
Christian-Albrechts-Universität zu Kiel

Master Thesis

View Management
for Graphical Models

Martin Müller

29th December 2010

Department of Computer Science

Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:

Dipl.-Inf. Hauke Fuhrmann

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

Abstract

Creating and maintaining graphical models is a complex task. A lot of development
time can easily be consumed by changing the visual representation of the model to
match the current requirements. In this master thesis I introduce the KIELER View
Management (KiVi) framework. It supports the dynamic generation and modification
of views on a graphical diagram and comes with a wide variety of default applications.
Additionally external developers can easily base their graphical modification tasks on
the view management framework. The project connects existing KIELER technologies
such as automatic layout and structure-based editing with new approaches for editing,
viewing, or simulating graphical models.

Contents

1 Introduction 11
1.1 Related Work . 12
1.2 Outline . 13

2 Technology 15
2.1 Eclipse . 15

2.1.1 Plug-ins . 17
2.1.2 The Eclipse Modeling Framework (EMF) 17
2.1.3 The Graphical Editing Framework (GEF) 18
2.1.4 The Graphical Modeling Framework (GMF) 18

2.2 Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) . 19
2.2.1 Thin KIELER SyncCharts Editor (ThinKCharts) 19
2.2.2 KIELER Infrastructure for Meta Layout (KIML) 19
2.2.3 KIELER Structure Based Editing (KSBasE) 19
2.2.4 KIELER Execution Manager (KIEM) 20

3 KIELER View Management (KiVi) 21
3.1 Overview . 21
3.2 Triggers & TriggerStates . 21
3.3 Effects . 22
3.4 Combinations . 23
3.5 View Management Controller . 23
3.6 Concurrency . 24

4 KiVi Implementation 27
4.1 Core Components . 27

4.1.1 Extension Points . 27
4.1.2 View Management Controller . 28
4.1.3 Trigger . 31
4.1.4 TriggerStates . 32
4.1.5 Effects . 33
4.1.6 Combinations . 34

4.2 Preferences . 37

5 Implemented Features 41
5.1 Triggers & TriggerStates . 41

5.1.1 SelectionTrigger . 41

7

Contents

5.1.2 ButtonTrigger . 42
5.1.3 EffectTrigger . 42
5.1.4 ModelChangeTrigger . 43
5.1.5 StateActivityTrigger . 43

5.2 Effects . 43
5.2.1 UndoEffect . 43
5.2.2 LayoutEffect . 44
5.2.3 HighlightEffect . 44
5.2.4 CompartmentCollapseExpandEffect 45
5.2.5 ArrowEffect . 47

5.3 Combinations . 47
5.3.1 LayoutCombination . 47
5.3.2 LayoutAfterCollapseCombination 47
5.3.3 ShowHierarchyCombination . 47
5.3.4 LayoutAfterModelChangedCombination 49
5.3.5 SignalFlowCombination . 50
5.3.6 SyncChartsCombination . 51
5.3.7 HighlightSelectedTransitionsCombination 57

6 Conclusion 59
6.1 Summary . 59
6.2 Future Work . 60

8

List of Figures

2.1 Eclipse running the KIELER SyncCharts editor. 16
2.2 ABRO, the Hello World of synchronous programming in SyncCharts. . . 20

3.1 The simplified sequence of communication. 21

4.1 Sequence diagram showing the Trigger components. 29
4.2 Sequence diagram showing the Combination components. 30
4.3 Sequence diagram showing the Effect components. 30
4.4 The global view management preference page 38
4.5 The local Combinations preference page 39

5.1 Various styles of highlighting a SyncCharts state. 45
5.2 Collapsed and expanded SyncCharts states. 46
5.3 A SyncCharts diagram using the hierarchy Combination. 48
5.4 Invalid layout after changing a state name. 49
5.5 Recalculated layout triggered by the view management. 50
5.6 Displaying the flow of signals. 51
5.7 An overwhelming number of signal flow arrows. 52
5.8 Filtering the signal flow arrows for a single transition. 53
5.9 Simulation visualization both in color and black & white mode. 54
5.10 Focus & Context reduces the space taken up during simulation. 56
5.11 Highlighting the selected transition and its label. 57

9

1 Introduction

The development and specification of both software and hardware has evolved through-
out the past decades. Crucially, the complexity of these systems has grown exponentially.
Taking the Linux Kernel as an example, even what is basically the same set of features
grows bigger and bigger over time. During the one-year development period from version
2.6.31 to version 2.6.36 the lines of source code have grown by 12%1. Keeping track of
this growth using traditional methods is next to impossible.

Similar trends exist in virtually every development project. In order to cope with this
growing complexity, graphical model-based design has emerged. During the inception
phase of a new project, UML diagrams [6] help the various team members formulate
their ideas. A shared understanding of the semantics lets both adept developers and less
tech-savvy designers or even customers communicate on common ground. Once they
have agreed upon a final design, model-driven development tools can generate basic
code to launch the actual implementation effort from. Creating UML diagrams can be
a tedious undertaking. Adding a new common super class for a set of classes requires
a larger number of mouse interactions. Any change to the diagram may result in time-
consuming rearrangement of the surrounding elements. Maintaining the mental map
when working with large models is very hard. Every reasonable graphical model-based
design environment must address and solve all these problems.

Parts of the final system may have been developed using SyncCharts [2]. Together with
an execution engine such as Ptolemy [4, 9] these models can be simulated in order to
test their behavior before building the actual system. In order for a human to follow
such a simulation, the employed environment needs to provide various visual cues. The
focus of the user must be guided towards the most relevant sections of the diagram,
traditional zooming can not cope with the desire to see both minute details for impor-
tant parts and at the same time to maintain a rough overview of the entire execution.
These requirements demand an entirely new approach to managing the way a model is
displayed.

Changing the look of a diagram by hand is very tedious and time-consuming, even when
no modification is done to the semantic meaning of the underlying system. If there
are multiple different aspects to depict with a view on the model each, the developer
typically is forced to pick exactly one of these when modelling by hand. This can make
the design much harder to understand when looking for a facet that is not clearly shown

1http://www.h-online.com/open/features/What-s-new-in-Linux-2-6-36-1103009.html?

page=6

11

http://www.h-online.com/open/features/What-s-new-in-Linux-2-6-36-1103009.html?page=6
http://www.h-online.com/open/features/What-s-new-in-Linux-2-6-36-1103009.html?page=6

1 Introduction

by the chosen single diagram view. The original developers may get along fine with this
situation. Their customers or new team members may not. A dynamic means of creating
different views for one model addresses this problem. Instead of sticking to one way of
looking at the diagram, a view management framework allows for the quick creation
of various shapes and appearances. This master thesis provides the core components
for such a framework called the KIELER View Management (KiVi) along with several
example feature implementations.

1.1 Related Work

There have been multiple previous papers working on the aspects of dynamic view man-
agement. I specifically want to highlight two theses that have introduced several ap-
proaches used throughout the view management design and implementation.

Jacobs [8] has compiled an extensive overview of different visualization concepts in his
student research project. He concentrates on data flow languages, nevertheless many
ideas are applicable to various types of diagrams as well. The most important aspect
carried over from his thesis to the view management framework is the notion of semantic
Focus & Context. In large diagrams traditional zooming fails to provide both overview
and sufficient detail. In order to combat this issue Jacobs proposes to reduce the com-
plexity of graphical elements that currently are not as important to the user, they are
out of focus. This reduction could be achieved by locally different zoom levels reducing
the size of less relevant entities, by hiding certain information such as long labels, or by
collapsing higher levels of hierarchy as implemented by the SyncCharts execution visu-
alization described in Section 5.3.6. Working together with automatic layout algorithms
these procedures all aim to better utilize the available screen space.

Apart from the currently focused entities Jacobs also defines the associated context as
objects directly related to those. Traditional zooming would show the focus in great
detail but completely hide the context outside the editor’s viewport. However, in order
to fully comprehend these relevant entities the user needs to keep their siblings and other
relationships in mind as well. Instead of cutting these off Focus & Context suggests to
show them with a reduced level of detail. The KiVi implementation for SyncCharts
realizes this by hiding the inner regions of a macro state if that state is part of the
context.

In his diploma thesis Beckel [3] further elaborates view management concepts and pro-
vides a rudimentary realization of a core framework along with some example appli-
cations. Most importantly for KiVi he introduces the basic architecture of Triggers,
Effects, and Combinations that has evolved into the four building blocks of KiVi. How-
ever, the accompanying implementation is considered experimental by the author. Sadly
this assessment turned out to be very accurate, thus no part of that original source code
could be recycled in the new view management framework.

12

1.2 Outline

1.2 Outline

This chapter has given a concise introduction into the subject matter of view man-
agement along with some of the problems this framework needs to solve. Chapter 2
summarizes the various employed technologies, especially from the Eclipse and KIELER
universes. The design of the KiVi framework is described in Chapter 3. Its actual im-
plementation along with details of the core components is illustrated in Chapter 4. The
following Chapter 5 uses these core components for several concrete exemplary features
employing the view management framework. Finally, Chapter 6 gives a summary of this
master thesis and looks into potential future work.

