
Priority-Based Compilation of SCCharts

Lars Peiler

Master’s Thesis
2017

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
Dipl.-Inf. Steven Smyth

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Safety-critical systems such as airbags or the control systems of a nuclear reactor must
be reliable as their correct execution directly influences the safety of surrounding human
beings or the mission itself. However, traditional imperative programming languages suffer
from non-deterministic behavior such as race conditions, limiting the reliability of programs
developed in those languages. Synchronous languages overcome these shortcomings and
guarantee deterministic behavior.

Traditionally, synchronous languages use signals for communication in concurrent execu-
tion, which require a globally consistent state. This restriction is lifted by the Sequentially
Constructive (SC) Model of Computation (MoC), a set of rules specified for the design of syn-
chronous languages. Synchronous languages further divide the execution of a model into ticks
– discrete divisions of time that are considered to be instantaneous. KIELER SCCharts, a visual
synchronous language, implements this SC MoC using the data-flow approach to generate
deterministic code, which requires models to be acyclic to be compilable. This thesis presents
the concept and implementation of an alternative low-level compilation approach towards
Sequentially Constructive Charts (SCCharts) models. It assigns priorities to determine the
scheduling order of statements in the program depending on the order stipulated by the SC

MoC. When executing the generated code, the priorities assigned to statements determine
dynamically which statement is to be executed next. Due to this approach, cycles that do not
contain any concurrent scheduling constraints are allowed unlike the data-flow approach. An
optimization is introduced to reduce the number of required priorities as well as the number
of priority changes in models. Using this optimization, context switches can be reduced,
improving execution times. Additionally, this thesis covers the handling of schizophrenia
in the priority-based compilation. Schizophrenia is a problem that occurs in synchronous
languages, when statements are executed multiple times per tick. If for example a local scope
is left and re-entered, the re-initialization of local variables as well as the constraints for
concurrency must be considered. The priority-based compilation solves this by allowing
cycles as well as sequential writes to variables as stipulated by the SC MoC.

v

ASC Acyclic Sequentially Constructive

CFG Control-Flow Graph

CCFG Concurrent Control-Flow Graph

ELK Eclipse Layout Kernel

GRC Graph Code

IASC iur-Acyclic Sequentially Constructive

IDE Integrated Development Environment

KiCo KIELER Compiler

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIML KIELER Infrastructure for Meta Layout

KLighD KIELER Lightweight Diagrams

LCA Least Common Ancestor

LOESS Locally Weighted Smoothing

M2M Model to Model

MoC Model of Computation

npr Node Priority

prioID Priority ID

PRET-C Precision Timed C

RCP Rich Client Platform

SASC Structurally Acyclic Sequentially Constructive

SCC Strongly Connected Component

SCCharts Sequentially Constructive Charts

SCG Sequentially Constructive Graph

SCL Sequentially Constructive Language

SCLP Sequentially Constructive Language with priorities

SC Sequentially Constructive

vi

SIASC Structurally iur-Acyclic Sequentially Constructive

SJ Synchronous Java

SLIC Single-Pass Language Driven Incremental Compilation

tsID Thread Segment ID

WCET Worst Case Execution Time

vii

Contents

1 Introduction 1
1.1 SCCharts and Sequential Constructiveness . 1
1.2 Problem Statement . 3
1.3 Outline . 4

2 Foundations 7
2.1 Sequential Constructiveness . 8

2.1.1 SCL and SCG . 8
2.1.2 The SC Language and Priorities . 12
2.1.3 Synchronous Java . 15
2.1.4 The ABO Example . 16

2.2 Used Technologies . 17
2.2.1 Eclipse . 17
2.2.2 KIELER . 18

3 Related Work 21
3.1 Data-flow Low-Level Compilation of SCCharts 21
3.2 Esterel . 23
3.3 SyncCharts and SyncCharts in C . 25
3.4 PRET-C . 27

4 Priority-Based Compilation 29
4.1 Priority-Based Compilation . 29

4.1.1 Strongly Connected Components . 30
4.1.2 Node Priorities . 31
4.1.3 Priority IDs and Optimized Priority IDs 34
4.1.4 C Code Generation . 41
4.1.5 Java Code Generation . 46

4.2 Optimizing the Node Priority Assignment . 48
4.2.1 Proof of Correctness . 55
4.2.2 Proof of Improvement . 56
4.2.3 Further Improvements . 57

4.3 Schizophrenia . 58
4.3.1 Schizophrenia in the Priority Based Compilation 59

ix

Contents

5 Implementation 63
5.1 Implementation into KIELER . 63

5.1.1 Original Approach . 64
5.1.2 Optimization . 67
5.1.3 Schizophrenia . 69

6 Evaluation 71
6.1 Correctness . 71

6.1.1 Dataset . 71
6.1.2 Results . 72

6.2 Comparison to the Data-flow Low-Level Compilation 72
6.2.1 Datasets . 74
6.2.2 Results . 76

6.3 Optimization Comparison . 83
6.4 Low-Level Implementation Evaluation . 84

7 Conclusion 87
7.1 Summary . 87
7.2 Future Work . 88

7.2.1 Further Optimizations . 88
7.2.2 Classification of Compilable Models – Improvements 89
7.2.3 Further Alternative Compilations . 90

x

List of Figures

1.1 Overview of core SCCharts and extended SCCharts statements. 2
1.2 The SCG of a simple cyclical model . 4

2.1 Visualization of a reactive system . 8
2.2 Example SCG exemplifying dependencies and the iur protocol 10
2.3 Execution states of a thread . 11
2.4 The different classes of sequential constructivity of programs 11
2.5 Models representing the different classes of SC 13
2.5 The SCG of ABO . 16
2.6 KIELER project overview . 18
2.7 Overview of the KIELER Compiler . 19

3.1 The SyncChart of ABSWO . 26

4.1 The SCG of a simple cyclical model with an immediate loop 30
4.2 The SCG of a simple cyclical model, but without an immediate loop 30
4.3 The SCG of ABO with annotated nprs . 33
4.4 The SCG of a model with an incorrect npr assignment 33
4.5 The SCG of a model with an immediate cycle containing dependency edges . . 35
4.6 The SCG of another model with an immediate cycle containing a dependency

edge . 35
4.7 The SCG of a model with an unreachable immediate cycle containing depen-

dency edges . 35
4.8 The SCG of ABO with annotated prioIDs . 40
4.9 The SCCharts of a modified cyclic ABO . 41
4.10 The SCG of a modified ABO with a rising prioID 41
4.11 The SCG of a model with problematic join priorities 42
4.12 The SCG of ABO II . 44
4.13 SCG model, where the assignment of tsIDs causes an unnecessary context switch. 49
4.14 SCG model with reduced context switches . 49
4.15 SCG of a model with reduced prio-statements . 50
4.16 Example SCG model where the propagation of nprs cannot reduce all unneces-

sary context switches. 50
4.17 Example SCG where all prio-statements could be optimized away 53
4.18 Example Sequentially Constructive Graph (SCG) where the thread with the

highest entry npr also has the lowest exit npr . 53

xi

List of Figures

4.19 Comparison of maximum, minimum, and assigned nprs of threads from Fig-
ure 4.17 . 54

4.20 SCG of an optimized model with remaining unnecessary context switches . . . 55
4.22 The SCG of a simple schizophrenic model with its associated priorities 59
4.23 The SCG of a schizophrenic model with a dependency induced cycle 60
4.24 The SCG of a schizophrenic model with a dependency induced cycle containing

nodes of an external thread . 60
4.25 The SCG of a schizophrenic model with a dependency induced cycle with

further dependencies towards concurrent nodes 61

5.1 Overview of the KIELER compilations enhanced with the priority-based compi-
lation highlighted in red . 63

5.2 Overview of the two low-level compilation approaches 64

6.1 SCCharts model that failed during the JUnit test 72
6.2 Example JitterProgram with three sequential concurrent regions 75
6.3 Compilation time of all models in ms . 77
6.4 Compilation time of all models with less then 200 nodes in the SCG in ns . . . 77
6.5 Number of generated variables of all models . 78
6.6 Difference in compiled variables between the priority-based and data-flow

compilation approaches . 79
6.7 Size of the compiled C program in bytes of all models 80
6.8 Average execution time of all non-scripted models with traces in ns 81
6.9 Average execution time of all non-scripted models with under 200 nodes in

their SCG and traces in ns . 81
6.10 Average execution time of all scripted JitterProgram models in ns 82
6.11 Average jitter of all models with traces in ns . 83
6.12 Example execution times per tick of the JitterProgram148.sct model exemplifying

the jitter . 83
6.13 Average execution times of the optimized and non-optimized priority-based

compilation approach . 84
6.14 Average execution times of the priority-based compilation approach with only

array-based implementation compared to scalar-based implementation 85

7.1 The classes of SC, extended by the schizophrenia adaptations of this thesis . . 89
7.2 A schizophrenic model that is still not schedulable 90

xii

List of Tables

1.1 Comparison of data-flow vs. priority based low-level compilation approaches 3

2.1 Overview of SCL and SCG elements. 9
2.2 Overview of SCL, SCLP and SJ elements . 15

3.1 Variable values at the end of the ticks of the small PRET-C and SCL programs. . 27

xiii

Listings

1.1 C code of a simple cyclical model . 4
2.1 Selected SCLP macros . 14
2.2 Simple example of SJ code . 16
2.3 Simple example code showing the difference between Xtend and Java 18
3.1 Generated C code of the ABO example from Figure 2.5 by the data-flow

compilation of SCCharts . 22
3.2 Schizophrenic model in Esterel . 24
3.3 Solution to schizophrenia in Esterel by Tardieu and de Simone 24
3.4 Synchronous C translation of the ABSWO example 26
3.5 A simple PRET-C program . 27
3.6 A similar program, implemented in SCL . 27
4.1 Generated SCLP code of the ABO example . 44
4.2 Generated SJ code of the ABO example . 47
4.3 Old and new implementation of the fork4 macro 55
4.4 Simple schizophrenic Esterel model . 57
4.5 Generated C code from a schizophrenic model 59
5.1 Xtend implementation of Tarjan’s algorithm . 65
5.2 Xtend implementation of original npr calculation 67
5.3 Xtend implementation of the optimized npr assignment 68
5.4 Xtend implementation for breaking up schizophrenic SCCs 69

xv

Chapter 1

Introduction

Many computer systems constantly react to their environment. For example, an entertainment
system receives button presses by a user and outputs sound and video signals. An airbag
reads acceleration values from various sensors and either blows up or not. The control
elements of an airplane receive input by the pilot, which they translate into movement of
wing elements or the rudder. To deal with a constant stream of inputs from users and multiple
sensors at the same time, they often use concurrency as a means to process all these inputs
at once. Depending on the application of these reactive systems, timing and safety may be of
importance. If an airbag triggers too late, too early or not at all, the passenger may suffer
injuries or even die.

One difficult aspect of concurrency is determinism. According to Lee et al. [Lee06], many
widely used approaches to solve concurrency such as threads suffer from race conditions and
other non-deterministic behavior. A system that does not act predictably and does not always
react identically to the same input in the same environment is undesirable. Not only would
its reaction time be difficult to predict, but if an airbag blows up sometimes but not every
time under the same conditions, the safety of the passenger cannot be guaranteed. Therefore,
Synchronous Languages were developed to deal with deterministic concurrency [BCE+03].
Each synchronous language has a specific set of rules or Model of Computation (MoC) that
stipulates whether a program is valid or invalid. Besides deterministic concurrency, other
goals of synchronous languages according to Benveniste et al. are simplicity and synchrony.
Simplicity allows the programmer to create a model in the cleanest way possible and to easily
make formal reasoning of the model. Synchrony on the other hand means that a synchronous
language should support simple and frequently used standard models where all actions are
assumed to take finite memory and time [BCE+03].

1.1 SCCharts and Sequential Constructiveness

One MoC that adheres to these ideals as described in the previous sections is the Sequentially
Constructive (SC) MoC as introduced by von Hanxleden et al. [HMA+14]. To guarantee
deterministic concurrency, it dictates that during concurrent execution of statements writes
to a variable have to be executed before updates to the same variable. An update in turn has
to be executed before reads to this variable. If such a scheduling is not possible, the model
is rejected. In sequential execution, however, the order of writes and reads to a variable is
insignificant as their order does not influence determinism.

1

1. Introduction

Interface

declaration

Final state

Connector

Initial state

Root state

Named

simple state

Transition

trigger/effect

Region ID

Transition

priority

Conditional

termination

Anonymous

simple state

History transition

Entry/During/Exit

actions

Termination

Superstate

Signal

Immediate

transition

Suspension

Strong abort

Local declaration

Weak abort

Deferred transition

Count Delay

Pre-Operator

Initialization

Complex final

state

Figure 1.1. Overview of core SCCharts (above) and extended SCCharts (below) statements [HDM+14]

This SC MoC is then implemented in the modeling language Sequentially Constructive
Charts (SCCharts) [HDM+14]. SCCharts, based on a statecharts dialect [Har87], has been
designed with modeling pragmatics in mind. The syntax of the language is designed such that
an easy synthesis of an automatic layout is possible, relieving the modeler from having to
create a readable layout. This facilitates the simplicity of the synchronous language. SCCharts
consists of a small set of statements, the core SCCharts. To simplify the use of SCCharts, some
further statements were added. This larger set of statements, called extended SCCharts, can
be transformed to core SCCharts using various Model to Model (M2M) transformations. The
result of such a transformation is semantically identical to the extended statement. Figure 1.1
depicts both core SCCharts statements in the top and extended SCCharts statements in the
bottom of the image. The reduction to a small set of simple statements in core SCCharts
facilitates an easier compilation of the model to executable code. In fact, a core SCCharts can
very simply be translated into an SCG, a Control-Flow Graph (CFG) based representation of
the model. Such an SCG can then be used to analyze a model for schedulability and thus
determinism and further to generate code in a target language that can easily be compiled
and executed.

2

1.2. Problem Statement

Data-flow Priority
Accepts all ASC SCCharts + +

Accepts all data-flow acyclic SCCharts + -
Accepts all iur acyclic SCCharts - +

Can synthesize hardware + -
Can synthesize software + +

Size scales well (linear in size of SCCharts) + +
Speed scales well (execute only “active” parts) - +

Instruction-cache friendly (good locality) + -
Pipeline friendly (little/no branching) + -

WCRT predictable (simple control flow) + +/-
Low execution time jitter (simple/fixed flow) + -

Table 1.1. Comparison of data-flow vs. priority based low-level compilation approaches, the lower
part only applies to software [HDM+14]

1.2 Problem Statement

Due to the strict demands to synchronous languages as described in Section 1.1, their
underlying MoCs define a precise set of rules. These rules must then be taken into account
during the compilation and execution of a program written in such a language. Writing a
compiler for a synchronous language that adheres to all rules of the corresponding MoC is a
difficult task. Often, many revisions are required to perfect the compiler for all special cases,
while sometimes multiple approaches towards the compilation are feasible. As an example,
there are multiple versions of the official compiler for the synchronous language Esterel –
the current version is the seventh iteration – and there are various different approaches to
its low-level compilation each with its own advantages and disadvantages [BCE+03; Ber05;
EKH06; PS04]. Similar to Esterel, there have been two different approaches proposed for
the low-level compilation of SCCharts: The data-flow approach, which is at the point of
this thesis used as the standard compilation approach for SCCharts, and the priority-based
approach, which has been used as a compilation approach to SyncCharts, a statecharts dialect
similar to SCCharts [And96], to generate deterministic C code [Han09b]. Both approaches
were introduced by von Hanxleden et al. [HDM+14]. Table 1.1 depicts the advantages and
disadvantages of both approaches as noted by von Hanxleden et al. As can be seen, in the
second and third row of the table, the two approaches are able to compile some models that
the other cannot, even though the models adhere to the MoC of SCCharts.

As an example, Figure 1.2 depicts an SCG of a model containing a cycle in the control-flow
with functionally identical C code next to it in Listing 1.1. The code is naturally deterministic,
as long as foo is deterministic, since the program does not contain any concurrency. However,
the data-flow approach cannot schedule this model. The generated code of this approach
tries to create a linear sequence of code where each line of code must only be traversed once
per tick, while loops or gotos are not allowed. Since the code generation cannot determine

3

1. Introduction

entry

exit

x > 0

foo(x)

x--

true

Figure 1.2. The SCG of a simple cycli-
cal model, the cycle is highlighted in
purple

1 void main() {

2 int x;

3

4 // Read x

5

6 while (x > 0) {

7 foo (x);

8 x--;

9 }

10 }

Listing 1.1. C code of a simple cyclical
model

the number of iterations of the loop, as it depends on an input, the code cannot be flattened
beforehand. Thus, a loop or goto-statement would be required. The priority-based compilation
approach on the other hand allows goto-statements and re-execution of parts of the code.

Next to cyclical models, there are also schizophrenic models the data-flow compiler struggles
with. In short, schizophrenic models contain a set of statements that is executed more than
once during a tick. In these models, the scheduler of the data-flow approach currently detects
a cycle in the model and rejects these. There are already proposed solutions to this problem
that show promise. The priority-based compilation, however, might be more suited for these
schizophrenic models, since it already allows cycles in the model.

Table 1.1 further delineates differences in the execution time of the compiled code. It is
stated that the execution time of priority-based compiled models scales better in the size of
the model. In fact, the execution time in the data-flow compilation approach scales almost
linearly in the size of the model. Models for embedded, reactive systems may not necessarily
be small and the demands to a short reaction time can sometimes be crucial as the example
of the airbag shows. Therefore, the better scalability with the size of the model inherent to
the priority-based compilation may outshine its disadvantages.

This demand for short reaction times further necessitates an optimized compiler. One
aspect of an optimized compiler is the way it handles context switches. If it can predict context
switches reliably and reduce unnecessary ones, it allows even better execution times. Thus,
the handling of context switches in the priority-based compilation was improved. Extended
testing via benchmarks and comparisons towards the old implementation as well as other
compilation approaches should be performed to prove these improvements.

1.3 Outline

This thesis begins with an introduction into various theoretical foundations of synchronous
languages and sequential constructivity in Chapter 2. This includes the theoretical basis

4

1.3. Outline

for the SC MoC as well as the imperative language SCL, a minimal programming language
adapted from C, and SJ, an extension to Java similar to SCL. Important used technologies
will be highlighted including the research project KIELER, which provides the basis for the
implementation of the SC MoC. Chapter 3 then continues to give a short overview over
different work related to topics of this thesis. It will cover the data-flow approach that is
currently implemented in SCCharts and how SyncCharts, PRET-C and Esterel compile to
executable code. The chapter also covers how each of these languages deal with schizophrenia.
In Chapter 4 the conceptual basis of the thesis will be explained. It first begins with the
theory behind the priority assignment and code generation. Subsequently, it will discuss the
optimizations done to the priority assignment that enhance the resulting code by minimizing
context switches. The chapter will cover the topic of schizophrenia in the priority-based
compilation. Afterwards, Chapter 5 will deal with the implementation of these concepts in
the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) project. Chapter 6
then compares the implemented approach implemented in this thesis with the data-flow
approach. Finally, Chapter 7 concludes the thesis and shows further possible development for
the priority-based compilation and for SCCharts in general.

5

Chapter 2

Foundations

Any embedded, reactive system constantly interacts with its environment, by reading values
as inputs, processing them and outputting new values towards the environment. Conceptually,
each computation beginning with the input and ending with the output can be regarded as
one singular, atomic execution. The synchrony hypothesis utilizes this behavior to abstract from
continuous time towards discretized physical time [PST05]. Each discrete point in time is
called a tick, containing one computational reaction from input to output of a system. For
the purpose of the environment, the outputs of the system happen at the same point of time
as the inputs are provided. A system with such characteristics is considered to be in perfect
synchrony [Ber00a]. Figure 2.1 pictures such a reactive system. In reality, no system is able to
react in absolutely zero time after receiving an input. Instead, if the system reacts so fast that
any calculations of outputs are generated before the next interaction with the environment,
this reaction can be regarded as instantaneous. Therefore, an implementation of a system like
this must guarantee that all computations during a tick are executed in the time between each
interaction, which may often require extensive Worst Case Execution Time (WCET) analysis of
these systems.

One MoC that utilizes this abstraction of zero-time computation is the synchronous MoC

as exemplified by programming languages such as Esterel, Lustre or SynchCharts [BCE+03].
It describes in general how a programming language adhering to it should behave, one
important aspect being concurrency. Even if simultaneous threads share accesses to variables,
all race conditions must be solved deterministically. A simplistic way to guarantee that a
program is deterministic is to only allow one write to a variable per tick and to schedule
all writes to any variable before all reads to any variable. Thus, the program starts with an
initialization of variables and all actions are dependent on these initial writes. While this
limits programming languages unnecessarily, it is easy to implement and to check for. The
synchronous MoC loosens this restriction to scheduling by allowing interleaving variable
accesses as long as writes to a variable are scheduled before reads to the same variable,
conserving the determinism of the system while allowing more freedom for the programmer.
It further establishes signals for communication between threads: a signal can be either present
or absent during a tick, and its state must be consistent across the tick, analogous to the
behavior of a wire connection in a circuit.

7

2. Foundations

An Instant / Tick (conceptually zero duration)

Read Input
Compute
Reaction

Write Output

Reactive System

Environment

Input Event Output Event

Figure 2.1. Visualization of a reactive system [MHH13]

2.1 Sequential Constructiveness

The SC MoC as presented by von Hanxleden et al. [HMA+14] describes a way to schedule
synchronous execution of programs to achieve deterministic concurrency. In contrast to
other synchronous MoCs, however, the SC MoC allows sequential writes to variables. If the
order of execution is determined by the order of the instructions, then the program is still
deterministic. For example, a simple code snippet such as if (x < 3) { x = 3 } would be
rejected by the synchronous MoC since any writes to a variable have to be executed before
reads. No race condition exists in this example, however, since there is no parallelism that
can cause scheduling conflicts, and the program is inherently deterministic. Therefore no
reason should speak against accepting this example. The SC MoC further allows the use of
signals based on the semantics of imperative programming language. This simplifies the
access for developers coming from traditional programming languages. Since variables can
emulate the semantics of signals, all models using signals in other synchronous MoCs can
be ported to the SC MoC preserving ther original behavior. The SC MoC otherwise follows the
same semantic rules as the synchronous MoC. It thus retains the determinism of traditional
synchronous MoCs while extending them conservatively in order to help to abstract away from
the hardware-centric approach of other synchronous languages closer towards traditional
programming paradigms known from C or other imperative programming languages. The
following section is mostly based on von Hanxleden et al. [HMA+14].

2.1.1 SCL and SCG

The semantics of the SC MoC can be described using a minimal Sequentially Constructive
Language (SCL). As depicted in Table 2.1, SCL can in turn be represented using an SCG for
elaboration, analysis and code generation. The SCG is a labeled graph G = (N, E) consisting

8

2.1. Sequential Constructiveness

Thread Parallel Sequence Conditional Assignment Delay

SCL t fork t1 par t2 join s1; s2 if (c) s1 else s2 x = e pause

goto l

SCG

Table 2.1. Overview of SCL and SCG elements, based on [RSM+15] and [Sch16]

of statement nodes N representing the statements of a model and edges E corresponding to the
control-flow or data-dependency induced order between statements. Control-flow edges can
be either instantaneous or delayed. Instantaneous edges simply imply the sequential order of
the execution between two nodes, while delayed edges induce a pause happening between
the execution of two nodes, causing a divide in the execution into different ticks. Everything
before the pause has to be performed before the end of the tick, while everything after the
pause will be executed during the following tick after the environment could react to the
previous tick. To explain dependency edges, first we must introduce concurrency.

A program may consist of multiple parts that are executed in parallel. For this, threads
are introduced. At the initialization of the program, a root thread is spawned that starts the
execution. New threads are spawned at forks and terminated at joins or, in the case of the
root thread, at the end of the program. A thread can be uniquely identified by its entry and
exit nodes, and all nodes of the program belong to their immediately enclosing thread or
enclosing entry and exit nodes. If a thread is forked, the thread corresponding to the fork
node is its parent thread. The set of ancestor threads is defined as the transitive closure of the
parent relationship. Therefore, the ancestors of a thread include the thread itself as well as
its parent thread until the root thread is reached. The root thread does not have any parent
threads, thus contains only itself in its ancestors. The descendant threads of a thread is the
inverse ancestor relation.

