.advanced.modify.struct
- data.mousekey.advanced.text <- data.mousekey.advanced.create.text + data.mousekey .advanced.modify.text 190
- #write.csv(data.mousekey.beginner.graph, file = ".../data/mousekey/beginnersummary-graph.csv")
- #write.csv(data.mousekey.beginner.struct, file = "../data/mousekey/beginnersummary-struct.csv")
- #write.csv(data.mousekey.beginner.text, file = "../data/mousekey/beginner-summary -text.csv")
  - #write.csv(data.mousekey.advanced.graph, file = "../data/mousekey/advanced-
- 230 #write.csv(data.mousekey.advanced.struct, file = "../data/mousekey/advancedsummary-struct.csv") summary-graph.csv")
  - #write.csv(data.mousekey.advanced.text, file = "../data/mousekey/advanced-summary -text.csv")
- \*\*\*\* 200
- # Errors # #########
- # Summary of errors/actions made, sorted by category and students
- data.mk.errors.beginner.graph <- read.csv("../data/mousekey-errors/beginnererrors-by-category-graph.csv", header=TRUE,row.names=1)
- data.mk.errors.beginner.struct <- read.csv("../data/mousekey-errors/beginnererrors-by-category-struct.csv", header=TRUE, row.names=1)
- data.mk.errors.beginner.text <- read.csv("../data/mousekey-errors/beginner-errors by-category-text.csv", header=TRUE,row.names=1)
- data.mk.errors.advanced.graph <- read.csv("../data/mousekey-errors/advancederrors-by-category-graph.csv", header=TRUE,row.names=1)
- errors-by-category-struct.csv", header=TRUE,row.names=1)
  data.mk.errors.advanced.text <- read.csv(".../data/mousekey-errors/advanced-errors</pre> data.mk.errors.advanced.struct <- read.csv("../data/mousekey-errors/advanced-210
  - -by-category-text.csv", header=TRUE,row.names=1)

- data.mk.erroractions.beginner.graph <- read.csv(".../data/mousekey-errors/beginner data.mk.erroractions.beginner.struct <- read.csv("../data/mousekey-errors/ beginner-actions-by-category-struct.csv", header=TRUE,row.names=1) -actions-by-category-graph.csv", header=TRUE, row.names=1)
  - data.mk.erroractions.beginner.text <- read.csv("../data/mousekey-errors/beginneractions-by-category-text.csv", header=TRUE, row.names=1)
- data.mk.erroractions.advanced.graph <- read.csv(".../data/mousekey-errors/advanced data.mk.erroractions.advanced.struct <- read.csv("../data/mousekey-errors/ advanced-actions-by-category-struct.csv", header=TRUE, row.names=1) -actions-by-category-graph.csv", header=TRUE, row.names=1)
  - data.mk.erroractions.advanced.text <- read.csv("../data/mousekey-errors/advancedactions-by-category-text.csv", header=TRUE, row.names=1)
- # these were read to create the above summaries. Now commented out and the summaries are read instead.
- # if separate data is needed for creation and editing, un-comment the lines below
- beginner-errors-by-category-modify-graph.csv", header=TRUE, row.names=1) beginner-errors-by-category-create-graph.csv", header=TRUE, row.names=1) #data.mk.errors.beginner.create.struct <- read.csv(".../data/mousekey-errors/ #data.mk.errors.beginner.create.graph <- read.csv("../data/mousekey-errors/ #data mk errors beginner modify graph <- read csv("../data/mousekey-errors/
  - beginner-errors-by-category-create-struct.csv", header=TRUE,row.names=1) beginner-errors-by-category-modify-struct.csv", header=TRUE,row.names=1) #data.mk.errors.beginner.modify.struct <- read.csv("../data/mousekey-errors/
    - beginner-errors-by-category-create-text.csv", header=TRUE, row.names=1) #data.mk.errors.beginner.modify.text <- read.csv("../data/mousekey-errors/ #data.mk.errors.beginner.create.text <- read.csv("../data/mousekey-errors/
      - beginner-errors-by-category-modify-text.csv", header=TRUE, row.names=1)
- advanced-errors-by-category-create-struct.csv", header=TRUE,row.names=1) advanced-errors-by-category-modify-struct.csv", header=TRUE,row.names=1) advanced-errors-by-category-create-graph.csv", header=TRUE, row.names=1) advanced-errors-by-category-modify-graph.csv", header=TRUE, row.names=1) #data.mk.errors.advanced.create.struct <- read.csv("../data/mousekey-errors/ #data.mk.errors.advanced.modify.struct <- read.csv("../data/mousekey-errors/ advanced-errors-by-category-create-text.csv", header=TRUE,row.names=1) #data.mk.errors.advanced.create.graph <- read.csv("../data/mousekey-errors/ #data.mk.errors.advanced.modify.graph <- read.csv("../data/mousekey-errors/ #data.mk.errors.advanced.modify.text <- read.csv("../data/mousekey-errors/ #data.mk.errors.advanced.create.text <- read.csv("../data/mousekey-errors/
- #data.mk.erroractions.beginner.create.struct <- read.csv("../data/mousekey-errors #data.mk.erroractions.beginner.modify.graph <- read.csv("../data/mousekey-errors/ #data.mk.erroractions.beginner.modify.struct <- read.csv("../data/mousekey-errors read.csv("../data/mousekey-errors/ /beginner-actions-by-category-create-struct.csv", header=TRUE,row.names=1) /beginner-actions-by-category-modify-struct.csv", header=TRUE,row.names=1) beginner-actions-by-category-modify-graph.csv", header=TRUE,row.names=1) beginner-actions-by-category-create-graph.csv", header=TRUE,row.names=1) #data.mk.erroractions.beginner.create.graph <-

 $^{240}$ 

advanced-errors-by-category-modify-text.csv", header=TRUE, row.names=1)

#data.mk.erroractions.beginner.create.text <- read.csv("../data/mousekey-errors/ beginner-actions-by-category-create-text.csv", header=TRUE,row.names=1)

#data.mk.erroractions.beginner.modify.text <- read.csv(".../data/mousekey-errors/ beginner-actions-by-category-modify-text.csv", header=TRUE,row.names=1) #data.mk.erroractions.advanced.create.graph <- read.csv(".../data/mousekey-erro260 advanced-actions-by-category-create-graph.csv", header=TRUE,row.names=1)

#data.mk.erroractions.avaraced.modify.grap.arg.read.csv(".../data.mousekey-errors/ advanced-actions-by-category-modify-graph.csv", header=TRUE,row.names=1)

#data.mk.erroractions.advanced.create.struct <- read.csv(".../data/mousekey-errors /advanced-actions-by-category-create-struct.csv", header=TRUE,row.names=1)

#data.mk.erroractions.advanced.modify.struct <- read.csv (".../data/mousekey-errors /advanced-actions-by-category-modify-struct.csv", header=TRUE,row.names=1)

#data.mk.erroractions.advanced.create.text <- read.csv(".../data/mousekey-errors/ advanced-actions-by-category-create-text.csv", header=TRUE,row.names=1)

#data.mk.erroractions.advanced.modify.text <- read.csv("../data/mousekey-errors/ advanced-actions-by-category-modify-text.csv", header=TRUE,row.names=1)

250

data.mk.errors.beginner.tools <- read.csv("../data/mousekey-errors/beginner-bytool.csv", header=TRUE,row.names=1)

tool.csv", header=TRUE,row.nameS=1)
dta.mk.errors.advanced.tools <- read.csv(".../data/mousekey-errors/advanced-bytool.csv", headerETRUE.row.names=1)</pre>

####

# mouseclick, mousedrag, keypress and keymacro by user

data.mk.errors.beginner.actions.by.user.graph <- read.csv("..(data/mousekeyerrors/beginner-actions-by-user-graph.csv", header=TRUE,row.names=1) data.mk.errors.beginner.actions.by.user.struct <- read.csv("./data/mousekeyerrors/beginner-actions-by-user-struct.csv", header=TRUE,row.names=1)

dta.mk.errors.beginner.actions.by.user.text <- read.rsv(".../data/mousekey-errors /beginner-actions.by.user.text <- read.csv(".../data/mousekey-errors /beginner-actions-by-user-text.csv", header=TRUE,row.names=1)

data.mk.errors.advanced.actions.by.user.graph <- read.csv(".../data/mousekeyerrors/advanced-actions-by-user.graph.csv", header=TRUB; row.names=1) data.mk.errors.advanced.actions.by.user.struct <- read.csv(".../data/mousekeyerrors/advanced-actions.by.user-struct.csv", header=TRUE, row.names=1) data.mk.errors.advanced.actions.by.user.text <- read.csv(".../data/mousekeyerrors/advanced-actions.by.user.text <- read.csv("...data/mousekeydata.mk.errors.advanced.actions.by.user.text <- read.csv("...data/mousekey-errors /advanced-actions-by-user-text.csv", header=TRUE, row.names=1)

\*\*\*

data.editors.beginner.time <- t (read.csv("../../../usability/experiment-1/3resultcreateanalyse.csv", header=TRUE,row.names=1))

data.editors.advanced.time <- t (read.csv(".../.../.../usability/experiment-2/3resultcreateanalyse.csv", header=TRUE, row.names=1))