13

2 Technology

This chapter introduces a selection of technologies utilized by the view management. It is
built upon the open source Eclipse platform [11] that provides a rich set of frameworks for
the graphical user interface, several pre-built editors, customizable preferences, and much
much more. The view management focuses on the graphical modelling aspect of Eclipse,
specifically the trifecta of the Eclipse Modeling Framework (EMF), the Graphical Editing
Framework (GEF) and the Graphical Modeling Framework (GMF).

The KiVi framework belongs to the KIELER project1 developed by the Real-Time and
Embedded Systems Work Group within the Department of Computer Science at the
Christian-Albrechts-University of Kiel. It is a research project aiming to enhance the
graphical model-based design of complex systems, specifically with tools built upon
the Eclipse Rich Client Platform. The focus is set on improving editing, viewing, and
simulating large diagrams with features such as automatic layout algorithms, combined
structure-based editing operations, or the integration of various simulation engines with
a single execution manager.

2.1 Eclipse

Eclipse became popular as a powerful integrated development environment using object-
oriented languages, especially for creating Java applications. For instance, its integrated
Java application programming interface (API) content assist feature2 has made looking
for methods and classes virtually obsolete while developing new Java code. However, the
scope of Eclipse is not limited to textual languages. There is a whole host of graphical
editors for creating various model types, such as the UMLTools suite3 for the Unified
Modeling Language, or the Ecore editor4 working with EMF to create a graphical model
for data structures later represented by generated Java code. The view management
focuses on the KIELER SyncCharts editor introduced in Section 2.2.1 as shown in Fig-
ure 2.1.

1http://rtsys.informatik.uni-kiel.de/trac/kieler
2http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/

editors_contentassist.htm
3http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.

uml2-tools
4http://www.eclipse.org/projects/project_summary.php?projectid=modeling.emft.

ecoretools

15

http://rtsys.informatik.uni-kiel.de/trac/kieler
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/editors_contentassist.htm
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.uml2-tools
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.mdt.uml2-tools
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.emft.ecoretools
http://www.eclipse.org/projects/project_summary.php?projectid=modeling.emft.ecoretools

2 Technology

Figure 2.1: Eclipse running the KIELER SyncCharts editor.

16

2.1 Eclipse

2.1.1 Plug-ins

Every component of Eclipse is encapsulated in a plug-in, even the most elementary
runtime core is one. Using this modular architecture, it is very easy to add or change
some functionality without touching any foreign code. In order to facilitate a common
interface between plug-ins, Eclipse uses the so-called extension point mechanism. Any
plug-in can specify such an extension point as a socket for other plug-ins to connect
to. For example, Eclipse provides an extension point for editors. Any new plug-in that
contains an editor needs to connect to that extension point in order to be recognized as
an editor. Within the extension point meta information it already specifies basic facts
about what file types it can edit, or where the icon to display for this editor is located
in the file system.

This meta information is rudimentarily important for actually making Eclipse work as
a feasible application. A typical installation may contain hundreds, even thousands of
plug-ins. Loading all of them on startup of the platform would not only take a very long
time, it would exceed the memory capacity even of many modern computers. However,
usually only a small percentage of plug-ins is used during a session. Eclipse exploits
this fact by lazy loading of plug-ins. After reading and processing all plug-in meta data
into a plug-in tree, only those plug-ins are loaded that will actually be used. When the
user starts an editor for the first time, the editor will get loaded into memory in that
moment. Using the plug-in tree, Eclipse can determine what plug-ins are necessary to
run the editor without loading them exclusively for this task.

The lazy loading behavior is critically important for the view management framework.
It will get used by many different editors and features, as a result the view management
itself virtually always needs to reside in memory. Conversely, the plug-ins using the view
management do not get loaded yet. The view management is necessary to run those
editors, but those editors are not necessary to run the view management. Connecting
various editors together in this way does not destroy the effect lazy loading has on the
startup time of Eclipse and on its memory usage.

2.1.2 The Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) [15] provides an integrated way to create Ecore
meta models graphically within Eclipse. An Ecore meta model is closely related to a
UML class diagram. It specifies classes with a set of attributes as well as the relations
between different classes. Most conveniently EMF comes with a generator to transform
the Ecore meta model into Java code. This generated implementation of the modeled
data structures already comes with getters and setters for the specified attributes as
well as code to serialize the objects into XML files and parse them back into objects.
On top of the model representation, the EMF generator can also generate code for an
entirely new editor specifically tailored towards the actual meta model. This takes the
shape of a tree editor, effectively providing an easy-to-use way of modifying the tree

17

2 Technology

representation of the data structures very similar to editing an XML file. The concrete
generated implementation uses EObjects to denote the basic omnipresent superclass,
much like the Object class in plain Java.

This capability makes EMF the ideal foundation for the generator-based creation of new
editors within the Eclipse platform. These use the Ecore meta models built with EMF
as the underlying definition of the files that can be produced with the new editors. In
order to provide a graphical means of editing EMF teams up with GEF and GMF.

2.1.3 The Graphical Editing Framework (GEF)

EMF serves as the background meta model specification tool. The Graphical Editing
Framework (GEF)5 builds a visual representation for the domain-specific Ecore model.
The corresponding components are called EditParts, typically there is at least one
EditPart associated with each EObject. However, many complex entities may use more
than one, for instance an arrow-shaped connection could consist of the actual arrow in
one EditPart and several labels that each have their own EditPart as children of the
previous one. The tree built this way resembles the structure of the EMF tree but is not
identical. There may be missing entries denoting a model object that is not part of the
current diagram, and there will be additional entries as mentioned above.

An EditPart implements editing facilities and serves as a link between the model and
the concrete graphical representation. For that GEF relies on the Draw2D6 framework,
a lightweight rendering API on top of the Eclipse Standard Widget Toolkit (SWT)
[10]. With its help EditParts can paint various Figures on their respective part of the
diagram, such as rectangles, arrows, or simple text. This is where the view management
regularly accesses and modifies the way a model object is displayed in the diagram.

2.1.4 The Graphical Modeling Framework (GMF)

Implementing a graphical editor manually using GEF is possible yet tedious, time-
consuming, and error-prone. In the same spirit as creating the Java data structures
from Ecore models with the EMF generator Eclipse provides the Graphical Modeling
Framework (GMF). This is the missing link in the tool chain from model to a fully
functional editor. The GMF generator takes the original Ecore model along with a set
of user-defined specifications, such as the mapping of EMF entities to their respective
graphical representation, as its input parameters and produces an entire editor. There
still is more customization work to be done on in order to make the end result look and
feel well-rounded, yet the basic editing features already are present. This generator-based
approach massively simplifies and accelerates the use of GEF and Draw2D, effectively

5http://www.eclipse.org/gef/gef_mvc/index.php
6http://www.eclipse.org/gef/draw2d/index.php

18

http://www.eclipse.org/gef/gef_mvc/index.php
http://www.eclipse.org/gef/draw2d/index.php

2.2 Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)

allowing developers to create graphical editors for most domain-specific models they
come across without having to manually program the largely identical functionality.

2.2 Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER)

The KIELER project enhances working with various graphical diagrams, especially fa-
cilitating the model-based design of new soft- and hardware. It evolved from the Kiel
Integrated Environment for Layout (KIEL) [12], a standalone Java application that al-
ready incorporated features such as a means of calculating automatic layouts. There are
several editors built into the KIELER universe, the view management focuses on the
SyncCharts editor to showcase its functionality.

2.2.1 Thin KIELER SyncCharts Editor (ThinKCharts)

SyncCharts are an extended variant of Statecharts [7] designed to model reactive syn-
chronous systems. The Thin KIELER SyncCharts Editor (ThinKCharts) is a GMF-
generated editor with a rich set of customizations. Figure 2.2 shows the standard
Hello World example featuring hierarchy, parallel regions, normal termination transi-
tions, strong aborts, and many more aspects. SyncCharts serve as the prevailing test
bed for the development of new features for the KIELER tool box. The hierarchical com-
position of SyncCharts provides an interesting use case for automatic layout algorithms.
Additionally several simulation engines [9, 1] are capable of executing a SyncCharts
model requiring a means of visualization.

2.2.2 KIELER Infrastructure for Meta Layout (KIML)

The KIELER Infrastructure for Meta Layout (KIML) [13] is one of the corner stones
the KIELER project is built upon. It incorporates various layout algorithms such as
the open source library GraphViz [5] into Eclipse diagram editors. Relieving the user of
manually moving objects around the canvas is an enormous time saver and enables other
plug-ins to add a rich variety of features. For instance, the visualization of SyncChart
executions automatically collapses less relevant parts of the diagram. This would be
unfeasible without a powerful layout framework.