Concurrency and Scheduling Order in SCL

It is important to distinguish between static threads and dynamic thread instances: While static
threads describe threads in the structure of the program, thread instances describe the actual
parallel execution of statements during the run of the program. A static thread may thus
correspond to multiple thread instances at different points in time of the execution of the
program. Two threads are called concurrent if they are descendants of distinct threads sharing
a common fork node. This fork node is also called the Least Common Ancestor (LCA). Threads
further have a thread state as depicted in Figure 2.3 that determines their behavior during a
tick. All threads other than the root thread are initially disabled. If a thread is forked or if it
is the root thread at system start its state is changed to enabled. After a thread is enabled, it

9

2. Foundations

entry

fork

join

exit

entry

x = 0

exit

entry

x = x + 1

x = x + 1

exit

entry

y = x

exit

Figure 2.2. Example SCG exemplifying dependencies and the iur protocol [Sch16]

initially is active, and if it runs into a pause, it is paused. All enabled but paused threads are
set to active at the start of the next tick. If a thread forks children, it is set to waiting, as it
waits for the execution of its children to finish, and continues to be active after all children
terminated and joined.

Two nodes are called statically concurrent, if the static threads they belong to are concurrent.
They may further be runtime concurrent, if their node instances, which are analogous to thread
instances, occur in the same tick, the threads they belong to are statically concurrent, and if
these two threads have been instantiated by the same instance of the LCA fork. If two nodes
are statically concurrent and they are assignments accessing the same variable, there may
be a dependency between these nodes. The SC MoC differentiates between three different
types of assignments: Initializations, updates and reads. An initialization to a variable is an
absolute write, while an update is a relative write. The iur protocol specified by the MoC then
determines the order of concurrent assignments accessing the same variable. The example
SCG in Figure 2.2 shows this behavior. The assignment x = 0 in the leftmost thread acts as an
initialization to x. The iur protocol then dictates that this initialization has to be executed
before any updates and reads to x as highlighted by the dependencies in blue and green. The
two updates to x, x = x + 1 in the middle thread, therefore are executed afterwards, but also
before the read of x in the assignment y = x in the right thread. All these dependencies can be
conflated to write-read dependencies, where a variable has to be written before it may be read
from. Sometimes however, the order cannot be determined this easily. If two nodes in parallel
try to write different values to the same variable (without one of the two being an update),
no order can be determined, since the outcome would differ based on the order of execution
and the program would be non-deterministic. The two nodes are thus conflicting and the

10

2.1. Sequential Constructiveness

Figure 2.3. Execution states of a thread, shown with
a Statecharts notation; Initial states have a bold
outline [HMA+14]

SASC

ASC

SIASC

IASC

SC

Figure 2.4. The different classes of sequen-
tial constructivity of programs

program should be rejected, if such a write-write dependency exists. If both assignments try
to update the same variable, one must find out whether the order of the two influences the
result of the calculations. Thus, it is checked whether there exist two sequences of execution
steps where the outcome differs, yet the only difference between these execution steps lies in
the order of the two updates. As an example, x = x + 3 and x = x + 5 are both updates, but
if they are executed concurrently, the resulting value of x is independent from the order of
execution. The order of the two statements x = x + 3 and x = x * 5, however, influences the
result of the calculation, even though both statements are updates. If therefore two sequences
exist, where the outcome is dependent on the order of execution of the statements, the node
instances are again conflicting, and the program is non-deterministic; otherwise the node
instances are confluent, and they can be scheduled freely. If two node instances are confluent
and there exists a dependency between the two, the dependency is also called confluent. If
finally both assignments only read from the same variable, their order of execution does not
change the outcome of the program. Therefore, no dependencies exist between such nodes
and the scheduler may order the execution freely.

Schedulability in SCL

If no conflicts exist in the schedule of a tick, and the iur protocol as well as the sequential
order of the nodes have been considered, the schedule is called SC-admissible. If all ticks during
the execution of a sequence of ticks of a program are SC-admissible, this run is an SC-admissible
run. If there exists at least one SC-admissible run of the program, and all SC-admissible runs
generate the same deterministic trace of macro ticks, the whole program is considered SC-
schedulable. Since the analysis of all possible SC-schedules is not feasible, especially for larger
programs, further program classes were introduced. Figure 2.4 shows the different classes and
their relation towards each other, while Figure 2.5 depicts various models highlighting the
differences between the classes. The most restricting class, Structurally Acyclic Sequentially
Constructive (SASC), allows only models where the SCG does not contain any immediate

11

2. Foundations

cycles in the graph, including those that only contain immediate control-flow edges and
those that may contain iur dependencies. Figure 2.5e shows such an example. In contrast,
Structurally iur-Acyclic Sequentially Constructive (SIASC) allows those models that contain
cycles in the control-flow as long as they do not contain any iur dependencies, as Figure 2.5d
depicts. Models that are Acyclic Sequentially Constructive (ASC) and iur-Acyclic Sequentially
Constructive (IASC) then follow rules analogous to SASC and SIASC, yet allow models that
contain (iur dependency) cycles as long as they cannot be reached in any run of the model.
Figure 2.5c shows a model that is ASC but not SASC, as the immediate cycle executing I++

cannot be reached in any run of the model. I is never smaller than 0 and thus the control-flow
never reaches that part of the program. Analogously, the dependency cycle highlighted in red
in Figure 2.5b can never be reached. Since I is always greater than 0, all runs of the model
will take the right path and increase I until it reaches 10. Due to the immediate cycle, the
model is not ASC. Lastly, Figure 2.5a depicts a model that is only SC but not any other class. A
run of the model begins by setting both x and y to 0. Afterwards, in the concurrent regions,
x is incremented and y is set to the value of x. Due to the dependency, the increment of x
must be executed before it is written to y. After the threads terminated, it is checked whether
y now has a value below 2. As it was just set to 1, this condition holds. Therefore, the loop
leads back to the fork of the two threads, creating an immediate cycle. Due to this immediate
cycle, the program is not ASC. Since this immediate cycle further contains a dependency
edge, the model contains an iur dependency cycle and is not IASC. Still, during the second
execution of the two parallel threads, the iur protocol is kept. Due to the dependency between
the two assignments, the same order as in the first iteration is executed. Even though the
first incarnation of the y = x assignment was performed before the second incarnation of the
x = x + 1 assignment, and therefore an update to a variable was executed after a read, the two
instances were not runtime concurrent. Thus, the dependency between the nodes does not
need to be regarded between those two node instances. The run of the program continues
after the join, when the conditional evaluates to false after y was set to 2. Thus, the run ends.
As this run is valid and no other SC admissible runs exist for this model, the model is SC.

2.1.2 The SC Language and Priorities

SCL as introduced earlier was implemented in C via various macros as Sequentially Con-
structive Language with priorities (SCLP). Listing 2.1 shows a selection of the more important
macros. Each thread of the program is assigned a uniquely identifying integer using a scalar.
The integers active and enabled save the states of each thread in the corresponding bit of the
integer. If a thread is forked, it is set to active and enabled and the program counter of its
continuation is saved for later use. Due to the use of a single integer for the storage of states
for threads, the number of threads in a program is limited to the size of an integer. The
implementation can also use unsigned long integers extending the maximum number of
threads, yet it still is limited. For each number of forked and joined threads, a macro exists
or must be pre-generated. If a thread runs into the par-macro, it gets disabled, and if a join
is performed, the joining thread checks for the enabled-state of all threads identified by the

12

2.1. Sequential Constructiveness

entry

exit

fork

join

y < 2

x = 0

y = 0

true

entry

x = x + 1

exit

A - Instantaneous
entry

y = x

exit

B - Instantaneous

Figure 2.5 (a) Example SCG of
a model that is only SC

entry

exit

fork

join

entry

I = 1

I > 0

I > 10O = 2

I++

exit

true

true

A - Instantaneous

entry

O = I

exit

B - Instantaneous

Figure 2.5 (b) Example SCG of
a model that is IASC but neither
ASC nor SIASC

entry

exit

fork

join

entry

I = 1

I < 0

I++O++

exit

true

A - Instantaneous

entry

O = I

exit

B - Instantaneous

Figure 2.5 (c) Example SCG of a
model that is ASC but not SASC

entry

exit

fork

join

entry

I = 1

I > 10

I++

exit

true

A - Instantaneous

entry

O = I

exit

B - Instantaneous

Figure 2.5 (d) Example SCG of a model that
is SIASC but not SASC

entry

exit

fork

join

entry

I = 1

O++

exit

A - Instantaneous

entry

O = I

exit

B - Instantaneous

Figure 2.5 (e) Example SCG of a model that
is SASC

Figure 2.5. Models representing the different classes of SC

13

2. Foundations

1 // Enable or disable threads with prioID p, activate analogous

2 #define u2b(u) (1 << u)

3 #define enable(p) enabled |= u2b(p); \

4 active |= u2b(p);

5 #define isEnabled(p) ((enabled & u2b(p)) != 0);

6 #define disable(p) enabled &= ~u2b(p)

7

8 // Pause and resume here in the next tick

9 #define _LABEL_ _L ## __LINE__

10 #define _pause(label) _setPC(_cid, label); \

11 deactivate(_cid); \

12 goto _L_DISPATCH

13 #define pause _pause(_LABEL_); \

14 _LABEL_:

15

16 // Fork and Join sibling with prioID p

17 #define fork1(label, p) _setPC(c, label); enable(p);

18 #define join1(p) _LABEL_: if(isEnabled(p)) \

19 { _pause(_LABEL_); }

20

21 // Terminate thread

22 #define par goto _L_TERM;

23

24 // Tick End

25 #define tickreturn goto _L_TERM; \

26 _L_TICKEND: return (enabled != (1 << 0)); \

27 _L_DISPATCH: __asm volatile("bsrl %1,%0\n":"=r" (_cid): "r" (

active)); goto *_pc[_cid];

28

29 // Thread Priorities

30 #define prio(p) deactivate(_cid); \

31 disable(_cid); \

32 _cid = p; \

33 enable(_cid); \

34 setPC(_cid, __LABEL__); \

35 goto _L_DISPATCH; \

36 __LABEL__:

Listing (2.1) Selected SCLP macros, the field _cid stores the currently active
thread; __LINE__ expands to the current line number.

arguments of the join. If they are all currently disabled, the thread continues after the fork.
Otherwise, the thread pauses and checks again during the following tick. This approach
towards implementing the SC MoC in C uses the associated number of a thread not only as an
identifier, but also as its priority. The differences to the original minimal SCL are highlighted
in Table 2.2. Instead of only allowing at most one thread to be forked at a time, multiple
fork and join macros were implemented allowing a set of threads to be forked and joined
by only one macro respectively. During the execution, a scheduler determines which thread
executes at which point in time using the active scalar. Each time the dispatcher is called,
the macro as expanded in line 27 in Listing 2.1 determines the thread with the currently
highest priority using the bit scan reverse assembler instruction for the x86 instruction set.
This instruction returns the index of the currently highest set bit in the active scalar and the
program subsequently jumps to the label as saved in the _pc array. If the system does not

14

2.1. Sequential Constructiveness

Thread Parallel Sequence Conditional Assignment Delay Priority

SCL t fork t1 par t2 join s1; s2 if (c) s1 else s2 x = e pause –
goto l

SCLP t forkN t1 par [...] s1; s2 if (c) s1 else s2 x = e pause prio(x)

tN joinN goto l

SJ t fork() t1 t2 s1; s2 if (c) s1 else s2 x = e pauseB prioB(x)

join() gotoB l

Table 2.2. Overview of SCL, SCLP and SJ elements, based on [RSM+15] and [Sch16]

run the x86 instruction set, the currently highest priority must be found using a loop over
bits of the integer representing the enabled threads. This necessitates that no two run-time
concurrent threads may be assigned the same priority, as the priority also uniquely identifies
each thread. Conservatively, this can be extended to statically concurrent threads to minimize
analysis. The new prio-macro allows a thread to change its priority by essentially disabling
the old thread and spawning a new thread with a new priority that continues after the
prio-statement of the old thread. The dispatcher is called as it may be possible that another
thread now has a higher priority than the newly lowered priority of the original thread. The
order of execution determined by the priorities now allows the program to adhere to the SC

MoC. Naturally, the assigned priorities therefore have to specify an order that satisfies this
MoC.

2.1.3 Synchronous Java

Similar to SCL and SCLP, Synchronous Java (SJ) enhances Java with "macros" for deterministic
concurrency using priorities. However, since Java does not have traditional macros and more
importantly neither a goto-statement nor labels with the same functionality as C-labels,
different concepts were used, as delineated in Table 2.2. To replace macros, all required
functionalities were implemented using standard Java methods. The class containing the
tick-function has to extend the class containing those methods. Instead of traditional gotos,
the content of the tick-function is surrounded by a while-loop that is repeated as long as at
least one thread is still active during the current tick as shown in Listing 2.2. The isTickDone

method that is called each time the loop restarts checks whether any active threads remain.
The loop then contains a switch-case statement, where each case represents a "label" analogous
to C. The switch-statement then decides using enabled- and active-arrays similar to the scalars
in C which thread to continue at which "label" in the state method. A gotoB-method was
introduced that assigns a continuation "label" to the currently active thread to continue
at a later point. After each gotoB as well as after all other macros where a jump towards
another label follows, a break has to be inserted. The switch-case statement will be left, the
while-loop begins anew and the next continuation point of the program is chosen. Both the
remodeled prioB and pauseB corresponding to the prio and pause macros require continuation

15

2. Foundations

1 protected final void tick() {

2 while (!isTickDone()) {

3 switch (state()) {

4 case init:

5 pauseB(start);

6 break;

7 case start:

8 if (I) {

9 gotoB(middle);

10 break;

11 }

12 gotoB(start);

13 break;

14 case middle:

15 pauseB(middle_2);

16 break;

17 case middle_2:

18 O = true;

19 gotoB(end);

20 break;

21 case end:

22 haltB();

23 break;

24 }

25 }

26 }

Listing 2.2. Simple example of SJ
code

entry

exit

fork

join

O1 = false

O2 = false

O1 = false

O2 = true

entry

A

B = truesurface

depth

O1 = true

exit

true

HandleA - Potentially instantaneous

entry

surface

depth

B

O1 = true

exit

true

HandleB - Delayed

Figure 2.5. The SCG of ABO

"labels". Since there are no expanding macros in Java, dynamic labels cannot be created. Thus,
the continuations for the next thread or after the pause must be specified statically by the
program.

2.1.4 The ABO Example

ABO is a simple example model showing characteristics of SC and SCL. In its simplest form,
the model has two inputs, A and B, as well as an output O. When both A and B were set to
true at any point during the execution, O is also set to true, except during the first tick, when
the model ignores all inputs. The ABO model depicted in Figure 2.5 shows a variation of the
standard model. In the beginning of the execution, the output variables O1 and O2, which
replace O, are set to false. Then, in two concurrent threads, both A and B are awaited. While
HandleB has to wait at least one tick after the beginning of the execution to react to inputs,
HandleA may react immediately. When A is set to true by the environment, B is also set to true,
causing a dependency in the SCG between the two threads. If A or B is set to true at any point
in time, O1 is also set to true, indicating that exactly one of the two inputs has been set to

16

2.2. Used Technologies

true. After both inputs have been set to true and they reached the exit node, the threads are
joined, O1 is set to false again and O2 is set to true. This model therefore shows the concepts
of immediate control-flow edges in HandleA, delayed control-flow edges in HandleB as well as
dependency edges between the two threads.

2.2 Used Technologies

The implementations of the aforementioned concepts and foundations as well as the concepts
proposed in this thesis are part of the KIELER project. KIELER itself is based on the Eclipse
platform and utilizes further technologies and plugins provided by Eclipse. The following
sections give a short overview over Eclipse as well as KIELER due to their prevalence in the
creation of this thesis.

2.2.1 Eclipse

Eclipse1 is an open source Integrated Development Environment (IDE) developed by the
Eclipse Foundation. Built upon the Java programming language, it not only provides support
for software development in Java, but also in various other programming languages such as
C++, XML and more. The architecture of Eclipse consists of a small set of components called
plugins. New plugins created by third parties may then extend the original architecture to
create new functionality such as new UI Elements or even whole new modeling languages. The
extensibility is achieved by using so called extension points. A plugin can define an extension
point to provide an access point for another newly developed plugin, which can then utilize
functionality supplied by the original plugin. The Eclipse Rich Client Platform (RCP) is a small
set of plugins serving as an open tools platform to provide components for the development
of client applications in Eclipse. Other RCPs can build upon this platform to build applications
ranging from IDEs to browsers and textual editors.

Xtend

Xtend2 is a dialect of Java, which compiles to readable Java 5 compatible source code. Xtend
allows easy use of extension methods and lambda expressions. It is integrated into the Eclipse
Java Development Tools. The initial intention of Xtend was to ease M2M transformations.
However, Xtend has been used in various other domains such as general Android devel-
opment3 or UI development4 as well. Compared to Java, it gets rid of a lot of overhead.
Listing 2.3 shows example Xtend code for sorting a list of albums for favorites on the left. The
corresponding Java 8 code on the right depicts how difficult to read the lambda expressions

1http://www.eclipse.org
2http://www.eclipse.org/xtend/
3http://futurice.com/blog/android-development-has-its-own-swift

17

http://www.eclipse.org
http://www.eclipse.org/xtend/
http://futurice.com/blog/android-development-has-its-own-swift

2. Foundations

1 List<Album> sortedFavs =

2 albums.stream()

3 .filter(a -> a.tracks.anyMatch(t -> (t.rating >= 4)))

4 .sorted(comparing(a -> a.name))

5 .into(new ArrayList<>());

1 val sortedFavs =

2 albums.stream

3 .filter[tracks.anyMatch[rating >= 4]]

4 .sorted[comparing[name]]

5 .into(new ArrayList)

Listing 2.3. Simple example code showing the difference between Xtend and Java5

Kieler Semantics
SCCharts, SCL, KICo,

KIEM, KLOTS

Demonstrators
KGraph Text, Ptolemy
Browser, KLighDning

OpenKieler
DebuKViz, KlassViz,
EcoreViz, KLayJS-D3

Kieler Pragmatics
KLighD, KIVi, KSBase

Eclipse Layout Kernel
Layout infrastructure and algorithms

Figure 2.6. KIELER project overview7

may get in a realistic example. Both listings first filter a list of albums for a rating higher than
4, then sort by name and then add them into a new ArrayList.

2.2.2 KIELER

The KIELER6 project is an academic open source research project by the Real-Time and
Embedded Systems Group at Kiel University. It is an RCP aiming to make graphical model-
based design of complex systems easier by minimizing the time required for the visualization
of programs. Due to the focus on modeling pragmatics, KIELER can improve comprehensibility,
maintainability and analysis of complex models.

Thus, the first aspect of the KIELER project as delineated in the overview in Figure 2.6 is the
KIELER Pragmatics [Fuh11], which used to be based on KIELER Infrastructure for Meta Layout
(KIML) but now builds upon the Eclipse Layout Kernel (ELK)8. ELK provides infrastructure for
automatic graph generation and layout creation as well as algorithms for different types of
graphs including graphs with hierarchy or different requirements for port placements. Graph
layouts alone, however, do not suffice. It is further important to be able to efficiently synthesize

4https://www.javacodegeeks.com/2013/02/building-vaadin-ui-with-xtend.html
5http://blog.efftinge.de/2012/12/java-8-vs-xtend.html
6http://rtsys.informatik.uni-kiel.de/kieler
7http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
8http://www.eclipse.org/elk

18

https://www.javacodegeeks.com/2013/02/building-vaadin-ui-with-xtend.html
http://blog.efftinge.de/2012/12/java-8-vs-xtend.html
http://rtsys.informatik.uni-kiel.de/kieler
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview
http://www.eclipse.org/elk

2.2. Used Technologies

SCEst SCL

SCCharts

Esterel

SCG Seq. SCG

Seq. SSA-SCG Circuit

C

JavaSyncCharts

Figure 2.7. Overview of the KIELER Compiler [Sch16]

these graphs and visualize them for the viewer. KIELER Lightweight Diagrams (KLighD) [SSH13]
provides transient and lightweight representations of a graph without the necessity of
introducing possibly complex graphical editors. Another important aspect of KLighD is the
concept of focus and context. Currently unimportant parts of the model can be minimized
while more important parts can be highlighted.

The utility of these projects is demonstrated in the OpenKieler project, the Demonstrators
and the KIELER Semantics. The latter focuses on the semantics of systems, particularly on
synchronous languages. It offers a flexible compiler, the KIELER Compiler (KiCo), that is
adaptable to multiple compilation chains. One tool that uses the compiler is KIELER SCCharts:
It allows the user to create models for real-life applications using a textual language. A model
can be synthesized in real-time side-by-side with the textual model by KLighD using layout
provided by ELK.

Kieler Compiler

The KIELER Compiler [Mot17] is a compilation framework based on the Single-Pass Language
Driven Incremental Compilation (SLIC) strategy as introduced by Motika et al. [MSH14] that
utilizes the Eclipse plugin concept. It provides an interface for the application of multiple M2M

transformations to an initial model. Due to the SLIC approach, each transformation is only
called once and should provide a certain set of features to be added or taken away after the
transformation. A M2M transformation can be registered using an extension point defined by
KiCo and can specify other transformations that must be performed before this transformation.
It is further possible to specify certain features that this transformation cannot handle.
These features must therefore be guaranteed to be removed before the application of the
transformation. KiCo then automatically calculates an order of all registered transformations
to be applied that factors in all requirements.

The KIELER project utilizes this compilation framework for different compilation ap-
proaches and language translations. These transformations are visualized in Figure 2.7. The
different supported languages as well as model representations in their general or special
form are depicted as nodes, while the edges show the different compilation steps that are
possible due to the M2M transformations. Each compilation step may be comprised of multiple
M2M transformations. The actual KiCo implementation in KIELER further allows the user to
view the model after every M2M transformation.

19

Chapter 3

Related Work

This chapter introduces various work related to the content of this thesis. It begins in Sec-
tion 3.1 with an alternative compilation approach inherent to SCCharts. The section highlights
the differences between the two approaches and shows the result of this compilation so the
results of this thesis can effectively be compared to them. Section 3.2 then presents Esterel, a
synchronous language based on the synchronous MoC, in detail. Afterwards, Section 3.3 de-
scribes the synchronous language SyncCharts and how it can be compiled. Lastly, Section 3.4
presents another language with inherent deterministic concurrency in PRET-C.

3.1 Data-flow Low-Level Compilation of SCCharts

The data-flow compilation in SCCharts as introduced by von Hanxleden et al. [HDM+14] as
well as Smyth et al. [SMH15] is an approach to generate code in various different languages or
to synthesize hardware from a model in SCCharts. As opposed to the priority-based approach,
this compilation chain generates a sequential netlist and therefore sequentialized code which
does not require computed gotos. As stipulated by the SC MoC the approach allows sequential
assignments to a variable.

Instead of compiling the code directly from the SCG as generated from SCCharts, the
SCG first undergoes a few transformations itself. First, the SCG is divided into basic blocks.
These specify parts of the code that are always executed together. If one statement in this
code block is executed, all other statements in this code block will also be executed at some
point during this tick. These basic blocks are then further broken up into scheduling blocks
every time a statement is targeted by an incoming dependency. This subdivision facilitates
interleaving of threads and helps to determine a schedule. After the scheduling blocks were
created, all basic blocks are assigned guards. A guard describes the state of a block that may
be active or inactive. It can rely on the completion of its preceding basic block, on the evaluation
of an if-statement or on the state of the preceding basic block in the previous tick – for
example for tick boundaries. For basic blocks beginning at joins, the guards cannot merely
rely on the preceding basic blocks during this tick or the previous tick, but must rely on
the termination of all of its preceding basic blocks in any previous tick. Thus, they check
whether any preceding thread is still active by looking at all basic blocks ending in pauses of
these threads in addition to checking whether the thread has finished during this tick. After
these steps, the compiler has to find out whether the program is schedulable. In order to do
that, the blocks are ordered depending on their guards and dependencies. If a block has a

21

3. Related Work

1 if(_PRE_GO == 1){

2 _GO = 0;

3 }

4 {

5 g0 = _GO;

6 if(g0){

7 O1 = 0;

8 O2 = 0;

9 }

10 g1 = g0;

11 g5 = PRE_g4;

12 g2 = g1 || g5;

13 _cg2 = A;

14 g3 = g2 && _cg2;

15 if(g3) {

16 B = 1;

17 O1 = 1;

18 }

19 g4 = g2 && (!_cg2);

20 g6 = g0;

21 g8 = PRE_g7;

22 g8b = g8;

23 _cg8 = B;

24 g7 = (g8b && (!_cg8)) || g6;

25 g9 = g8b && _cg8;

26 if(g9) {

27 O1 = 1;

28 }

29 g3_e1 = !g4;

30 g9_e2 = !g7;

31 g10 = (g3_e1 || g3) && (g9_e2 || g9) && (g3 || g9);

32 if(g10) {

33 O1 = 0;

34 O2 = 1;

35 }

36 }

37 PRE_g4 = g4;

38 PRE_g7 = g7;

39 _PRE_GO = _GO;

40 return;

Listing 3.1. Generated C code of the ABO example from Figure 2.5 by the data-flow compilation of
SCCharts; Further code backends are also possible.

guard or dependency towards another block, it has to be ordered after this block. If this order
cannot be defined due to any cycles, the program is not ASC schedulable and will be rejected.
Any valid resulting schedule is not necessarily the only valid schedule, yet all schedules will
produce the same deterministic output. From this scheduling order, a sequentialized program
– the aforementioned netlist – can be generated, which then in turn can be translated to C or
Java code via pattern matching from top to bottom.