| for (i in c(6:33)){<br>spybolity(i, cex.lab=1.6, cex.axis=1.6, cex=1.3, cex.main=1.6)<br>entriment(i | <pre>pyotumeru: Assthetics2[1] (asthetics2[2]==1], "Compleximation", cex.lab=1.6<br/>histnew2[i, Assthetics2[1] (asthetics2[2]==1], "Complexity: Simple", cex.lab=1.6<br/>cex.axis=1.6, cex=1.3, cex.main=1.6)<br/>histnew2[i, Assthetics2[i] (Assthetics2[2]==2] Assthetics2[2]==3], "Complexity:</pre> | <pre>http://www.interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.com/interaction.co</pre> | dev.off()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>pdf("plots-adv.pdf") for (i in c(6:33))( sp3points3(i, cex.lab=1.6, cex.axis=1.6, cex=1.3, cex.main=1.6)</pre> | <pre>sp3time3(i, cex.lab=1.6, cex.axus=1.6, cex=1.3, cex.main=1.6) #histnew(i,1,1, "Complexity: Simple", names(Aesthetics[i])) #histnew(i,2,1, "Complexity: Hierarchical", names(Aesthetics[i])) #histnew(i,3,1, "Complexity: Parallel", names(Aesthetics[i]) 70 }</pre> | dev.off()<br># draw an empty sheet                                                                                                                | pdf("plots-empty.pdf")<br>plot(1:10, 1:10, type="n", axes=FALSE, xlab="", ylab="", frame.plot=FALSE) | dev.orr()<br>kitv80                                                                                                                                                           |                                                                             | <pre>par("prote-contrable-complexity=adv.put", witch=0v, neight=0v)<br/>pairs(Aesthetics[(complexity==l&amp;experiment==2),c(34:35, 6:20, 24:33)], lower.<br/>panel=panel.smooth, upper.panel=panel.cor)<br/>dev.off()</pre> | <pre>pdf("plots-corrtable-complexity2-adv.pdf", width=30, height=30) pairs(Aesthetics((complexity==2&amp;experiment==2),c(34:35, 6:20, 24:33)], lower.         panel=panel.smooth, upper.panel=panel.cor)         dev.off()</pre> | <pre>90<br/>pdf("plots-corrtable-complexity3-adv.pdf", width=30, height=30)<br/>pairs(Aesthetics[(complexity==3eaxperiment==2),c(34:35, 6:20, 24:33)], lower.<br/>panel=panel.smooth, upper.panel=panel.cor)<br/>dev.off()</pre> | <pre>pdf("plots-corrtable-complexity1-adv-points.pdf", width=30, height=30) pairs(Aesthetics2[complexity==1,c(34, 6:20, 24:33)], lower.panel=panel.smooth,</pre> |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| library ("car")<br>library ("corrgram")                                                              | source("dataset-functions.R")                                                                                                                                                                                                                                                                            | Aesthetics <- read.csv("/data/aesthetics.csv", header=TRUE)<br>Aesthetics\$chart <- as.factor(Aesthetics\$chart)<br>Aesthetics\$complexity <- as.factor(Aesthetics\$complexity)<br>Aesthetics\$model <- as.factor(Aesthetics\$nodel)<br>Aesthetics(1avout) <- as.factor(Aesthetics\$nodel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Accuracionersympton , assisted frequencies to any frequency freque | tempnames <- names(Aesthetics)<br>tempnames[7] <- "log.WHR"<br>names(Aesthetics) <- tempnames                       | Aesthetics\$d0 <- 0<br>Aesthetics\$d1 <- 0<br>Aesthetics\$d2 <- 0                                                                                                                                                                                                        | Aesthetics\$d0[Aesthetics\$complexity=1] <- 1<br>Aesthetics\$d1[Aesthetics\$complexity==2] <- 1<br>Aesthetics\$d2[Aesthetics\$complexity==3] <- 1 | Aesthetics2 <- Aesthetics[Aesthetics\$experiment==2,]                                                | # add dummy variable to distinguish between c1 and c2+c3<br>Aesthetics2scomplexity2 <- 0<br>Aesthetics2scommlexity2 <- ((Aesthetics2scomplexity=2))((Aesthetics2scomplexity80 | ==3)) *1<br>Aesthetics2\$complexity2 <- as factor(Aesthetics2\$complexity2) | attach(Aesthetics2)                                                                                                                                                                                                          | 并并并并并并并并并并<br>并 Editing<br>在非正常要求并非非非                                                                                                                                                                                             | Editing <- read.csv("/data/editing.csv", header=TRUE, row.names=1)                                                                                                                                                               | # draw scatterplots and histograms                                                                                                                               |

F.1.6. generate-plots.R

 $^{20}$ 

pdf("plots-corrtable-complexity23-adv-points.pdf", width=30, height=30) 110
pairs(Aesthetics2[(complexity==3|complexity==2),c(34, 6:20, 24:33)], lower.panel=
panel.smooth, upper.panel-cor) dev.off()

100

pdf("plots-corrtable-complexity123-adv-time.pdf", width=30, height=30)
pairs(Aesthetics2[,c(35, 6:20, 24:33)], lower.panel=panel.smooth, upper.panel= panel.cor)

dev.off()

pdf("corrtable-cle2-points-spearman.pdf", width=30, height=30)
pairs(Aestherics[complexity==1, c(34, 6:35), lower.panel.smooth, upper.
panel\_panel.cor3, main="Correlation Matrix for Dependent Variable Points,
 Statecharts of Simple Complexity", cex.main=2)

pdf("corrtable-c23e2-points-spearman.pdf", width=30, height=30) dev.off()

pairs(Aesthetics2[(complexity==3|complexity==2),c(34, 6:33)], lower.panel=panel. smooth, upper.panel=panel.cor3, main="Correlation Matrix for Dependent Variable Points, Statecharts of Higher Complexity", cex.main=2) dev.off() pdf("corrtable-c123e2-time-spearman.pdf", width=30, height=30)
pairs(stable-c123e2.tid(55, 6:33)), lower.panel.panel.smooth, upper.panel.cor3
, main="Correlation Matrix for Dependent Variable Time, Statecharts of All
Complexities", ces.main=2) dev.off()

pdf("corrtable-example2.pdf")
pairs(Aesthetics2[,c(6,15,30)], lower.panel=panel.cor3)
dev.off()

# F.1.7. dataset-functions.R

30 lowess.na <- function(x, y = NULL, f = 2/3,...) { #do lowess with missing data

x1 <- subset (x, (!is.na(x)) & (!is.na(y)))
y1 <- subset (y, (!is.na(x)) & (!is.na(y)))</pre> lowess.na <- lowess(x1,y1,f, ...)

sp3points <- function(i){

scatterplot(Aesthetics[i][(Aesthetics[2]==1 & Aesthetics[5]==1)],

Aesthetics\$points[(Aesthetics[2]==1 & Aesthetics[5]==1)], xlab=names( Aesthetics)[i], ylab="Points", main="Complexity: Simple, Level: Beginner") histnew(i,1,1,"Complexity: Simple, Level: Beginner", names(Aesthetics)[i])
scatterplot(Aesthetics[i][(Aesthetics[2]==1 & Aesthetics[5]==2)],

10

Aesthetics)[i], ylab="Points", main="Complexity: Simple, Level: Advanced") Aesthetics\$points[(Aesthetics[2]==1 & Aesthetics[5]==2)], xlab=names( Aesthetics\$points[(Aesthetics[2]==2 & Aesthetics[5]==1)], xlab=names( histnew(i,1,2,"Complexity: Simple, Level: Advanced", names(Aesthetics)[i])
scatterplot(Aesthetics[i][(Aesthetics[2]==2 & Aesthetics[5]==1)],

histnew(i,2,1,"Complexity: Hierarchical, Level: Beginner", names(Aesthetics)[i] angle 040Aesthetics)[i], ylab="Points", main="Complexity: Hierarchical, Level: Beginner")

scatterplot(Aesthetics[i][(Aesthetics[2]==2 & Aesthetics[5]==2)], Aesthetics\$points[(Aesthetics[2]==2 & Aesthetics[5]==2)],xlab=names(

histnew(i,2,2,"Complexity: Hierarchical, Level: Advanced", names(Aesthetics)[i]) Aesthetics)[i], ylab="Points", main="Complexity: Hierarchical, Level: Advanced")

scatterplot(Aesthetics[i][(Aesthetics[2]==3 & Aesthetics[5]==1)], Aesthetics\$points[(Aesthetics[2]==3 & Aesthetics[5]==1)], xlab=names( Aesthetics)[i], ylab="Points", main="Complexity: Parallel, Level: Beginner

histnew(i,3,2,"Complexity: Parallel, Level: Beginner", names(Aesthetics)[i])

scatterplot(Aesthetics[i][(Aesthetics[2]==3 & Aesthetics[5]==2)], Aesthetics\$points[(Aesthetics[2]==3 & Aesthetics[5]==2)], xlab=names( Aesthetics)[i], ylab="Points", main="Complexity: Parallel, Level: Advanced

50 histnew(i, 3, 2, "Complexity: Parallel, Level: Advanced", names(Aesthetics)[i]) 20

sp3points2 <- function(i) {

scatterplot (Aesthetics[i][Aesthetics[2]==1], Aesthetics\$points[Aesthetics[2]==1], groups=experiment[Aesthetics\$complexity==1], xlab=names(Aesthetics)[i], ylab="Points", main="Complexity: Simple", col=c("black","black", "darkgray "), legend.title="Experiment")

histnew(i,1,1,"Complexity: Simple", names(Aesthetics[i]) scatterplot(Aesthetics[i][Aesthetics[2]=2], Aesthetics[csfoints[Aesthetics[2]=2], groups=experiment[Aesthetics(complexity==2], xlab=names(Aesthetics[1], ylab="Points", main="complexity: Hierarchical", col=c("black", "black", "

darkgray"), legend title="Experiment")

groups=experiment[Aesthetics\$complexity==3], xlab=names(Aesthetics)[i], ylab="Points", main="Complexity: Parallel", col=c("black","black", " darkgray"), legend.title="Experiment")

histnew (i, 3, 1, "Complexity: Parallel", names (Aesthetics) [i])

Aesthetics2)[i], ylab="Points", main="complexity: Simple", col=c("black"," black", "darkgray"), legend.title="Experiment", ...) sp3points3 <- function(i, ...) {
scatterplot(Aesthetics2[1][Aesthetics2[2]==1], Aesthetics2\$points[Aesthetics2</pre> [2]==1], groups=experiment[Aesthetics2\$complexity==1], xlab=names(

[2]==2], groups=experiment[Aesthetics2\$complexity==2], xlab=names( Aesthetics2)[i], ylab="Points", main="Complexity: Hierarchical", col=c(" scatterplot (Aesthetics2[i][Aesthetics2[2]==2], Aesthetics2\$points[Aesthetics2 black", "black", "darkgray"), legend title="Experiment", ...)

[2]==3], groups=experiment[Aesthetics2\$complexity==3], xlab=names( Aesthetics2)[i], ylab="Points", main="Complexity: Parallel", col=c("black ","black", "darkgray"), legend.title="Experiment", ...) scatterplot(Aesthetics2[i][Aesthetics2[2]==3],Aesthetics2\$points[Aesthetics2

[2]==1], xlab=names(Aesthetics2)[i], ylab="Points", main="Points, Complexity: Simple", col=c("black", "black", "darkgray"),...)

sp3points4 <- function(i,...){
scatterplot(Aesthetics2[1][Aesthetics2[2]==1],Aesthetics2\$points[Aesthetics2</pre>

Aesthetics2\$points[Aesthetics2[2]==2 | Aesthetics2[2]==3], Xlab=names( Aesthetics2[1], ylab="Points", main="Points, Complexity: Hierarchical and Parallel", col=c("black","black", "darkgray"),...) scatterplot(Aesthetics2[i][Aesthetics2[2]==2 | Aesthetics2[2]==3],

histnew <- function(i,j,k, main, xlab,...)( histdasthetics[i][(aesthetics[2]==j & Aesthetics[5]==k)], nclass=n.bins( Aesthetics[i][(aesthetics[2]==j & Aesthetics[5]==k)], "simple"), probability=T, ylab="Density", main=main, xlab=xlab, cex.75,...)

lines(density(Aesthetics[i][(Aesthetics[2]==j & Aesthetics[5]==k)], na.rm=TRUE), points(Aesthetics[i][(Aesthetics[2]==) & Aesthetics[5]==k)], rep(0, length( Aesthetics[i][(Aesthetics[2]==) & Aesthetics[5]==k)])), poh=""") 1 wd=2 )

lines(density(Aesthetics[i][(Aesthetics[2]==) & Aesthetics[5]==k)], adjust=.5, na () xoq

.rm=TRUE), lwd=1)

# data: Aesthetics2[i][Aesthetics2[2]==2|3]

histnew2 <- function(i, data, main,...){
 hist(data, nclass=n.bins(data, "simple"), probability=T, ylab="Density", main=</pre> main, xlab=names(Aesthetics2[i]), cex=.75,...)