2.2.3 KIELER Structure Based Editing (KSBasE)

Typically one modification to a graphical diagram actually entails multiple smaller op-
erations such as adding a region to a SyncCharts state, inserting a new state to this

19

2 Technology

Figure 2.2: ABRO, the Hello World of synchronous programming in SyncCharts.

region, and flagging it as an initial state. These three steps together form one macro
operation. The KIELER Structure Based Editing (KSBasE) [14] framework provides a
means for model-to-model transformations. Its most prominent applications are such
macro operations. For the example above the input model element would be the outer
state. The transformation would perform the three steps all at once and swap in the
output model, a hierarchical state containing one region with an initial state. On its
own this would only modify the EMF objects but not the arrangement of the associated
EditParts. This task is delegated to KIML by the view management.

2.2.4 KIELER Execution Manager (KIEM)

An essential aspect of model-based design is the ability to simulate a system without
actually building it in reality. The KIELER Execution Manager (KIEM) [9] gives an
interface for various execution engines such as Ptolemy or Synchronous C [1]. Addition-
ally it allows for visualization components to receive data from the simulator, this is
where KiVi connects with KIEM in order to translate that information into a colorful
animated representation of the underlying sequence of events.

20

3 KIELER View Management (KiVi)

3.1 Overview

The KIELER View Management (KiVi) is a framework for the dynamic creation of
different views for one diagram. There are several concerns that have to be addressed by
the framework. First, the view management has to react to events or Triggers happening
throughout the Eclipse platform. Second, every type of change to the current view must
be encapsulated in an easily reusable generic Effect. Finally, these low-level building
blocks are connected together on a higher level of abstraction by Combinations. The
basic communications between these components is shown in Figure 3.1.

Eclipse

Eclipse

Trigger

Trigger

TriggerState

TriggerState

KiVi

KiVi

Combination

Combination

Effect

Effect

notify observer

<<init>>

pass TriggerState

execute for TriggerState

<<init>>

schedule Effect

execute

www.websequencediagrams.com

Figure 3.1: The simplified sequence of communication.

3.2 Triggers & TriggerStates

Any action taken by the view management is a reaction to some kind of event from the
Eclipse platform. These events are observed by view management Triggers. However,
working with events often is unnecessarily complicated. For example, during the sim-
ulation of a SyncChart an event may be “State S has become active”. To maintain a
complete overview over all currently active states each new event needs to be collated
or merged to update the previous state with the changes contained in the new event.

21

3 KIELER View Management (KiVi)

To avoid redundant states and subsequent updates in every receiver of new events the
view management provides TriggerStates. Every TriggerState belongs to exactly one
Trigger and maintains the state associated with the events received by the Trigger by
merging the previous state with the new event. Conversely, a single Trigger may pro-
duce multiple different types of TriggerStates. This reduces the demand for redundant
Triggers listening to the same types of events.

Every Trigger registers itself with the entity it observes on demand. When there is no
Combination waiting for an update to a TriggerState, the associated Trigger does not
have to consume any resources. Analogously, when multiple Combinations require the
same TriggerState updates, the corresponding Trigger only has to exist once. The view
management will pass the new TriggerState to each Combination sequentially.

In order to implement a new Trigger the developer needs to have deep knowledge of the
inner workings of Eclipse and the relevant plug-ins. Therefore the view management has
to provide various Trigger and TriggerState implementations. This way the knowledge
required to get started as a new developer is significantly reduced.

3.3 Effects

There are two kinds of Effects that contain every elementary view management action.
Most ones only apply a transient change to the graphical representation of a diagram.
Usually this modification is only temporary, for example to show an aspect of the diagram
to the user for a few seconds. A common use case is highlighting the active states during
the simulation of a SyncChart in a different color. These types of Effects are relatively
light-weight and do not alter the underlying diagram or model files. The second kind
is a group of more permanent Effects. These changes are meant to persist for a long
time, typically until the next application of the Effect. The most prominent case is
automatic layout, any newly calculated arrangement of objects must persist until the
model is modified or a new layout is computed.

Many Effects need to be able to restore the previous state and negate any change they
have applied to the diagram. For instance, an Effect that paints a diagram object in a
different color must be capable of changing the object back to its previous color. There
are two ways to achieve this ability. An Effect could read out some persistent property of
the modified object and act accordingly, or it could memorize the previous value and later
apply that stored value. The first method is a significantly cleaner approach. During
intertwined execution of multiple Effects for the same diagram object the original value
is unambiguously known. However, in some cases there is no mechanism of retrieving
such properties. The second method can be used in every situation as long as the issues
related to multiple executions of an Effect for the same object are handled or deemed
irrelevant.

Similarly to Triggers, the implementation of new Effects requires intricate comprehen-
sion of the various Eclipse frameworks such as GEF and GMF. In order to allow more

22

3.4 Combinations

developers using the view management with less specific knowledge of the inner work-
ings there should be a collection of commonly used Effects provided with the core view
management framework.

3.4 Combinations

Triggers and Effects provide the low-level basis for the view management, much like
the input and output of some system. The inner logic of that system corresponds to
a Combination, connecting the input from Triggers with the output expressed as Ef-
fects. A Combination specifies a set of TriggerStates that are relevant for its execution.
Every time one of these TriggerStates is updated by the firing of its associated Trigger
the Combination is nudged into action. Along with this new TriggerState every other
current instance of relevant TriggerStates is passed to the Combination. That way the
entire picture of necessary information is presented, eliminating the requisite to maintain
countless local variables within each Combination.

In contrast to Triggers and Effects, the end user or domain-specific application developer
depends on being able to specify new Combinations to suit his use cases. For instance,
his idea of how the visualization of a SyncChart simulation should look like may be
entirely different from any visualization provided with the view management. In order
to facilitate the later specification of Combinations, these have to operate on a much
higher level of abstraction than Triggers or Effects. There must not be any intricate
contact with Eclipse graphics internals such as GEF or Draw2D. A Combination de-
veloper instead only needs to focus on his own domain-specific models. Any diagram
data received from Triggers through TriggerStates consists of EObjects representing the
actual model objects underlying the diagram. Similarly, all Effects take EObjects as
parameters or targets. Using this added level of abstraction a Combination does not tie
itself to a specific graphics implementation, instead one could for example use the same
Combination logic for both GMF and Graphiti1 diagram editors.

3.5 View Management Controller

The trinity of Trigger/TriggerStates, Effects and Combinations is tied together by the
view management controller. It monitors the user preferences and loads the appropri-
ate Combinations on startup of the Eclipse platform. It takes care of instantiating and
activating all Triggers registered by the Combinations. It keeps track of the set of Trig-
gers a Combination is listening to. It receives new TriggerStates from the Triggers and
distributes it to the corresponding Combinations. After the execution of a Combination
it performs all Effects scheduled by that Combination. In other words, it handles all

1http://www.eclipse.org/modeling/gmp/?project=graphiti

23

http://www.eclipse.org/modeling/gmp/?project=graphiti

3 KIELER View Management (KiVi)

aspects of the communication within the view management components as well as the
input from and output to the Eclipse platform.

3.6 Concurrency

The view management framework must support concurrent executions in a robust way.
This issue affects every component of the view management.

Triggers are called from any part of the Eclipse platform, this fact implies that new
TriggerStates may be created in any order, interleaved with each other, or even truly in
parallel on multiprocessor or multicore architectures. As a result every Trigger imple-
mentation needs to take care of concurrency problems in its public code on its own. For
instance, a Trigger listening to changes to model files may get called by two unrelated
changes in parallel. It has to be well-behaved in that scenario.

Similarly the view management controller itself must be able to handle a flood of in-
coming new TriggerStates. No TriggerState may be lost, even if many new instances of
the same type of TriggerState already are in processing. On top of that, the order of
TriggerStates must be maintained. In order to honor the observer pattern, Triggers need
to handle the event from the Eclipse platform quickly. Typically any long computation
would block parts of the UI or some other component vital to an interactive, responsive
user experience. The solution to these two issues is the sequentialization of all incoming
TriggerStates in a queue, maintaining their order. This queue is processed in a new
Combination worker thread, enabling the instant return of all Triggers to let the Eclipse
platform continue with whatever it was doing when the Trigger fired. Every incoming
TriggerState still needs to be merged with the previous instance of that TriggerState to
maintain a consistent state from potentially partial events. This merging is best done by
the Combinations worker thread just before the TriggerState is passed on to the relevant
Combinations.

Using the sequentialization of TriggerStates by the view management controller, han-
dling concurrency within Combinations becomes relatively simple. The Combination
worker thread only executes at most one Combination at a time, as a result there is
no requirement for synchronization and locks within their implementations. Therefore a
developer later adding a new Combination has one problem fewer to take care of. The
list of Effects requested by a Combination’s execution is passed back as a return value.
It gets added to the back of yet another queue by the view management controller. This
Effects queue is processed by the Effects worker thread, ensuring the correct order of
Effects.

Due to this thread an Effect itself can be certain that there is no other Effect executed
at the same time, neither in parallel nor interleaved. This makes any internal synchro-
nization unnecessary. However, most Effects perform some change to the graphical user
interface. Within the Eclipse SWT framework, any access to the UI must be done by
the special UI thread. Hence most Effects need to handle these operations accordingly.