The code in Listing 3.1 shows the ABO example from Figure 2.5 translated to C code
by the data-flow compilation. All variables beginning with g are various guards created by
the basic block and scheduling block generation. They determine whether any parts of the
program in the if-blocks are to be executed or not, as they check for the active state of this
part of the program. PRE-guards depend on the state of a guard in the previous tick. The first
if-statement checking for the value of g0 checks whether the program is in the very first tick,
as g0 is only dependent on the value of _GO, which is only true in the very first tick. Due to
the dependency from the thread HandleB towards the thread HandleA, the latter has has to be
scheduled before the first in a sequentialized program. Thus, the next if-statement in lines 16
to 19 handles the statements from this thread. The guard g3 depends on the completion of the
very first block or the previous value of g4 and the value of the input A due to the conditional
checking for it. The value of g4 is only true, if this block has not already been executed in a
previous tick. This is due to the pause in the SCG that is executed, if A evaluates to false when
checking for the condition. Therefore, the condition evaluates to true, if A evaluates to true
and either the pause was taken during the previous tick, or the previous block as guarded
by g3 was executed during this tick. In the if-block, the values of B and O1 are set to true as
determined by the SCG. The following if-block in lines 27 to 29 corresponds to the thread
HandleB analogous to the previous block, with the exception that it cannot be executed during

22

3.2. Esterel

the first tick, since the guard g8b depends on values of the guard g7 during the previous tick.
This happens due to the pause in the SCG directly before the conditional. Subsequently, the
last if-block corresponds to the join. Its values depend on the termination values of the two
threads as it checks for the termination of the threads or whether any thread ran into a guard
signifying a pause. If either g4 or g7 evaluate to true, the thread will not terminate as then
either HandleA or HandleB ran into a pause. If the conditional evaluates to true, the final part
of the SCG is executed and the function terminates.

Even though this code is difficult to read and to comprehend, it does not require any
additional macros and is compilable by all commonly used C compilers. Overall, no priorities
are required and the execution of a tick simply goes through the whole netlist and executes
all parts of the code that are currently active depending on the previously executed parts,
instead of using computed gotos to find the next code to be executed.

Due to the restriction that no cycles should be in the static schedule of an SCG, the data-
flow compilation struggles with schizophrenia, as multiple executions of a statement require
some path through the SCG that induces an immediate cycle. However, even if this cycle
cannot happen in a run of the model, the model will be rejected due to the static cycle. Some
solutions to this problem include for example depth-joins or surface copies. A depth-join is a
join where at least one of its threads is potentially instantaneous, while at least one other
thread is certainly delayed. A static structural analysis over a control-flow graph would find a
cycle, yet due to one of the threads being delayed, the cycle cannot be instantaneous. Thus,
the schedule should be accepted. The depth-join itself would then require a second exit of the
thread in the control-flow graph that could only be taken if the thread was entered in the
same tick as the exit is taken. This exit would then not connect to the join in the control-flow
graph, thus breaking the instantaneous cycle. In each subsequent tick, the thread should,
however, be able to be terminated ordinarily. The alternative surface copy requires – as the
name implies – the surface of the thread to be copied, therefore requiring a lot more effort. Its
concept will be illustrated in the next section, as it is easier to explain with Esterel.

3.2 Esterel

Esterel is a synchronous language based on the synchronous MoC [Ber00a]. Contrary to SCL it
does not extend C but is its own language designed for reactive systems. It utilizes signals as
a means of communication between concurrent executions. A signal can either be present or
absent during a tick. This state must be globally consistent for the entire tick. To guarantee
deterministic behavior, the signals must always be written first before they are read from. If a
signal was presumed absent and sequentially later emitted and therefore set to present, the
program must be rejected.

To be compiled to executable code, Esterel can use one of multiple approaches: Ed-
wards [Edw99] first proposed the translation to an intermediate code produced by the front
end of Berry’s compilers, which then is translated to a Concurrent Control-Flow Graph (CCFG).
Similar to SCGs, CCFGs are control flow graphs, where a lot of the characteristics of the un-

23

3. Related Work

1 loop

2 signal S in

3 present S then emit O end;

4 pause;

5 emit S

6 end;

7 present I then emit O end

8 end

Listing 3.2. Schizophrenic model in Esterel

1 loop

2 signal S in

3 present S then emit O end;

4 gotopause l;

5 end;

6 signal S in

7 present S then emit O end;

8 l: pause;

9 emit S;

10 end;

11 present I then emit O end

12 end

Listing 3.3. Solution to schizophrenia in
Esterel by Tardieu and de Simone

derlying programming language were already translated to easier constructs. Afterwards,
concurrency is stripped, respecting dependencies in the graph. Any cycles in these dependen-
cies or in the graph itself would result in the compiler rejecting the program. The synthesized
C code then contains unnested if-then-else structures checking if a part of the program should
be activated at this instance or not, similar to the data-flow compilation of SCCharts.

Edwards et al. [EKH06] later proposed a way to execute Esterel code using linked lists
to track which blocks of code are to be executed at what time, eliminating conditional
tests. However, it still uses a variant of the Graph Code (GRC) by Potop-Butucaru [PS04],
which in itself is a variation of the CCFG containing a control flow part and a selection tree
describing the behavior of the program in each cycle. The code generation still requires a
sequentialization of the graph. There are further approaches to the compilation of Esterel
programs, however, due to the nature of Esterel, immediate loops are not allowed, making an
approach with dynamic assignment of priorities in threads unnecessary.

Schizophrenia in Esterel is a highly discussed topic [Ber00b; SW01; TS04]. According to
Berry [Ber00a], schizophrenia problems themselves occur rarely. Whenever a scope is left
and reentered during a tick, the schedulability analysis and code creation, however, have to
consider the reincarnation of a thread or signal. Listing 3.2 shows a small example Esterel
program, where after the first tick the signal S is emitted. Afterwards, the signal scope of the
local signal S is left and, depending on the input I, O is emitted or not. Subsequently, the loop
restarts. The signal S is then reincarnated as a new signal scope of the signal is entered and
its presence tested. Since it is in a new signal scope of S, however, S must not be present at
this point in time.

A critical problem for any solution of this is that physical gates and wires in synchronous
circles are only allowed to assume one single value at each clock cycle. Therefore, if an Esterel
program is to be translated to circuitry, the different incarnations of a signal have to be
distinguished carefully. A simple solution to schizophrenia in general is loop unrolling by
duplicating the loop bodies that are to be reentered. This means that, instead of one statement
having multiple incarnations during a tick, this statement is duplicated in the code and each
of the duplicated statements has at most one incarnation during each tick. For Esterel to be

24

3.3. SyncCharts and SyncCharts in C

valid, the original statement must never terminate within one tick, as there must never be
complete immediate loops in a program. Therefore, the duplicated loop body can also never
terminate within one tick and no schizophrenia can happen at all. However, due to nested
schizophrenic statements, the size of the program can increase exponentially, which is not
desired.

Tardieu and de Simone [TS04] on the other hand propose a new gotopause statement. This
statement acts as a normal pause in Esterel but jumps to the declared label after the pause
was executed. Each pause statement in the loop body will further receive a unique label
where a gotopause may jump towards. Then, instead of duplicating the whole loop body
analogous to the naive solution, only the surface of the loop body is duplicated and each
pause with its corresponding label in the surface is replaced with a gotopause. Since the label
of the replaced pause also corresponds to a label of a pause in the surface of the original body,
a gotopause will jump towards this pause in the next tick. The result of this transformation
applied to the program from Listing 3.2 is shown in Listing 3.3. In it, the depth of the program
until the first pause in line 4 in the original is copied and put into the beginning. The pause

in line 4 is then replaced with a gotopause l. The signal scope of the depth is subsequently
ended in line 5 and a new signal scope begins in line 6. This second scope encompasses the
copy of the whole program. Line 8 shows that the original pause has been replaced with a
labeled pause. The gotopause in the depth jumps towards this pause. As evident, the emit S

statement in line 9 relates to another instance of S as the present S check in line 3 during the
execution of the second tick, as the scope of S was left after the gotopause. Thus, no signal is
reincarnated and no statement executed multiple times. Tardieu and de Simone argue that
this solution of schizophrenia not only solves all schizophrenic models for generated code
and circuits, but also that the implementation runs quasi-linear in practice.

3.3 SyncCharts and SyncCharts in C

SyncCharts [And96] are a variant of Statecharts [Har87] – a visual formalism of state machines
and state diagrams – that allow concurrency as well as hierarchy and preemption while
building upon the synchronous MoC to ensure deterministic concurrency. It aims for easy
creation, editing and visualization of models for safety-critical embedded systems, similar to
SCCharts. Its set of statements is based on Esterel and thus inherits the concepts of signals
and valued signals as well as the underlying MoC from Esterel. Due to this, the compilation
from SyncCharts to Esterel is simple. Figure 3.1 shows an example SyncChart of the ABSWO

model. It works similar to the ABO model in Section 2.1.4, yet highlights the functionality of
strong and weak aborts. The inner behavior of the abo state works almost the same as the one
described in Section 2.1.4, with the exception that the model does not react immediately to
the input A, but only delayed. The presence of the signal S – representing the strong abort –
results in the whole model re-initializing before any inner behavior of abo can be executed
during this tick. Thus, when S, A and B are all present during a tick, O will not be present, as
the inner behavior has been preempted. Since the inner behavior is also non-immediate, the

25

3. Related Work

Figure 3.1. The SyncChart of AB-
SWO, highlighting strong and
weak preemption

1 TICKSTART(5);

2 L_abo: FORK(L_abo_ab, 2);

3 FORKE(L_abo_main);

4 L_abo_ab: FORK(L_abo_ab__wA, 4);

5 FORK(L_abo_ab__wB, 3);

6 FORKE(L_abo_ab_main);

7 L_abo_ab__wA: AWAIT(sig_A);

8 EMIT(sig_B);

9 TERM;

10 L_abo_ab__wB: AWAIT(sig_B);

11 TERM;

12 L_abo_ab_main: JOIN;

13 EMIT(sig_O);

14 HALT;

15 L_abo_main: PAUSE;

16 if (PRESENT(sig_S)) {

17 ABORT;

18 PRIO(5);

19 GOTO(L_abo);

20 }

21 PRIO(1);

22 if (PRESENT(sig_W)) {

23 ABORT;

24 PRIO(5);

25 GOTO(L_abo);

26 }

27 PRIO(5)

28 GOTO(L_abo_main);

29 TICKEND;

Listing 3.4. Synchronous C translation of
the ABSWO example

presence of A and B is ignored at the restart of abo. The signal W on the other hand represents
the weak abort. If W, A and B are all present during a tick, but S is absent, then O will be
present during this tick. The inner behavior of abo is executed before the transition triggered
by W is taken and abo is re-entered. Thus, the model can already react again during the next
tick.

SyncCharts in C [Han09b] is an approach to embed SyncCharts constructs in C. It utilizes
C macros and priorities assigned by hand by the modeler or passed down by a dependency
analysis in SyncCharts to create Synchronous C. The priority assignment as introduced by
Traulsen et al. [TAH10; TAH11] works on an intermediate representation of the SyncChart that
highlights the order of hierarchy, transitions, dependencies and lastly control-flow, similar to
the SCG. In contrast to the SCG, however, this priority graph also contains complex instructions
such as strong and weak transitions. In contrast to the minimal language of SCL, Synchronous
C implements more macros adapted from the semantics of SyncCharts. The translation of the
ABSWO example in Listing 3.4 shows that Synchronous C also implements macros for awaiting
a signal and the general signal control. Further macros that are implemented include the
abort and suspend statements. As a precursor to SCL, one can, however, already see some

26

3.4. PRET-C

1 PAR(Thread1, Thread2);

2 [...]

3 void Thread1() {

4 A = 0;

5 EOT;

6 A = B + 1;

7 }

8 void Thread2() {

9 B = A;

10 EOT;

11 B = 7;

12 }

Listing 3.5. A simple PRET-C
program [And13]

1 fork(Thread2) {

2 Thread1:

3 A = 0;

4 pause;

5 A = B + 1;

6 } par {

7 Thread2:

8 B = A;

9 pause;

10 B = 7;

11 }

Listing 3.6. A similar program,
implemented in SCL

SCL A 0 8
B 0 7

PRET-C A 0 1
B 0 7

Table 3.1. Variable values at
the end of the ticks of the small
PRET-C and SCL programs.

concepts inherited by SCL. Both languages rely on labels and goto-statements and each fork is
called with a label and a priority. A dispatcher in the background memorizes the continuation
of each thread and decides which thread executes next based on the priority of all threads.

Due to its relation to Esterel, schizophrenia is similarly problematic for SyncCharts. Thus,
the same proposed solutions can be applied after the translation to Esterel. However, von
Hanxleden proposes that the translation to synchronous C solves schizophrenia problems
inherently due to the way local variables are handled in C [Han09a].

3.4 PRET-C

PRET-C [And13] is, similar to SCL, an extension of C via macros that allows easy facilitation
of concurrent programming for safety-critical systems. It further provides determinism,
reactivity and thread-safe communication via shared memory access. It also allows sequential
accesses to a variable that SCCharts allows but Esterel prohibits. PRET-C further uses variables
like SCCharts and not signals like Esterel for communication between threads. However,
in PRET-C each thread is given a static priority at its fork that determines the order of all
threads. Therefore, PRET-C allows no interleaving of threads and requires more planning and
knowledge of the underlying principles from the programmer. This approach, if implemented
in SCCharts, would violate the iur protocol of the SC MoC, since it is possible that writes to
a shared variable happen after reads in concurrent threads due to the scheduling of these
threads. Still, the behavior of PRET-C is deterministic and predictable due to the fixed order of
execution. Listing 3.5 shows a small example PRET-C program with an SCL translation with
a similar behavior in Listing 3.6 that has to adhere to the SC MoC. The trace in Table 3.1,
however, shows the difference in the execution. Due to the fixed order of the threads in PRET-C,
A = B + 1 in line 6 in the program must be executed before the assignment B = 7 in line 12.
The SC MoC, however, stipulates that writes have to be executed before reads. Therefore, the
two statements are executed the other way around and the final value of A is 8 in SCL and 1 in
PRET-C.

27

3. Related Work

Similar to the semantics of Esterel and the netlist-based compilation of SCCharts, PRET-C

restricts loops by requiring at least one EOT (or end of tick, similar to a pause in SCL) in the
loop body. When regarding schizophrenia, this could still lead to reincarnation of variables.
However, PRET-C does not provide any local variables. Since only global variables exist, the
scope of a signal can never be left and reentered. Therefore, reincarnation is not problematic
in PRET-C. It is further not problematic for a statement to be executed twice during a tick.
The semantics of PRET-C allows multiple accesses to a variable in a tick as long as they are
sequentially ordered. Since this is the case, as the second iteration of a loop must be scheduled
after the first, there is no problem concerning schizophrenic behavior in PRET-C.

28

Chapter 4

Priority-Based Compilation

This chapter introduces the concept of the priority-based compilation of SCCharts. Section 4.1
covers the general, original approach to the compilation. It explains how priorities were
calculated as well as how those priorities were used to create deterministic code of concurrent
programs. It also covers peculiarities of the underlying macros and how those were adapted
to the approach. Section 4.2 subsequently introduces certain optimizations to the calculation
of priorities. Since the original approach can be improved upon regarding context switches,
some changes to the priority calculations were made. It is then proven that these optimizations
do not cause the program to be non-deterministic or to violate the iur protocol and that they
actually improve the execution time of the program by reducing context switches. Section 4.3
finally covers the topic of schizophrenia in the priority-based compilation approach. It will
talk about how schizophrenia is handled in the original approach and which adaptations
were made to accept and correctly translate schizophrenic programs.

4.1 Priority-Based Compilation

The priority-based compilation approach as introduced by von Hanxleden et al. [HMA+13;
HMA+14] describes a way to compile SCCharts models to C code. In the alternative, data-flow
approach – as introduced by von Hanxleden et al. [HMA+14] and implemented by Smyth et
al. [SMH15] as described in Section 3.1 – an SCCharts model is translated to an SCG model
which is then sequentialized. Afterwards, the C code is generated using this sequential model.
The priority-based compilation in contrast utilizes priorities and a dynamic scheduler, thus
avoiding the sequentialization of the model. The core idea of the approach is the assignment
of priorities to nodes. During the execution of a model with multiple parallel threads, the
thread with the highest priority executes first. The priority of the threads is determined by
the priority of their next node in the model. However, since no code can be executed on
a model, the model must first be translated to SCLP as introduced in Section 2.1.2. Thus, a
translation from the SCG to this C dialect is necessary. The following subsections will introduce
this process, beginning with the calculation of priorities, for distinguishing purposes in the
following called Node Priorities (nprs) in Section 4.1.2, over calculating the Priority IDs (prioIDs)
in Section 4.1.3 to finally generating C and Java code in Section 4.1.4 and Section 4.1.5.

29

4. Priority-Based Compilation

entry

exit

x > 0

foo(x)

x--

true

Figure 4.1. The SCG of a simple cyclical model
with an immediate loop; The cycle is highlighted
in purple.

entry

exit

x > 0

surface

depth

foo(x)

x--

true

Figure 4.2. The SCG of a simple cyclical model,
but without an immediate loop

4.1.1 Strongly Connected Components

Let G = (N, E) be an arbitrary, directed graph with nodes N and edges E. A set of nodes
N1 Ď N is called a Strongly Connected Component (SCC) if for every node in N1 there exists
a path to all nodes in N1. Let G = (N, E) now be an SCG with nodes N, arbitrary edges E
and immediate edges EI Ď E. The arbitrary edges include all edges of the model while
the immediate edges include all instantaneous control-flow edges as well as all dependency
edges of the model. An SCC in an SCG is a set of nodes N1 Ď N where for all nodes in N1

there exists a path traversing only edges from EI towards all nodes in N1. This means that an
SCC never traverses any delayed edges. If there exists an SCC N1 and two nodes n1, n2 P N1,
then these two nodes must have the same priority:

Ź If without loss of generality n1 has a priority that is higher than the priority of n2, then n1

must be scheduled before n2. However, there exists a path of immediate edges originating
in n2 and ending in n1, therefore n2 can be scheduled before n1 by the scheduler. If the two
nodes had the same priority, their order of execution does not matter, and the scheduler
can choose which node to perform first.

The detection of SCCs is done using an adapted version of Tarjans algorithm [Tar72] over the
SCG, where the delayed edges are disregarded. Each node in the SCG is assigned exactly one
SCC. All nodes that form a directed cycle are assigned the same SCC, while nodes that do
not form a directed cycle, e. g., nodes without any outgoing edges or all nodes of an acyclic
graph, form an SCC by themselves.

30

4.1. Priority-Based Compilation

Figure 4.1 and Figure 4.2 depict two SCG models with a similar behavior. Both of them
read an integer x and then perform a loop x times, calling a function foo each time with x as
its parameter. However, the loop in Figure 4.2 contains a pause, breaking the immediate loop
of Figure 4.1. The model in Figure 4.1 therefore takes exactly one tick to complete, while the
model in Figure 4.2 takes x ticks. The SCC highlighted in purple in the left model is therefore
not present in the right model anymore.

The runtime of the algorithm increases linearly based on the number of nodes and
edges in the SCG. The result of the algorithm is a new, now acyclic graph consisting of
nodes representing a set of nodes. The edges of this graph consist of all arbitrary edges
that originated in one SCC and target another SCC. The internal control-flow edges of an
SCC are discarded. The following steps will use this data structure and its acyclicity as their
foundation.

4.1.2 Node Priorities

As mentioned earlier, a node must be executed before another node, if there exists a concurrent
and non-confluent dependency originating in the first node and targeting the latter. Therefore,
the priority assigned to the first node has to be higher than the one of the latter. To achieve
that, all immediate edges are assigned a weight. Dependency edges receive a weight of
1, while immediate control-flow edges receive a weight of 0. Afterwards, the maximum
weighted path originating in an SCC following all immediate edges is calculated. A depth-first
search through all SCCs is performed to find this path for all SCCs. Each SCC and all nodes
corresponding to the SCC are then assigned the length of the maximum weighted path as their
npr: A number representing the importance of a node to determine the order of execution. A
node instance of a node with a higher priority must be executed before a concurrent node
instance of a node with a lower priority. If the two nodes are assigned the same node priority,
their order of execution does not matter. Algorithm 1 describes the npr in detail. Figure 4.3
depicts the annotated SCG of the ABO-example as introduced in Section 2.1.4.

The depth-first search of the npr assignment traverses nodes until it reaches a sink. As
the maximum weighted path originating in a node with no outgoing transitions will always
have a weight of 0, the npr of all surface nodes as well as the final exit node is determined as 0.
When the traversal continues backwards from the exit node, the nodes above also receive the
npr 0 as their only outgoing path traverses towards the exit. When the backwards recursion
reaches the B = true assignment in thread HandleA, its corresponding node is the source of
a dependency depicted by a dashed green arrow targeting the conditional testing for the
state of B. This conditional node has two paths towards sinks. One path that leads directly
towards the surface node with an npr of 0 and another path towards the final exit. Since both
paths do not contain any dependency edges, their weight and thus also the npr of the node
is 0. As the node containing the B = 0 assignment has only one further path with a weight
of 0, its maximum weighted path is the one traversing through the dependency towards the
conditional node and then towards one of the two sinks. Thus, the npr assigned to this node
is 1. Its predecessor, the conditional testing for the state of A, now has four paths towards

31

4. Priority-Based Compilation

Algorithm 1 Calculating the npr of a list of SCCs, starting at the SCC containing the root node
1: function longestWeightedPath(currentSCC)
2: dependencies Ð currentSCC.outgoingDependencies
3: neighbors Ð currentSCC.successors
4: prio Ð 0
5: for each d in dependencies do
6: if ! (d.scc.visited) then
7: d.scc.visited Ð true
8: longestWeightedPath(d.scc)
9: end if

10: prio Ð max(d.scc.npr + 1, prio)
11: end for
12: for each n in neighbors do
13: if ! (n.scc.visited) then
14: n.scc.visited Ð true
15: longestWeightedPath(n.scc)
16: end if
17: prio Ð max(n.scc.npr, prio)
18: end for
19: currentSCC.npr Ð prio
20: end function

sinks. The first path leads directly towards the surface node, while the other three paths are
the same paths as the B = 0 node just beginning at the conditional node. Thus, the maximum
weighted path of the node takes the same path as the maximum weighted path of the B = 0

node with a weight of 1. The same then applies for all its predecessors. It is not necessary
to traverse all paths originating in a node for every node, but only to take the maximum
of all the nprs of its control-flow neighbors and the nprs of its dependencies plus 1, if those
were already calculated before. If not all SCCs were visited by the depth-first traversal, another
traversal is started at one of those unvisited SCCs.

It is further important that the npr of a node is never higher than the npr of its predecessor
to prevent priority inversion, where a node with a lower npr is executed before a node with a
higher npr. Figure 4.4 shows an imaginary, faulty npr assignment, where the statement x = 0

has a higher priority than its preceding node. If a thread entered the parallel region, thread B

would be executed first until its completion, as its entry node has a higher npr than the entry

node of its sibling thread. Only afterwards is thread A executed until its completion. This,
however, means that the dependency from the node containing the statement x = 0 to the
node containing the statement x++ is not considered, the latter statement is executed before
the former, and the iur protocol is violated.