lines(density(data, na.rm=TRUE), lwd=2)

| <pre>#par(mfrow=c(3,2)) scatterplot(heathetics2[i][Aesthetics2[2]==1],Aesthetics2\$time[Aesthetics2 [2]==1], xlab=names(Aesthetics2)[i], ylab="Time", main="Complexity: Simple ", col=c("black","black", "darkgray"),)</pre> | 0 scatterplot(Aesthetics2[i][Aesthetics2[2]==2], Aesthetics2\$time[Aesthetics2<br>[2]==2], xlab=names(Aesthetics2)[i], ylab="Time", main="Complexity:<br>Hierarchical", col=c("black","black", "darkgray"),) | <pre>scatterplot(Aesthetics2[i][Aesthetics2[2]==3],Aesthetics2\$time[Aesthetics2<br/>[2]==3], xlab=names(Aesthetics2)[i], ylab="Time", main="Complexity:<br/>Parallel", col=c("black", "black", "darkgray"),)<br/>histnew(i, 1,1,"Complexity: Simple", names(Aesthetics2)[i],)<br/>histnew(i, 2,1,"Complexity: Hararchical", names(Aesthetics2)[i],)<br/>histnew(i, 3,1,"Complexity: Parallel", names(Aesthetics2)[i],)<br/>\$<br/>\$ blistnew(i, 3,1,"Complexity: Parallel", names(Aesthetics2)[i],)<br/>\$<br/>\$ sp3timed &lt;- function(i,){</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                               | }<br>panel.cor <- function(x, y, digits=2, prefix="", cex.cor)                                                                                                                                                                                                                                                                                                                                                        | <pre>usr &lt;- par("usr"); on.exit(par(usr)) par(usr = c(0, 1, 0, 1)) r &lt;- abs(cor(x, y, use="pairwise.complete.obs")) rxt &lt;- format(c(r, y, use="pairwise.complete.obs")) txt &lt;- paste(prefix, txt, sep="") if(missing(cex.cor)) cex &lt;- 0.8/strwidth(txt)</pre>                 | <pre>test &lt;- cor.test(x,y) # borrowed from printCoefmat Signif &lt;- symum(ressty value, corr = FALSE, na = FALSE, couppoints = c(0, 0,001, 0,01, 0,05, 0,1, 1), symbols = c("***", "**", "*", "", "")</pre>                                                                                                          | <pre>0 text(0.5, 0.5, txt, cex = cex * r)     text(.8, .8, Signif, cex=cex, col=2) }</pre>                                                                                                                                                             | panel.cor2 <- function(x, y, digits=2, prefix="", cex.cor)<br>{                                                                                                                                   | <pre>usr &lt;- par("usr"); on.xit(par(usr)) par(usr = c(0, 1, 0, 1)) r &lt;- abs(cor(x, y, use="pairwise.complete.obs", method="spearman")) rxt &lt;- format(c(r, y, use="pairwise, complete.obs", [1] txt &lt;- paste(prefix, txt, sep="") () txt &lt;- paste(prefix, txt, sep="") if(missing(cex.cor)) cex &lt;- 0.8/strwidth(txt)</pre>             | test <- cor.test(x,y, method="spearman")<br># borrowed from printCoefmat |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| <pre>points(data, rep(0, length(data)), pch=" ") box() box() lines(density(data, adjust=.5, na.rm=TRUE), lwd=1)</pre>                                                                                                        | 100                                                                                                                                                                                                          | <pre>sp3tme &lt; runt101(<br/>scatterplot(Aesthetics[i]([Aesthetics[2]==1 &amp; Aesthetics[5]==1)],AestheticsStime<br/>[(Aesthetics[2]==1 &amp; Aesthetics[5]==1)], xlab=names(Aesthetics)[i], ylab="<br/>Time", main="Complexity: Simple, Level: Beginner")<br/>histnew(i,1,1,Complexity: Simple, Level: Beginner")<br/>catterplot(Aesthetics[i](Resthetics[2]==1 &amp; Aesthetics[5]==2)], Aesthetics[1],<br/>scatterplot(Aesthetics[2]==1 &amp; Aesthetics[5]==2)], xlab=names(Aesthetics)[i], ylab="<br/>[(Aesthetics[2]==1 &amp; Aesthetics[5]==2)], xlab=names(Aesthetics)[i], ylab="<br/>Time", main="Complexity: Simple, Level: Advanced")<br/>histnew(i,1,2,"Complexity: Simple, Level: Advanced")<br/>histnew[Kimed]</pre> | <pre>[(Aesthetics[2]==2 &amp; Aesthetics[5]==1)], xlab=names(Aesthetics[i], ylab="<br/>Time", main="Complexity: Hierarchical, Level: Beginner") and<br/>histnew(i,2,1,"Complexity: Hierarchical, Level: Beginner", names(Aesthetics[i])<br/>scatterplot(Aesthetics[i]((Aesthetics[2]==2 &amp; Aesthetics[5]==2)], Aesthetics[i], ylab="<br/>[(Aesthetics[2]==2 &amp; Aesthetics[5]==2)], xlab=names(Aesthetics[i], ylab="</pre> | histnew (i, 2, "Complexity: Historical, Level: Advanced", names (Aesthetics) [i])<br>histnew (i, 2, "Complexity: Historical, Level: Advanced", names (Aesthetics) [i])<br>scatterplot (Aesthetics[i][(Aesthetics[2]==3 & Aesthetics[5]==1)], Aesthetics[5]==1)], Aesthetics[2]==3 [Aesthetics[2]==3], Aesthetics[2]==3], Aesthetics[2]==1)], Viab=names (Aesthetics[2]=1)], Viab="""""""""""""""""""""""""""""""""""" | <pre>histnew(i,3,2,"Complexity: Parallel, Level: Beginner', names (Aesthetics)[i]) scatterplot(Aesthetics[i][(Aesthetics[2]==3 &amp; Aesthetics[5]==2)], Aesthetics(2i)== [[(Aesthetics[2]==3 &amp; Aesthetics[5]==2)], xlab=mames(Aesthetics[2i]=="""""""""""""""""""""""""""""""""""</pre> | <pre>sp3time2 &lt;- function(i) {     #par(mfrow=c(3,2))     scatterplot(Aesthetics[1](Aesthetics[2]==1], Aesthetics\$time[Aesthetics[2]==1],     scatterplot(Aesthetics[1](Aesthetics\$complexity==1], xlab=names(Aesthetics)[1],     ylab="Time", main="Complexity: Simple", col=c("black","black", "darkgray"),</pre> | <pre>legend.title="Experiment") histnew(i,1,1,"Complexity: Simple", names(Aesthetics)[i]) scatterplot(Aesthetics[1]Aesthetics[2]==2], AestheticsStime[Aesthetics[2]==2], groups=experiment[AestheticsScomplexity==2], xlab-names(Aesthetics)[i],</pre> | <pre>ylap="Time", main="Complexity: Hierarchical", col=c("plack", "black", "<br/>darkgray"), legend.title="Experiment")<br/>histnew(i,2,1,"Complexity: Hierarchical", names(Aesthetics)[i])</pre> | <pre>scatterplot(desthetics[1][Aesthetics[2]==3],AestheticsStime[Aesthetics[2]==3],<br/>groups=experiment[AestheticsScomplexity==3], xlab=names(Aesthetics[1],<br/>ylab="Time", main="Complexity: Parallel", col=c("black","black", "darkgray<br/>"), legend.title="Experiment")<br/>histnew(i,3,1,"Complexity: Parallel", names(Aesthetics)[1])</pre> | sp3time3 <- function(i,){                                                |

Signif <- symnum(test\$p.value, corr = FALSE, na = FALSE, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("\*\*\*", "\*\*", "\*", ".", ""))

text(0.5, 0.5, txt, cex = cex \* r)
text(0.8, 0.8, Signif, cex=cex, col=2) 150

\_\_\_\_

panel.cor3 <- function(x, y, digits=2, prefix="", cex.cor) {

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y, use="pairwise.complete.obs", method="spearman"))
r <- abs(cor(x, 0.123456789), digits=digits)[1]
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste prefix, txr, seep=""")
if(missing(cex.cor)) cex <- 0.8/strwidth(txt)</pre>

test <- cor.test(x,y, method="spearman")
# borrowed from printCoefmat</pre>

160

Signif <- symnum(test\$p.value, corr = FALSE, na = FALSE, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1), symbols = c("\*\*\*", "\*\*", "\*", ".", ""))

text(0.5, 0.5, txt, cex = cex \* r)
#text(0.8, 0.8, Signif, cex=cex, col=2)

~ 170

highcorrelation <- function(corrmatrix) {
 r <- corrmatrix
 y <- which(lower.tri(r), TRUE)
 z <- data.frame(row = rownames(r)[y[, 1]],
 col = colnames(r)[y[, 2]],
 cor = r[y])
subset(z, abs(cor) > 0.5)

~ 180

## F.1.8. dataset.R

summary(lm(points ~ TRL\*complexity2))
summary(lm(points ~ (TRL+TR2)\*complexity2))  $\begin{aligned} & \text{summary}\left(\text{lm}\left(\text{time}\ \sim\ \text{d0}\ +\ \text{TRL}\ +\ \text{TR2}\right)\right) \\ & \text{summary}\left(\text{lm}\left(\text{time}\ \sim\ \text{d1}\text{+d2}\ +\ \text{TRL}\ +\ \text{TR2}\right)\right) \\ & \text{summary}\left(\text{lm}\left(\text{time}\ \sim\ \text{TRL}\ +\ \text{TR2}\ +\ \text{complexity}\right)\right) \end{aligned}$ # points / time ~ variable # generate squared terms log.WHR2 <- log.WHR^2 NBAVG2 <- NBAVG^2 NBMIN2 <- NBMIN^2 NBMAX2 <- NBMAX^2 SUS2 <- SUS^2 SUT2 <- SUT^2 SUA2 <- SUA^2 DI2 <- DI^2 DM2 <- DM^2 DNA2 <- DNA^2 DNS2 <- DNA^2 NS2 <- NSS^2 NSS2 <- NSS^2 NHS2 <- NHS^2 NST2 <- NST^2 DNR2 <- DNR^2 PI2 <- PI^2 PF2 <- PF^2 FL2 <- FL^2 IF2 <- IF^2 NT2 <- NT^2 ######## # points ####### # test # time # TRL ### ### 60 70 06 80 100 Aesthetics2\$complexity2 <- ({Aesthetics2\$complexity==2}|{Aesthetics2\$complexity summary(lm(Aesthetics\$points ~ Aesthetics\$dl + Aesthetics\$d2 + Aesthetics\$TRL + Aesthetics\$experiment)) summary(lm(Aesthetics\$time ~ Aesthetics\$dl + Aesthetics\$d2 + Aesthetics\$f2 + Aesthetics\$rRL + Aesthetics\$experiment)) Aesthetics <- read.csv(".../data/aesthetics.csv", header=TRUE)
Aesthetics\$chart <- as.factor(Aesthetics\$chart)</pre> Aesthetics2\$complexity2 <- as.factor(Aesthetics2\$complexity2) # test for differences between beginner and advanced users Aesthetics\$complexity <- as.factor(Aesthetics\$complexity) Aesthetics\$model <- as.factor(Aesthetics\$model) Aesthetics\$experiment <- as.factor(Aesthetics\$experiment) # add dummy variable to distinguish between c1 and c2+c3 Aesthetics2 <- Aesthetics[Aesthetics\$experiment==2,] Aesthetics\$layout <- as.factor(Aesthetics\$layout) Aesthetics\$d0[Aesthetics\$complexity==1] <- 1
Aesthetics\$d1[Aesthetics\$complexity==2] <- 1
Aesthetics\$d2[Aesthetics\$complexity==3] <- 1</pre> summary(lm(points ~ TRL + complexity))
summary(lm(points ~ TRL + TR2 + complexity)) Aesthetics\$log.WHR <- log10(Aesthetics\$WHR) summary(lm(points ~ d0 + TRL))
summary(lm(points ~ d0 + TRL + TR2))
summary(lm(points ~ d1 + d2 + TRL)) # test for differences in complexity Aesthetics\$TR2 <- Aesthetics\$TRL ^2 # functions were stored externally # these libraries are obligatory source("dataset-functions.R") summary(lm(time  $\sim$  TRL + TR2)) Aesthetics2\$complexity2 <- 0 #read aesthetics data contrasts (complexity) # attach data frame library("corrgram") Aesthetics\$d0 <- 0 Aesthetics\$d1 <- 0 Aesthetics\$d2 <- 0 attach(Aesthetics2) library ("car") ==3))\*1 40 1030 50 20