24

3.6 Concurrency

To summarize, there are four threads working together within the view management
framework. The first one fires a Trigger, this may be any thread throughout the Eclipse
platform. The amount of processing done by this thread is minimal, all that happens
is the creation of a new TriggerState and its addition to the back of the Combina-
tionsWorker queue. Now this arbitrary foreign thread can return and continue, for
instance ensuring the responsiveness of Eclipse if a Trigger was fired from within the
SWT user interface thread. Straight away the CombinationsWorker takes over and ex-
ecutes the list of Combinations that have registered themselves for this TriggerState.
Each Combination returns a list of Effects that is enqueued with the EffectsWorker.
That thread handles the actual execution of the Effects. However, some Effects modify
the graphical user interface. These changes need to be performed from within the SWT
user interface thread.

25

4 KiVi Implementation

4.1 Core Components

This section highlights implementation details of the core view management components.
These reside in the Eclipse plug-in de.cau.cs.kieler.core.kivi and are part of the
KIELER Core feature, resulting in two implications. First, there can be no Eclipse
installation utilizing any KIELER functionality without also installing the view man-
agement core. Second, any KIELER developer can rely on having KiVi available for his
own developments, and can therefore fully utilize the view management framework.

The four types of components that can be contributed to the view management by
other plug-ins - Triggers, TriggerStates, Effects, and Combinations - are specified by an
interface each. In order to simplify the task for future developers, common functionality
has been implemented in four abstract classes. This is most relevant for Combinations
because a lot of code-saving measures are present there. For instance, when using the
abstract implementation the developer only needs to specify the TriggerStates required
by this Combination once. Any related tasks such as providing a processable list of
them for the view management controller happens behind the curtains using the Java
reflection API.

4.1.1 Extension Points

In order to let foreign plug-ins contribute features towards the view management, KiVi
has to provide extension points with the standard Eclipse mechanism. Only one ex-
tension point is necessary, it registers every Combination that shall be handled by the
view management under the id de.cau.cs.kieler.core.kivi.combinations. In this
set of meta data the developer needs to specify the full Java path to the Combination
class along with a user-readable name that is displayed in the KiVi preference pages.
Optionally there can be a description to provide more detailed information about the
Combination. Additionally the developer can specify whether the Combination shall be
activated on startup or not. If this value is not present then the Combination will be
inactive. Any user preference takes precedence over these fall-back values, their main
purpose is to ensure a working KIELER installation with well-defined settings for the
first launch. This way a novice user can enjoy the view management features without
going through the lengthy process of selecting those Combinations that virtually all users
would require enabled anyway.

27

4 KiVi Implementation

4.1.2 View Management Controller

The view management controller resides in the class conveniently called KiVi. It takes
care of the communications from Triggers and TriggerStates to Combinations, as well
as of the scheduling of new Effects. During startup of the Eclipse platform this class
is instantiated as part of the singleton pattern. This initialization procedure reads out
the information from the Combinations extension point. From the user preferences and
the fall-back extension point information it determines what Combination needs to be
instantiated and activated. Additionally, it collects the set of Triggers and TriggerStates
that those Combinations require and initializes them. If there are multiple Combinations
requesting the same Trigger then only one instance is created. An incoming TriggerState
from this Trigger will be distributed to all Combinations that ask for it. This n : m
relation between TriggerStates and Combinations is stored within the KiVi class for
quick access.

EffectsWorker

This EffectsWorker class in the internal subpackage takes care of executing every view
management Effect sequentially. Some may take a while to run, using a separate Thread
avoids blocking the UI with a slower Effect. The aforementioned startup procedure
also launches this Thread, when activated it immediately goes to sleep waiting for new
Effects. These are stored in a queue to maintain the execution order. As long as this
queue is not empty the worker will dequeue an Effect and execute it. As mentioned in
Section 3.3, Effects can be merged with each other. This reduces the overall processing
load, and avoids ugly flickering when some Effect is quickly undone after execution.
This merging happens when an Effect is enqueued with the EffectsWorker by the view
management controller. The method iterates over the queue and merges the new Effect
with any existing Effect if possible. The result of a merge is another Effect, this one will
be used in place of the newly enqueued Effect. The existing Effect that was used for
merging is discarded. If there still are any more existing Effects left, the merged Effect
is further merged with those where applicable. The effectiveness of this mechanism is
best observed with the LayoutEffect described in Section 5.2.2, in short it performs the
KIML automatic layout. If for some reason there are multiple Effects queued that all
want to compute a new layout for the same diagram, there is no requirement to run all of
these Effects - one execution will suffice. Using the merging mechanism, only the latest
LayoutEffect will be executed, any earlier queued Effect calling the automatic layout for
the same diagram is merged away.

Any Effect executed by the EffectsWorker needs to be treated as foreign and potentially
unsafe code. If there are any uncaught exceptions the thread may not terminate. As a
result any exception thrown by the execution of an Effect is caught by the EffectsWorker
and its contents are reported to the user. This way poor programming in some plug-in
using the view management does not cripple the entire system until it is restarted.

28

4.1 Core Components

Some Combinations or other Eclipse or KIELER components may want to react to the
execution of an Effect. For instance there is an Effect that collapses and expands complex
graphical nodes. This action invalidates the existing layout, either freeing some of its
space or taking up more space than before. As a result, a Combination listening to this
Effect being executed can automatically schedule a new layout computation to restore
an aesthetically laid out diagram. To facilitate this mechanism the EffectsWorker allows
for listeners to register themselves for notifications. These are created when an Effect
has finished its execution and contain a reference to that Effect. This observer feature
is utilized by the EffectsTrigger introduced in Section 5.1.3 that fires when an Effect
has been executed.

CombinationsWorker

Similarly to the EffectsWorker described above, there is a CombinationsWorker that
handles the execution of all Combinations. This thread is significantly less complicated
because there is no merging mechanism to be done, and there is no need for any observer
to listen to Combinations being run. Its only job is to accept new TriggerStates by the
view management controller, to store them in an internal queue, and to sequentially
execute the corresponding Combinations.

Eclipse

Eclipse

Trigger

Trigger

TriggerState

TriggerState

KiVi

KiVi

CWorker

CWorker

<<create>>

trigger(TriggerState)

enqueue(TriggerState)

www.websequencediagrams.com

Figure 4.1: Sequence diagram showing the Trigger components.

This execution logic is contained within the view management controller but called from
within the CombinationsWorker thread, again to not block the observing Triggers for
longer than absolutely necessary. The distribution of a TriggerState object to its Com-
binations works as follows. First, the TriggerState needs to be merged with the previous
instance of the same type. To recall from Section 3.2, this merging of TriggerStates

29

4 KiVi Implementation

TriggerState

TriggerState

KiVi

KiVi

CWorker

CWorker

Combination

Combination

Effect

Effect

dequeue()

distribute(TriggerState)

trigger(TriggerState)

execute(TriggerState)

getData()

data

<<create>>

schedule(Effect)

Effect

www.websequencediagrams.com

Figure 4.2: Sequence diagram showing the Combination components.

KiVi

KiVi

CWorker

CWorker

EWorker

EWorker

Combination

Combination

Effect

Effect

Effect

schedule(Effect)

mergeEffects()

dequeue()

execute()

www.websequencediagrams.com
Figure 4.3: Sequence diagram showing the Effect components.

30

4.1 Core Components

allows for delta-style events to be translated into the full representation of the corre-
sponding state making their handling by Combinations significantly easier. Now the list
of Combinations that have registered for this type of TriggerState is compiled from the
internal storage of the controller and iterated over, calling the trigger method of each
Combination sequentially. This method returns a list of Effects that are scheduled by
the Combination. That list gets passed to the EffectsWorker for execution.

Figures 4.1, 4.2 and 4.3 show comprehensive sequence diagrams for each view manage-
ment component ranging from the first notification by an observed part of Eclipse to the
execution of a resulting Effect.

4.1.3 Trigger

Every view management Trigger needs to implement the ITrigger interface. For the
convenience of future developers there is the AbstractTrigger class taking care of the
more mundane tasks. The interface methods are as follows:

• void trigger(ITriggerState triggerState)

The trigger method is a shortcut for passing the TriggerState parameter to the
view management controller, it is therefore included in the abstract Trigger class.
When the observer part of a Trigger receives an event it calls its own trigger

method. This way the developer does not have to worry about how the TriggerState
actually gets passed to the view management controller, reducing the amount of
code that would have to be changed if that mechanism were to change in a future
version.

• void setActive(boolean a)

The view management calls this method to set the Trigger as either active or
inactive. The abstract implementation maintains a local variable for this state
and calls the register or unregister methods accordingly.

• boolean isActive()

This is a simple getter for the active state of the Trigger, usually there is no need
for any additional work beyond the abstract method.

• void register()

Register has to be implemented by the Trigger developer. It is called automati-
cally by the abstract Trigger class whenever the Trigger is activated, and shall take
care of registering itself with the observed entity. For instance, a Trigger observing
changes to the active selection would need to get added as a new selection listener
to the Eclipse selection service.

• void unregister()

Analogously to the register method, this handles any action taken when the
Trigger is deactivated, such as removing itself from any observed objects or freeing
any used resources.