Algorithm 1 illustrates that each dependency edge and each control-flow edge is traversed
exactly once to visit each node exactly once. If a node was previously visited, only its already

32

4.1. Priority-Based Compilation

entry1

exit0

fork1

join0

O1 = false1

O2 = false1

O1 = false0

O2 = true0

entry1

A1

B = true1surface0

depth1

O1 = true0

exit0

true

ThreadID: 2

HandleA - Potentially instantaneous

entry0

surface0

depth0

B0

O1 = true0

exit0

true

ThreadID: 1

HandleB - Delayed

Figure 4.3. The SCG of ABO with nprs in red in the left or top
corner of each node

entry1

exit0

fork1

join0

entry1

x++1

exit0

ThreadID: 1

B - Instantaneous
entry0

x = 02

exit0

A - Instantaneous

y = 00

Figure 4.4. The SCG of a model with
an incorrect npr assignment

assigned npr is checked. Thus, the algorithm scales linearly in the number of nodes and
instantaneous edges in the previously generated graph of SCCs.

Schedulability Analysis

As explained in Section 2.1, not all programs should be accepted, e. g., if any write-write
conflicts exist. A schedulability analysis is performed to check for invalid programs. If any
positive weighted cycles in the graph exist, a conservative approach is to reject the model.
A positive weighted cycle exists in an SCC, if and only if a cycle contains a concurrent,
non-confluent dependency edge. Figure 4.5 shows such an SCG. The SCC – highlighted in
purple – contains two dependency edges. Due to the iur protocol, the statement O1 = 0 has
to be executed before statement O1++ and statement O2 = 0 before O2++. However, since
the sequentiality necessitates that statements ought to be performed after their immediate
predecessors in the SCG, any schedule of this program would result in a violation of the
iur protocol. Since no definite order of execution can be determined using the iur protocol,
the program is non-deterministic and therefore rejected by the scheduler. Figure 4.6 depicts
another example that is prohibited by the schedulability analysis.

33

4. Priority-Based Compilation

Algorithm 2 Schedulability analysis of an SCG

1: function schedulability(SCCList)
2: for each scc in SCCList do
3: for each node in scc do
4: dependencies Ð node.dependencies
5: for each d in dependencies do
6: if d.concurrent && !(d.confluent) then
7: if (d.type == WRITE_WRITE) || (d.target in scc) then
8: return false
9: end if

10: end if
11: end for
12: end for
13: end forreturn true
14: end function

Statement O = 0 has to be executed before statement O++ due to the dependency between
their corresponding nodes. However, due to the immediate cycle crossing through the
join-nodes and fork-nodes, O = 0 also has to be executed chronologically after O++. The
node priority calculation is therefore unable to determine priorities for this example. This
schedulability problem, however, only occurs statically, and Section 4.3 will argue for accepting
similar programs. It can be concluded that the introduced schedulability analysis merely
looks at the static structure of a program, not the dynamic execution. Figure 4.7 shows another
example, where a problem arises in a part of the program that is unreachable. Since the
conditional x < 1 can never evaluate to true due to the assignment of the variable x earlier, the
dependency cycle can never exist during a run of the program. The program, however, is still
rejected, even though it is otherwise schedulable and deterministic. Thus, according to the
different classes of SC, the analysis checks whether a program is SIASC, as it allows immediate
cycles in the control-flow, but cannot distinguish between cycles that only exist in the static
layout of the program and cycles that occur during the execution of the program.

The schedulability analysis shown in Algorithm 2 traverses all SCCs exactly once and
checks for all dependency edges of nodes inside these SCCs. Thus, its runtime scales linearly
in the number of nodes in the SCG – as each node can be in only one SCC – and dependency
edges in the generated graph of SCCs.

4.1.3 Priority IDs and Optimized Priority IDs

Assigning Thread Segment IDs

As mentioned in Section 2.1.2, two nodes in parallel threads must not have the same priority
as it also uniquely identifies each thread. Therefore, Thread Segment IDs (tsIDs) are introduced.
Each thread in the SCG, including the root thread, receives an identifier that uniquely separates

34

4.1. Priority-Based Compilation

entry

exit

fork

join

entry

O1++

O2 = 0

exit

A - Instantaneous
entry

O2++

O1 = 0

exit

B - Instantaneous

Figure 4.5. The SCG of a model with an imme-
diate cycle containing dependency edges; The
cycle is highlighted in purple.

entry

exit

fork

join

entry

O = 0

exit

A - Instantaneous
entry

O++

exit

B - Instantaneous

Figure 4.6. The SCG of another model with an
immediate cycle containing an dependency edge
that traverses a join and fork node; The cycle is
highlighted in purple.

entry

exit

fork

join

entry

x = 1

x < 1

x = 1

exit

true

A - Instantaneous

entry

x++

exit

B - Instantaneous

Figure 4.7. The SCG of a model with an unreachable
immediate cycle containing dependency edges; The
cycle is highlighted in purple.

threads if they are statically concurrent. Two sequential nodes with the same tsID can then be
regarded as a part of the same thread. If two threads are not statically concurrent, they are
allowed to have the same identifier to reduce the number of required priorities for all nodes.

35

4. Priority-Based Compilation

Algorithm 3 Assignment of tsIDs

1: function assignThreadSegmentIDs(node, tsID)
2: successors Ð node.successors
3: if !(node.visited) then
4: node.visited = true
5: if node instanceof Fork then
6: sortedSuccessors Ð successors.sortBy(npr)
7: for each n in sortedSuccessors do
8: tsID Ð assignThreadSegmentIDs(n, findNextAvailabletsID())
9: end for

10: else
11: for each n in successors do
12: tsID Ð assignThreadSegmentIDs(n, tsID)
13: end for
14: end if
15: node.tsID Ð tsID
16: end if
17: return tsID
18: end function

Before assigning the tsIDs, it is important to think about the way forks and joins are
handled. One approach would be to have a designated parent thread that forks all its children
and waits in parallel for the termination of all children. The parent thread then polls each
tick whether its children have terminated before it may continue. This way, the assignment of
tsIDs can equal the threads in the SCG and the tsID assigned to each node is dependent on its
immediately enclosing thread. However, this approach would cause one thread per fork-join
block that only polls for the completion of its child threads each tick. This causes a larger set
of required priorities while it also causes more computational effort per tick. However, the
number of priorities is limited as mentioned in Section 2.1.2. Instead, one can argue that the
parent thread can assume the role of one of its child threads. This way, the number of required
threads can be reduced by one for each fork in the program. When performing the fork, the
tsID will then be transferred to one of the child threads and when the join is performed, one
of the child threads will have to transfer its tsID towards the continuing thread. To minimize
changes in priority at the start and end of the parallel statement, the forking or joining thread
should be able to continue immediately after forking or joining respectively. Therefore, one of
the threads with the highest entry npr inherits the tsID of the parent thread. Thus, the thread
can immediately continue after the fork. Since the exit nodes of a parallel segment in contrast
all have the same npr assigned, the lowest tsID of any thread is assigned to the thread after the
join.

The actual tsID assignment as described in Algorithm 3 is then performed via a depth-first
search over all control-flow edges starting at the root node. If the traversal reaches a fork

36

4.1. Priority-Based Compilation

node, the next nodes are visited ascending in the order of their nprs. Thus, the entry node with
the highest npr will be visited last. When entering a thread, the next available, unused tsID is
calculated. It will be passed on until a final exit node or an already visited node has been
reached. This node is then assigned this tsID. The depth-first search subsequently backtracks,
applying the same tsID to all nodes on its path, until a node with multiple outgoing control-
flow edges is reached. If the node is a conditional, the depth-first traversal continues on the
alternative path until it reaches a previously visited node and backtracks from there again.
As a thread may only have one exit node, this path will at some point lead to an already
visited node. If the node with multiple outgoing control-flow edges is not a conditional, a
fork was reached. At a fork node, all threads must be visited before backtracking further.
Before traversing each thread, the next available tsID is found again to assign to this thread.
After all threads were traversed, the fork node inherits the tsID of the child thread with the
largest entry npr as this node was visited last. If multiple threads with the same highest npr

exist, the forking thread receives the highest tsID of those threads. This guarantees that the
forking thread assumes the role of one of the children, while the transition happens without
a change in priority. Since no other thread can have a higher priority, as all sibling threads
were assigned lower tsIDs and/or nprs, and no other parallel thread exists that preempts
the currently active thread, the thread may continue without any interference. Thus, no
dispatcher will need to be called. Afterwards, the depth-first search backtracks until the next
fork, conditional or initial entry node is reached.

In the ABO example from Figure 4.3, the traversal starts at the initial entry node at the top
and continues until the fork node. The highest entry npr of any following entry node is 1 in the
HandleA thread, thus only HandleB may be traversed first. The traversal continues in this thread
across the pause and into the conditional checking for B. The traversal may then continue on
the true path and finally reach the final exit node after exiting HandleB. The backtracking then
starts by applying the tsID 1 to all nodes on the path starting at the final exit node. When the
backtracking reaches the conditional node, the alternative path is checked and, since it was
already visited, ignored. The backtracking continues applying the same npr until the entry

node of thread HandleB and the previous fork node is reached. Now, the next thread is visited,
but with a higher tsID-counter. When the depth-first search reaches the exit node of HandleA
and recognizes that the following join was already reached, the new tsID of 2 is applied to this
exit node. The backtracking then applies this tsID to all nodes on the path analogously to the
thread HandleB. When the fork is reached again, no further threads can be visited, thus the
node receives the tsID 2 as well. The backtracking then continues without interruption until
the initial entry node. All nodes on the path also receive the tsID 2. As the model in Figure 4.3
shows, the tsIDs are visualized in the bottom left of a thread. The tsID of the surrounding root
threads can be deduced from the threads if they are not visualized themselves.

As mentioned earlier, one of the child threads has to perform the join and continue
afterwards. The priorities of the threads determines which child will perform the join. If
thread t joins and there exists a thread t’ with t’.priority < t.priority, the check for the conclusion
of all siblings will happen before the termination of t’. Thus, t would not be able to recognize

37

4. Priority-Based Compilation

that all siblings are terminated during the tick and would not continue after the join even
though the join should be performed in this tick. The joining thread therefore must be the
sibling with the lowest priority at its termination.

It is important to note that, with the exception of the forking sibling, the order in which
the tsIDs are assigned to the child threads is arbitrary. The tsID is merely supposed to solve
ties between two threads with the same npr. If they already have the same npr, their order
is insignificant for SC-schedulability as their nodes are confluent. Their order is further
unimportant for any optimizations done by the C compiler or most other code optimizations,
since there is always a call to the dispatcher at changes of priorities and at the termination of
a thread. The macros in Listing 2.1 show that to access the label of the jump towards the next
continuation at the end of the dispatcher in line 27 the memory has to be accessed. Due to
the statement goto *_pc[_cid], no jump prediction can be made and no pre-caching can be
done by a scheduler, as the _cid field is overwritten in the statement directly before the goto

in the bit scan reverse instruction. It might be advantageous, however, if a thread that lowered
its priority continues directly afterwards, such that some parts of the following code might
still be loaded. As an example, if there are only multiple concurrent threads that span over
only one tick, it might be of advantage to assign the tsIDs in an descending order depending
on their order in the program. This way, if some code has been pre-cached due to the length
of the cache-lines, the next thread to be executed after one thread terminated might still be in
the cache. This may require much more extensive analysis of the program for larger programs,
however. Additionally, if the execution of two threads spans across multiple ticks, the code
that is actually executed concurrently may be far apart from each other in the code. Between
those two code fragments lies presumably the behavior of parts of the first and second thread.
Thus, when the tick in the first thread is loaded to the cache, the code of the second part will
presumably not be pre-loaded together with the former.

The assignment of tsIDs traverses each node and each control-flow edge exactly once. Thus,
it is linear in the number of nodes and control-flow edges.

Calculating the Priority IDs

After the tsIDs were assigned, the nprs and tsIDs must be combined to accommodate the SCLP

macros. The resulting priorities, the prioIDs, must be unique across all nodes that are pairwise
statically concurrent. The actual calculation of the prioIDs of node n is as follows:

n.prioID = (tˆ n.npr) + n.tsID
where t represents the total number of tsIDs across the whole program. Provided that all
statically concurrent nodes belong to threads that have different tsIDs, these nodes will all
receive unique prioIDs:

Let n1, n2 P N be two statically concurrent nodes with n1.prioID = n2.prioID but also
with n1.tsID ‰ n2.tsID. Then, since the number if tsIDs is static across the model, for some
m P N with m ą 0 must hold n1.npr + m = n2.npr without loss of generality. Then:

38

4.1. Priority-Based Compilation

(tˆ n1.npr) + n1.tsID = (tˆ n2.npr) + n2.tsID

(tˆ n1.npr) + n1.tsID = (tˆ (n1.npr + m)) + n2.tsID

(tˆ n1.npr) + n1.tsID = (tˆ n1.npr) + (tˆm) + n2.tsID | ´(tˆ n1.npr)

n1.tsID = (tˆm) + n2.tsID

Since m ą 0 and n2.tsID ą 0 due to their definitions, n1.tsID ą t must hold. However,
since tsIDs are assigned in an ascending order without gaps between them, the tsID of a thread
cannot exceed the maximum number of threads. Thus, there is a contradiction. All prioIDs are
therefore unique for all nodes that are pairwise statically concurrent.

Optimizing the Priority IDs

This approach may produce unnecessarily high prioIDs, while many prioIDs will remain unused.
If there are five parallel threads t0 to t4, and all nodes of thread tn had a npr of n, then thread
t0 would be assigned the prioID 1, t1 6, t2 12, t3 18 and t4 24, leaving 19 prioIDs unused. To
minimize this, the prioIDs are reduced towards the optimized Priority IDs (prioIDs) by simply
removing unused prioIDs and compacting the rest while retaining the order. In the following,
prioIDs will be used for the optimized prioID.

Figure 4.8 shows the prioID assignment of the ABO example. The prioIDs are highlighted in
blue to the right of each node while the nprs are still visible in red to the left of each node. The
tsIDs of the threads HandleA and HandleB are shown in grey to the bottom left of the threads. A
small extra node containing the prio-statement has been added between all pairs of successive
nodes within the same thread with two different prioIDs.

While it is important that the npr never rises during a tick to prevent priority inversion,
the prioID does not have this restriction. This means that a thread may be allowed to raise
its tsID (as the npr must not rise and the number of tsIDs cannot change) if it is necessary.
Figure 4.10 depicts the annotated SCG of a modified ABO example with only one output O.
The corresponding SCCharts can be seen in Figure 4.9. Instead of finishing after receiving
A and B, it restarts directly from the start. The threads themselves do not change the values
of any outputs or other variables anymore, only after the completion is the output set to
true. It is further important that HandleA is not immediate anymore. As mentioned earlier, the
forking thread receives the highest tsID of the threads with the highest prioID. Since both child
threads have the same entry prioID, the forking thread receives the tsID 2. Also, the joining
thread inherits the lowest tsID of the exit nodes preceding it so the scheduler does not need to
be called after performing the join and the thread can simply continue after the join. Thus,
the join node inherits the tsID 1. However, since there exists a control-flow path from the join
node towards the fork node, the tsID has to rise at some point, causing the prioID to rise as
well. During the tsID assignment, after the O = true node is visited, traversal tries to visit the
next node. Since this node was previously visited, the traversal stops and applies the tsID to

39

4. Priority-Based Compilation

entry1 3

exit0 1

fork1 3

join0 1

O1 = false1 3

O2 = false1 3

O1 = false0 1

O2 = true0 1

entry1 3

A13

B = true1 3

surface0 2

depth1 3

O1 = true0 2

exit0 2

true

ThreadID: 2

HandleA - Potentially instantaneous

entry0 1

surface0 1

depth0 1

B01

O1 = true0 1

exit0 1

true

ThreadID: 1

HandleB - Delayed

prio(2)

prio(2)

Figure 4.8. The annotated SCG of ABO; The prioIDs in blue to the right or bottom of a node

the O = true node. The O = false node on the other hand receives its tsID from its successor.
As only the tsID and therefore the prioID of the thread rises while the npr remains un-

touched, the thread cannot be preempted by another thread with a lower prioID. The following
calculations will use the non-optimized prioIDs. Assuming there existed another parallel
thread containing a node n with n.npr ă join.npr, but with n.prioID ą join.prioID. Let t be
the total number of threads in the program. Then:

n.prioID ą join.prioID | Def. prioID

tˆ n.npr + n.tsID ą tˆ join.npr + join.tsID | ´tˆ join.npr

tˆ (n.npr´ join.npr) + n.tsID ą join.tsID | n.npr ă join.npr

tˆ (n.npr´ (n.npr + 1)) + n.tsID ą join.tsID |

tˆ (´1) + n.tsID ą join.tsID | Def. tsID

´t + n.tsID ą 0 | + t

n.tsID ą t

40

4.1. Priority-Based Compilation

ABO
input bool A
input bool B
output bool O = false

Init

WaitAB

WaitA

DoneA

A

[-] HandleA

WaitB

DoneB

B

[-] HandleB

 / O = false / O = true

[-]

Figure 4.9. The SCCharts of a mod-
ified cyclic ABO

entry0 2

exit0 2

fork0 2

join0 1

O = false0 2

O = true0 1

prio(2)
O = false0 2

entry0 1

surface0 1

depth0 1

A01

exit0 1

true

ThreadID: 1

HandleA - Delayed

entry0 2

surface0 2

depth0 2

B02

exit0 2

true

ThreadID: 2

HandleB - Delayed

Figure 4.10. The SCG of a modified ABO with a rising prioID

Again, however, the tsID of a thread cannot exceed the maximum number of threads. Therefore,
the rising prioID is allowed, and the program is accepted.

During the assignment of prioIDs, each node is visited exactly once to calculate its prioID

and once more to assign its prioID. To calculate the optimized prioIDs, the list of all prioIDs has
to be traversed once. Since there cannot be more prioIDs than nodes in the SCG, all steps run
linear to the number of nodes in the SCG.

4.1.4 C Code Generation

As Table 2.1 in Section 2.1 shows, most statements can be translated one-to-one to the modified
C code. For this, the code generation performs a modified, hierarchical depth-first traversal of
the SCG. A normal depth-first traversal is performed, yet each new parallel block, as delineated
by a fork and a join node, has to be traversed completely before the traversal continues after
the join. Thus, a parallel block is not interrupted by the following code, thus improving
reading comprehension of the resulting code. If the traversal enters a node with multiple
incoming control-flow edges for the first time, a label is created. If at a later point the same
node is entered, it will not be translated again, but a goto-statement is inserted specifying the
label as the continuation point of the program.

Conditionals are translated using simple if-else blocks. However, predicting when the
branches merge again is difficult as the model is not acyclic. Therefore, the program may
even return to a point that was previously already translated. Therefore, the two branches
are simply translated until they either reach an exit node, a surface node or a node that

41

4. Priority-Based Compilation

entry1 3

fork1 3

join1 3

fork1 3

entry1 3

x = 41 3

exit1 3

ThreadID: 1

A - Instantaneous

entry0 2

surface0 2

depth1 4

exit1 4

ThreadID: 2

B - Delayed

prio(4)

Figure 4.11. The SCG of a model with problematic join priorities

was previously reached. Surface nodes and their corresponding depth nodes are translated
to pauses. A prio-statement containing the prioID of the depth node is inserted before the
pause-statement, if the prioID of the depth differs from the prioID of the surface. If it is not
inserted before the pause but afterwards, the thread would be activated during the next tick
with the lower prioID of the previous tick and cannot raise its prioID before any other threads
with a higher prioID than the initial prioID have executed, thus causing priority inversion.
Assignments are simply translated using their contents.

At the beginning of the translation of each node, its prioID is checked. If its prioID is
different from the prioID of its successor, a prio-statement is introduced with the new prioID as
its argument. This has to be performed before checking whether this node was already visited
to ensure that the prioID is lowered before a possible jump towards the next continuation.
The previously visited node is saved using a stack. After the prioID of the previous node was
checked, the current node writes itself on the stack. After finishing its and its successor’s
translation, the node pops the stack, deleting itself from it.

When the traversal finds a fork node, it first needs to find out, which thread has the
highest entry prioID and the lowest exit prioID as mentioned in Section 4.1.3. To enhance
readability and to save a jump, the thread with the highest entry prioID is translated first. The
thread with the lowest exit prioID must be translated last to allow the join to work as intended.
Due to the assignment of tsIDs and since all exit nodes will have the same npr inherited from
the join node, the forking thread cannot be the joining thread. Therefore, no extra precautions
need to be made for this special case. For the remaining threads the order does not matter.
However, it looks more pleasing, if the threads are arranged in descending or ascending order
according to their entry prioID. The current implementation orders them in descending order.

When performing joins, the joining thread has to check whether any of its siblings is

42

4.1. Priority-Based Compilation

still enabled. The joinN-macro therefore accepts N prioIDs and looks them up in the enabled
scalar. Since the joining thread is always the thread with the lowest prioID during the exit, all
parallel threads that exit during the tick have already performed their exit. To check for their
completion, the joining thread therefore has to check for the enabled status of the exit prioIDs

of its sibling threads. However, it can be possible that the joining thread exits in a tick, while
a parallel thread merely pauses. While surface nodes will always have the npr 0, it might be
possible for an exit node to have a higher npr. Figure 4.11 depicts a model where after the join
is performed, another parallel statement starts, whose actual contents are not important to
the problem. Due to the dependencies in this parallel statement, however, the npr of the fork
is 1. Thus, this npr is propagated upwards to the previous join and therefore also to the exits.
Since thread B is delayed due to a pause, the upwards propagation of the npr ends at the
depth node and the surface and entry node have an npr of 0. Thus, when the parallel statement
starts, thread A begins due to its higher npr at its entry node compared to thread B. The thread
will then run into the join node and check for the state of its sibling thread. If the thread only
checked for the prioID in the exit node, the join would be performed, as the thread with the
prioID 4 is currently not enabled. Only the thread with the prioID 2 is currently enabled and
active, as it did not reach the pause-statement yet. Thus, the joining node must also check for
the enabled state of at least the prioID 2 in this case.

One solution to this problem would be instead of checking for static prioIDs of exit nodes
of potentially active sibling threads, to check for the actual currently dynamically assigned
prioIDs of the siblings. This requires the program to save the parent-child relation of the
threads for each parallel region. Thus, the parent thread would save all the current prioIDs

of its children (or siblings) and updates it each time any sibling changes its priority. At
a join it would then check for the enabled state of all its current siblings. However, this
approach requires a lot more information to be saved during the execution of the program
as well as additional actions to be performed during each change in priorities. Alternative
approaches that require more effort for the compiler instead of the execution may be better
for the resulting code.

One easy solution doing exactly this would be to check for all occurring prioIDs in all sibling
threads of the joining thread. However, in large models with many changes in priorities,
this may lead to as many priorities to check as there are dependencies, causing unnecessary
overhead. For now, this only requires the creation and subsequent comparison to a bitmask.
Later, however, this will not only be the case. To therefore minimize the strain on the scheduler,
only those prioIDs are checked that may theoretically be enabled at the time the join-macro is
executed. Those include all prioIDs of exit nodes, all prioIDs of depth nodes, whose prioID of
the corresponding surface node is higher than the exit prioID of the joining thread, the prioID

of those nodes, whose prioID is lower than the exit prioID of the joining thread, but whose
prioID of the predecessor is still higher than the exit prioID of the joining thread and finally
the prioID of threads that already started with a lower prioID than the joining thread. The exit
nodes must be checked. If a thread has run into a surface node before the check for the join,
its prioID in the surface node must be higher than the exit prioID of the joining thread. Since

43

4. Priority-Based Compilation

entry

exit

fork

join

O1 = false

O2 = false

O1 = false

O2 = true

entry

A

B = truesurface

depth

O1 = true

exit

true

HandleA - Potentially instantaneous

entry

surface

depth

B

O1 = true

exit

true

HandleB - Delayed

Figure 4.12. The SCG of ABO again, for comparison pur-
poses

1 int tick() {

2 tickstart(3);

3

4 O1 = false;

5 O2 = false;

6 fork1(HandleA,HandleB, 1) {

7 HandleA:

8 if (A) {

9 B = true;

10 prio(2);

11 O1 = true;

12 } else {

13 prio(2);

14 prio(3);

15 pause;

16 goto HandleA;

17 }

18 } par {

19 HandleB:

20 pause;

21 if (B) {

22 O1 = true;

23 } else {

24 goto HandleB;

25 }

26 } join1(2, 3);

27 O1 = false;

28 O2 = true;

29

30 tickreturn();

31 }

Listing 4.1. Generated SCLP code
of the ABO example

the thread has then already changed its prioID to the prioID after the pause, the joining node
must check this prioID. This is illustrated in Figure 4.11 in thread B. If thread B were to execute
before thread A, after it ran into the surface node, its prioID would be raised to 4. Thus, the join
would have to additionally check for 4. If a thread has not run into a surface or exit node when
the the joining thread performs the join, the thread itself is still active. Additionally, its prioID

must be lower than the prioID of the joining thread. Otherwise, this thread would execute.
Thus, the join must also check for the prioIDs of threads whose prioID at one point sinks below
the prioID of the joining thread at the moment of the join. This again can be exemplified by
the example in Figure 4.11 as explained earlier.