summary(lm(time  $\sim$  TRL )) summary(lm(time  $\sim$  TRL + TR2 ))

points[complexity==2|complexity==3], col="black") plot(TRL[complexity==1], points[complexity==1], col="black", xlab="TRL", ylab="points", pch=20, cex.axis=1.2, cex.lab=1.2, xlim=c(min(TRL), max(TRL)), ylim=c(-0,12)) points(TRL[complexity==2|complexity==3], pdf("TRLmodel.pdf")
lm.TRLp <- lm(points~TRL\*complexity2)</pre> 110

cex=1.2, lty=c(1,2))
lm.TRLt <- lm(time~TRL)</pre>

120

ylab="time", cex.axis=1.2, cex.lab=1.2, ylim=c(0,500)) abline(lm.TRLt\$coef[1], lm.TRLt\$coef[2], col="black") legend("toplet", "all complexities", pch=19, ol="black", inset = .025, cex+1.2, lty=c(1,2)) plot(TRL, time, col="black", pch=19, xlab="TRL",

130

dev.off()

# x-y-ratio ### ###

summary(lm(points ~ log.WHR\*complexity2)) # points

summary(lm(points ~ (log.WHR + log.WHR2)\*complexity2)) guter Zusammenhang mit quadratischem Term # 140

# time

summary(lm(time ~ log.WHR ))

summary(lm(time ~ log.WHR + log.WHR2 ))
# signifikantes Ergebnis mit quadratischem Term

lm.WHR2 <- lm(points~(log.WHR+log.WHR2) \*complexity2)</pre> lm.WHR <- lm(points~log.WHR\*complexity2)</pre> 150

return(-2.5570 + 3.8692\*whr + 6.4531\*(whr^2)) testhierarchicalp=function(whr){ testsimplep=function(whr){

return(-2.5570+3.1977 + (3.8692-8.796)\*whr + (6.4531-10.4169)\*(whr^2))

return(147.5 + -24.73\*whr - 134.68\*(whr^2)) testt=function (whr) { 160

test[,2] <- as.data.frame(testsimplep(log.WHR))
test[,3] <- as.data.frame(testhierarchicalp(log.WHR))</pre> test[,4] <- as.data.frame(testt(log.WHR))</pre> test2 <- test[order(test[,1]),]</pre> test <- as.data.frame(log.WHR)

170

lines(test2[,i], test2[,2]) lines(test2[,1], test2[,3], col="black", lty=2) legend("topleft", c("simple", "hierarchical"), pch=c(20,21), col=c("black", "black"),inset = .025, cex=i.2, lty=c(1,2)) xlab="log(WHR)", ylab="points", pch=20, cex.axis=1.2, cex.lab=1.2, xlim=c(min(log.WHR), max(log.WHR)), ylim=c(-8,12)) points[complexity==2|complexity==3], col="black") pdf ("WHRmodel.pdf")
plot (log.WHR[complexity==1], points[complexity==1], points(log.WHR[complexity==2|complexity==3], 180

plot(log.WHR, time, ylim=c(0.550),pch=19, xlab="log(WHR)", ylab="time", cex.xis=1.2, cex.lab=1.2) lines(test2[,1], test2[,4]) ligend("toplett", "all complexities", pch=19, col="black", inset = .025, cex=1.2, lty=c(1,2)) dev.off()

190

###

# usage of available space ###

summary(lm(points ~ SUS\*complexity2))
summary(lm(points ~ SUT\*complexity2))
summary(lm(points ~ SUA\*complexity2)) # points

200

summary(lm(points ~ (SUS + SUS2)\*complexity2))
summary(lm(points ~ (SUT + SUT2)\*complexity2))
summary(lm(points ~ (SUA + SUA2)\*complexity2))

summary(lm(time ~ SUS ))
summary(lm(time ~ SUT ))
summary(lm(time ~ SUA )) # time

summary(lm(time ~ SUS + SUS2 ))
summary(lm(time ~ SUT + SUT2 ))
summary(lm(time ~ SUA + SUA2 )) 210

SUAsimplep=function(data){return(-15.15038 + 1.94026\*data + -0.05371\*(data^2)} SUAhierarchicalp=function(data) {return(-15.15038+31.39426 return(-4.02802+1.69265 + (0.08317-0.04276)\*data) #time ### ### 310 280290 300 320lines(SUAdata2[,1], SUAdata2[,2]) lines(SUAdata2[,1], SUAdata2[,3], col="black", lty=2) les(SUAdata2[,1], SUAdata2[,3], col="black", pch=c(20,21), col=c("black", " plack("copieft", c ("single", "bierarchical"), pch=c(20,21), col=c("black", " + (1.94026-4.34843) \*data + (0.13834-0.05371) \* (data^2)) } points[complexity==2|complexity==3], col="black") plot(SUS, time, ylim=c(0,550),pch=l9, xlab="SUS", ylab=time", cex.axis=1.2, cex.lab=1.2) lines(SUSdat2(1,1) SUSdat2(2,1) legend("topleft", "all complexities", pch=l9, col="black",inset = .025, cex=1.2, lty=c(1,2)) SUAdata[,2] <- as data.frame (SUAsimplep(SUA)) SUAdata[,3] <- as data.frame (SUAhierarchicalp(SUA)) SUSt=function(data) {return(160.301 - 3.451\*data)} summary(lm(points ~ PI + FI2+complexity2))
summary(lm(points ~ PF + +FF2+complexity2)) SUSdata[,2] <- as.data.frame(SUSt(SUS)) SUAdata2 <- SUAdata[order(SUAdata[,1]),] SUSdata2 <- SUSdata[order(SUSdata[,1]),] # placement of initial and final state
### summary(lm(points ~ PI\*complexity2)) summary(lm(points ~ PF\*complexity2)) PFsimplep=function(data){
 return(-4.02802 + 0.08317\*data) PFhierarchicalp=function(data){ SUSdata <- as.data.frame(SUS) SUAdata <- as.data.frame(SUA) summary(lm(time ~ PI + PI2))
summary(lm(time ~ PF + PF2)) summary(lm(time ~ PI ))
summary(lm(time ~ PF )) pdf("SUmodel.pdf") <- PI/2 <- PF/2 dev.off() points # time ### ΡF 님 \*# 230240250270220260

plot (PF[complexity==1], points[complexity==1], xlab="PF", ylab="points", pch=20, cex.axis=1.2, cex.lab=1.2, xlim=c(min(PF),max(PF)), ylim=c(-8,12)) points[complexity==2|complexity==3], col="black")
lines(PFdata2[,1], PFdata2[,2]) NBMAX [NBMAX<120] \* complexity2[NBMAX<120])) summary(lm(points  $\sim$  (NBAVG + NBAVG2) \* complexity2)) summary(lm(points  $\sim$  (NBMIN + NBMIN2) \* complexity2)) lines(PFdata2[,j], PFdata2[,j], col="black", lty=2)
legend("topleft", c("simple", "hiterarchical"),
coh=c("black", "black", ' inset = .025, coex=1.2, lty=c(1,2))
inset = .025, coex=1.2, lty=c(1,2)) (NBMAX[NBMAX<120] + NBMAX2[NBMAX<120]) summary(lm(time ~ NBAVG ))
summary(lm(time ~ NBMIN ))
summary(lm(time[NBMAX<120] ~ NBMAX<120] ))</pre> PFdata[,2] <- as.data.frame(PFsimplep(PF))
PFdata[,3] <- as.data.frame(PFhierarchicalp(PF))</pre> points(PF[complexity==2|complexity==3], summary(lm(points ~ NBAVG\*complexity2)) summary(lm(points ~ NBMIN\*complexity2))
summary(lm(points ~ NBMAX\*complexity2)) PFdata2 <- PFdata[order(PFdata[,1]),]</pre> \* complexity2[NBMAX<120]))</pre> summary(lm(points[NBMAX<120] ~ summary(lm(points[NBMAX<120] as.data.frame(PF) # distance of nodes pdf("PFmodel.pdf") PFdata <dev.off() # points

NBMAX[NBMAX<120] + NBMAX2[NBMAX<120] )) summary(lm(time ~ NBAVG + NBAVG2 ))
summary(lm(time ~ NBMIN + NBMIN2 ))
summary(lm(time[NBMAX<120] ~</pre>

NBMINsimplep=function(data){ return(2.65923 -0.08911\*data)

NBMINhierarchicalp=function(data){

lines(NBMINdata2[,1], NBMINdata2[,2]) lines(0.20, NBMINhierarchicalp(c(0:20)), col="black", lty=2) lines(20:60, NBMINhierarchicalp(c(20:60)), col="black", legend("topleft", c("simple", "hierarchical"), pch=c(20,21), col=c("black", "black"),inset = .025, cex=1.2, NBMINdata[,2] <- as.data.frame (NBMINsimplep(NBMIN)) NBMINdata[,3] <- as.data.frame (NBMINhierarchicalp(NBMIN)) NBMINdata[,4] <- as.data.frame (NBMINt(NBMIN)) lines(NBMINdata2[,1], NBMINdata2[,4])
legend("topleft", "all complexities", pch=19,
col="black",inset = .025, cex=1.2, lty=c(1,2)) plot(NBMIN, time, ylim=c(0,550),pch=19, xlab="NBMIN", ylab="time", cex.axis=1.2, cex.lab=1.2) summary(Im(points ~ (DI + DI2) \* complexity2))
summary(Im(points ~ (DM + DM2) \* complexity2))
summary(Im(points ~ (DNA + DM2) \* complexity2))
summary(Im(points ~ (DNR + DNR2) \* complexity2))
summary(Im(points ~ (DNR + DNR2) \* complexity2)) NBMINdata2 <- NBMINdata[order(NBMINdata[,1]),] summary(lm(points ~ DNA \* complexity2)) summary(lm(points ~ DNS \* complexity2)) summary(lm(points ~ DNR \* complexity2)) summary(lm(points ~ DI \* complexity2))
summary(lm(points ~ DM \* complexity2)) NBMINdata <- as.data.frame(NBMIN) return(141.542 - 1.143\*data) # distance to a straight line NBMINt=function(data){ ylim=c(-8,12)) pdf("NBmodel.pdf") lty=c(1,2)) lty=2) dev.off() # points ### ### 350360370 340

return(2.65923 -3.06339 +(0.15630-0.08911)\*data)