31

4 KiVi Implementation

Additionally to these methods the developer still has to program the actual Trigger logic.
Typically this involves implementing a bespoke interface provided by the observed entity
along with registering the class as a listener with the appropriate plug-in through an
extension point.

4.1.4 TriggerStates

The interface specifying all common public methods of TriggerStates is called ITrigger-

State. Again, several typical duties have already been implemented in the Abstract-

Trigger class.

• void merge(ITriggerState previous)

The merge method takes care of maintaining the actual state of an observed value
from delta-style events. It is called on every new TriggerState instance with the
previous object of the same type as the parameter. This way the latest update can
be applied to the old state. By default this is an empty method because there is
no means of merging applicable to all TriggerStates. Any concrete subclass that
works with incremental update events needs to insert its own merge code.

• void finish()

Some Trigger information is only valid for the originally launched batch of Com-
bination executions. The most common example is a button in the Eclipse tool
bar menu. There would be an event denoting the pressing of said button, however
there would not be any event stating that the button is not pushed in anymore. If
the associated TriggerState were to maintain the information from the initial event,
every subsequent Combination execution would falsely assume that the button has
just been pressed. To allow for the correct behavior, any TriggerState working with
such an event type can specify how to invalidate the information in the finish

method. It gets called by the view management controller after the list of relevant
Combinations has received the TriggerState for the first time. Again, the abstract
implementation is an empty method to clean up subclasses that do not demand
this functionality.

• Class<? extends ITrigger> getTriggerClass()

Every TriggerState belongs to exactly one Trigger, while a Trigger may produce
several different types of TriggerStates. In order to tell the view management which
Trigger must be activated when a Combination registers itself for this TriggerState,
the getTriggerClass method returns the class of the associated Trigger. This
is the only location where the developer of a Trigger-TriggerState group has to
specify their relationship, making any subsequent changes to the design as simple
as possible.

• Class<?> getKeyClass()

The view management controller keeps exactly one instance of every class of Trig-
gerState. However, there may be some that use a Java generics type parameter.

32

4.1 Core Components

For instance, the TriggerState denoting that an Effect has just finished its execu-
tion uses the class of its Effect to distinguish itself from TriggerStates for different
Effects. As a consequence of this fact the class of the TriggerState can not be used
as an identifier for determining what old TriggerState needs to be merged with an
incoming one. In order to allow for these versatile TriggerStates, the getKeyClass

method provides an alternative key to the view management controller. By de-
fault this maps to the getClass method and has to be overwritten if the concrete
implementation requires a more dynamic key.

• long getSequenceNumber()

A Combination may register itself with an arbitrary number of TriggerStates. Upon
execution it receives the most recent instance of each type. There may be Combi-
nations that would like to know the order in which the TriggerStates occurred, or
what TriggerState is responsible for the execution by having fired the latest. The
sequence number mechanism implements a crude but robust way of providing this
information to Combinations. Before a new TriggerState is passed on the abstract
implementation sets its sequence number using a globally unique counter, ensuring
that the order of TriggerStates can always be determined when necessary.

For the convenient usage of TriggerStates by Combinations, and in order to allow
Eclipse’s content assist feature to work properly, every TriggerState should provide di-
rect getter methods for any data it holds. These should return sane default values in
case a Combination execution requiring TriggerStates A and B is started by A before B
was fired once since startup. In that case the Combination will receive the result of the
default constructor. Performing null-checks and the like in every Combination would
not only clutter the code unnecessarily, it would also introduce countless programming
error generators. If there is TriggerState information contained in a list, that getter may
never return null. Instead it should create an empty list on demand and pass this back
to the caller.

4.1.5 Effects

Following the same design philosophy as with Triggers, Effects come with the interface
IEffect that needs to be implemented by every view management Effect as well as with
an abstract implementation to make the developer’s life a bit easier.

• void execute()

The execute method contains the actual logic that performs the changes intended
by the Effect. It gets called from within the EffectsWorker thread, as a result
the developer does not need to be concerned with synchronization issues between
multiple Effect instances. However, most Effects modify the user interface in some
way. Any change to the user interface in Eclipse needs to be run by the bespoke
SWT user interface thread. Hence special care needs to be taken in those cases,
typically by specifying an anonymous Runnable that subsequently is enqueued
with the user interface thread.

33

4 KiVi Implementation

• void undo()

Some Effects modify an aspect of a diagram temporarily, such as painting a node
in a different color. That change needs to be undone at a later point in time. The
abstract implementation of the undo method is empty because some Effects can
not be undone.

• boolean isMergeable()

This is a convenience method to speed up the merging mechanism that removes
redundant Effects from the EffectsWorker queue. If an Effect can not be merged,
there is no need to iterate over the list of existing Effects. Since not all Effects are
mergeable, the isMergeable method returns false unless overwritten.

• IEffect merge(IEffect otherEffect)

The actual merging of Effects happens in this method. It gets another Effect passed
as a parameter and determines whether this instance can be merged with the other
Effect, and if it can be merged it returns the new Effect. If the two Effects can
not be merged, for instance if they operate on different diagrams, then the method
returns null to denote this failure. This is the default abstract implementation.
When successful, both old Effects are discarded and the new Effect is used in place
of the called instance. Additionally, the merged Effect will receive more merge

calls in case the remainder of the queue still contains some redundant Effects.

4.1.6 Combinations

Combinations tie Triggers and Effects together, converting the input of a set of Trigger-
States into a list of user interface changes. Once again there is the interface ICombi-

nation specifying the obligatory public methods and an abstract implementation that
provides the foundation for all concrete classes. However, while the abstract Trigger and
Effect classes only took care of mundane tasks, the AbstractCombination actually con-
tains a significant amount of “black magic”. This background functionality transforms
the way to specify a new Combination.

Most importantly, the AbstractCombination maintains a cache of the most currently
executed Effects. When the next run of this Combination has determined a new set of
Effects, the previous ones are scheduled for undoing. The new set of Effects might contain
an Effect that would re-do such an undo. In order to avoid unnecessary processing and
ugly flickering graphics, these Effects are merged with each other. Effectively an undo
is consumed and discarded by an Effect that would recreate it. Another benefit of this
feature is the lack of any housekeeping in the concrete Combination. There is no need to
kept track of what Effects are active, what Effects need to be undone, what Effects need
to be changed. The current execution simply specifies the state of Effects that shall be
achieved, and the merging mechanism takes care of only applying the differences.

Similarly to TriggerStates specifying their associated Trigger, a Combination only needs
to specify its TriggerStates in a single location - by declaring an execute method that

34

4.1 Core Components

takes the TriggerStates as concrete parameters. The abstract implementation will not
only extract a processable list from these method parameters through the Java reflection
API, it will also make sure every parameter is filled with the most recent instance of the
appropriate TriggerState upon each execution.

The amount of abstract code for Combinations becomes clearly visible when comparing
the length of the previous components. Adding those three together still yields fewer
lines of code than the AbstractCombination alone. Due to this great batch of pre-
programmed features implementing a new Combination becomes a relatively quick and
easy task. The following methods are part of the ICombination interface.

• void undo()

Undo is called by the view management when a Combination is deactivated, typi-
cally from the user changing the KiVi preferences. If there are any previous Effects
still active the abstract implementation will schedule them to be undone by the
view management controller.

• List<IEffect> trigger(ITriggerState triggerState)

This is the entry point invoked by the view management controller for a new
TriggerState after it has been merged with its predecessor. The first part of “black
magic” is contained in the abstract implementation of this method. Initially it
determines the list of TriggerStates necessary from the parameters of the execute

method. Then it retrieves all the most recent instances of these types and calls
execute passing this list. In return it receives the Effects that shall be executed by
this Combination run. There still is a cached list of the Effects from the previous
execution. These are marked to be undone, and merged with the new Effect list.
This removes any redundancy resulting from the approach of specifying the state
of Effects in the concrete execute method rather than only giving changes that
need to be applied. The remaining merged Effects are cached for the next run
and passed back to the view management controller for their actual execution.
A Combination developer can choose not to use the abstract implementation and
program a differing trigger mechanism as long as it still complies with the interface
declaration.

• Class<? extends ITriggerState>[] getTriggerStates()

As described above, the Combination developer only specifies the list of Trig-
gerStates required for execution once - as concrete parameters to the execute

method. In order to provide this list in processable form the abstract implementa-
tion converts these parameters using the Java reflections API. A fully custom-built
Combination not extending AbstractCombination would need to deliver its own
definition of the TriggerStates list in this method.

• void setActive(boolean active)

Calling this method tells the Combination to activate or deactivate itself. Since
this might be run from outside of KiVi, the Combination still needs to notify the
view management of its new state. This functionality already is provided by the

35

4 KiVi Implementation

abstract implementation.

• boolean isActive()

Similarly to Triggers, this is a simple getter to determine whether this Combination
is active or not.

On top of these interface methods there are several important ones used by the mech-
anisms implemented in the AbstractCombination. Any Combination developer needs
to be well aware of these in order to fully profit from these benefits.

• public void execute(TriggerState1, TriggerState2, ...)