Since the code generation is performed by simply pattern matching each node and
translating them as described previously, each node is visited exactly once and all control-flow
edges are traversed exactly once. Thus, this step is again linear in the number of nodes and
control-flow edges in the SCG. Since all steps so far have been linear in the nodes and some
subset of edges in the SCG, it can be concluded that the whole compilation of code from the
SCG runs in time linear to the number of nodes and arbitrary edges in the provided SCG.

Listing 4.1 shows the result of the C code generation for the ABO-example with the

44

4.1. Priority-Based Compilation

corresponding SCG next to it in Figure 4.12. The tick begins with the tickstart macro. When
called for the first time, it initializes the first thread with the prioID passed as the argument as
well as the set of enabled threads and implicitly the set of active threads. In any following
tick, the tickstart macro simply sets all enabled threads to active and calls the dispatcher to
jump towards the continuation of the thread with the then highest prioID. As the boolean
variables O1 and O2 are set to false at the beginning of the first tick, these instructions follow
the tickstart in the generated C code and are only executed in the first tick. Afterwards, as
the two regions HandleA and HandleB happen in parallel in the SCG, a fork is called. This
macro first contains the label the forking thread will jump to and then the label of the second
thread as well as its initial prioID. There are therefore two different active and enabled threads
now – one with a prioID of 3 starting at the label HandleA in line 7 and one with a prioID of 1
starting at the label HandleB in line 19. Afterwards, the thread with the prioID 3 – as this is the
highest, currently active prioID – is executed. Since the SCG has a conditional node checking
for A, there is a corresponding if-statement in the C code starting in line 8. If A is true, both
B and O1 are set to true as well. Between those two assignments, the prioID of the thread is
lowered to 2 in line 10. Since the assignment of B has to be executed before the check in
line 21 in the sibling thread, the npr of all nodes preceding the assignment must be higher
as seen in Figure 4.3. Afterwards, this higher npr is not required anymore and the prioID is
therefore lowered. Subsequently, the thread terminates, by continuing after the if-block in
line 17 and running into the par-statement, which disables the currently running thread. If A
evaluates to false earlier, the thread lowers its prioID in line 13, as the longest weighted path
towards a surface has a weight of 0 and the following nodes therefore have an npr of 0. As the
thread runs into the pause, it must raise its prioID again to the prioID of the depth in line 14. It
then is deactivated until the next tick through the pause-macro. The thread with the prioID 1
then activates after its sibling thread has deactivated (either by pausing or by terminating)
and starts at the label HandleB in line 19. As the SCG runs into a surface node, however, a
pause-statement follows the label immediately.

In the following tick, if the thread with the prioID of 3 did not terminate earlier, it would
continue directly after the pause-statement in line 15, jump to the HandleA label and continue
from there identical to the behavior during the first tick. After this thread deactivates in the
second tick or if it was never enabled, thread 1 continues after the pause in line 20. The pause
of the HandleB region in the SCG may now be taken. Thus, the code checks for the value of
B in line 21. If B was false, the thread would jump towards the HandleB label in line 19 and
then behave identical as in the first tick. If B was true, however, O1 is set to true and the thread
continues after the if-block with the join-macro. As mentioned earlier, the prioIDs in the join
macro correspond to the possibly still enabled prioIDs of sibling threads and their exit prioIDs.
If the sibling thread paused, its prioID before the pause would be higher than the joining
threads prioID, thus the prioID of the depth node needs to be added to the join. If one of those
prioIDs is still enabled, the joining thread will poll each following tick for the enabled state of
the prioIDs 2 and 3. If at one point both are disabled, the thread continues by setting O1 to false

and O2 to true before ending the execution of the program by executing the tickreturn macro.

45

4. Priority-Based Compilation

The transformation of ABO exemplifies that there are multiple points, where the program
can be optimized. The lines 13 and 14 alone could simply be removed without changing the
program. Section 4.2 will cover the topic of optimizations in detail. The next part though will
first cover problems with large models.

Extending the prioID-space

The original macros as mentioned earlier work by using an integer as a scalar to identify
threads. This works as long as the number of threads does not surpass the length of an integer
on the system. If it does, the macros will try to access a non-existing bit by right shifting on
the integer until all bits are set to zero. Therefore, changes were made to adapt to programs
with more than 32 or 64 priorities by using an array of integers instead of only one integer, but
using it analogous to the scalar. Fortunately, the original macros already implemented most
low-level bitwise operations for arrays of integers as well. Once the maximum prioID exceeds
the WORD_BIT constant determined by the size of an integer on this system, these alternate
macros activate automatically and the standard macros as illustrated in Listing 2.1 deactivate.
Merely the u2b-macro, which converts a priority to a bit representation of this number, was
not implemented for arrays. Thus, at first a u2b-macro for arrays that uses the same sequence
of operations for all accesses was created: Convert the prioID to the scalar/array, access the
enabled or active array depending on the current use and compare, write or read from it.

However, the only functionality requiring the u2b-macro is in the join macro to check
whether a thread or a number of threads is currently enabled. Rewriting the u2b-macro to
transform an integer to an array-based representation of the integer which then can be checked
against the enabled-array would be ineffective. Each time n priorities have to be checked for
their state, the check would either have to make n comparisons between the enabled-array
and the array-representations of the priorities, or merge n priority-arrays together. Both of
these comparisons require a lot of unnecessary calculations. Each array-representation of a
priority contains only one entry where a bit is set. Thus, the merge or the comparison with
the enabled-array compares mostly empty integers. Instead, only the significant entry in the
enabled-array needs to be compared. If the priority to be checked is for example 234 with
an integer size of 64, the comparison only needs to check the 42nd bit of the fourth entry of
the enabled-array. This can be calculated by dividing the priority by the size of the integer.
The result + 1 is the entry of the array and the remainder is the bit that has to be checked in
this entry. Overall, this check remains linear in the size of the join. Each priority to be joined
needs to be checked against the enabled array as described previously and afterwards, all
results need to be combined. If any priority is contained somewhere in the enabled-array, the
result comes back negative. Otherwise, the result comes back positive.

4.1.5 Java Code Generation

The generation of Java code is based on SJ. Similar to the C code generation, the code is
created by translating an SCG node for node. Unlike the original generation, however, SJ

46

4.1. Priority-Based Compilation

1 public ABO() {

2 super(ABOEntry, 3, 3);

3 }

4

5 public final void tick() {

6 setupTick();

7 while (!isTickDone()) {

8 switch (state()) {

9 case ABOEntry:

10 O1 = false;

11 O2 = false;

12 fork(HandleB, 1);

13 gotoB(HandleA);

14 break;

15 case HandleA:

16 if (A){

17 gotoB(_L_3);

18 } else {

19 gotoB(_L_5);

20 }

21 break;

22 case _L_3:

23 B = true;

24 prioB(2, _L_4);

25 break;

26 case _L_4:

27 O1 = true;

28 termB();

29 break;

30 case _L_5:

31 prioB(2, _L_6);

32 break;

33 case _L_6:

34 prioB(3, _L_7);

35 break;

36 case _L_7:

37 pauseB(_L_8);

38 break;

39 case _L_8:

40 gotoB(HandleA);

41 break;

42 case HandleB:

43 pauseB(_L_0);

44 break;

45 case _L_0:

46 if (B){

47 gotoB(_L_1);

48 } else {

49 gotoB(HandleB);

50 }

51 break;

52 case _L_1:

53 O1 = true;

54 gotoB(_L_2);

55 break;

56 case _L_2:

57 if (!join(2) || !join(3)) {

58 pauseB(_L_2);

59 break;

60 }

61 case _L_9:

62 O1 = false;

63 O2 = true;

64 termB();

65 break;

66 }

67 }

68 }

Listing 4.2. Generated SJ code of the ABO example

already supports models whose prioIDs exceed the length of an integer. Further, due to the
adoptions mentioned in Section 2.1.3, most code generation functions analogously. Since Java
does not use macros or gotos, each time the scheduler is called the inner switch-structure
has to be broken and the surrounding loop has to restart. Thus, the join method needs to be
surrounded by a case-label and a break. Each prioB-method, which replace the prio-macros in
SCLP, has to specify the label of its continuation as a parameter, as Java cannot generate and
expand them automatically, and must be followed by a break as well to call the dispatcher.
Instead of par-macros, threads are terminated using the termB-method in SJ. This also includes
the final termination of the root thread. No tickstart or tickreturn macros are required.

Since the Java code generation performs the same depth-first search as the C code
generation and only differs due to the translated code, the Java code generation also runs in
time linear to the number of nodes and edges in the SCG.

Listing 4.2 depicts the translation of the ABO example from Figure 4.8 to SJ code. The
constructor before the tick-method tells the scheduler that the program starts at the label

47

4. Priority-Based Compilation

ABOEntry with priority 3 and that the highest priority in the program is 3. The tick-method
then begins by setting up the program and running into the while-loop. As long as any
thread is enabled, the program repeats the following switch-statement. The conditional of this
switch-statement contains the scheduler. Depending on the thread with the highest currently
active priority, the state()-method returns a label corresponding to that thread. Otherwise, the
resulting code functions analogously to the C code. The ABOEntry label first initializes the two
output variables and then forks the two threads HandleA and HandleB. HandleA then continues
in line 15 by checking for the state of the input A. If A is true, the control-flow continues at
label _L_3 in line 22 by setting B to true and subsequently lowering its priority. As described
earlier, this means that a new label is required. _l_4 continues by setting O1 to true and finally
terminating, analogous to the par-statement in the SCLP code. If A was false earlier, then the
control-flow would have continued in line 30 by first lowering its priority, then raising it again
and pausing in line 37. In the next tick the thread continues at label _L_8 before jumping back
to the label HandleA. This again happens analogously to the SCLP code in Listing 4.1, just with
more explicit breaks in the program. The thread HandleB is handled in the following lines. It
first starts by pausing before continuing in the next tick by checking for the state of B. If B
is true, the control-flow continues at label _L_1 by setting O1 to true before jumping to the
join at line 57. If B is false, the code generation recognizes that the following behavior of the
thread is identical to the one starting at the label HandleB. Thus, it jumps towards this label.
At the join in line 57, the thread probes for the current state of its sibling thread. As long as
it is still active, the thread pauses and jumps towards its own label. Otherwise, the thread
continues – the unnecessary break was omitted at this place – at the label _L_9 by setting O1

to false and O2 to true and terminating.
The original implementation of SJ used parent-children relations as well as a polling

parent waiting for its children to terminate before executing the join. Due to the additionally
required priorities as mentioned in Section 4.1.4, the fork and join macros were adapted for
SJ as well such that they work identical to the way they work in the SCLP approach and the
child-parent relation was removed.

4.2 Optimizing the Node Priority Assignment

Changing the priority during the execution of a thread is costly. Every time the priority
changes from one node to the next, the dispatcher has to memorize the continuation of
the currently executing thread and its corresponding priority, deactivate the old priority,
activate the new priority, memorize the state of the current thread, determine the thread with
the highest priority, activate it and continue at its continuation point. This is shown in the
expansion of the prio macro in line 30 in Listing 2.1. If the number of prio-statements in a
program can be reduced, unnecessary overhead can be reduced from the execution. Therefore,
optimizations were developed to minimize the amount of required prio-statements in the
translated program.

The goal of the first solution was to reduce the amount of unnecessary context switches

48

4.2. Optimizing the Node Priority Assignment

entry2 4

exit0 1

fork2 4

join0 1

entry1 3

x++1 3

y = 01 3

exit0 1

ThreadID: 1

B - Instantaneous
entry2 4

x = 02 4

prio(2)

y++0 2

exit0 2

ThreadID: 2

A - Instantaneous

prio(1)

Figure 4.13. SCG model, where the assignment
of tsIDs causes an unnecessary context switch
from thread B to thread A

entry2 4

exit0 1

fork2 4

join0 1

entry1 3

x++1 3

y = 01 3

exit0 2

ThreadID: 2

B - Instantaneous
entry2 4

x = 02 4

prio(1)

y++0 1

exit0 1

ThreadID: 1

A - Instantaneous

prio(2)

Figure 4.14. The same SCG as in Figure 4.13 but
with an assignment of tsIDs where the context
stays in B after the prio(2) statement due to
the switched tsIDs as seen at the bottom of the
threads.

as depicted in Figure 4.13. The SCG representation of the model shows how an adverse
assignment of tsIDs causes the prioIDs of thread B to sink from 3 to 1, which causes a context
switch from thread B to thread A since thread A has a higher prioID now. This context switch,
however, is not necessary since the execution of the exit node in thread B does not depend
on any nodes in thread A. Figure 4.14 shows that with a different assignment of tsIDs, the
execution does not shift from thread B to thread A after the y = 0 assignment. However,
this improved assignment of tsIDs will not free the model from any potentially unnecessary
prio-statements, as these are dependent on changes in the prioIDs, which themselves are
dependent on both the tsID and npr of a node. Figure 4.14 exemplifies that changing the tsIDs

in this example does not change anything in the number of changes in priorities. Since there
is no difference between executing a context switch from one thread to another due to a
change in the prioIDs and continuing a thread with a new prioID, it is not sufficient to find a
better assignment for the tsIDs. The only point of this assignment is that – conceptually – the
control-flow stays in the same thread, even though this is not the case in the realization.

The second optimization aimed to let the original npr stay the same and only to correct
the results afterwards, since the original approach is simple and easy to understand. As can

49

4. Priority-Based Compilation

entry2 3

exit0 1

fork2 3

join0 1

entry1 2

x++1 2

y = 01 2

exit1 2

ThreadID: 2

B - Instantaneous
entry2 3

x = 02 3

prio(1)

y++0 1

exit0 1

ThreadID: 1

A - Instantaneous

Figure 4.15. Same SCG model as in Fig-
ure 4.13 but without the unnecessary prio-
statement due to propagation of nprs.

entry2 4

exit0 1

fork2 4

join0 1

entry2 4

x = 02 4

z = 01 3

exit1 3

ThreadID: 3

A - Instantaneous

entry1 2

x++1 2

y = 01 2

exit1 2

ThreadID: 2

B - Instantaneous
entry0 1

y++0 1

z++0 1

exit0 1

ThreadID: 1

C - Instantaneous

prio(3)

Figure 4.16. Example SCG model where the propa-
gation of nprs cannot reduce all unnecessary con-
text switches.

be seen in Figure 4.13, context switches may happen at the end of threads or before pauses,
since all exits of a thread are always assigned the same npr and all surface nodes are always
assigned the npr 0. In these situations, the tsID decides which thread continues next. Hence,
the final change in priorities to a thread causes a dispatcher call that might not be necessary
as all threads except one will terminate at the end of the fork-join block. Thus, the npr of
the node before the final prio-statement can be propagated downwards towards an exit or
depth node. If the paths of multiple control-flows meet before reaching an exit or depth
node, the npr of the thread with the lowest npr is propagated downwards to avoid rising
priorities. As can be seen in Figure 4.15, this approach reduces the amount of unnecessary
context switches. The prio-statement after the y = 0 assignment was eliminated and the npr

of the statement propagated down towards the exit node. However, Figure 4.16 shows that
this approach still has some shortcomings. It can only remove the final prio-statement of
a thread before an exit or surface node. The image depicts that, if a thread has multiple
subsequent outgoing dependencies, it can have multiple prio-statements in a row. Since the
npr is assigned depending on the longest weighted path originating on a node, a prio-statement
has to be inserted after each node, if each subsequent node has a dependency causing a
longest weighted path that is higher than their successor node. However, the example shows
that the thread could keep its original prioID of 4 without causing any priority inversions.

The third solution was to develop a downwards propagation of nprs that propagates nprs

50

4.2. Optimizing the Node Priority Assignment

Algorithm 4 Calculating the maximum npr of a list of SCCs, starting at the SCC containing the
final exit node

1: function longestWeightedPathBackwards(currentSCC)
2: dependencies Ð currentSCC.incomingDependencies
3: neighbors Ð currentSCC.predecessors
4: prio Ð MAX_PRIORITY
5: for each d in dependencies do
6: if ! (d.scc.visited) then
7: d.scc.visited Ð true
8: longestWeightedPath(d.scc)
9: end if

10: prio Ð min(d.scc.min_npr - 1, prio)
11: end for
12: for each n in neighbors do
13: if ! (n.scc.visited) then
14: n.scc.visited Ð true
15: longestWeightedPath(n.scc)
16: end if
17: prio Ð min(n.scc.max_npr, prio)
18: end for
19: if (currentSCC.isEntryNode) then
20: currentSCC.max_npr Ð currentSCC.min_npr
21: else
22: currentSCC.max_npr Ð prio
23: end if
24: end function

from earlier in the model until it is not possible to propagate the priority any further. This
approach to optimizations, however, is intrusive and overhauls the npr assignment distinctively,
instead of correcting after the original approach. Thus, the whole model is analyzed to not
only reduce unnecessary context switches at the end of threads or before pauses, but also
to visibly reduce the number of prio-statements required in all models that contain at least
one dependency. First, a minimum npr is calculated for all nodes. This calculation is done
as described in Section 4.1.2 using the longest weighted path approach. In the following it
will be called the minimum npr. The minimum npr of a node will always be just one higher
than the highest minimum priority of all other nodes that are dependent on the execution
of this node. Thus, the assigned priority of the thread executing this node must never fall
below this minimum npr. Afterwards, a maximum npr is calculated for all nodes analogous
to the minimum npr calculation. The algorithm performs a depth-first search analogous to
the approach in Section 4.1.2, yet originates at the final exit node and at depth nodes in the
model and traverses the control-flow edges backwards. Surface nodes are given the highest
minimum npr of the model as their maximum npr and the initial entry node is given its

51

4. Priority-Based Compilation

minimum npr. Then, all nodes are given the smallest maximum npr of their predecessors. If
any incoming dependencies exist, the minimum out of the smallest maximum npr of their
predecessors and the smallest minimum npr of the origin nodes of the incoming dependencies
- 1 is assigned to the node. Due to this it is guaranteed that the maximum npr of a node is
always lower than the minimum npr of all nodes it depends on. If the final assignment of
the npr stays within the maximum and minimum npr, the schedule of the execution will be
valid. If there are any nodes depending on this node, its assigned npr must be higher than
the assigned npr of those nodes, as the assignment of their maximum npr is lower than the
minimum npr of the original node. Analogously, if this node depends on the execution of
other nodes, its assigned npr must be lower than the maximum npr of the other nodes and
thus higher than the assigned npr of those. The algorithm is shown in Algorithm 4. Note the
similarity to the original npr assignment in Algorithm 1. The MAX_PRIORITY field contains the
highest minimum npr. If a node does not have any predecessors as is the case in surface nodes,
the prio-field will never be overwritten. Thus, the node will receive the highest minimum
npr as its maximum npr. The isEntryNode property of an SCC will return true, if the SCC only
contains an entry node.

After the minimum and maximum npr have been computed, the actual npr has to be
assigned to the nodes. The idea is to assign them in a way such that the same npr is applied
to as many nodes in sequence as possible. This is done by starting at the initial entry node as
well as all depth nodes and running a depth-first search until a surface node or the final exit
node is reached. The final node of the depth-first search node is then assigned its maximum
npr as their npr. Then all predecessors of reached nodes are recursively given the same npr

as their successors, as long as this priority is higher or equal to their minimum priority. The
exceptions are all join and exit nodes. After the termination of a thread its priority does not
matter anymore with the exception of the thread with the lowest npr. If all exit nodes are
assigned their maximum npr as well as the join node, the maximum npr of the join will coincide
with the lowest maximum npr of one of the exit nodes. Due to the way the maximum npr are
assigned, the join must inherit the priority of one of its predecessors. Thus, exit nodes as well
as join nodes can freely be assigned their maximum npr.

Furthermore, if a node has multiple successor nodes, such as conditional nodes and fork
nodes, they will receive the npr of the successor node with the highest npr to ensure that the
priority does not rise during a tick. If a visited node is encountered during the depth-first
search, it is not necessary to visit it again, since all its successor nodes have been visited and
given their final npr. Its npr is still returned to the node trying to visit this node to calculate
its npr. It is further important to note that forks work as intended. Since the minimum and
maximum npr of all entry nodes of a thread are the same, they will always be given the
minimum npr as their final npr. During the final npr assignment, the minimum npr of the
entry node with the highest minimum npr is then propagated to the fork node. Since the
assignment of the minimum npr is identical to the approach delineated in Section 4.1.2, the
propagated npr cannot be lower than the minimum npr of the fork node. Figure 4.17 shows the
result of the optimizations by reference to the same model as in Figure 4.16. Compared to its

52

4.2. Optimizing the Node Priority Assignment

entry2 3

exit0 1

fork2 3

join0 1

entry2 3

x = 02 3

z = 02 3

exit2 3

ThreadID: 3

A - Instantaneous
entry1 2

x++1 2

y = 01 2

exit1 2

ThreadID: 2

B - Instantaneous
entry0 1

y++0 1

z++0 1

exit0 1

ThreadID: 1

C - Instantaneous

Figure 4.17. Example SCG where all prio-
statements could be optimized away

entry1 3

exit0 1

fork1 3

join0 1

entry0 2

x++0 2

surface0 2

depth1 4

y = 21 4

exit1 4

ThreadID: 2

A - Delayed

entry1 3

x = 01 3

surface1 3

depth0 1

y++0 1

exit0 1

ThreadID: 1

B - Delayed

Figure 4.18. Example SCG where the thread with
the highest entry npr also has the lowest exit npr

counterpart there are no prio-statements required at all. Another advantage of this approach
is that the overall amount of required prioIDs can be reduced. A program that originally had
more prioIDs than the length of an integer, but now has less, does not require the array-based
approach as introduced in Section 4.1.4. The required memory is thus reduced even more.
This optimization furthermore improves the priority assignment and thus both the C code as
well as the Java code generation are improved without causing any major changes in the code
generation itself.

Figure 4.19 shows the progression of the maximum, minimum, and assigned nprs of the
model in Figure 4.17. Across all threads, the optimized npr remains stable, while both the
maximum and minimum nprs of most threads vary across the tick. It also illustrates that the
optimized npr remains stable between the maximum and minimum npr at all times in this
example.

Overall, the complexity of the algorithm does not change. In the original approach, all
control-flow edges and all dependencies were passed exactly once. The optimization adds
one full pass of all control-flow edges and dependencies for the calculation of the maximum
nprs as well as one pass of all control-flow edges for the calculation of the final nprs. Therefore,
the complexity of the compilation stays linear in the size of the model. This optimization,
however, affected previous assumptions. The forking thread always continued as the child
thread with the highest tsID and the joining thread was previously always the thread with the
lowest tsID, since all threads were assigned the same npr at their exit nodes. This optimization,
however, can cause the exit nprs of all threads to differ. Therefore, the joining thread is now
determined by the lowest npr of the exit nodes of all sibling threads. If there are multiple

53

4. Priority-Based Compilation

Entry Exitx++ y=0

x=0 z=0Entry Fork Entry Exit

Entry y++ z++ Exit ExitJoin

0

1

2

3

0

1

2

3

0

1

2

3

Max

npr

Min

Figure 4.19. Comparison of maximum, minimum, and assigned nprs of threads from Figure 4.17

exit nodes that share the lowest npr, the joining thread will be decided by their tsID. The tsIDs

themselves are also assigned accordingly, as the thread with the lowest exit npr receive the
lowest tsIDs. If the exit npr of the forking thread is now lower than those of all its siblings,
this thread would have to presume the role of the joining thread. This would be impossible
though with the original fork- and join-macros. The fork-macro assumes that the forking
thread continues as the first thread in the fork-par-join block, while the join-macro assumes
that it is the final thread. Figure 4.18 shows a example where such a situation occurs. Due
to the dependencies before the pauses of the two threads, thread B has to have a higher npr

in its entry node than thread A. Therefore, it is assigned the higher tsID. After the pauses the
dependency from y = 2 towards y++ causes thread A to have a higher npr. In the original
allocation of nprs, the npr of the exit node would still be 0. In this optimization, however,
the npr of the assignment earlier is propagated down towards the exit node. Thus, thread B

has the lowest npr at the exit node and will hand down its tsID towards the join. The thread
therefore continues after the join. Thus, the same thread that has the highest entry npr also
has the lowest exit npr.