330

ylab="time", cex.axis=1.2, cex.lab=1.2)
lines(DNAdata2[,1], DNAdata2[,2])
legend("topleft", "all complexities", pch=19, col="black", DMdata[,2] <- as.data.frame(DMsimplep(DM[complexity==1])) DMdata2 <- DMdata[order(DMdata[,1]),1 DNAdata <- as.data.frame(DNA) DNAdata <- as.data.frame(DNA) DNAdata2 <- DNAdata[,2] <- as.data.frame(DNAt(DNA)) DNAdata2 <- DNAdata[order(DNAtdata[,1]),1] plot(DM[complexity=1], points[complexity=1], xlab="DM", ylab="points", pch=20, cex.axis=1.2, cex.lab=1.2) lines(DMdata2[,1], DMdata2[,2]) return(98.664757 - 1.763106\*data + 0.040971\*(data^2)) plot(DNA, time, ylim=c(0,550),pch=19, xlab="DNA", DMdata <- as.data.frame(DM[complexity==1]) inset = .025, cex=1.2, lty=c(1,2)) DMsimplep=function(data) { return(3.08961 - 0.10160\*data) summary(lm(time ~ DI + DI2 ))
summary(lm(time ~ DM + DM2 ))
summary(ln(time ~ DNA + DM2 ))
summary(lm(time ~ DNS + DN22 ))
summary(lm(time ~ DNR + DNR2 )) summary(lm(time ~ DNA ))
summary(lm(time ~ DNS ))
summary(lm(time ~ DNR )) DNAt=function(data){ pdf("DSLmodel.pdf") # number of states dev.off() #points ### ### 390 430 400 410420

summary(lm(points ~ NSS \* complexity2))

# time

summary(lm(time ~ NS ))
summary(lm(time ~ NSS ))
summary(lm(time ~ NHS )) 440

summary(lm(time ~ DI ))
summary(lm(time ~ DM ))

time

\*

380

summary(lm(time ~ NS + NS2))
summary(lm(time ~ NSS + NSS2))
summary(lm(time ~ NHS + NHS2))

500

NSt=function(data) { return(222.3486 -31.9711\*data + 1.8706\*(data^2)) }

450

NSSdata <- as.data.frame(NSS) NSSdata[,2] <- as.data.frame(NSSt(NSS)) NSSdata2 <- NSSdata[order(NSSdata[,1]),]

460

520

#### 470

dev.off()

###
# intersection faults
###
# points
# points
# points
summary(Im(points ~ IF + IF2 + complexity2))
summary(Im(points ~ IFT + complexity2))
summary(Im(points ~ IFTL + complexity2))
summary(Im(points ~ IFLL + complexity2))
# time

summary(lm(time ~ IF ))
summary(lm(time ~ IF + IF2 ))
summary(lm(time ~ IFTN ))

summary(lm(time ~ IFTT ))
490 summary(lm(time ~ IFTL ))
summary(lm(time ~ IFLL ))

IFsimplep=function(data){
 return(2.8289 - 0.6150\*data)

510

530

dev.off()

### # statechart Flow ### # points summary(lm(points ~ FL \* complexity2)) summary(lm(points ~ (FL + FL2) \* complexity2))

540

# time
summary(lm(time ~ FL ))
summary(lm(time ~ FL + FL2 ))

FLsimplep=function(data) {
 return(9.606450 -0.303616\*data+0.002114\*(data^2))
 }

FLhierarchicalp=function(data){
 FLhierarchicalp=function(data){
 return(9.606450-11.162693 + (0.474564-0.303616)\*data
 + (0.002114-0.004536)\*(data^2))

FLt=function(data){return(93.210995 + 1.656922\*data - 0.016628\*(data^2))

FLdata <- as.data.frame(FL)

FLdata[,2] <- as.data.frame(FLsimplep(FL))
FLdata[,3] <- as.data.frame(FLihierarchicalp(FL))
FLdata[,4] <- as.data.frame(FL(FL))
FLdata2 <- FLdata[order(FLdata[,1]),)</pre> 560

pdf("FImodel.pdf")
plot(FL[complexity==1], points[complexity==1], xlab="FL",
ylab="points", pch=20, cex.axis=1.2, cex.lab=1.2,

points[complexity==2|complexity==3], col="black") xlim=c(min(FL), max(FL)), ylim=c(-8,12)) points(FL[complexity==2|complexity==3],

lines(FLdata2[,1], FLdata2[,2])

570

col="black", inset = .025, cex=1.2, lty=c(1,2)) plot(FL, time, ylim=c(0,550),pch=19, xlab="FL", ylab="time", cex.axis=1.2, cex.lab=1.2)
lines(FLdata2[,1], FLdata2[,4])
legend("topleft", "all complexities", pch=19, dev.off()

580

# Number of Transitions ### ###

summary(lm(points ~ NT \* complexity2))
summary(lm(points ~ (NST + NST2) \* complexity2)) summary(lm(points ~ NSPT \* complexity2)) summary(lm(points ~ NST \* complexity2))
summary(lm(points ~ NPT \* complexity2)) # points 590

NSThierarchicalp=function(data){ summary(lm(time ~ NST + NST2)) summary(lm(time ~ NT + NT2)) summary(lm(time ~ NST ))
summary(lm(time ~ NPT ))
summary(lm(time ~ NSPT )) summary(lm(time ~ NT )) # time 600

return(-3.16697 + 0.31483\*data)

return(205.4068 + -23.4566\*data + 1.1906\*(data^2)) NTt=function(data){

610

NSTdata[,2] <- as.data.frame (NSThierarchicalp(NST)) NSTdata2 <- NSTdata[order(NSTdata[,1]),]</pre> NTdata2 <- NTdata[order(NTdata[,1]),] NTdata[,2] <- as.data.frame(NTt(NT)) NSTdata <- as.data.frame(NST) NTdata <- as.data.frame(NT)

points[complexity==2[complexity==3], xlab="NST", ylab="points", cex.axis=1.2, cex.lab=1.2, col="black") lines(NSTdata2[,1], NSTdata2[,2], col="black", lty=2) plot (NST[complexity==2|complexity==3], pdf("NTmodel.pdf")

620

dev.off()

630

# Versuch #### #####

$$\begin{split} \text{summary} \left( \text{Im} \left( \text{points} ~ \text{rRL} + \text{TR2} + \text{log.WHR} + \text{log.WHR} + \text{SUT} \right. \\ & + \text{SUT} + \text{NN} + \text{IR} + \text{Ir} + \text{ir} + \text{rE} + \text{E} + \text{complexity2}) ) \\ \text{vif} \left( \text{Im} \left( \text{points} - \text{rRL} + \text{TR2} + \text{log.WHR} + \text{log.WHR} + \text{sUT} + \text{SUT} + \text{SUT} \right. \\ \text{vif} \left. + \text{DM} + \text{NST} + \text{IF} + \text{IF2} + \text{FL} + \text{complexity2} \right) ) \end{split} \end{split}$$
summary(lm(points ~ log.WHR + DM + IF + FL + complexity2)) 640

return(3.45 + 4.9\*logxy - 0.08\*distmid + 0.37\*intfault - 0.066\*FL + 2.24) vif(lm(points ~ log.WHR + DM + IF + FL + complexity2))
test2=function(logxy,distmid,intfault,FL){

plot(fitted.values((lm(points ~ log.WHR + DM + IF + FL points(test2(log.WHR, DM, IF, FL), col="red")

summary(lm(points ~ TRL + TR2 + log.WHR + log.WHR2 #### 650

vif(lm(points ~ TRL + TR2 + log.WHR + log.WHR2 summary(lm(points ~ TRL + TR2 + SUT + sut2 + complexity2)) + complexity2))

vif(lm(points ~ TRL + TR2 + SUT + sut2 + complexity2))

# anderes Modell, vif schlecht + complexity2))

+NBMIN+DM+PF+IFLL+NST+NST2) \* complexity2)) +NBMIN+DM+PF+IFLL+NST+NST2) \*complexity2)) summary (lm (points~(TRL+log.WHR+log.WHR2+SUA+SUA2 vif(lm(points~(TRL+log.WHR+log.WHR2+SUA+SUA2 # alle signifikanten metriken drin 660

summary(lm(points~(TRL+log.WHR+log.WHR2+IF)\*complexity2)) vif(lm(points~(TRL+log.WHR+log.WHR2+IF)\*complexity2)) summary(lm(points~(TRL+log.WHR+log.WHR2+IFLL) \*complexity2)) vif(lm(points~(TRL+log.WHR+log.WHR2+IFLL))\*complexity2)) 670

summary(lm(points~(TRL+log.WHR+PF+IFLL)\*complexity2)) vif(lm(points~(TRL+log.WHR+PF+IFLL)\*complexity2)) summary (lm (points  $\sim$  (TRL+log.WHR+log.WHR2+NBMIN+PF+IFLL) \*complexity2))
vif(lm(points~(TRL+log.WHRlog.WHR2+NBMIN+PF+IFLL)) \*complexity2))

summary (lm (points~ (TRL+NBMIN+PF+IFLL) \*complexity2)) vif(lm(points~(TRL+NBMIN+PF+IFLL) \*complexity2)) 680

summary(lm(points~(TRL+log.WHR+NBMIN+PF+IFLL)\*complexity2)) vif(lm(points~(TRL+log.WHR+NBMIN+PF+IFLL)\*complexity2))

-min(log.WHR)) log.WHRnorm <- (log.WHR-min(log.WHR))/(max(log.WHR)</pre> TRLnorm <- (TRL-min(TRL))/(max(TRL)-min(TRL)) #log.WHRnorm <- log10(WHRnorm)

NBMINnorm <- (NBMIN-min(NBMIN))/(max(NBMIN)-min(NBMIN)) IFLLnorm <- (IFLL-min(IFLL)) / (max(IFLL)-min(IFLL))</pre> PFnorm <- (PF-min(PF)) / (max(PF)-min(PF))</pre> log.WHRnorm2 <- (log.WHRnorm)^2 690

+PFnorm+IFLLnorm) \*complexity2)) summary(lm(points~(TRLnorm+log.WHRnorm+NBMINnorm vif(lm(points~(TRLnorm+log.WHRnorm+NBMINnorm

+PFnorm+IFLLnorm) \* complexity2))

700

####

# Versuch ####

$$\label{eq:multiplicative} \begin{split} \text{summary}\,(\text{lm}\,(\text{time}~\sim~\text{log.WHR}~+~\text{log.WHR}^2~+~\text{SUT}~+~\text{SUT}^2 \\ +~\text{NBMIN}~+~\text{DNA}~+~\text{DNA}^2~+~\text{IF}~+~\text{IF2}~+~\text{FL}^2 \end{split}$$
+ NST + NST2))