This method is not part of any interface or abstract superclass, hence the pro-
grammer can not rely on the standard aids such as Eclipse’s content assist feature.
Because the number and types of parameters that may be specified for this method
is variable throughout different classes, but constant for any single class there can
be no common declaration with any Java mechanism. The only way closely resem-
bling this flexibility would be the variable length argument lists denoted by three
dots after the type declaration such as in double average(double...numbers).
However, this would only allow for a list of parameters of the same class or any
of its subclasses. Not only would this mechanism destroy the reflection features
mentioned above that remove the need for redundant specification of TriggerStates
relevant to a Combination, it would also disable any help from the content assist.
Declaring the concrete class for a TriggerState lets the developer view the available
getters and access the information he needs quickly.

Apart from implicitly declaring the list of TriggerState types that are required for
the execution of this Combination, the execute method contains the actual logic
to be run. A typical implementation would first access data from the TriggerStates,
then perform some calculation on said data, and finally schedule Effects using the
methods introduced below.

• protected void schedule(final IEffect effect)

In order to enqueue an Effect with the EffectsWorker one could call the appropriate
method of the view management controller. Doing that would require additional
knowledge of the inner workings of KiVi though. Instead, there is the schedule

method implemented by the abstract Combination class. Now a developer can
simply look for methods his own Combination already provides and does not need
to read as much documentation to achieve the same end result. Additionally,
changing the internal design of the view management controller becomes much
easier with this kind of encapsulation. Any modification would not have to be
applied to every Combination in potentially countless distributed projects, there
only needs to be one change in the AbstractCombination.

• protected void doNothing()

To recap, the abstract implementation of the trigger method would automati-
cally undo the list of Effects that were scheduled during the previous Combination
run, and it would then enqueue the new list of Effects both with the EffectsWorker

36

4.2 Preferences

and its internal cache. However, some Combinations may not want to perform
any changes to their Effects state after an execution. For instance, it might check
whether some condition is true and only become active in that case. Quietly re-
turning the execute method would implicitly request an undo on the previous
Effects. Calling doNothing first modifies the behavior of the abstract implemen-
tation in such a way that the Effects remain unaltered, as if this Combination
execution never happened.

• protected void dontUndo()

This method serves a similar purpose. Calling it before letting the execute method
return disables the automatic undo function in the abstract Combination imple-
mentation during this execution. Using this feature the previous batch of Effects
will persist indefinitely instead of getting undone automatically.

• public static CombinationParameter[] getParameters()

Declaring this method is optional, its presence is checked with the Java reflec-
tions API. By returning an array of CombinationParameters a Combination can
dynamically add field editors to the KiVi preference pages. These settings are
necessary to allow flexible Combinations instead of creating a new one for every
minute difference required in some situation.

The aforementioned CombinationParameter class serves as a communication standard
between Combinations and the view management preferences. It only serves as a data
storage, there is no program logic contained. Specifically, this class holds the identifying
key of the parameter and the preference store used, a readable name and description to
display to the user in the preference page, the default value, and the type of parameter
described.

4.2 Preferences

The view management framework comes with two dynamically generated preference
pages. As opposed to purely static ones, various components can contribute content
to these pages without actually modifying the Java source code of the preference pages
or directly using any graphical user interface elements such as buttons or field editors.
Instead, there are several well-defined ways of adding a new option to the existing pages.

The first page displayed in Figure 4.4 handles global settings. It comes with a check box
to enable or disable the entire view management framework as well as with a check box
list of available Combinations. These are displayed using the readable name specified
in the Combinations extension point. On top of that the user can select a Combination
from the list and view its extended description. Typically there is very little need to
modify these boolean preferences because most Combinations already come with sane
default values.

After those global settings the second page takes care of local Combinations preferences

37

4 KiVi Implementation

Figure 4.4: The global view management preference page

38

4.2 Preferences

Figure 4.5: The local Combinations preference page

39

4 KiVi Implementation

as shown in Figure 4.5. Each Combination can specify an array of CombinationParam-
eter instances that declare the globally unique key string within the preferences, the
preference store where the variable shall be saved in, a readable name and description,
and the type of Variable along with its default value. There are pre-defined parameter
types as well as the appropriate field editor user interface elements for strings, integers,
floats, doubles, booleans, and 24-bit RGB color values.

40

5 Implemented Features

The previous chapter has described the core components of the KIELER View Man-
agement framework. It provided the backbone, but does not have any visual impact on
its own. That is achieved by various exemplary feature implementations for commonly
used Triggers with their associated TriggerStates and Effects as well as a couple of Com-
binations putting them to work. While the core view management components can be
used for any graphical framework, these concrete classes are tailored to work with GMF
editors.

5.1 Triggers & TriggerStates

5.1.1 SelectionTrigger

The SelectionTrigger listens for changes to the current selection within any graphical
Eclipse editor. It resides in the actual KiVi package, allowing every plug-in to use this
Trigger freely. In the register method defined by the ITrigger interface the Selec-

tionTrigger adds itself as a new listener to the Eclipse selection service. This uses
the ISelectionListener interface declaring a single selectionChanged method, re-
ceiving the editor where the selection occurred and the actual list of selected EditParts
as parameters. Using this information the Trigger creates a new SelectionState in-
stance. On top of the standard methods that provides two getters, one for the GMF
DiagramEditor and one for the list of EMF EObjects that were selected. This adheres
to the convention of using the domain-specific model objects rather than the generic
diagram objects in communications between the various view management components.
Every time the user changes the selection, for instance by clicking on a graphical node,
this Trigger is fired updating the TriggerState. As a result, the most recent Selection-
State instance always contains the current list of selected model objects. Knowing this a
Combination developer easily retrieve that information by adding the SelectionState

to the parameter list of the execute method. Storing that list within the Combina-
tion on every firing of the SelectionTrigger is unnecessary because the most recent
TriggerState is available in every execution, providing quick access without additional
effort.

41

5 Implemented Features

5.1.2 ButtonTrigger

Usually any Eclipse project that wants to place a button anywhere in the menus or
toolbars needs to conform to a large number of Eclipse standards, interfaces and ex-
tension points. Hence the amount of knowledge necessary to get a simple input from
the user interface is considerable. The view management ButtonTrigger reduces this
effort significantly, it is part of the core package and hence is available to all users of the
view management. Only the actual definition of the button itself with its name, icon, or
hover tooltip must be done through the appropriate Eclipse menu contributions exten-
sion point. Everything else is taken care of by this Trigger. It comes with a handler that
listens to every view management button registered in this way. When executed, this
handler interprets the event received from the Eclipse user interface and creates a new
ButtonState instance. This TriggerState contains every bit of information collectable,
the active editor, a string to identify the button pressed, a map of any potential param-
eters of the button, and a flag to determine whether a toggle switch has been flicked
into the on or off position. Now an arbitrary number of Combinations can easily receive
these button events without first digging deep into the inner workings of the Eclipse
menu structures in the spirit of simplifying the development of new Combinations as far
as possible.

5.1.3 EffectTrigger

Some Combinations may want to react to the execution of an Effect. For instance, the
CompartmentCollapseExpandEffect described in Section 5.2.4 invalidates the diagram
layout by either collapsing or expanding a compartment, effectively changing its size.
Instead of hard-wiring the computation of a new automatic layout at the end of the Ef-
fect, listening to the collapse Effect getting executed in a new Combination retains more
flexibility. The EffectTrigger provided along with the view management itself allows
for this mechanism to work by registering itself as a listener with the EffectsWorker,
and receiving a notification every time an Effect has finished executing. That informa-
tion is translated into a new EffectTriggerState instance that contains the executed
Effect and a flag denoting whether this was an undo operation or not. In order to
further distinguish the TriggerStates a Combination actually receives there is a Java
generics type parameter denoting the class of Effect contained, allowing a Combination
to specifically state what notifications it needs to receive instead of getting executed for
every potentially irrelevant Effect. Additionally, this TriggerState utilizes the ability to
specify a dynamic key class as introduced in Section 4.1.4. The default implementation
would provide the TriggerState class as the key, here the class of the contained Effect is
taken as a replacement. Without that feature it would not be possible to differentiate
between the various EffectTriggerState instances that exist for the diverse types of
Effects - in that case there could only be one TriggerState at a time. The major benefit
of storing previous instances would disappear, namely letting Combinations access the
current situation without having to cache this information itself.

42

5.2 Effects

5.1.4 ModelChangeTrigger

Every resource handled by a GMF editor actually consists of two files. The model
file contains the semantic information based on the domain-specific EMF meta model,
while the diagram file holds the notation of the visual representation. Any change
to one of these two is of particular interest to the view management. By monitoring
model or diagram modifications various improvements of the user experience can be
implemented, for instance the automatic re-calculation of the layout after an invalidating
operation such as adding a new edge to a graph. The ModelChangeTrigger receives these
notifications through the Eclipse ResourceSetListener mechanism. It is part of the
KIELER core model package that is included in virtually all KIELER installations.