One solution to this problem may be to deactivate the propagation of nprs of one randomly
selected sibling thread before the final exit node. Then, this thread would have at most the
same npr in its exit node as the forking thread. However, this would result in additional
context switches and requires some analysis during the npr assignment that is usually done
during the allocation of tsIDs. To disrupt the readability as little as possible and to be consistent
in the macro use, the fork macro was adapted slightly. After forking its siblings, the forking

54

4.2. Optimizing the Node Priority Assignment

entry1 4

exit0 1

fork1 4

join0 1

entry1 4

x = 31 4

exit1 4

ThreadID: 3

A - Instantaneous
entry1 3

y = 01 3

prio(1)

x++0 1

exit0 1

ThreadID: 1

B - Instantaneous

entry0 2

y++0 2

exit0 2

ThreadID: 2

C - Instantaneous

Figure 4.20. Another SCG where this optimiza-
tion still could not resolve all unnecessary con-
text switches, as the context does not need to
switch from B after the prio(1) statement to-
wards C.

1 // Old definition:

2 #define fork4(label1, p1, label2, p2, label3, p3,

label4, p4) \

3 initPC(p1, label1); enable(p1); \

4 initPC(p2, label2); enable(p2); \

5 initPC(p3, label3); enable(p3); \

6 initPC(p4, label4); enable(p4);

7

8 // New definition:

9 #define fork4(label0, label1, p1, label2, p2, label3,

p3, label4, p4) \

10 initPC(_cid, label0); \

11 initPC(p1, label1); enable(p1); \

12 initPC(p2, label2); enable(p2); \

13 initPC(p3, label3); enable(p3); \

14 initPC(p4, label4); enable(p4); \

15 goto label0;

Listing 4.3. Old and new implementation of the
fork4 macro

thread is now allowed to jump to a label that was passed as an argument to the join-macro. If
the join macro was to be changed, the join macro would sometimes be placed between two
parallel threads and signify a jump towards the end of the parallel statements, whereas the
changed fork macro would not change this order. The changed join macro would further mean
that the end of a parallel block is marked with a par-statement, even though those usually
stand between two parallel threads. Listing 4.3 shows the difference between a fork4-macro
before and after the change. The macro initPC takes a priority and a label and assigns the
label as the next continuation point of this priority. The enable macro naturally enables the
priority that was passed to it and sets it to active. Subsequently, the control-flow jumps to
the continuation of the forking thread as one of the siblings. The difference between the two
macros is twofold: First, the original macro did not need the label0 argument that is used to
determine the continuation of the first thread. In the new macro, it is passed as an argument
for another initPC macro together with the currently running priority that is saved in the _cid

field. Second, after all sibling threads have been spawned, the forking thread jumps towards
this label, instead of continuing directly after the

4.2.1 Proof of Correctness

It is important to show that these optimizations do not cause any priority inversions of
nodes that depend on each other. The maximum npr of a node can never be higher than the

55

4. Priority-Based Compilation

minimum npr of any node it depends on. This means that if the final assignment of the npr

of a node remains between its maximum and minimum npr, its npr must be lower than the
assigned npr of all nodes it depends on and cannot be executed before those.

Ź The minimum npr can only decrease from one node to the next during a tick. Each node is
at least assigned the highest npr of all its succeeding nodes.

Ź Analogous to this, the maximum npr can only decrease during a tick as its assignment is
bound to the lowest maximum npr of its predecessors and the minimum npr of incoming
dependencies.

Ź Additionally, the maximum npr of a node can never be lower than its minimum npr. Assume
that a node n of an SCG has a higher minimum npr than maximum npr.

Ź If there are no incoming dependencies on any path following the incoming control-flow
edges backwards until they reached a depth node or the initial entry node, then all
nodes on the path will be assigned the maximum npr of their predecessors as their
maximum npr. This is ultimately the minimum npr of the entry node or the highest
possible minimum npr of the model. However, the minimum npr of all nodes on the
path remains the same across all nodes beginning at the entry or depth node. Thus
the maximum npr of all nodes on the path must be greater or equal to the minimum
npr of all nodes on the path. Since the minimum npr of n, however, is higher than its
maximum npr, there is a contradiction.

Ź If there is one incoming dependency on any path following the incoming control-flow
edges backwards towards a node n1, the maximum npr of the this node is the minimum
of the minimum npr of the source of the dependency -1 and the maximum npr of its
predecessors in the control-flow. Since the minimum npr cannot rise during a tick and
there were no further dependencies on the path, the minimum npr of n must be equal
to the minimum npr of n1. As the maximum npr of n is higher than its minimum npr

and maximum nprs also cannot rise during a tick, the maximum npr of n1 must also
be higher than its minimum npr and thus at least as high as the minimum npr of the
source node of the incoming dependency of n1. Since, however, the maximum npr must
be lower than the minimum npr of any sources of incoming dependencies, there is a
contradiction.

Ź Thus, since the assigned npr must remain between the maximum and minimum npr, and
only changes its priority towards the minimum npr when necessary, it will also only
decrease and never increase.

4.2.2 Proof of Improvement

First, it can be proven that as long as there exists at least one concurrent, non-confluent
dependency in the SCG, at least one prio-statement can be optimized away. Since there will
always be a thread that has an outgoing dependency and no incoming dependency afterwards,

56

4.3. Schizophrenia

1 loop

2 present I then

3 pause

4 end present;

5 emit A;

6 ||

7 pause

8 end loop

Listing (4.4) Simple schizophrenic
Esterel model

due to the fact that there must never be a cycle induced by dependencies in the SCG, the npr

of the nodes before the outgoing dependency can securely be propagated down towards the
nodes after the outgoing dependency and thus towards the exit.

In the original approach, prio-statements were introduced every time a node had an
outgoing dependency and the longest weighted path through the target of the dependency
was longer than any longest weighted paths through successor nodes. After the optimizations,
prio-statements can only happen when the propagated npr of a succeeding node undercuts
the minimum npr of a node. Since this can only happen if the minimum npr is lowered from
one node to its succeeding node and the minimum npr of any node is the same as the npr of a
node in the original approach, no new prio-statements can be introduced.

4.2.3 Further Improvements

While this solution can reduce the amount of prio-statements as shown earlier, there are
models where an improvement can be made. Figure 4.20 shows an SCG where thread B lowers
its priority from the y = 0 assignment to the x++ assignment. Since x++ has to be scheduled
after the initialization of x in thread A, its maximum npr has to be one lower than the minimum
npr of the node in thread A. If all nodes in thread A were assigned the npr 2 instead of 1, thread
A would not require a prio-statement. It would further be possible to assign the npr 1 to all
nodes in thread B, since then the maximum npr of these nodes would be 1, allowing them to
have a higher final npr. Therefore, no prio-statements would be required overall. This problem
can, however, only be solved by analyzing the whole model to find out, whether raising
the npr of a whole thread helps to reduce the amount of prio-statements and the amount of
required prioIDs. This approach may raise the total number of nprs, as for example the npr 2
was previously unused, whereas after the optimization, thread A uses it. However, since the
code implementations only require the prioID, the npr-space is not significant. Whether this
improvement may sometimes increase the total number of prioIDs, is yet to be debated.

57

4. Priority-Based Compilation

4.3 Schizophrenia

Schizophrenia is a concept appertaining to synchronous languages. It occurs when a statement
is executed several times within the same tick. This happens when a loop terminates and,
when re-entered, executes parts that were already executed before the first termination of
the loop again in the same macrostep. Listing 4.4 shows a simple example of a schizophrenic
Esterel program. If the input I is present in the first tick, the control-flow stops the upper
thread in line 3, while the lower thread stops at line 7. As the second tick starts, emit A is
executed. Subsequently, the loop body terminates, since both parallel statements terminated,
and is re-entered. If I is then absent, emit A is executed for a second time this tick. For
many statements, a re-execution of the statement alone is not problematic. However, this
may for example lead to problems when scopes of local variables are exited and re-entered
in the same tick. The compiler will have to recognize that the two instances of the local
variables in their respective scopes are different and operations on the second instance do
not take past operations on the first instance into account. If the model is translated towards
software, this can for example be solved using a stack where the local variable is deleted
from the stack after exiting the scope. However, if the Esterel program is to be translated to
hardware, problems arise. The circuit semantics do not consider signal scoping rules, so both
incarnations of a local signal occupy the same physical conduit wires, which may result in
unstable circuits. Conventional strategies to solve schizophrenia involve code duplication
such as loop unrolling or copying the surface of the loop and introducing a gotopause [TS04]
as explained in Section 3.2.

In sequentially constructive programs, however, multiple executions of the same statements
are no problem, since they can be regarded as sequential statements. Thus, if a local variable
is changed, it can simply be regarded as a sequential access to this variable, which is allowed.
Section 3.1 talks about the current limitations of schizophrenic models in the data-flow
approach.

Conceptually, these schizophrenic models do not cause any problems for the priority
based compilation, as can be seen in Figure 4.22. If I is absent in the first tick, but present
in the second tick of the execution, the conditional check for I as well as the O++ statement
happens twice in the second tick, once after leaving the pause and once again after the threads
were forked. Listing 4.5 shows the translated code for this model. Again, if I is absent in the
first tick, thread A runs into the pause statement in line 12, while thread B pauses in line 6. If I
is then present during the second tick, the conditional in line 9 holds, O++ is executed and
the thread terminates subsequently. Since thread B also terminated, the join happens and,
due to the goto statement in line 17, the threads are forked again. Thread B pauses as before
and thread A checks for I and executes O++ a second time. The behaviors of this model and its
resulting code are therefore identical in the priority based compilation.

Problems, however, occur when dependencies exist between the threads that are reincar-
nated. Figure 4.23 shows such a model. There exists a cycle as highlighted in purple that
crosses through the dependency edge into thread B. In the original priority based approach,
the algorithm would detect the cycle as an SCC and, since dependencies exist within this

58

4.3. Schizophrenia

entry0 2

exit0 2

fork0 2

join0 1

prio(2)

O = 00 2

entry0 1

I01

O++0 1surface0 1

depth0 1

exit0 1

true

ThreadID: 1

A - Potentially instantaneous

entry0 2

surface0 2

depth0 2

exit0 2

ThreadID: 2

B - Delayed

Figure 4.22. The SCG of a simple schizophrenic model with its
associated priorities

1 tickstart(2);

2 O = 0;

3 label_0:

4 fork1(B, A, 1) {

5 B:

6 pause;

7 } par {

8 A:

9 if (I){

10 O++;

11 } else {

12 pause;

13 goto A;

14 }

15 } join1(2);

16 prio(2);

17 goto label_0;

18 tickreturn();

Listing 4.5. The
generated C code of the
model in Figure 4.22

cycle, reject the model as unschedulable. However, this cycle only exists statically within the
model. In any run of the model, the iur property will not be violated since the instance of the
conditional O > 1 is not runtime concurrent to the second instance of O++ in the tick. Their
threads have not been instantiated by the same instance of the associated Least Common
Ancestor fork. Due to the sequentiality, O > 1 is allowed to be executed before the second
execution of O++. Thus, a way was developed to accept such models and enable them to be
schedulable.

4.3.1 Schizophrenia in the Priority Based Compilation

First, it is important to recognize that such a situation only occurs when there exists an
SCC that contains a so called depth-join. A depth-join is a join where at least one of the
joining threads is delayed, while its sibling threads are instantaneous. This would guarantee
that it will always take more than one tick for all threads to terminate and the program to
resume after the join. All other situations concerning schizophrenia are solved due to the
properties of the priority-based approach itself. Once an SCC containing a depth-join has been
found, it first has to be searched for dependencies towards a thread that is not one of the
threads joined by the join. If that is the case, we cannot guarantee the program to satisfy
the iur protocol. Figure 4.24 shows that, while in the first incarnation of the threads A2 and
A3 the iur protocol would be upheld, after the execution of the join and the reincarnation

59

4. Priority-Based Compilation

entry1 2

exit1 2

fork1 2

join0 1

prio(2)

O = 01 2

entry1 2

I12

O++1 2surface1 2

depth1 2

exit1 2

true

ThreadID: 2

A - Potentially instantaneous

entry0 1

surface0 1

depth0 1

O > 10
1

exit0 1

true

ThreadID: 1

B - Delayed

Figure 4.23. The SCG of a schizophrenic model
with a dependency induced cycle; The SCC is
highlighted in purple.

entry

exit

fork

join

O = 0

entry

fork

join exit

entry

surface

depth

Q = P

exit

A3 - Delayed

A1 - Potentially instantaneous

entry

O < 2

P = Isurface

depth

exit

true

B - Potentially instantaneous
A2 - Instantaneous

entry

O++

exit

Figure 4.24. The SCG of a schizophrenic model
with a dependency induced cycle containing
nodes of an external thread; The SCC is high-
lighted in purple.

of the threads, statement O++ in the reincarnation of thread A2 would have to be executed
after the execution of conditional O > 1 in thread B, since statement P = I in thread B had to
be performed before statement Q = P in the first incarnation of thread A3. According to the
definition in Section 2.1 the second instance of O++ and the instance of O > 1 are runtime
concurrent. They appear in the micro ticks of the same macro tick, they belong to the statically
concurrent threads A and B and these two threads have been instantiated by the same instance
of the associated LCA. Therefore, they violate the iur protocol, as O > 1 must be executed
before O++. The model should be refused by the compiler. Recognizing such a situation can
be achieved by analyzing the thread association of nodes in such an SCC. If the SCC traverses
into a thread that is statically concurrent to the thread delineated by the depth-join node and
its corresponding fork, the program should be rejected.

When such an SCC is found, it is broken up by removing the depth-join. Another search
for SCCs is then executed upon the nodes of the former strongly connected component. The
original SCC is removed from the list of SCCs and all newly found SCCs are added to this
list. If any newly created SCC again contains a depth-join node, they will again be removed
recursively, until no more joins are found. The algorithm used for this is highlighted in the next
chapter. After all SCCs with depth-joins are broken up, the schedulability analysis is executed
as originally intended. If one of the newly found SCCs contains a dependency, the model is

60

4.3. Schizophrenia

entry3 6

_term = false3 6

fork3 6

join1 3

prio(6)

entry0 1

D = S0 1

surface0 1

depth2 5

S = S | true2 5

_term = true2 5

exit2 5

ThreadID: 3

A - Delayedentry3 6

S = false3 6

prio(3)

E = false1 3

_term1
3

G = F1 3surface1 3

depth3 6

exit1 3

true

ThreadID: 2

B - Potentially instantaneous

ThreadID: 2

A - Potentially instantaneous

E = E | true0 2 F = true2 4

Figure 4.25. The SCG of a schizophrenic model with a dependency induced cycle with further depen-
dencies towards concurrent nodes; The SCC is highlighted in purple.

rejected. This guarantees that the model is still rejected, if there are any dependency cycles
within the threads that are joined . Any cycle that has been removed from the schedulability
analysis had to cross the join and only existed due to the join node. Thus, any occurring
conflicts in these SCCs cannot be runtime concurrent. If they were runtime concurrent, there
would still exist an SCC containing these conflicts that does not contain the join.

Afterwards, the node priority assignment has to be revised. Due to the breakup of strongly
connected components, the list of SCCs may now be cyclic. An SCC that was broken up now
consists of multiple new SCCs that form a cycle, as each node is per definition reachable from
each other node in the original SCC via immediate edges. For example, the broken SCC in
Figure 4.24 as highlighted in purple now consists of as many SCCs as there are nodes, as each
newly calculated SCC now consists of only one node. These SCCs then form a cycle. Thus, the
depth-first traversal of the original npr assignment from Section 4.1.2 must now be able to
handle a cyclic graph. Further, due to dependencies within these SCCs it may happen that they
are assigned different nprs. Therefore, we must allow consecutive nodes to have rising node
priorities. The original approach prohibited this, since if the npr between sequential nodes rises
during the execution of a thread priority inversion may happen. Thus, all concurrent nodes
that are dependent on the execution of any node within the original cycle must be executed
after all instances of the sources of their incoming dependencies have been executed. They
must be performed after all nodes of the cycle. Therefore, the information about the broken

61

4. Priority-Based Compilation

cycle is retained and, during the assignment of the minimum node priority as explained in
Section 4.2, nodes that are within such a broken cycle also consider all dependencies of nodes
within the cycle as long as these dependencies target nodes outside of the cycle. The whole
cycle will now be executed before any of the outgoing dependencies of any node in the cycle.
On the other hand, if a node has a dependency towards the broken cycle, nothing has to be
done. It will always be executed before the first execution of the target of the dependency.
If there are any other nodes whose npr is between the priorities before and after the raise
of priorities but who do not have any dependencies towards or from the nodes in the cycle,
they are confluent towards all nodes within the cycle and the order of their execution does
not matter. Figure 4.25 depicts a simplified model of such a situation. As highlighted by the
purple edges, a cycle exists containing a dependency. There are further two dependencies
from nodes inside the cycle towards nodes in parallel threads, which have been reduced to
only two nodes to keep the model simple. It is easy to see that the outgoing dependency from
E = false in thread B has been regarded, since all nodes in the cycle have a higher npr than
the E = E | true node. This node would therefore always be scheduled after the execution of
the E = false node. The incoming dependency towards the node G = F is also factored in. It
is sufficient for the F = true node to have a higher npr than the G = F node while the other
nodes in the cycle are not important, as the node will then always be scheduled before the
first execution of G = F.

62

Chapter 5

Implementation

The following chapter describes the implementation of the concepts introduced in the previous
chapter. The implementation is a part of the KIELER project as introduced in Section 2.2.2.
They were written in Xtend, as presented in Section 2.2.1.

First, Section 5.1 describes how the integration into the KIELER project is performed. The
section is divided into two parts. In Section 5.1.1 the implementation of the original approach
is shown and Section 5.1.2 covers the adaptations required for the optimizations.

5.1 Implementation into KIELER

The KIELER Compiler (KiCo) introduced in Section 2.2.2 provides an interface to easily access
transformation chains that translate models or programs from one language to another. One
transformation can simply be replaced by another to create a completely new compilation.
Due to this adaptability, the KIELER project already contains transformations from and to
various languages and intermediate languages as highlighted in Figure 2.7 on page 19. Thus,
it is simple to integrate the priority-based compilation into the KiCo toolchain. Figure 5.1
shows the overview of the toolchain with the new translation steps highlighted in red. As
displayed in the figure, the SCG annotated with priorities can currently translate to C and
Java code. Both results of these transformations, however, require special macros or class
extensions to run and cannot run completely standalone.

This abstract view on the transformations hides complexity. Figure 5.2 shows the difference
between the modular data-flow compilation steps from SCG to C and Java in Figure 5.2a and
the priority-based compilation steps in Figure 5.2b. The approach introduced in this thesis
reduces the amount of steps required for the compilation. However, the Priority Calculation

step could be divided into the different computation steps introduced in Section 4.1. This
was deemed not necessary as the calculation steps are all minimal and a simple property
in the KLighD view can individually show and hide the various results of the calculations.

SCEst SCL

SCCharts

Esterel

SCG Seq. SCG

Seq. SSA-SCG Circuit

C

JavaSyncCharts

Annotated SCG

Figure 5.1. Overview of the KIELER compilations enhanced with the priority-based compilation high-
lighted in red

63

5. Implementation

 Code Generation
[-]

 Target
[-]

 Arduino Code

 Java Code

 C Code

S

 SCGraph
[-]

Scheduling SequentializeBasicBlock GuardsSCG Dependency Expressions

Figure 5.2 (a) Compilation chain of the data-flow compilation

 SCG and Priorities
[-]

SJ

Dependency

SCL_P

SCG Priority Calculation

Figure 5.2 (b) Compilation chain of the priority-based compilation

Figure 5.2. Overview of the two low-level compilation approaches

Otherwise, the various steps required for the sequentialization of the model are not required
anymore and were therefore discarded. As described in Chapter 4, the transformations to C
and Java code are performed on the annotated SCG and no further intermediate representation
or transformation is necessary.

Both compilation chains are still adaptable. This way, additional translations into different
programming languages are possible. As long as the target language has simple control
statements such as gotos or switch-case logic, as well as other statements of imperative
programming languages, the translation is possible. Merely the adaptation of the low-level
instructions of the priority-based compilation, as implemented via SCLP or SJ, require more
effort.

5.1.1 Original Approach

The original approach to the priority-based compilation implements the concepts introduced
in Section 4.1. Therefore, it starts with the calculation of the SCCs. As mentioned in Section 4.1.1,
this is done via a modified version of Tarjan’s algorithm. Since an SCG is a directed graph
with various different kinds of edges, it must be defined over which edges the algorithm may
pass first. Thus, shortcuts were created to access only the required edges including immediate
control-flow edges and concurrent, but not confluent dependency edges. Listing 5.1 shows
the used algorithm. When visiting a node, it first receives an index and a lowlink indicating
the node with the lowest index reachable from this node depending on the current count of
nodes and is pushed onto the stack, which will later be used to determine the SCC. The data
structures used to store the lowlink and index of a node are Java hashmaps. After assigning

64

5.1. Implementation into KIELER

1 private def void tarjan(Node currentNode) {

2

3 index.put(currentNode, count)

4 lowlink.put(currentNode, count)

5 count++

6 stack.push(currentNode)

7 visited.put(currentNode, true)

8

9 for (nextNode : currentNode.neighborsAndDependencies) {

10 if (isContained.containsKey(nextNode) && isContained.get(nextNode)) {

11 // Next node has not yet been visited

12 if (!visited.containsKey(nextNode) || !visited.get(nextNode)) {

13 tarjan(nextNode)

14 lowlink.replace(currentNode, Math.min(lowlink.get(currentNode), lowlink.get(nextNode)))

15 }

16 // Next node has already been visited, hence in the current Strongly Connected Component

17 else if (index.get(nextNode) < index.get(currentNode)) {

18 if (stack.contains(nextNode)) {

19 lowlink.replace(currentNode, Math.min(lowlink.get(currentNode), lowlink.get(nextNode)))

20 }

21 }

22 }

23 }

24

25 // Create the Strongly Connected Component

26 if (index.get(currentNode) == lowlink.get(currentNode)) {

27 var scc = <Node>newLinkedList

28 var w = stack.peek;

29 do {

30 w = stack.pop

31 scc.add(w)

32 } while (w != currentNode)

33 sccList.add(scc)

34 }

35 }

Listing (5.1) Xtend implementation of Tarjan’s algorithm

index and lowlink, all neighbors as calculated with the shortcuts described above will be
checked. If they were not visited yet, the algorithm is called recursively on that node. After a
node has finished all calculations, its lowlink is checked. If the lowlink of the visited node is
lower than the lowlink of the current node, there exists a path to a node whose index is lower
than the index (or lowlink) of the present node. Thus, we store the new value. Similarly, if the
node was already visited, the lowlink of the current node is updated, if necessary.

After all neighbors of a node are visited, it is checked whether its lowlink is identical to
its index. If this is the case, there is no path to a node with a lower index than this node.
Therefore, this node is the beginning of a possible cycle with a path ending in this node. All
nodes in this cycle will still be on this stack, as their lowlink is dependent on the path to the
node with the lowest index. As this is the aforementioned node, their index must not equal
their lowlink and they cannot be removed from the stack. Assume that they have a lowlink
that is a lower index than the first node. Then the lowlink of the first node must also equal
this lowlink, as it is lower than its own lowlink and there exists a path between the two nodes.

65

5. Implementation

Therefore, a path exists to the node with the index of the lowlink. If a node has the same
index and lowlink, its SCC consists of all nodes above it on the stack until another node has
the same index and lowlink. Thus, the stack is dismantled in lines 28 to 32 and the SCC is
built. This algorithm is repeated on unvisited nodes until all are visited once.

The resulting lists of nodes are memorized as the SCCs and passed on. The list of SCCs is
also handed to the SCCharts KLighD synthesis for visualization purposes. If two nodes are
inside the same SCC and they have a direct control-flow or dependency edge between them,
this edge is thickened and colored purple.

After all SCCs were found, a scheduling analysis is performed. This analysis merely goes
through all nodes in all SCCs and finds all their dependencies. If the dependency is concurrent
and not confluent and is either a write-write dependency or a dependency towards a node
inside the same SCC, then the model is rejected.