# 7 significant terms 710

$$\label{eq:summary} \begin{split} & \mbox{summary}\left(\mbox{lm}\ensuremath{\mathbb{R}}\xspace \mbox{summary}\xspace \mbox{summary$$
+ NST + NSS) + # 9 significant

summary (lm(time~log.WHR+SUS+NBMIN+DNA+NSS+IF+NT)) vif(lm(time~log.WHR+SUS+NBMIN+DNA+NSS+IF+NT)) 720

summary(lm(time~log.WHR+SUS+NBMIN+DNA+ DNA2 +IF+ IF2 )) vif(lm(time~log.WHR+SUS+NBMIN+DNA+ DNA2 +IF+ IF2 ))

vif(lm(time~log.WHR+SUS+NBMIN+DNA+IF+ IF2)) summary (lm(time~log.WHR+SUS+NBMIN+DNA+IF))

summary(lm(time~NSS+NT+IF))

$$\label{eq:summary} \begin{split} \text{summary}\left(\text{lm}\left(\text{time}~\sim~\text{DNA}~+~\text{DNA2}~+~\text{IF}~+~\text{IF2}~+~\text{NST}\right)\right) \\ \text{vif}\left(\text{lm}(\text{time}~\sim~\text{DNA}~+~\text{DNA2}~+~\text{IF}~+~\text{IF2}~+~\text{NST})\right) \end{split}$$
730

# test #### # # # #

return(-0.105003 + 1.513129\*d + (-0.013148-0.073788\*d)\*TRL + (1.467586+1.867131\*d)\*log.WHR pointsformula = function(d){

- + (4.449800-5.077132\*d)\*(log.WHR^2) + (-0.056037+0.235263\*d)\*NBMIN

740

- + (0.025074+0.011027\*d)\*PF + (-0.994217+1.017972\*d)\*IFLL)

num <- seq(1,375, by=5)
test2 <- Aesthetics2[,c(6,7,14,12,28)][num,]</pre> test <- Aesthetics2[,c(6,7,14,12,28)]

pointsformula(0) 750

hierarchicalpoints <- as.data.frame(hierarchicalpoints)[num,] simplepoints <- as.data.frame(simplepoints)[num,] simplepoints <- pointsformula(0)
hierarchicalpoints <- pointsformula(1)</pre> pointsformula(1)

760

ncol=5, byrow=TRUE)) realpointsmin <- apply(pointsframe, 1, min, na.rm=TRUE) realpointsmax <- apply(pointsframe, 1, max, na.rm=TRUE) pointsframe <- as.data.frame(matrix(Aesthetics2\$points, realpoints <- apply (pointsframe, 1, mean, na.rm=TRUE)

fullnames <- Aesthetics2\$chart[num] names <- Aesthetics2\$chart[num]
names[seq(2,75, by=2)] <- NA</pre>

770

mean(abs(c(simplepoints[1:25],hierarchicalpoints[26:75]) -realpoints))

hierarchicalpoints [26:75]) differencep <- as.data.frame(c(simplepoints[1:25],

-realpoints) differencep[2] <- fullnames

780

hierarchicalpoints[26:75])) calculatedp <- as.data.frame(fullnames)
calculatedp[2] <- as.data.frame(c(simplepoints[1:25],</pre>

names(calculatedp) <- c("chart","calc.points",
 "mean.real.points")</pre> ## select only 11 statecharts calculatedp[3] <- realpoints

abs (calculatedp[2]-calculatedp[3]) calculatedp[seq(1,75,by=5),]

-calculatedp[3][seq(1,75,by=5),])) mean(abs(calculatedp[2][seq(1,75,by=5),]) mean(abs(calculatedp[2][seq(1,75,by=5),] 790

-calculatedp[3][seq(2,75,by=5),]))
mean(abs(calculatedp[2][seq(3,75,by=5),]

-calculatedp[3][seq(3,75,by=5),]))

mean(abs(calculatedp[2][seq(1, 75, by=5),]

-calculatedp[3][seq(4,75,by=5),]))
mean(abs(calculatedp[2][seq(1,75,by=5),]

-calculatedp[3][seq(5,75,by=5),]))

800

#par(mfrow=c(2,1))

ylab="difference to mean(points)", cex.lab=1, type="n")pdf("appliance-formula-points.pdf", width=9, height=6)
par(mar=c(7, 5, 4, 2) + 0.1, lend=2)
plot(rep(0,75), ylim=c(-8,8), axes=FALSE, xlab="",

axis(2, cex.axis=1)
axis(1, 1abels=names[seq(1,75,by=2)], at=seq(1,75,by=2), las=2, cex.axis=1)

810

points(realpointsmin-realpoints, type="h", col="lightgrey", lwd=10,lend=2)

points(realpointsmax-realpoints, type="h", col="lightgrey", lwd=10,lend=2)

hierarchicalpoints[26:75]-realpoints[26:75]), col="black", pch=20, type="h", lwd=3) legend("topleft", c("spread of awarded points", points(c(simplepoints[1:25]-realpoints[1:25], 820

"calculated rating"), pch=c(NA,NA),
lty=c(1,1), lwd=c(10,3),col = c("grey", "black")) dev.off() () xoq

-realpoints[1:25], hierarchicalpoints[26:75] test <- as.data.frame (c(simplepoints[1:25] # with charts ordered by the deviation

830

-realpoints[26:75]))

test[,3] <- as.data.frame(realpointsmin-realpoints)</pre> test[,4] <- as.data.frame(realpointsmax-realpoints)
test2 <- test[order(test[,1]), ]</pre> test[,2] <- as.data.frame(fullnames)</pre> names(test) <- "deviation"

par(mar=c(7, 5, 4, 2) + 0.1, lend=2)
plot(rep(0,75), ylim=c(-8,8), axes=FALSE, xlab="",
ylab="difference to mean(points)", cex.lab=1, type="n") #pdf("appliance-formula-points.pdf", width=9, height=6) 840

axis(1, labels=test2[,2], at=1:75, las=2, cex.axis=1) axis(2, cex.axis=1) () xoq

points(test2[,3], type="h", col="lightgrey",lwd=10,lend=2) points(test2[,4], type="h", col="lightgrey",lwd=10,lend=2)
points(test2[,1], col="black", pch=20, type="h", lwd=5)
lines(rep(0,75), ylim=c(-8,8), pch=20, lty=2, lwd=5)
legend("topleft", c("limits of actual awarded points",

"calculated rating", pch=c(NA,20), lty=c(1,1), lwd=c(10,1), col = c("grey", "black") ) #dev.off() 850

pdf("appliance-formula-points-v2.pdf", width=9, height=6) par(mare(7, 5, 4, 2) + 0.1, lend=2)
plot(rep(0,75), ylim=c(-8,8), axes=FALSE, xlab="",

ylab="difference to mean(points)", cex.lab=1, type="n") axis(2, cex.axis=1)
axis(1, labels=names[seq(1,75,by=2)], at=seq(1,75,by=2), las=2, cex.axis=1) 860

points(realpointsmin-realpoints, type="h", col="lightgrey",

() X oq

lwd=20,lend=2)
points(realpointsmax-realpoints, type="h", col="lightgrey", lwd=20,lend=2)

hierarchicalpoints[26:75]-realpoints[26:75]), col="black", pch=20, type="o") lines(rep(0,75), ylim=c(-8,8), pch=20, lty=2) points(c(simplepoints[1:25]-realpoints[1:25],

"calculated rating"), pch=c(NA, 20), lty=c(2,1), lwd=c(10,1), col = c("grey", "black")) legend("bottomleft", c("limits of actual awarded points", 870

dev.off()

distancepointshierarchical <- realpoints-hierarchicalpoints distancepointssimple <- realpoints-simplepoints maxdistancepoints <- realpointsmax-realpoints mindistancepoints <- realpointsmin-realpoints 880

distancerealpoints <- as.data.frame(distancerealpoints) distancerealpoints[2] <- abs(mindistancepoints) distancerealpoints <- maxdistancepoints

absdist <- apply(distancerealpoints, 1, max)

barplot (absdist)

ylim=c(0,10), names.arg=names, las = 2, axes=FALSE, add=TRUE, col="red")

plot(c(distancepointssimple[1:25], distancepointshierarchical[26:75])) #names.arg=Aesthetics2\$chart[num]

lines (maxdistancepoints, type="S") lines (mindistancepoints, type="S") 900

### \*\*\*\* 910

# time ###########

timeformula = function() { return(108.905526

- 2.084012\*DNA

+ 0.042023\*(DNA^2) - 19.966945\*IF

+ 2.011368\*(IF^2) + 3.957036\*NST)

~~ 920 timeformula2 = function() { return(75.977574

- 18.583526\*log.WHR

+ 2.316132\*SUS

- 0.789542\*NBMIN

- 1.008281\*DNA

+ 0.030332\*(DNA^2) - 7.191888\*IF

+ 1.272297\*(IF^2))

\_ 930

timeneeded <- timeformula()
timeneeded <- as.data.frame(timeneeded)[num,]</pre> #timeformula()

timeneeded2 <- as.data.frame(timeneeded2)[num,] timeneeded2 <- timeformula2()

mean(abs(timeneeded-realtime))
mean(abs(timeneeded2-realtime)) 940

ncol=5, byrow=TRUE) ) timeframe <- as.data.frame (matrix (Aesthetics2\$time,

realtime <- apply(timeframe, 1, mean, na.rm=TRUE)
realtimemin <- apply(timeframe, 1, min, na.rm=TRUE)
realtimemax <- apply(timeframe, 1, max, na.rm=TRUE)</pre> 950

maxdistancetime <- realtimemax-realtime
mindistancetime <- realtimemin-realtime</pre> distancetime <- realtime-timeneeded

ylab="difference to mean(time)", cex.lab=1, type="n") axis(2, cex.axis=1)
axis(1, labels=names[seq(1,75,by=2)], at=seq(1,75,by=2), pdf("appliance-formula-time.pdf", width=9, height=6)
par(mar=c(7, 5, 4, 2) + 0.1, lend=2)
plot(rep(0,75), ylim=c(-150,150), axes=FALSE, xlab="", 960

points(realtimemin-realtime, type="h", col="lightgrey", las=2, cex.axis=1)

points(realtimemax-realtime, type="h", col="lightgrey", lwd=10,lend=2)

points(timeneeded-realtime, col="black", pch=20, type="h", lwd=10,lend=2) lwd=3) 970

dev.off() () xoq

pdf("appliance-formula-time-v2.pdf", width=9, height=6)
par(mar=c(7, 5, 4, 2) + 0.1, land=2)
plot(rep(75), yllmec(-150,150), axes=FAISE, xlab="",
 ylab="difference to mean(time)", cex.lab=1, type="n")

980

axis(2, cex.axis=1)

axis(1, labels=names[seq(1,75,by=2)], at=seq(1,75,by=2), las=2, cex.axis=1)
points(realtimemin-realtime, type="h", col="lightgrey",

1wd=20, 1end=2)

points(realtimemax-realtime, type="h", col="lightgrey", lwd=20, lend=2)

points(timeneeded-realtime, col="black", pch=20, type="o") 066

() xoq

dev.off()

1000

890

# Editing ############ \* \* \* \* \* \* \* \* \* \* \* \* \*

detach aesthetics data frame detach(Aesthetics2)

\*

Editing <- read.csv("../data/editing2.csv", header=TRUE, row.names=1) # read editing data frame 1010

Editing\$create.modify <- as.factor(Editing\$create.modify)

Editing\$tool <- as.factor(Editing\$tool)