In order to let Combinations easily distinguish the different types of resource changes
this Trigger can generate either a ModelChangeState, a DiagramChangeState, or both.
This distinction only serves as a simplification for Combination developers, there is no
functional difference between the two TriggerStates. Typically a Combination would
only require exactly one kind of change notification, this artificial splitting up facilitates
the correct identification by Combinations. Both TriggerStates provide the DiagramEd-

itor where the modification occurred and the ResourceSetChangeEvent describing the
changes. By passing on the entire event a Combination can utilize the default Eclipse
NotificationFilter mechanism to easily sift through the data.

5.1.5 StateActivityTrigger

The StateActivityTrigger serves as a link between the KIELER Execution Manager
and the view management during the simulation of a SyncCharts diagram. KIEM takes
care of the actual stepping through the model and provides a list of active states along
with the transitions taken in the most recent step. In order to access this information the
SyncCharts view management package contains a data component that is registered with
the execution manager. The data component translates the list into actual EObjects and
additionally looks up a user-definable number of previous so-called history steps in the
KIEM data pool. This set of states and transitions is stored in ActiveStates instances
along with the DiagramEditor that contains the simulated model. By registering itself
for this TriggerState a Combination can visualize the execution of a SyncCharts diagram.

5.2 Effects

5.2.1 UndoEffect

The UndoEffect is a vital but hidden part of the view management. In order to simplify
the EffectsWorker for the handling of both executions and undos of Effects this serves
as a wrapper. It takes another Effect as a parameter and calls its undo method when

43

5 Implemented Features

executed. For a Combination developer there is no point of contact with this Effect.
When merged the UndoEffect checks whether the other Effect is the same object as
the one supposed to get reverted. If that check yields true then the other Effect is
discarded because there would be no point in executing it while it already is queued
to be undone. That would only create additional processing overhead and potentially
produce undesired flickering graphics.

5.2.2 LayoutEffect

One of the first KIELER projects was the Infrastructure for Meta Layout. The Layout-

Effect integrates its features into the view management environment and is available
with the KIML package. Instead of knowing how to invoke the layout algorithms di-
rectly a Combination developer now only needs to schedule this Effect for the diagram
that shall be evaluated. There is a wide variety of parameters on hand to modify the
Effect’s behavior. Most importantly the Combination can choose whether the diagram
should be zoomed to fit the editor’s viewport together with the application of the new
layout. In order to maintain the user’s mental map throughout the rearrangement any
zooming out is performed before the layout animation is run. This way no part of the
motion is hidden from view. Conversely, zooming in closer takes place subsequently to
avoid covering any diagram elements that would later move into the visible area. As a
result, the entire layout animation is visible in every situation if the zoom to fit option
is enabled.

Calculating and applying a new layout takes a considerable amount of time. Hence
it is of utmost importance to avoid redundant executions of the LayoutEffect. To
achieve this the Effects merging mechanism is utilized. If there are two LayoutEffects

working with the same diagram on the EffectsWorker queue the earlier one will be
discarded. However, a LayoutEffect can have a target EObject, in which case only
the corresponding element along with its children and line of ancestors are processed.
Quietly discarding such an Effect would modify the intended result. In order to prevent
this the merge method takes both targets and computes their common ancestor. The
resulting Effect supersedes both individual layouts and can therefore be used safely as a
replacement.

5.2.3 HighlightEffect

This Effect changes the way the visual representation of a model object looks. In order
to restore the previous values when the HighlightEffect is undone every modification
is accompanied by the cached old value. Most importantly it changes the foreground
color, optionally retaining the font color of contained labels. Often the thickness of
a shape’s outline is too thin to clearly make out the new color on all kinds of devices,
especially with projector-based demonstrations. To overcome this problem the line width
can be increased while this Effect is activated. Using the color as the primary indication

44

5.2 Effects

for highlighted objects can be troublesome when using exported images in publications
because these might be restricted to grey scale printing. Hence the HighlightEffect

supports changing the outline style to either dotted or dashed to improve the conspicuity
compared to regular shapes for those cases. Additionally, the background color can be
modified to add another distinguishing attribute, significantly increasing the number of
permutations that can be told apart from each other easily. This Effect is available to
every project utilizing KIELER technology because it resides in the core feature.

Figure 5.1: Various styles of highlighting a SyncCharts state.

Figure 5.1 showcases some results of applying the HighlightEffect to a SyncCharts
state. On top the inner state is shown without any modification, the middle one has
received a thicker, red outline, and the bottom state displays the black & white mode
with a dashed outline and grey background.

5.2.4 CompartmentCollapseExpandEffect

Many types of diagrams are arranged in a hierarchical tree structure where one node may
contain a number of other nodes. Graphically this is represented by a large compartment
within the outer macro node. One major problem that arises when working with larger
models is the inability of traditional zooming and panning to retain both the overview
of the entire system and detailed insight into the inner levels of hierarchy. Zooming in
hides large parts of the diagram, zooming out makes labels unreadable. By collapsing
compartments that currently are not of interest to the user a lot of valuable screen real
estate can be saved and put to better use. For instance, during a SyncCharts simulation
any inner states of an inactive state are less relevant. Hence hiding them from view by

45

5 Implemented Features

collapsing their container compartment is a good way of focusing on the active states
and their neighbors. The considerable difference in space taken up by collapsed states
compared to their expanded counterparts is shown in Figure 5.2.

Figure 5.2: Collapsed and expanded SyncCharts states.

The CompartmentCollapseExpandEffect is a prime example for the EffectTrigger.
Typically the previous layout becomes invalid and needs to be recalculated after a com-
partment has been collapsed or expanded. This task is performed by a Combination
registered for instances of EffectTrigger<CompartmentCollapseExpandEffect>. Mul-
tiple calls to the LayoutEffect are avoided by the merging mechanism for Effects.
CompartmentCollapseExpandEffects discard any previous Effect on the queue when
merged as long as the compartment to collapse is identical. Removing undos for the

46

5.3 Combinations

same target from the queue suppresses changing the state of a compartment and going
back to the previous condition in quick succession.

5.2.5 ArrowEffect

The ArrowEffect is specific to SyncCharts and draws a colored arrow from one graphical
element to another. When merged it consumes other ArrowEffects targeting the same
pair of EObjects along with any undos for that pair. Without that approach arrows
could flicker off and on when a Combination repeats the previous state of its Effects in
a subsequent execution.

5.3 Combinations

5.3.1 LayoutCombination

The LayoutCombination in the KIML package receives both the SelectionState and
the ButtonState. Nevertheless it only goes into action when a KiVi button has been
pressed, the most recent selection merely serves as a potential parameter to the layout
algorithm. This fact is checked by comparing the sequence numbers. If the ButtonTrig-
ger’s sequence number is greater then this TriggerState is responsible for the firing of
the current execution. After establishing that order the Combination checks whether the
pressed button belongs to the layout or not. If it does, the preference values for whether
zoom to fit should be performed and whether a progress bar should be displayed during
the layout computation are retrieved and passed on to a new LayoutEffect instance.
Finally this Effect is scheduled using the shortcut methods provided by the abstract
Combination implementation.

5.3.2 LayoutAfterCollapseCombination

This Combination works in tandem with the CompartmentCollapseExpandEffect. It
listens to the appropriate EffectTrigger and schedules a new LayoutEffect every time
a compartment has been collapsed or expanded. Redundant layout calls are removed
automatically by the Effects merging mechanism.

5.3.3 ShowHierarchyCombination

Many types of models allow for deeply nested hierarchy. This may become confus-
ing, especially when parts of the diagram are hidden by the current zoom level. The
ShowHierarchyCombination uses a large number of HighlightEffects to paint every
level of hierarchy in a unique color by stepping through the entire hue wheel. As a

47

5 Implemented Features

result the root level starts out with red, its offspring successively are painted in different
shades of yellow, green, blue, and pink. Finally the deepest leaf completes the circle
with another tone slowly approaching red again. This colorful mode can be turned on
by a bespoke button in the KIELER toolbar, again using the ButtonTrigger to simplify
the registration process. The colorful result displayed in Figure 5.3 may be used as an
inspiration for future Combinations to highlight the different levels of hierarchy in a
better way.

Figure 5.3: A SyncCharts diagram using the hierarchy Combination.

48

5.3 Combinations

Figure 5.4: Invalid layout after changing a state name.

5.3.4 LayoutAfterModelChangedCombination

Almost every modification the user does to a diagram will invalidate its layout, whether it
is adding a new node or simply extending a label that inadvertently will require more sur-
rounding free space. The automatic layout algorithms provided by the KIELER project
already relieve the user of having to move objects around with the mouse, however that
still requires manually calling those algorithms. The LayoutAfterModelChangedCombi-

nation receives ModelChangedStates as well as DiagramChangedStates and analyzes
their contained event. If that event is determined to potentially invalidate the exist-
ing layout the Combination schedules a new LayoutEffect for the modified SyncChart.
Due to this the user automatically can experience the benefits of frequently recalculated
layouts.

Figure 5.4 shows an example with the LayoutAfterModelChangedCombination deac-
tivated. The user has changed the name of the left state from “Off” to “Cyellow off”.
As a result the size of that state has increased and it has severely deformed the two
transitions connected with it. Using the Combination in Figure 5.5 avoids this problem
by monitoring the change and automatically scheduling a LayoutEffect.