Subsequently, the Node Priority (npr) assignment is performed as depicted in Listing 5.2.
The assignment traverses through all SCCs in the model exactly once. If an SCC is visited, the
neighbors and dependencies, which do not include any nodes inside this SCC, are calculated
in lines 3 and 4. Then, the dependency targets are visited in lines 8 to 19. Since the lists
of dependencies and neighbors include nodes and not SCCs, line 9 looks up which SCC the
target node of the dependency belongs to. If this SCC has not yet been visited, it is visited
and its calculated npr used to determine the npr of the current SCC in line 13. If the SCC has
already been visited, its npr is already known and used directly to determine the npr of the
current SCC in line 16. Since a node has to be executed before the target of its dependency, the
calculation of the npr takes the npr of the target SCC and increments it. The same procedure is
repeated for all neighbors of the SCC in lines 22 to 33 without the need to increment the npr of
targets, as the sequential order already defines the order of execution. Afterwards, the npr of
all nodes in this SCC is determined and saved into a hashmap.

Afterwards, the Thread Segment IDs (tsIDs), Priority IDs (prioIDs) and optimized Priority
IDs (prioIDs) are calculated as described in Section 4.1.3. Since the calculation of the tsIDs is
similar to the depth-first search already described by the npr assignment and the calculations
of prioIDs and optimized prioIDs are simple calculations, they are not described in detail here.

At the end of all these calculations, all important information is stored for later use and
for display purposes. All nodes store their npr, tsID as well as prioID as annotations, as these
will be shown by the visualization. In the KLighD synthesis, when a node is visited, its npr and
prioID are read and, if desired, visualized as a red or blue number in one of the borders of a
node. Each time a region is visualized, only the tsID of the very first entry node is visualized.
However, the tsID may change during the execution of a thread. Thus, this information is
unreliable. One could additionally write the tsID next to the nodes in each thread, but this
could unnecessarily clutter the layout.

In the algorithm, each node is visited exactly once, as it is checked whether a node has
previously been visited before the method is called with this node. In each node, all outgoing
control-flow edges as well as dependency edges are checked once. Thus, the complexity scales
in the number of nodes and immediate edges in the SCG. However, this is only true under the

66

5.1. Implementation into KIELER

1 private def void longestPath(LinkedList<Node> currentSCC) {

2

3 val neighbors = currentSCC.findNeighborsOfSCC

4 val dependencies = currentSCC.findAllDependenciesOfScc

5 var int prio = 0

6

7 // Visit all dependencies and calculate their node priority

8 for(dep : dependencies) {

9 val depSCC = sccs.get(sccMap.get(dep))

10 if(!visited.get(depSCC)) {

11 visited.put(depSCC, true)

12 longestPath(depSCC)

13 prio = Math.max(prio, npr.get(depSCC) + 1)

14 } else {

15 if(min.containsKey(depSCC)) {

16 prio = Math.max(prio, npr.get(depSCC) + 1)

17 }

18 }

19 }

20

21 // Visit all neighbors and calculate their node priority

22 for(n : neighbors) {

23 val nSCC = sccs.get(sccMap.get(n))

24 if(!visited.get(nSCC)) {

25 visited.put(nSCC, true)

26 longestPath(nSCC)

27 prio = Math.max(prio, npr.get(nSCC))

28 } else {

29 if(min.containsKey(nSCC)) {

30 prio = Math.max(prio, npr.get(nSCC))

31 }

32 }

33 }

34 npr.put(currentSCC, prio)

35 }

Listing (5.2) Xtend implementation of original npr calculation

assumption, that the accesses to hashmaps happen in constant time. If, due to collisions, the
complexity of hashmap accesses rise, the complexity of the whole computation rises. Thus,
an alternative computation utilizing annotations instead of hashmaps can rectify this.

5.1.2 Optimization

Due to the simplicity of the optimizations introduced in Section 4.2, the adaptations to the
code are kept to a minimum. In the npr assignment step, the compilation from above is
performed twice: Once from the top and once from the bottom, where the traversal goes
backwards through the graph. In order to do this, additional methods were created to find
the preceding nodes for incoming control-flow and dependency edges. The forward analysis
calculates the minimum npr of SCCs while the backward analysis calculates their maximum
npr. When the backwards traversal encounters an entry node, however, it continues like the
forward analysis but appoints the minimum npr of the entry node as its maximum npr. After
both the minimum and maximum nprs are calculated, the actual npr is calculated as shown

67

5. Implementation

1 private def int calculateNodePrios(LinkedList<Node> currentSCC) {

2 val neighbors = currentSCC.findNeighborsOfSCC

3 var nextPrio = max.get(currentSCC)

4 var succPrio = Integer.MIN_VALUE

5

6 for(n : neighbors) {

7 if(!(n instanceof Join)) {

8 val nextSCC = sccs.get(sccMap.get(n))

9 if(!visited.containsKey(nextSCC) || !visited.get(nextSCC)) {

10 visited.put(nextSCC, true)

11 succPrio = Math.max(calculateNodePrios(nextSCC), succPrio)

12 } else {

13 if(nodePrio.containsKey(n)) {

14 succPrio = Math.max(nodePrio.get(n), succPrio)

15 }

16 }

17 }

18 }

19 if(succPrio >= min.get(currentSCC)) {

20 nextPrio = succPrio

21 }

22 for(node : currentSCC) {

23 if(node instanceof Join) {

24 nodePrio.put(node, max.get(currentSCC))

25 } else {

26 nodePrio.put(node, nextPrio)

27 }

28 }

29 return nextPrio

30 }

Listing (5.3) Xtend implementation of the optimized npr assignment

in Listing 5.3. As described in Section 4.2, a depth-first search is performed analogous to
the calculations of maximum and minimum npr. Each SCC first finds the highest npr of its
successors in lines 6 to 18 and saves it in the succPrio field. If the succeeding node is a join
node, this successor will not be regarded, as the end of a thread signifies a break in the
priority propagation as explained Section 4.2. If the node has no successors or if the succPrio

is lower than the minimum npr of the node, the nextPrio field saving the next npr of this node
remains as the maximum npr of the node. Otherwise, the value of succPrio is written into
nextPrio. In lines 22 to 28, the saved npr is then written in a hashmap for all nodes in the
current SCC. As explained in Section 4.2, joins must always receive the maximum npr as their
npr, thus the special case is regarded in line 23.

The algorithm, similar to the npr assignment in Section 5.1.1 visits each node exactly
once. Instead of traversing over all immediate edges, it only traverses all control-flow edges.
This, the complexity scales in the number of nodes and control-flow edges. Similar to the npr

assignment, the optimization relies heavily on hashmaps, which may increase the complexity
in the worst case.

68

5.1. Implementation into KIELER

1 for(scc : sccList) {

2 if (scc.head.hasAnnotation(SCHIZO_ANNOTATION) && scc.length > 1) {

3 if(findSchizoDependencyCycle(scc)) {

4 newSCCs.add(scc)

5 } else {

6 scc.head.removeAllAnnotations(SCHIZO_ANNOTATION)

7 var subSCCCalc = (injector.getInstance(StronglyConnectedComponentCalc))

8 val newSCC = subSCCCalc.findSCCs(scc.filter[n | !n.hasAnnotation(DEPTH_JOIN_ANNOTATION)])

9 var LinkedList<Node> join = newLinkedList

10 join.addAll(scc.filter[n | n.hasAnnotation(DEPTH_JOIN_ANNOTATION)])

11 newSCCs.addAll(newSCC)

12 newSCCs.add(join)

13 schizoSccList.add(scc)

14 }

15 } else {

16 newSCCs.add(scc)

17 }

18 }

19 sccList = newSCCs

Listing (5.4) Xtend implementation for breaking up schizophrenic SCCs

5.1.3 Schizophrenia

To allow schizophrenic models for the priority-based compilation, multiple adaptations were
needed. First, the schedulability analysis must allow such models. Therefore, while scanning
for SCCs with Tarjan’s algorithm as described earlier, joins were annotated, if they are classified
as depth-joins. The SCC containing this join is also marked by annotating the head of the list
of nodes in the SCC. After all SCCs were created, the method depicted in Listing 5.4 breaks
up all annotated SCCs. It iterates over all potentially schizophrenic SCCs. In line 3 it computes
whether a schizophrenic SCC has a dependency cycle crossing into an external thread. If such
a dependency cycle exists, the model should be rejected as described in Section 4.3.1. Thus,
the SCC as a whole is added back into the list of SCCs. As it contains a dependency, the model
will be rejected by the schedulability analysis. If the model does not contain any dependency
cycles crossing into an external thread, lines 6 to 13 describe how the SCC is broken up. As
there may still remain cycles or dependency cycles within this SCC, a new analysis for SCCs has
to be started. For this, an injector is used to start a new run of the SCC calculation on a list of
nodes containing only the nodes of the SCC without the depth-join. As this new list of nodes
is presumably not schizophrenic, the annotation of the initial node has to be removed. During
the recursion, additional schizophrenic SCCs might be found. The same procedure will then be
called recursively on those as well. After the analysis is performed, the method returns a new
list of SCCs. The previously removed depth-join must be added as an SCC back to this list. All
these newly created SCCs together with all non-schizophrenic SCCs are then aggregated into a
new list of SCCs. It is further important to retain information of the initial schizophrenic SCC

due to the special cases described in Section 4.3.1. Therefore, the schizoSCCList memorizes all
schizophrenic but broken up SCCs for later use. The schedulability analysis is then performed
as described in Section 5.1.1 without any changes on the new list of SCCs.

69

5. Implementation

Since schizophrenic regions can be nested indefinitely, the recursive calls can increase the
time complexity of the compilation. If there are n nested schizophrenic regions in the model,
the recursive call to break up the SCCs is executed n times. As a search for SCCs is executed in
each recursive call and the SCC analysis scales linearly in the size of the graph, the complexity
of the solution to schizophrenia in the worst case is quadratic. According to Tardieu and
de Simone, this is standard for a compiler that can handle schizophrenia [TS04]. Since
schizophrenic models occur rarely according to Berry [Ber00a]. Thus, nested schizophrenic
models presumably occur even more rarely. On average, the compiler will thus still run in
linear time.

During the npr calculation, the schizoSCCList is then used to determine the minimum npr.
As mentioned in the special cases in Section 4.3.1, all nodes of the broken up cycle must have
a higher npr as any node outside the cycle dependent on any node inside the cycle. Thus, an
SCC that is a part of a broken up SCC also checks for all dependencies of all other SCCs in the
broken up SCC. To reduce redundancy, the first time all dependencies of a broken up SCC are
calculated, the dependencies are saved in a hashmap. If the dependencies of this SCC are then
required again, the hashmap simply returns them. Otherwise, nothing is changed in the npr

assignment, because the final npr assignment described above checked for the visited state of
the next SCC. It was therefore already able to handle cycles in the list of SCCs.

70

Chapter 6

Evaluation

This chapter evaluates the implementation of the priority-based compilation as presented
in Chapter 4 and Chapter 5. First, Section 6.1 argues the correctness of the computation
via benchmarks used for testing the correctness of the data-flow compilation approach
and additional benchmarks used to test the newly compilable models of the priority-based
approach. Afterwards, Section 6.2 compares different aspects of the two approaches as the
size of the resulting code, the compilation time as well as execution times. It also covers the
classes of models that are newly compilable. Section 6.3 highlights the improvement made by
optimizing the nprs as shown in Section 4.2. Lastly, Section 6.4 shows the differences between
different implementations of the priority-based approach. It provides arguments for and
against a complete array-based implementation of priorities and delineates the time saved by
the optimizations done in this thesis.

6.1 Correctness

The concepts presented in Chapter 4 were implemented in Chapter 5 in the KIELER project.
The following section shows an experimental evaluation of this implementation.

6.1.1 Dataset

The SCCharts test data repository at the point of this thesis contained 75 models each with eso
files containing traces. They are used to test the correctness of different aspects of SCCharts
from general functionality over various transformations to simple example models as well
as for automatic regression testing on the master. In order to do this, the models can be
executed and special simulation software reads the inputs as specified in the traces and
compares the resulting outputs. In addition to the test data repository, two models testing
explicitly for cyclical models and five schizophrenic models were created for this test. Of
those five schizophrenic models, three are supposed to work with the new approach and two
are supposed to fail.

All of these models were compiled to C code using the translation described in Section 4.1.4
and subsequently executed and ran against the prepared eso-traces. This was performed
within a JUnit Test.

71

6. Evaluation

reincarnation
input signal A
signal gotS

Reincarnation
signal S

I

p

rq

C1
A / S

1: S / gotS

2:

[-] R0

[-] R0

Figure 6.1. SCCharts model that failed during the JUnit test

6.1.2 Results

Of the 75 models from the SCCharts test data repository, 74 worked successfully while the
JUnit test of one model failed. This model as shown in Figure 6.1, however, while supposed
to fail for the current implementation of the data-flow compilation approach, is allowed in
the priority-based compilation. Due to the immediate reincarnation of the signal S when the
control-flow reached the final node in the inner Reincarnation state, the data-flow compilation
rejects this model. Similar to the examples from Section 4.3, there exists a possible immediate
cycle that can be broken up by the join, while one of the threads is always delayed. Due to the
adaptations made for schizophrenic models, this model is allowed as any dependencies are
superseded by the sequential execution. Therefore, the model should be accepted. As the test
checked for a failure during the compilation, the test itself failed, because no failure occurred.
This is the expected and correct behavior.

Thus, all tests executed successfully and the correctness of the priority-based compilation
approach has been proven for at least the base test cases and the provided traces.

6.2 Comparison to the Data-flow Low-Level Compilation

Next to a compilation approach for SIASC and some IASC programs, the goal of this thesis was
also to create an alternative to the already implemented data-flow compilation approach. Thus
it is not only important to measure whether the execution of generated models is possible in
reasonable time, but also to compare it with the alternate code. The comparison is performed
on the generated C code, since C is better suited for timing comparisons than Java due to
the worse predictability in Java caused by e. g., garbage collection. An additional reason for
performing the benchmarks in C is that the comparison by von Hanxleden et al. [HDM+14]
was also based on the compilation to SCLP. This way, these results can be supported directly.

The following comparison will therefore be between the generated C code of the priority-
based low-level compilation and the data-flow low-level compilation. They were performed
on a virtual machine running on the the aeon server of the Real-Time and Embedded Systems

72

6.2. Comparison to the Data-flow Low-Level Compilation

Group of the Kiel University, Germany. The machine has two Intel(R) Xeon(R) E5540 proces-
sors running at 2.53 GHz with 16 MB cache. The virtual machine is running a 64 bit Ubuntu
Linux v. 16.04 with 24 GB RAM.

The benchmarks were performed on Eclipse running the KIELER platform. The timing of
transformations is measured automatically. Thus, the compilation time was calculated by
simply adding the time needed for each low-level transformation. Certain static properties of
a model were calculated from the interim results of the transformations. These properties
included the number of states in the normalized SCCharts, the number of nodes in the SCG,
the total number of threads as well as the maximum number of parallel threads in the SCG

and the number of dependencies. Many of these properties were not used, yet they could be
used for further evaluation. One additional property for both compilation approaches was
the actual size of the program after the compilation. Since the priority-based compilation
approach uses various header files, the size of the program is deceptively small. Initial testing
showed that the lines of code produced by the transformations was more than 50% smaller
for the priority-based approach than the control-flow approach. However, when expanded
with the macros, the programs of the former increased significantly in size. Thus, to test the
actual size of the programs, the benchmarks compare the size in bytes of the executable file
after the compilation performed using the gcc1 compiler without only the standard options
enabled. To calculate the execution times of a compiled model, the simulation component for
generated C code in the KIELER project was adapted. For each model an additional output
variable was latched on to the surrounding simulation code that was supposed to save the
required time of the execution. In the code that executes the tick function of the generated
code, measurements of the time exactly before and after the call of the tick function were
performed. The exact time of the execution is then saved in the output variable and read from
in the benchmark. The benchmarks further calculated the average jitter of a model. The jitter
of a model highlights the deviation of execution times between ticks. Thus, each execution
time of a tick of a model was compared to the average execution time. An average over all
absolute variances was then computed and saved as the jitter.

All benchmarks measuring time were executed 20 times to correct for measuring uncer-
tainty. Even though the server was reserved only for the benchmarks, due to Eclipse running
in the background, it cannot be guaranteed that any execution of a tick was not interrupted
by garbage collection or some other background functionality. After measuring the times, the
K-Best Measurement Scheme as introduced by Bryant and O’Hallaron [BO03] was applied. This
measurement scheme takes all results and measures the average of the K most appropriate
results, dismissing the remaining results as outliers. Using this scheme, the average over the
best 15 results was measured.

1https://gcc.gnu.org/

73

https://gcc.gnu.org/

6. Evaluation

6.2.1 Datasets

For the comparison, 640 different models were used overall. Those not only included the
models of the correctness test from Section 6.1, but also further models that are presented in
the following.

SCCharts Models Repository

At the time of this thesis, the private SCCharts models repository contained 713 SCCharts
models of varying complexity. The models include structural tests for SCCharts, legacy models
adapted to the current implementation of SCCharts, the simulation tests from Section 6.1,
models of former or current problems in SCCharts as well as various anonymous models
extracted from student work. Not all of those models could be used, however. Due to their age,
some models were obsolete and could not compile any more. Others were not schedulable
by design. Therefore, only 382 models could be used for the comparison. Of those, only 132
models including the test models from Section 6.1.1 had predefined eso traces describing
their behavior. Thus only those models could be used for a meaningful comparison of the
execution time. These models with traces, however, had at most 72 SCG nodes. Thus, larger
executable models were required to compare models of larger size.

Additional Script Models

As shown in Section 1.2, some hypotheses concerning the priority-based compilation ought
to be proven. To show that this approach struggles with execution time jitter, a model was
designed to highlight this. The model as shown in its SCG form in Figure 6.2 depends on
the input x. If x is true, the model only executes the statement _term = true and is done.
Otherwise, all statements in the middle block are executed. In the priority-based compilation,
if x is present, only the statement _term = true is executed, and nothing else. However, in
the data-flow compilation, the execution still checks for the guards of all states on the right.
Thus, the difference between the execution if x is true or false is far smaller. When executing
the script, an integer input is taken and for each number between 3 and this input, a model
is generated. The model contains as many of the sequential nodes as the current number
between 3 and the input. The script further generates eso files for all models. Each file contains
two traces, one that initially sets x to true and one that does not.

Random SCCharts Models

Using a generator for SCCharts model files, 59 random models were created. These models
each received between one and ten boolean inputs and outputs and have a variable size
between 10 and 150 states. Hierarchical and other complex behavior was allowed. Due to
limitations of the random generator, very few dependencies are generated, as each additional
dependency may induce a dependency cycle. To reduce the risk of the model being non-
schedulable, no dependencies were added. Additionally, random traces were created that

74

6.2. Comparison to the Data-flow Low-Level Compilation

entry

exit

fork

join

_term = false

entry

x

_term = true

fork

join

fork

join

_term = true

fork

join

exit

entry

x2 = 0

exit

s2_1 - Instantaneous
entry

x2++

exit

s2_2 - Instantaneous

entry

x3 = 0

exit

s3_1 - Instantaneous
entry

x3++

exit

s3_2 - Instantaneous

entry

x3 = 0

exit

s3_1 - Instantaneous
entry

x3++

exit

s3_2 - Instantaneous
entry

_term

surface

depth

exit

true

_Ctrl4 - Potentially instantaneous

true

Potentially instantaneous

entry

_term

surface

depth

exit

true

Potentially instantaneous

Figure 6.2. Example JitterProgram with three sequential concurrent regions

induced random behavior. Each model received between one and four traces with each
trace spanning across one to five ticks. As these traces were not tested manually, some may
do nothing or be duplicates of others. This approach is, however, still better than simply

75

6. Evaluation

using no inputs at all, as an execution with no inputs will not always properly describe the
temporal behavior of a model. While the random inputs could all produce the same behavior
as no inputs, the probability that all generated random traces across all traces result in no
descriptive temporal behavior is much smaller than only executing the model once with no
inputs.

6.2.2 Results

After executing the benchmark, the results were gathered in scatter plots for comparison
purposes. Some of the plots were smoothed using the Locally Weighted Smoothing (LOESS)
non-parametric regression method to show a trend, if it exists [CD88]. If a plot does not
contain LOESS smoothing, its trend is visible without any additional visualization or no
significant trend could be found. The results, divided into compilation results and execution
results, are gathered in the following subsection.

Compilation

At first, the compilation results are examined. Since the results are independent from both the
traces as well as the origin of the model – as long as it can be compiled by both approaches –
all model groups are compared in one benchmark. Figure 6.3 depicts the compilation time of
all models. The graph shows that both compilation approaches seem to have a few outliers.
However, there does not exist any correlation between these outliers; e. g., one outlier in the
top left comes from a randomly generated model while the other outlier in the top left comes
from a homework solution. Manual compilation of these models did not yield similar results,
even though the compilation duration was computed using the K-Best Measurement Scheme as
mentioned in Section 6.2. The most probable cause is that the execution time more than five
compilation runs deviated far from the average due to background processes. Therefore, at
least one outlier could still influence the result heavily. However, their occurrence is important,
as they might still signify potential problems. The most likely reason for these outliers is
the Java runtime performing background tasks. Otherwise, the graph seems to suggest a
linear increase in the compilation time for the data-flow approach while the curve of the
priority-based compilation indicates a quadratic increase. This contradicts the assumptions
made in Chapter 4 and Chapter 5. One assumption is that the frequency of accesses to
hashmaps increases the complexity as the probability of collisions increases. This will require
additional research, which could not be performed during the creation of this thesis due to
time constraints. The graph further shows that the priority-based compilation is faster for
smaller models, which the zoom in Figure 6.4 further supports. Only starting at roughly
800 SCG nodes, the data-flow approach scales better. When ignoring the scripted models,
the data-flow compilation already starts to scale better at roughly 400 SCG nodes, yet no
polynomial curve is discernible.

Parallel to the creation of this thesis, a new compiler for SCCharts was developed, which
seems to speed up the data-flow compilation. Since the priority-based compilation was not

76

6.2. Comparison to the Data-flow Low-Level Compilation

Figure 6.3. Compilation time of all models in ms

Figure 6.4. Compilation time of all models with less then 200 nodes in the SCG in ns

yet implemented in this new compiler, the benchmark could not be executed on it and the
current values are obsolete. A new comparison should be performed on the new compiler as
soon as the priority-based approach has been ported over.

Figure 6.5 shows how many variables were created due to the compilation. In the data-flow
approach, each scheduling block, as explained in Section 3.1, requires a guard. Each guard

77

6. Evaluation

Figure 6.5. Number of generated variables of all models

itself is represented via a variable, thus the number of variables scales with the size of the
model. The priority-based compilation on the other hand only requires the input and output
variables as well as the variables required by the macros. However, this visualization only
presents the generated variables by the compilation. The macros provide up to 50 additional
global variables and up to three additional local variables. Thus, Figure 6.6 highlights the
threshold, where the priority-based compilation requires fewer variables than the data-flow
compilation. It shows that the former already has an advantage over the latter with fairly
small models, starting at roughly 100 SCG nodes. This result shows promise for software
environments with restricting virtual machines like the Lego Mindstorm NXT systems2. The
NXT 1.0 systems for example only allow 256 variables. Figure 6.5 shows that the priority-based
compilation approach stays much longer below this threshold compared to the data-flow
compilation. Even very large models with more than 1000 SCG nodes do not exceed this limit
since the number of variables only scales with the number of input variables as specified by
the modeler.

Figure 6.7 shows the sizes of the compiled programs in bytes. The graph shows that the
data-flow compilation compiles to smaller code for small models up to 400 nodes in the SCG.
Due to the overhead produced by the SCLP macros, the priority-based compilation produces
larger code for those smaller models. For larger models, starting at roughly 400 SCG nodes, the
priority-based approach starts to scale better. The code generation of the data-flow compilation
generates a lot of guards that have to be written for each scheduling block in the model as
described in Section 3.1 to describe the control-flow of the program. This is controlled by

2https://www.rtsys.informatik.uni-kiel.de/en/teaching/lego-mindstorms-modelrailway/lego-mindstorms-1

78

https://www.rtsys.informatik.uni-kiel.de/en/teaching/lego-mindstorms-modelrailway/lego-mindstorms-1

6.2. Comparison to the Data-flow Low-Level Compilation

Figure 6.6. Difference in compiled variables between the priority-based and data-flow compilation
approaches

the macros in the priority-based compilation. The guards are not only introduced at each
incoming dependency of a node, but also at forking control-flow after conditionals. In the
priority-based compilation – especially in the optimized variant – prio-statements are only
introduced after nodes with outgoing dependencies. This reduces the generated code. The
priority-based compilation further requires less variables as already shown in Figure 6.6
saving more memory. The graph shows another phenomenon, where the sizes seem to jump
at some points. Presumably this is due to some optimizations made by the gcc compiler, as
the compilation to e. g., assembler code does not produce similar results with jumps. Still,
the real size of these compiled programs is compared, as only this size is important for a
programmer creating code for a system with limited resources.