Editing2\$total.actions <- (19.43+Editing2\$keypresses\*0.73 model <- lm(Editing2\$time ~ Editing2\$keypresses + Editing2\$macrokeys + Editing2\$mouseclicks + Editing2\$mouseclicks\*2.47
+ 0.72\*Editing2\$mousedrags) + 8.21\*Editing2\$macrokeys Editing2 <- Editing[Editing\$beginner.advanced==2,] + Editing2\$mouseclicks[tool==3]
+ Editing2\$mousedrags[tool==3]) + Editing2\$mouseclicks[tool==1] + Editing2\$mousedrags[tool==1]) + Editing2\$mouseclicks[tool==2] ~ Editing2\$keypresses[tool==1] + Editing2\$mousedrags[tool==2] Editing2\$keypresses[too1==3] Editing2\$keypresses[too1==2] + Editing2\$macrokeys[tool==1] + Editing2\$macrokeys[tool==2] + Editing2\$macrokeys[tool==3] as.factor(Editing\$beginner.advanced)
attach(Editing2) summary(model)
model.1 <- lm(Editing2\$time[tool==1]</pre> model.2 <- lm(Editing2\$time[tool==2] model.3 <- lm(Editing2\$time[tool==3] + Editing2\$mousedrags) Editing\$beginner.advanced <summary (model.1) summary (model.2) summary (model.3) 10201030 1040

1050

$$\label{eq:constraint} \begin{split} \texttt{mean} (\texttt{Editing2} \texttt{streate.modify} = 1 \texttt{fEditing2} \texttt{streate.modify} = 1 \texttt{)} \\ \texttt{mean} (\texttt{Editing2} \texttt{streate.modify} = 2 \texttt{stditing2} \texttt{streate.modify} = 1 \texttt{)} \end{split}$$
mean(Editing2\$total.actions[tool==2&Editing2\$create.modify==1]) mean(Editing2\$time[tool==3&Editing2\$create.modify==1])mean(Editing2\$total.actions[tool==3&Editing2\$create.modify==1]) mean(Editing2\$time[tool==1&Editing2\$create.modify==1])

<- round (Editing2\$total.actions)

Editing2\$total.actions2

1060

+ error.mousedrags[tool==1]\*0.72
+ error.keypresses[tool==1]\*0.73 + Editing2\$minimum.mouseclicks\*2.47 +error.mouseclicks[tool==1] \*2.47 + error.macrokeys[tool==1] \*8.21) + 0.72\*Editing2\$minimum.mousedrags) (6.476667+unnecessary.mouseclicks[tool==2|tool==3]\*2.47 +Editing2\$minimum.keypresses\*0.73 + 8.21 \* Editing 2\$ minimum . macrokeys Editing2\$minimum.mouseclicks <- c(rep(39,19),rep(16,19), rep(32,19),rep(9,19), rep(11,19),rep(2,19)) rep(20,19), rep(6,19), rep(46,19), rep(22,19)) rep(15,19), rep(4,19))
Editing2\$minimum.keypresses <- c(rep(10,19), rep(3,19),</pre> <- c(rep(1,19),rep(3,19), rep(0,19),rep(0,19), Editing2\$minimum.macrokeys <- c(rep(0,19),rep(0,19), rep(6,19), rep(3,19), rep(0,19),rep(0,19)) (6.476667+error.mouseclicks[tool==2|tool==3]\*2.47
+ error.mousedrags[tool==2|tool==3]\*0.72 + unnecessary.mousedrags[tool==2|tool==3]\*0.72
+ unnecessary.keypresses[tool==2|tool==3]\*0.73 + unnecessary.macrokeys[tool==2|tool==3]\*8.21) Editing2\$total.erroractions[tool==1] <- (4.8575 Editing2\$total.erroractions[tool==2|tool==3] <-(4.8575+unnecessary.mouseclicks[tool==1] \*2.47 Editing2\$total.unnecessary[tool==2|tool==3] <-(4.8575 + nicefy.musedrags[tool==1]\*0.72)
Editing2\$total.nicefy[tool==2|tool==3] < nicefy.mousedrags[tool==2|tool==3]\*0.72</pre> + error.keypresses[tool==2|tool==3] \*0.73 + error.macrokeys[tool==2|tool==3] \*8.21) + unnecessary.mousedrags[tool==1] + 0.72 + unnecessary.keypresses[tool==1]\*0.73 + unnecessary.macrokeys[tool==1] \*8.21) Editing2\$total.unnecessary[tool==1] <-Editing2\$minimum.actions <- (19.43 Editing2\$total.nicefy[tool==1] <-Editing2\$minimum.mousedrags detach(Editing2) attach(Editing2) 1080109011101070 1100

118011901210lbls[[1] <- paste(lblsi[1], "\n\n", sep="") # ad % to labels lbls2 <- paste(lbls, pct2) # add percents to labels</pre> lbls2 <- paste(lbls2,"%",sep="") # ad % to labels lbls2[1] <- paste(lbls2[1],"\n\n",sep="") # ad % to labels</pre> lbls3[1] <- paste(lbls3[1]," $\n\$  sep="") # ad % to labels + Editing2\$total.unnecessary
+ Editing2\$total.nicefy)) Editing2\$productive.actions[tool==2|tool==3] < [6.476667 +productive.mouseclicks[tool==2|tool==3]\*2.47</pre> mean(Editing2\$total.erroractions[tool==1]),
mean(Editing2\$total.unnecessary[tool==1]), (Editing2\$total.actions - (Editing2\$total.erroractions slices3 <- c(mean(Editing2\$productive.actions[tool==3]),</pre> mean(Editing2\$total.erroractions[tool==3]), slicesl <- c(mean(Editing2\$productive.actions[tool==1]),</pre> slices2 <- c(mean(Editing2\$productive.actions[tool==2]),</pre> mean (Editing2\$total.erroractions[tool==2]), mean(Editing2\$total.unnecessary[tool==2]), mean(Editing2\$total.unnecessary[tool==3]), lbls1 <- paste(lbls, pct1) # add percents to labels lbls1 <- paste(lbls1, "%", sep="") # ad % to labels</pre> lbls3 <- paste(lbls, pct3) # add percents to labels lbls3 <- paste(lbls3, "%", sep="") # ad % to labels</pre> mean(Editing2\$total.nicefy[tool==1])) mean(Editing2\$total.nicefy[tool==2])) mean(Editing2\$total.nicefy[tool==3])) + productive mousedrags[tool==2|tool==3] \*0.72 + productive.keypresses[tool==2|tool==3] \*0.73 + productive.macrokeys[tool==2|tool==3] \*8.21) (4.8575+productive.mouseclicks[tool==1]\*2.47 + productive.mousedrags[tool==1] \*0.72 + productive.keypresses[tool==1] \*0.73 + productive.macrokeys[tool==1] \* 8.21) Editing2\$productive.actions[tool==1] <pct1 <- round(slices1/sum(slices1)\*100)</pre> <- round(slices2/sum(slices2)\*100) <- round(slices3/sum(slices3)\*100) # attach newly created columns neccessary \n for newlines productive.actions2 <detach(Editing2) attach(Editing2) # pie charts pct2 pct3 # 1140115011601120 1130

efficiency1 <- mean(Editing2\$productive.actions[tool==1])/
mean(Editing2\$total.actions[tool==1])</pre> main="percentage of action categories, tool 1") main="percentage of action categories, tool 2")
pie3D(slices3, labels = lbls3, explode=0.1, main="percentage of action categories, tool 3") pie3D(slices2, labels = lbls2, explode=0.1, pie3D(slices1, labels = lbls1,explode=0.1, col=rainbow(length(lbls1)), mean(Editing2\$productive.actions[tool==2]) mean(Editing2\$productive.actions[tool==3]) mean(Editing2\$productive.actions[tool==1]) mean(Editing2\$total.actions[tool==1]) mean(Editing2\$total.actions[tool==2]) mean(Editing2\$total.actions[tool==3]) col=rainbow(length(lbls2)), col=rainbow(length(lbls3)), # not so nice 3D-Piecharts mean(time[tool==1]) mean(time[tool==2]) mean(time[tool==3]) library (plotrix) #[1] 173.2105 #[1] 128.0074 91.60026 188.9966 #[1] 148.8826 #[1] 139.8584 #[1] 207.0526 #[1] 159.6579 #[1] 108.8661 #[1] #[1] 11701200

Editing2\$efficiency <- Editing2\$productive.actions/Editing2\$total.actions

efficiency2 <- mean(Editing2\$productive.actions[tool==2])/ efficiency3 <- mean(Editing2\$productive.actions[tool==3])/
mean(Editing2\$total.actions[tool=3])</pre> mean(round((Editing2\$total.actions[tool==1]/ mean(Editing2\$total.actions[tool==2]) efficiency1 efficiency2 efficiency3

Editing2\$minimum.actions[tool==1]), 2)\*100) Editing2\$minimum.actions[tool==2]), 2)\*100) Editing2\$minimum.actions[tool==3]), 2)\*100) mean(round((Editing2\$total.actions[tool==2]/ mean(round((Editing2\$total.actions[tool==3]/ 1220

#dev.off()

mean(round((Editing2\$total.actions[tool==1]-

Editing2\$total.actions[tool==2], 2)\*100)
mean(round((Editing2\$total.actions[tool==3]-Editing2\$total.actions[tool==1], 2)\*100) Editing2\$total.actions[tool==3], 2)\*100) Editing2\$minimum.actions[tool==2])/ Editing2\$minimum.actions[tool==3])/ mean(round((Editing2\$total.actions[tool==2]-

1230

Editing2\$efficiency[tool==3], namesec("WYSIWYG","KIEL-macros","KIEL-KIT"), cex.lab=1.4, cex.axis=1.4) pdf("boxplot-efficiency.pdf", width=7)
boxplot(Editing2\$efficiency[tool==1], Editing2\$efficiency[tool==2],

1240

dev.off()

# average amount of errors made mean(Editing2\$errors[tool==1]) mean(Editing2\$errors[tool==2]) mean(Editing2\$errors[tool==3]) #[1] 2.184211 #[1] 1.552632 #[1] 5.5

sum (Editing2\$time[tool==1])/sum(Editing2\$errors[tool==1])
sum (Editing2\$time[tool==2])/sum(Editing2\$trors[tool==2])
sum (Editing2\$time[tool==3])/sum(Editing2\$errors[tool==3]) #average time between errors

1250

# sinnvoll? eher nicht. mean(errors[tool==1]/Editing2\$productive.actions[tool==1]) mean(errors[tool==2]/Editing2\$productive.actions[tool==2]) #[1] 0.0203794

1260

mean(errors[tool==3]/Editing2\$productive.actions[tool==3]) #[1] 0.01244871 #[1] 0.05528222

mean(Editing2\$total.erroractions[tool==1]/
Editing2\$productive.actions[tool==1])

#[1] 0.1150057

mean(Editing2\$total.erroractions[tool==2]/ Editing2\$productive.actions[tool==2]) #[1] 0.09232886

mean(Editing2\$total.erroractions[tool==3]/ Editing2\$productive.actions[tool==3]) 1270

#[1] 0.1408364

Editing2\$total.erroractions[tool==1]/

Editing2\$errors[too1==1]

Editing2\$total.erroractions[tool==2]/

Editing2\$total.erroractions[tool==3]/ Editing2\$errors[tool==2] Editing2\$errors[too1==3] 1280

<- NA #Editing2\$efficiency[Editing2\$efficiency<0.4]