Execution Times

After testing the results of the compilation, the results of the SCCharts models repository
as described in Section 6.2.1 are examined for their execution times. Figure 6.8 depicts the
resulting execution times of all models with traces except the scripted models. The plot shows
in general that the priority-based compilation does scale better in the size of the model as
predicted by von Hanxleden et al. [HDM+14]. The LOESS curve indicates that the execution
time is almost constant and independent from the size until roughly 200 SCG nodes. The
priority-based compilation only executes active part of a model that are divided by tick
borders. Thus, the execution time of a tick is only dependent on the potential length of a tick
in the model. As explained in Chapter 1, a tick is supposed to be short to allow a fast reaction
time. Thus, the execution time of such a model remains constant even with rising model

79

6. Evaluation

Figure 6.7. Size of the compiled C program in bytes of all models

size. After the 200 nodes, however, the low density of datapoints does not lend to a good
approximation. The average execution times remain within 4000 nanoseconds. The zoom into
models with less than 200 nodes in the SCG in Figure 6.9 highlights that models below 40 SCG

nodes seem to perform worse in the priority-based compilation approach. This is due to the
initial overhead introduced by the macros. If the execution has to setup the enabled array as
well as the priorities at the beginning of the program, yet the tick function itself is just a few
lines of codes long, this overhead remains significant.

The graph in Figure 6.10 then shows the execution time of the JitterProgram scripted
models. The plot shows that for these specific models the priority-based compilation performs
strictly worse than the data-flow compilation and scales worse. This is due to the high amount
of forks and joins in these models. As highlighted in Figure 6.2 the models fork and join
two threads multiple times sequentially depending on the number of the program. Each fork
and join costs time compared to the alternative approach due to the executed macros. Since
there are not only many forks and joins in the SCG, but also few other nodes in relation to the
number of forks and joins, these macros represent a high amount of the time required of one
tick. On the other hand, the data-flow compilation only has to calculate the guards of the join.
These example models therefore execute significantly faster for the data-flow compilation on
average. However, the graph highlights that the plot of the priority-based approach jumps
at roughly 500 SCG nodes. As explained in Section 4.1.4, the priorities are saved in an array
instead of a scalar, if the number of priorities exceed the size of an integer. At roughly 500 SCG

nodes, the number of priorities in the JitterProgram models exceed 64. Since this is the size of
an unsigned long integer on the testing system, the priority-based compilation changes to the
array-based system. This adds roughly 5000 nanoseconds to the execution time of a tick and
causes the execution time to scale even worse.

80

6.2. Comparison to the Data-flow Low-Level Compilation

Figure 6.8. Average execution time of all non-scripted models with traces in ns

Figure 6.9. Average execution time of all non-scripted models with under 200 nodes in their SCG and
traces in ns

Jitter

Next to the pure execution time, the execution time jitter was measured. The results of all
models with traces already show that the priority-based compilation has an disadvantage

81

6. Evaluation

Figure 6.10. Average execution time of all scripted JitterProgram models in ns

over the data-flow approach as shown in Figure 6.11. The models include the JitterProgram
models as described in Section 6.2.1. The graph not only shows that the jitter of larger
models increases a lot more in the priority-based approach, but also that the jitter varies
more between models. Additionally, the graph shows that for very small models, the priority-
based compilation seems to perform better than the alternative. However, due to the very
small deviations from the execution times in those models, this can mostly be attributed to
randomness.

Figure 6.12 highlights the difference in the jitter between the two approaches. The graph
shows execution times based on the model JitterProgram148.sct for both compilation ap-
proaches. If the input x is true, the program does nothing. If it is false on the other hand,
148 different variables are set to 0 and concurrently incremented. This happens over 148
sequential parallel statements. The blue curve shows the execution times in the priority-based
compilation per tick and the red curve the execution times of the data-flow compilation per
tick. It shows how the red curve stays relatively constant within 5000 to 7500 ns execution
time, whereas the blue curve fluctuates between 17500 and 35000 ns depending on whether
the input x was set or not. The higher execution times of the priority-based compilation can
again be explained by its behavior. Since it only executes active parts of the program, each
other tick performs the 148 sequential states while the remaining ticks execute only a single
node as the SCG in Figure 6.2 shows.

82

6.3. Optimization Comparison

Figure 6.11. Average jitter of all models with traces in ns

Figure 6.12. Example execution times per tick of the JitterProgram148.sct model exemplifying the jitter

6.3 Optimization Comparison

To see whether the optimization of the npr assignment has any significant impact on the
execution time, the optimizations were turned off and another time measurement was started.

83

6. Evaluation

Figure 6.13. Average execution times of the optimized and non-optimized priority-based compilation
approach

The results as shown in Figure 6.13 stress that the optimizations increased the performance.
On average, the execution time sank by 20%. The graph further shows the effect of the reduced
total number of priorities in the model. This means that the non-optimized variant needs
to use the array-based implementation a lot earlier than the optimized variant. For the non-
optimized variant this means that at roughly 250 SCG nodes the number of priorities exceed
64, while the optimized variant exceeds this limit first at 500 SCG nodes. These datapoints,
however, are largely influenced by the JitterProgram scripted models. Without these, the
difference is not as distinct. Due to the low number of dependencies and more often low npr

numbers in these models, the effect of the optimizations is low. The outliers at the bottom
of the graph show those models that have mostly a low number of dependencies. Even
those models that have a high number of dependencies often have low nprs as often most
dependencies originate in one single node. In those models only a single node requires a
higher npr.

6.4 Low-Level Implementation Evaluation

An important aspect of the SCLP macros is the effectiveness of priorities below a certain
threshold. Due to the scalar-based check for enabled threads, joins can be performed very
fast. However, a scalar cannot be indefinitely large in a computer system. Therefore, the array-
based implementation is required, once the number of priorities exceeds the size of an integer

84

6.4. Low-Level Implementation Evaluation

Array Based

Scalar Based

Figure 6.14. Average execution times of the priority-based compilation approach with only array-based
implementation compared to scalar-based implementation

on the system. Figure 6.14 illuminates the difference between these two implementations.
Both curves show the average execution time of the priority based approach over various
models. The blue curve, however, only implements the array-based priorities, while the red
only switches to the array-based implementation above 64 priorities. The graph shows that
the scalar-based implementation is up to 50% faster than the array-based implementation
depending on the model. In all models, where the scalar-based implementation works, it is
the faster alternative. Beginning at roughly 500 SCG nodes, the scalar-based implementation
stops working as the number of priorities exceed 64 and both implementations achieve the
same results.

85

Chapter 7

Conclusion

The following chapter summarizes the presented approach to an alternative low-level com-
pilation of SCCharts. After the summary in Section 7.1, Section 7.2 gives a small outlook to
further work to extend this approach.

7.1 Summary

This thesis describes a compilation approach towards SCGs and low-level SCCharts based
on priorities and described further optimizations and enhancements to this approach. This
approach includes assigning priorities to nodes in an SCG and using this annotated SCG to
generate C as well as Java code. A simple schedulability analysis performed during the priority
assignment determines whether a program written in SCCharts or an SCG is translatable or
not.

At the start, node priorities are assigned to all nodes using a depth-first search over all
nodes in the provided SCG. These determine a mandatory order that the nodes have to be
executed by. A node that executes concurrently to another node must be executed earlier,
if it has a higher node priority. Afterwards, a fixed and deterministic order of execution is
calculated based on the node priority and on the associated thread of a node, its tsID. The
resulting ID, the prioID of a node, is then optimized to the optimized prioID. Using this number,
code is finally generated from the annotated SCG.

Using a newly developed approach towards npr assignment, the node priority assignment
was optimized. The new assignment reduces unnecessary context switches in almost all
concurrent models. Fewer context switches lead to less overhead by the dispatcher as well
as better locality for caching and thus to better performance, which is especially important
for safety-critical and embedded systems. Additionally, the approach was adapted to allow
schizophrenic models. Previously, some schizophrenic models – namely those containing
concurrent, but not runtime concurrent models – were not accepted. Now, when preparing
for the schedulability analysis and npr assignment, schizophrenic statements are detected and
any illegal dependency cycles removed, if possible.

Afterwards, both the translation as well as the optimizations were implemented in the
context of the KIELER project. This translation provides an alternative way to generate deter-
ministic C and Java code from SCCharts or SCG models. It not only translates all SASC and
many ASC programs, but also all SIASC and many IASC programs. The implementation further
shows that a translation into a new language is easily possible due to the modularity and

87

7. Conclusion

flexibility provided by the KIELER compiler.
The evaluation then showed that the new compilation approach is not only comparable in

compilation speed with the data-flow approach, but even outperforms it in average execution
speed in most models. Even considering the larger execution-time jitter of programs created
using the priority-based compilation, the WCET of programs is shorter even for some smaller
and medium sized models and especially for large models. These findings support the
hypotheses proposed by von Hanxleden et al. in their paper covering high-level and low-
level compilation of SCCharts [HDM+14]. Further findings suggest that the priority-based
approach in general shows promise for large scale models. Not only does the execution time
scale better in the size of the model, but the size of the compiled program and the number
of required variables also scale better. This can play an important role when dealing with
systems with limited resources.

7.2 Future Work

The main focus of this thesis was to develop and enhance the priority-based compilation for
SCCharts in the context of the KIELER project. However, due to the time constraints during
this thesis, not all goals and ideas could be achieved and pursued. Thus, this section talks
about further ideas that can be pursued after the completion of this thesis.

7.2.1 Further Optimizations

As already mentioned in Section 7.2.1, some unnecessary context switches cannot yet be
reduced. Further small optimizations could also be done towards improving the tsID assign-
ment. Currently, the tsIDs of child threads are assigned depending on their npr at the exit
node. However, for example due to locality some threads may better be scheduled directly
after each other. A better way to assign tsIDs should therefore be first evaluated and then
implemented.

Additionally, an alternative implementation of the C macros using a parent-children
relation as originally intended in for example the SyncCharts transformation from Section 3.3
could be useful for a comparison. The intrusion into the priority assignment itself would be
minimal and confined to the tsID assignment. Only the code assignment ought to be adapted
to the new fork- and join-macros.

Lastly, Section 6.4 highlights that the array-based implementation for priorities is slower
than the scalar-based implementation. An extension to the macros that uses only integers
without the need for arrays could significantly increase the performance of the execution.
Simple macros that control which scalar should be checked can be implemented to replace the
check for the array. Thus, macros that at compile time create a number of scalars and control
structures to address the correct scalar can be created. Alternatively, a study to find how large
the priorities realistically get in average models may find that more than 64 priorities occur
rarely. Then, such an improvement would be insignificant and only improve border cases.

88

7.2. Future Work

SASC ASC
SIASC
(original priority-
based approach)

IASC

SC

Schizophrenia Extension

Figure 7.1. The classes of SC, extended by the schizophrenia adaptations of this thesis

Otherwise, the study could find the optimal number of scalars. If, e. g., an implementation
using five scalars covers 90% of all models, then the implementation could be enhanced to
using five scalars by default.

7.2.2 Classification of Compilable Models – Improvements

The class of compilable programs has been extended beyond only SIASC programs and into
IASC programs. Figure 7.1 shows a simplified representation of the compilable programs
by the priority based compilation based on the earlier representation in Figure 2.4. While
certainly not all IASC programs can be compiled – e. g., models with unreachable dependency
cycles –, the expansion allows some other models that were not schizophrenic but IASC

schedulable to be compilable. However, some schizophrenic models are still not accepted due
to the conservative condition that no dependency cycle may cross through a join as well as
into a thread not joined by the join. Figure 7.2 depicts a model that is rejected due to this
restriction, but does not violate the iur protocol. Without the feedback loop through the join
no cycle would be present. It can also be seen that no second instances of the nodes in B2 are
reachable from the entry of the thread, therefore it is impossible for I = O to preempt or be
preempted by any concurrent nodes. The cycle induced by the dependency from R = true to
O = R | true is between nodes whose instances are never runtime concurrent. Thus, the whole
cycle should not exist. A solution to this problem could be to eliminate all dependencies
between nodes that cannot be runtime concurrent as in the example above. This not only
improves problems in these schizophrenic models but also for arbitrary models with cyclic
dependencies between nodes that are not concurrent at runtime. Analyzing all dependencies
for runtime concurrency may prove difficult however. Alternatively, one might take a detailed
look at the source and target of the dependencies. If one of them is in the surface of its thread,

89

7. Conclusion

entry

fork

entry

surface

depth

I = O

A - Delayed

entry

fork

join

entry

R = true

exit

B1 - Instantaneousentry

surface

depth

O = R | true

P = I

exit

B2 - Delayed

B - Potentially instantaneous

Figure 7.2. A schizophrenic model that is still not schedulable

while the other is in the depth of a delayed thread, the dependency can be eliminated and the
model accepted.

Further models that are still not schedulable are those where parts of the model are
unreachable as in Figure 4.7 or other models where dependency cycles only occur statically,
but never during a run of the model. A schedulability analysis for such models would have to
take the contents of assignments and conditionals into account. A static scheduling analysis
such as the one introduced in this thesis is not well suited towards such a task.

7.2.3 Further Alternative Compilations

In the design of safety-critical systems, various different standards are used that restrict the
use of the language for safety purposes. Some of these standards, e. g., the MISRA C 2004
standard [MIS04], ban the use of the goto statement. Thus, the current implementation of
the SCLP macros would be prohibited for these standards. To comply to these standards, one
could use the switch-case based implementation as used in SJ in C as well.

Some additional restrictions apply when implementing the statemachine pattern. A general
overview over various implementations of the statemachine pattern in modeling tools and
other projects is given by Domi et al. [DPR+12]. The generated code of this pattern should be
easy to follow, as free from overhead as possible and, if changes to the source model are made,
those changes should be minimally invasive to the generated code and only change locally.
Typically, statemachines do not implement concurrency. Thus, an initial implementation of

90

7.2. Future Work

the statemachine pattern could translate all modeled states as they are and introduce a switch-
case structure that decides which state to execute next. If a transition between states is taken,
the switch-case statement should be left and re-entered, analogous to the implementation in
SJ. To improve readability the cases should be named after the states in the model. In KIELER

SCCharts, this translation would have to draw on the core SCCharts step of the translation as
depicted in the upper halve of Figure 1.1, as the statemachine pattern cannot handle features
like strong aborts or history transitions. After the core SCCharts step, the model loses a lot of
information about states. Additionally, one has to analyze, if and how hierarchical behavior
should be implemented. Since the resulting code should certifiable and easy to read, nested
behavior should be restricted.

If concurrency is to be implemented as well, one could think about using an adaptation
of the priority-based implementation. Since the statemachine pattern builds upon the core
SCCharts step, the SCG is never created and a priority assignment cannot be performed. One
solution would be to adapt both the dependency analysis as well as the priority assignment
to work with core SCCharts. One state in the model would then be regarded as an atomic
statement and interleaving would have to be prohibited. The priority assignment then creates
a schedule of these atomic states. Another solution could be to still perform the dependency
analysis and priority assignment on an intermittently created SCG. The result of these analyses
would then have to be traced back to the original states, allowing an interleaving of states. It
is questionable, however, whether this behavior is desired.

91

Bibliography

[And13] Sidharta Andalam. “Predictable platforms for safety-critical embedded systems”.
PhD thesis. The University of Auckland New Zealand, 2013.

[And96] Charles André. SyncCharts: A visual representation of reactive behaviors. Tech. rep.
RR 95–52, rev. RR 96–56. Sophia-Antipolis, France: I3S, Rev. April 1996.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. “The Synchronous Languages Twelve Years
Later”. In: Proc. IEEE, Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ,
USA: IEEE, Jan. 2003, pp. 64–83.

[Ber00a] Gérard Berry. The Esterel v5 language primer, version v5_91. ftp://ftp-sop.inria.

fr/esterel/pub/papers/primer.pdf. Centre de Mathématiques Appliquées Ecole des
Mines and INRIA. 06565 Sophia-Antipolis, 2000.

[Ber00b] Gérard Berry. “The foundations of Esterel”. In: Proof, Language, and Interaction:
Essays in Honour of Robin Milner. Ed. by Gordon Plotkin, Colin Stirling, and Mads
Tofte. Cambridge, MA, USA: MIT Press, 2000, pp. 425–454. isbn: 0-262-16188-5.

[Ber05] G. Berry. “Esterel v7: from verified formal specification to efficient industrial
designs”. In: Fundamental Approaches to Software Engineering FASE 2005. Ed. by
M. Cerioli. Vol. 3442. LNCS. Springer, 2005, pp. 1–1.

[BO03] Randal E Bryant and David Richard O’Hallaron. Computer systems: a programmer’s
perspective. Vol. 2. Prentice Hall Upper Saddle River, 2003.

[CD88] William S Cleveland and Susan J Devlin. “Locally weighted regression: an
approach to regression analysis by local fitting”. In: Journal of the American
statistical association 83.403 (1988), pp. 596–610.

[DPR+12] Eladio Domı, Beatriz Pérez, Ángel L Rubio, et al. “A systematic review of code
generation proposals from state machine specifications”. In: Information and
Software Technology 54.10 (2012), pp. 1045–1066.

[Edw99] Stephen A. Edwards. “Compiling Esterel into Sequential Code”. In: Proceedings
of the 7th International Workshop on Hardware/Software Codesign (CODES 99). http:
//www1.cs.columbia.edu/~sedwards/papers/edwards1999compiling.pdf. May 1999.

[EKH06] Stephen A Edwards, Vimal Kapadia, and Michael Halas. “Compiling esterel
into static discrete-event code”. In: Electronic Notes in Theoretical Computer Science
153.4 (2006), pp. 117–131.

[Fuh11] Hauke Fuhrmann. “On the pragmatics of graphical modeling”. Dissertation.
Kiel: Christian-Albrechts-Universität zu Kiel, Faculty of Engineering, 2011.

93

ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://www1.cs.columbia.edu/~sedwards/papers/edwards1999compiling.pdf
http://www1.cs.columbia.edu/~sedwards/papers/edwards1999compiling.pdf

Bibliography

[Han09a] Reinhard von Hanxleden. SyncCharts in C. Technical Report 0910. Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, May 2009.

[Han09b] Reinhard von Hanxleden. “SyncCharts in C—A Proposal for Light-Weight,
Deterministic Concurrency”. In: Proc. Int’l Conference on Embedded Software (EM-
SOFT’09). Grenoble, France: ACM, Oct. 2009, pp. 225–234.

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science
of Computer Programming 8.3 (June 1987), pp. 231–274.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications”. In: Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’14). Edinburgh, UK: ACM, June 2014.

[HMA+13] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, and Owen O’Brien. “Sequen-
tially Constructive Concurrency—A conservative extension of the synchronous
model of computation”. In: Proc. Design, Automation and Test in Europe Conference
(DATE’13). Grenoble, France: IEEE, Mar. 2013, pp. 581–586.

[HMA+14] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha
Roop. “Sequentially Constructive Concurrency—A conservative extension of
the synchronous model of computation”. In: ACM Transactions on Embedded
Computing Systems, Special Issue on Applications of Concurrency to System Design
13.4s (July 2014), 144:1–144:26.

[Lee06] Edward A. Lee. “The problem with threads”. In: IEEE Computer 39.5 (2006),
pp. 33–42.

[MHH13] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. “Program-
ming deterministice reactive systems with Synchronous Java (invited paper)”.
In: Proceedings of the 9th Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS 2013). IEEE Proceedings. Paderborn, Germany,
17/18 06 2013.

[MIS04] MISRA. Guidelines for the use of the c language in critical systems. 2004. isbn:
0952415623.

[Mot17] Christian Motika. Sccharts—language and interactive incremental implementation.
Kiel Computer Science Series 2017/2. Dissertation, Faculty of Engineering,
Christian-Albrechts-Universität zu Kiel. Department of Computer Science, 2017.
isbn: not assigned yet.

94

Bibliography

[MSH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. “Compiling
SCCharts—A case-study on interactive model-based compilation”. In: Proceedings
of the 6th International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2014). Vol. 8802. LNCS. Corfu, Greece, Oct. 2014,
pp. 443–462. doi: 10.1007/978-3-662-45234-9.

[PS04] Dumitru Potop-Butucaru and Robert de Simone. “Optimization for faster execu-
tion of Esterel programs”. In: Norwell, MA, USA: Kluwer Academic Publishers,
2004, pp. 285–315. isbn: 1-4020-8051-4.

[PST05] D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. “The synchronous hypothesis
and synchronous languages”. In: Embedded Systems Handbook. Ed. by R. Zurawski.
CRC Press, 2005.

[RSM+15] Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von Hanxleden, and
Michael Mendler. “SCEst: Sequentially Constructive Esterel”. In: Proceedings
of the 13th ACM-IEEE International Conference on Formal Methods and Models for
System Design (MEMOCODE’15). Austin, TX, USA, Sept. 2015.

[Sch16] Alexander Schulz-Rosengarten. “Strict sequential constructiveness”. http : / /

rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf. Master thesis. Kiel
University, Department of Computer Science, Sept. 2016.

[SMH15] Steven Smyth, Christian Motika, and Reinhard von Hanxleden. “A data-flow
approach for compiling the sequentially constructive language (SCL)”. In: 18.
Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2015).
Pörtschach, Austria, May 2015.

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just
model! – Putting automatic synthesis of node-link-diagrams into practice”.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’13). San Jose, CA, USA, Sept. 2013, pp. 75–82. doi: 10.1109/

VLHCC.2013.6645246.

[SW01] Klaus Schneider and Michael Wenz. “A new method for compiling schizophrenic
synchronous programs”. In: Proceedings of the 2001 international conference on
Compilers, architecture, and synthesis for embedded systems. ACM. 2001, pp. 49–58.

[TAH10] Claus Traulsen, Torsten Amende, and Reinhard von Hanxleden. Compiling
SyncCharts to Synchronous C. Technical Report 1006. Kiel, Germany: Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, July 2010.

[TAH11] Claus Traulsen, Torsten Amende, and Reinhard von Hanxleden. “Compiling
SyncCharts to Synchronous C”. In: Proceedings of the Design, Automation and Test
in Europe Conference (DATE’11). Grenoble, France: IEEE, Mar. 2011, pp. 563–566.

[Tar72] Robert Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM journal
on computing 1.2 (1972), pp. 146–160.

95

http://dx.doi.org/10.1007/978-3-662-45234-9
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://dx.doi.org/10.1109/VLHCC.2013.6645246

Bibliography

[TS04] Olivier Tardieu and Robert de Simone. “Curing schizophrenia by program
rewriting in esterel”. In: Formal Methods and Models for Co-Design, 2004. MEM-
OCODE’04. Proceedings. Second ACM and IEEE International Conference on. IEEE.
2004, pp. 39–48.

96

	Introduction
	SCCharts and Sequential Constructiveness
	Problem Statement
	Outline

	Foundations
	Sequential Constructiveness
	SCL and SCG
	The SC Language and Priorities
	Synchronous Java
	The ABO Example

	Used Technologies
	Eclipse
	KIELER

	Related Work
	Data-flow Low-Level Compilation of SCCharts
	Esterel
	SyncCharts and SyncCharts in C
	PRET-C

	Priority-Based Compilation
	Priority-Based Compilation
	Strongly Connected Components
	Node Priorities
	Priority IDs and Optimized Priority IDs
	C Code Generation
	Java Code Generation

	Optimizing the Node Priority Assignment
	Proof of Correctness
	Proof of Improvement
	Further Improvements

	Schizophrenia
	Schizophrenia in the Priority Based Compilation

	Implementation
	Implementation into KIELER
	Original Approach
	Optimization
	Schizophrenia

	Evaluation
	Correctness
	Dataset
	Results

	Comparison to the Data-flow Low-Level Compilation
	Datasets
	Results

	Optimization Comparison
	Low-Level Implementation Evaluation

	Conclusion
	Summary
	Future Work
	Further Optimizations
	Classification of Compilable Models – Improvements
	Further Alternative Compilations