 $sum \left[ \text{Editing2} \\ \text{$total.erroractions[tool==2]} \right] \\ sum \left( \text{Editing2} \\ \text{$total.unnecessary[tool==3]} \right) / \\$ sum(Editing2\$total.erroractions[tool==1]) sum(Editing2\$total.unnecessary[tool==2])/ sum(Editing2\$total.unnecessary[tool==1])/

sum(Editing2\$total.erroractions[tool==3]) 1290

mean(total.unnecessary[tool==1&create.modify==1])/  $\!\!\!\!\!\!$ mean(total.actions[tool==1&create.modify==1])

mean(total.unnecessary[tool==1&create.modify==2])/  $mean \left( \texttt{total.actions[tool==1 \& create.modify==2]} \right)$ 

mean(total.unnecessary[tool==2&create.modify==1])/ mean(total.actions[tool==2&create.modify==1])

 $\label{eq:mean} mean (total.actions[tool==2&create.modify==2]) mean (total.unnecessary[tool==3&create.modify==1]) /$ mean(total.unnecessary[tool==2&create.modify==2])/ 1300

mean(total.unnecessary[tool==3&create.modify==2])/ mean(total.actions[tool==3&create.modify==1]) mean(total.actions[tool==3&create.modify==2])

\*\*\*\* Ausgabe von Plots 1310

Please use the Makefile # #(only acutely used plots here)# \*\*\* # draw scatterplots and histograms
pdf("dataset.pdf")

for (i in c(6:33)){ 1320

Aesthetics2[2]==3], "Complexity: Hierarchical and Parallel") histnew2(i, Aesthetics2[,i], "Complexity: All") histnew2(i, Aesthetics2[i][Aesthetics2[2]==1], histnew2(i, Aesthetics2[i][Aesthetics2[2]==2| "Complexity: Simple") sp3points4(i) sp3time4(i)

dev.off() 1330

pdf("dataset-only-advanced.pdf")
for (i in c(6:33))(
sp3points3(i) sp3time3(i)

dev.off()

1340

# draw an empty sheet
pdf("test.pdf")
plot(1:10, 1:10, type="n", axes=FALSE, xlab="", ylab="",
frame.plot=FALSE)
dev.off()

1350

put corrected receipt , when y insign you you pairs(Aesthetics[complexity=1&experiment==2), c(3:35, 6:20, 2:33)], lower.panel=panel.smooth, upper.panel=panel.cor)

1360

c(34:35, 6:20, 24:33)], lower.panel=panel.smooth, upper.panel=panel.cor) dev.off()

1370 lower.panel=panel.smooth, upper.panel=panel.cor dev.off() pdf("corttable-c3el.pdf", width=30, height=30) pairs(Aesthetics((complexity==3.experiment==1),

c(34:35, 6:20, 24:33)], lower.panel=panel.smooth, upper.panel=panel.cor) dev.off()

1380 lower.panel=panel.smooth, upper.panel=panel.cor)
dev.off()

pdf("corrtable-cle2-points.pdf", width=30, height=30) pairs(Aesthetics2[complexity=1,c(34, 6:20, 24:33)], lower.panel=panel.smooth, upper.panel=panel.cor) dev.off()

pdf("corrtable-c23e2-points.pdf", width=30, height=30)
pairs(Aesthetics[(complexity=3], org2, c134, c, 20, c, 24, c, 31].

c(34, 6:20, 24:33)], lower panel=panel smooth, upper panel=panel cor) dev off()

pdf("corrtable-c123e2-time-reduced.pdf", width=30,

height=30)
height=30
height=20
height=22[,c(35, 6,7,9,14,18,24,27:30)],
her.panel=panel.smooth, upper.panel=panel.cor)
dev.off()

pdf("corrtable-c123e2-points.pdf", width=30, height=30)
pairs(Aesthetics2[,c(34, 6:20, 24:33]],
lower.panel=panel.smooth, upper.panel=panel.cor)

dev.off() pdf("corrtable-c123a2-points-reduced.pdf", width=30,

1410 height=30)
pairs(Aestherics[,c(34, 6,7,9,15,17,24,29,30)],
lower.panel=panel.smooth, upper.panel=panel.cor)
dev.off()

 corrgram(Aesthetics)

# correlations

cml1 <- cor(Aesthetics[complexity=liexperiment=1,6:35], use="pairwise.complete.obs") 1430 symnum(cml1)

cm21 <- cor(Aestherics(complexity=2kexperiment==1,6:35)
 use="pairwise.complete.obs")
 symmm(cm21)</pre>

cm31 <- cor(Aesthetics[complexity==36experiment==1,6:35], use="pairwise.complete.obs") symnum(cm31)

cml2 <- cor(Aesthetics[complexity==l&experiment==2,6:35], use="pairwise.complete.obs") symnum(cml2)

1440 cm22 <- cor(Aesthetics[complexity==24experiment==2,6:35], use="pairwise.complete.obs") symmum(cm22)

cm32 <- cor(Aesthetics[complexity==3kexperiment==2,6:35], use="pairwise.complete.obs") symnum(cm32)

highcorrelation(cm11)

| <pre>pdf("corrtable-select-points23-spearman.pdf", width=9,</pre>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre># visualization of the correlation between label-label intersections and points(</pre>                                                                                              |                                                                                                                                                                                                                         | <pre>out &lt;= lm(y ~ x + color)<br/>summary(out)<br/>coef &lt;- coefficients(out)<br/>pdf("dummyregr=example.pdf")<br/>plot(x, y, col = as.character(color),<br/>plot(x, y, col = as.character(color),<br/>plot(s, rot = as.character(color),<br/>abline(coeff"(lntercept)], = coef["colorred"],</pre> | <pre>cuert x1, cut = red,<br/>abline(coef["(Intercept)"] + coef["colorgreen"],<br/>coef["x1", col = "green", ity=)<br/>coef["x1", col = "green", ity=)<br/>abline(coef["(Intercept)"], coef["x"], col = "blue", ity=3)<br/>legend("topleft", c1"square", "circle", "triangle",<br/>pch=c(15,15,17), col=c("red", "blue", "green"),<br/>inset = .025, corst.2, itv=c(1,2,3))</pre> | dev.off<br>summary                                             | <pre>out &lt;- lm(y ~ x + color + 0) summary(out) coef &lt;- coefficients(out) plot(x, y, col = as.character(color)) for (col in levels(color)) {</pre> |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0121                                                                                                                           | ,<br>ti                                                                                                                                                                                                                                                                                                                                                                                                                            | looth,                                                                                                                                                                                   | 1530<br>.te,4)))                                                                                                                                                                                                        | exity==3],<br>,<br>(te,4))) 1540                                                                                                                                                                                                                                                                        | .rman")<br>(te,4)))                                                                                                                                                                                                                                                                                                                                                               | trics 1550                                                     | 2)                                                                                                                                                      |
| highcorrelation (cm21)<br>highcorrelation (cm31)<br>highcorrelation (cm22)<br>highcorrelation (cm22)<br>highcorrelation (cm22) | <pre># correlation tables with spearman method<br/>pdf("corrtable-cle2-points-spearman.pdf", width=30,<br/>height=0s2[complexity=1,c(34, 6:33)],<br/>pairs(aesthetics2[complexity==1,c(34, 6:33)],<br/>lower.panel=panel.smooth, upper.panel=panel.cor2)<br/>dev.off()<br/>dev.off()<br/>pdfr=30,<br/>height=30<br/>pairs(aesthetics2[complexity==3]complexity==2),<br/>upper.panel=panel.cor2);<br/>upper.panel=panel.cor2)</pre> | <pre>dev.off() pdf("corrtable-c123e2-time-spearman.pdf", width=30,     height=30) pairs(Aesthetics2(,c(35, 6:33)], lower.panel=panel.smooth,     upper.panel=panel.cor2) dev.off()</pre> | <pre>for (i in 6:33){     cor &lt;- cor.test(Aesthetics2[,i][complexity==1],         cor &lt;- cor.test(Pasthetics2[,i], method="spearman")         print(paste(names(Aesthetics2[i]), round(cor\$estimate,4))) }</pre> | <pre>for (i in 6:33) {     cor &lt;- cor.test (Aesthetics2[,i][complexity==2 complexity==3],         points(complexit==2 complexity==3],         method="spearman")     print(paste(names(Aesthetics2[i]), round(cor\$estimate,4))) }</pre>                                                             | <pre>for (i in 6:33) {     cor &lt;- cor.test (Aesthetics2[,i], time, method="spearman")     print(paste(names(Aesthetics2[i]), round(cor\$estimate,4)))   } ###</pre>                                                                                                                                                                                                            | # exemplary correlation tables for the significant metrics ### | <pre>pdf("corrtable-select-points1-spearman.pdf", width=9,<br/>height=9)<br/>pairs(Aesthetics2[complexity==1,</pre>                                     |
| 1450                                                                                                                           | 1460                                                                                                                                                                                                                                                                                                                                                                                                                               | 1470                                                                                                                                                                                     |                                                                                                                                                                                                                         | 1480                                                                                                                                                                                                                                                                                                    | 1490                                                                                                                                                                                                                                                                                                                                                                              |                                                                | 1500                                                                                                                                                    |

## Plot the data and regression surface for each occupation type plot(DucanSpressige[DuncanStype=="proff") ~ DuncanSedication[DuncanStype=="proff") xlim=c(0,105), ylim=c(0,105), xlab="education", # dummy-variable regression with different slopes!
library(car) ~ Duncan\$education[Duncan\$type=="wc"], points(Duncan\$prestige[Duncan\$type=="wc"] lm.out <- lm(prestige ~ education\*type)</pre> ylab="prestige") col="red") attach(Duncan) data (Duncan) 1570

points[complexity==2[complexity==3], col="red")
abline[lm.outScoef[1] + lm.outScoef[3], lm.outScoef[2]
+ lm.outScoef[4], col="red")
abline(lm.outScoef[1], lm.outScoef[2], col="green") points(complexity=2|complexity=3), col="red") abline(lm.outScoef[1] + lm.outScoef[3], lm.outScoef[2] + lm.outScoef[1], col="red") abline(lm.outScoef[1], lm.outScoef[2], col="green") plot(log.WHR[complexity==1], points[complexity==1], col="green") points(log.WHR[complexity==2|complexity==3], lm.out <- lm(points~log.WHR\*complexity2)</pre> # plot points vs. time pdf("pointsVtime.pdf") 16001610

lm.out <- lm(points~TRL\*complexity2)
plot(TRL[complexity==1], points(complexity==1], col="green")
points(TRL[complexity==2|complexity==3],</pre>

# angewand auf TRL

1590

scatterplot(points, time, xlab="awarded points", ylab="time needed", "black", black", vclac("black", cex.lab=1.5) cex.axis=1.5, cex.lab=1.5)

abline(lm.out\$coef[1] + lm.out\$coef[3], lm.out\$coef[2] + lm.out\$coef[5]) ## prof abline(lm.out\$coef[1]+lm.out\$coef[4], lm.out\$coef[2]+lm.out\$coef[6],

points(Duncan\$type=="bc"]
~ Duncan\$tdon[Duncan\$type=="bc"],

col="blue")

1580

col="red", lty=3) ## wc abline(lm.out\$coef[1], lm.out\$coef[2], col="blue") ## bc

dev.off()

~

1560

#### F.2. Files written in JAVA

The following pages contain all java files that were used in the creation of this thesis.

F.2.1. XMLAnalyzer.java

F.2.2. XML.java

F.2.3. CSVWriter.java

F.2.4. SVGPathParser.java

F.2.5. SVGPathHandler.java

F.2.6. Sink3.java