49

5 Implemented Features

Figure 5.5: Recalculated layout triggered by the view management.

5.3.5 SignalFlowCombination

A commonly criticized aspect of SyncCharts is the absence of any visible notion of
signal dependencies. Some transition may be taken because a broadcast signal has been
emitted in an entirely different part of the diagram. For large models it is virtually
impossible to keep track of these complex relationships. The SignalFlowCombination

addresses this problem by using the ArrowEffect to visualize the flow and dependencies
of signals. If there is a signal emitted by transition A and tested by transition B then
there will be an arrow originating at transition A and pointing at transition B, effectively
stating that taking transition A may cause transition B to be taken. Figure 5.6 gives a
simple example demonstrating this feature. In large diagrams the amount of arrows can
quickly become overwhelming. Their number can be reduced and focused by selecting
certain model elements, the Combination will then only display the signal dependencies
that concern any chosen object. The exact behavior depends on the types selected. For
selected signals simply all arrows will be shown that address this signal. Selecting a
transition will display all incoming and outgoing arrows, denoting possible reasons why
this transition may be taken and potential follow-up transitions as a result of a signal
emission. If the list of selected elements contains more than one member then the arrows
for each object are drawn together similar to the union of a number of sets. This filtering
mechanism is shown in Figures 5.7 and 5.8, here the total number of signal dependencies
is far too great to be drawn all at once. The second image restricts this to only the

50

5.3 Combinations

signals related to a single selected transition.

Figure 5.6: Displaying the flow of signals.

5.3.6 SyncChartsCombination

SyncCharts can be simulated using the KIELER Execution Manager. Visualizing this
is an ideal application for the view management. The ActiveStates TriggerState is
providing a list of currently active states as well as a couple of lists for the most recent
history steps. The SyncChartsCombination uses this in two ways.

Each of these states is colored in a distinctive color with the HighlightEffect. Active

51

5 Implemented Features

Figure 5.7: An overwhelming number of signal flow arrows.

52

5.3 Combinations

Figure 5.8: Filtering the signal flow arrows for a single transition.

53

5 Implemented Features

Figure 5.9: Simulation visualization both in color and black & white mode.

54

5.3 Combinations

states are painted red by default, the most recent history states that have just become
inactive are painted blue by default. The remaining set of history states is gradually
faded towards the color of inactive states, by default this is grey. The older a history
state is, the more grey and less blue it becomes. On top of that the user can choose to
give these three types of state - active, history, and inactive - a background color that
is processed in the same color-fading way as the foreground color. In order to show the
colors more clearly the HighlightEffect is set to increase the width for both active and
history states. However there are cases where the rich use of colors is inappropriate, such
as when printing in grey scale. For this scenario the SyncChartsCombination comes with
a black & white mode. Enabling this will change the line style for history states from
solid to dashed, making the distinction between the different conditions of states much
easier. Together with a selection of black and grey background and foreground colors
the user can tailor the look of the diagram to fit the specific printer. For instance, active
states could be drawn with black outlines and white backgrounds. History states might
retain the same colors because the dashing already serves as a distinction. Inactive states
could be drawn with black outlines and grey backgrounds, together with the lower line
width these will be sufficiently different from active states. If the printer can produce
distinctive shades of grey then the inactive state outlines could be chosen as dark grey to
further facilitate the distinction. In that case the fade from white history backgrounds
to grey inactive backgrounds would also become visible. A comparison of the color and
black & white mode is shown in Figure 5.9.

The second method employed utilizes the CompartmentCollapseExpandEffect and has
been coined Focus & Context. Maintaining an overview of a large diagram as well as
keeping track of intricate details is next to impossible. Yet, during simulation inactive
parts of the diagram typically are of less interest to the user. This fact is exploited here
by collapsing inactive macro states, hiding their contained hierarchy levels. This reduces
the visual clutter and allows for a greater zoom level, focusing the user’s attention on
the active and history states. The context of those states is still shown because only the
inner parts of inactive states are hidden. The simple traffic light example already shown
before is displayed using Focus & Context in Figure 5.10. The inactive Error state is
collapsed, hiding its children and thus taking up a lot less space.

55

5 Implemented Features

Figure 5.10: Focus & Context reduces the space taken up during simulation.

56

5.3 Combinations

5.3.7 HighlightSelectedTransitionsCombination

This is a small SyncCharts helper Combination to simplify working with transitions and
their labels. In many scenarios there are multiple labels and transitions close together,
making it hard to mentally associate one with the other. Any selected transition and
its label are highlighted in blue by the HighlightSelectedTransitionsCombination.
Now the user can click on one and immediately spot the other by the new color. In
Figure 5.11 the transition labels have been positioned in an unfortunate cluster in the
middle. Selecting a transition will paint it and its label blue, making their relationship
easily recognizable.

Figure 5.11: Highlighting the selected transition and its label.

57

5 Implemented Features

pub l i c c l a s s H igh l i ghtSe l e c tedTrans i t i onsCombinat ion
extends AbstractCombination {

pub l i c void execute (f i n a l S e l e c t i o n S t a t e s e l e c t i o n) {
i f (s e l e c t i o n . getDiagramEditor () i n s t a n c e o f

SyncchartsDiagramEditor) {
f o r (EObject s e l e c t e d : s e l e c t i o n . ge tSe l ec tedEObjec t s ()) {

i f (s e l e c t e d i n s t a n c e o f Trans i t i on) {
H i g h l i g h t E f f e c t e = new H i g h l i g h t E f f e c t (s e l e c t e d ,

s e l e c t i o n . getDiagramEditor () ,
ColorConstants . blue , t rue) ;

e . setChangeWidth (f a l s e) ;
s chedu le (e) ;

}
}

}
}

}

Table 5.1: The entire Combination source code highlighting selected transitions.

The HighlightSelectedTransitionsCombination is a great example of how simple
Combinations benefit from the abstract implementation in the background. Table 5.1
shows its entire source code. The execute Method registers itself for instances of the
SelectionState. When it is called by the view management framework it only needs
to check whether the editor where the change of selection happened actually works with
SyncCharts. In this the case then every transition in the list of selected objects is
highlighted with the existing HighlightEffect.

58

6 Conclusion

6.1 Summary

The KiVi project set out to design and implement a framework supporting the dynamic
modification of the visual appearances for graphical diagrams. It defines four core com-
ponent types - Triggers, TriggerStates, Effects, and Combinations - that can be extended
by any foreign Eclipse plug-in. Additionally there is a robust concept concerning the
issue of concurrency in a complex application. Effects and Combinations each get their
own dedicated thread, ensuring predictable behavior without forcing the developer to
utilize error-prone techniques such as the Java synchronized keyword.

A key indicator of success for any piece of software is its robustness and reliability.
KiVi fully encapsulates any foreign code, effectively keeping the system running even if
uncaught exceptions occur due to programming errors in external classes. However, there
still is room for improvement. For instance running certain view management features
such as the simulation visualization with highlighting, collapsing, and automatic layout
on large diagrams will cause significant performance issues on Mac OSX. Apparently
the native Java implementation drawing low-level Eclipse graphics is considerably slower
compared to similarly powerful machines running either Linux or Windows.

Apart from providing the central view management framework a major task for this
master thesis was to create several applications using KiVi to test and demonstrate its
capabilities. A whole range of Triggers and Effects allows future programmers to write
higher-level Combinations without digging deeply into the inner workings of Eclipse.
Various Combinations that are part of this project already are in use by other KIELER
developers and users. Most prominently everyone is subconsciously benefiting from the
implicit automatic calls to the KIML layout algorithms whenever there is a modification
to a SyncCharts diagram that invalidates the current layout. New features such as the
set of history states in SyncCharts simulations help users follow the control flow through
the diagram even when many transitions are taken in a single step. Due to the black
& white mode exported diagrams can finally be included in papers without the tedious
task of explaining what state should be imagined to have been printed in which color by
the reader.

Finally, numerous projects have already begun to use the view management framework
for their own purposes. For instance the in-development UML State Machine Simulation

59

6 Conclusion

and Model Checking with Maude project1 comes with its own visualization for both
simulations and model checking traces. This is a new Combination that has been tailored
to the intricacies of the Papyrus UML editor2. It re-uses the existing HighlightEffect

to colorize states and modify their outlines.

6.2 Future Work

There are various entry points for future projects extending and improving the view man-
agement framework. Some included Combinations are tailored to work with SyncCharts,
yet there are many more editors to consider such as the KIELER Aspect-Oriented Mod-
eling project (KAOM)3. Creating a set of Combinations answering the specific needs of
that editor would significantly improve its user experience.

Currently writing a new Combination always entails coming into contact with real Java
code, even though the abstract implementations described in Section 4.1.6 already sim-
plify this chore as much as possible. Ideally this process could be further lifted from
low-level programming onto some type of Combinations scripting language. Essentially
such a script would comprise of the inner parts of the current execute method, testing
for conditions and scheduling Effects accordingly. A very basic language like that might
even be interpretable at run time, allowing users with little programming experience to
write or modify Combinations from within their ongoing Eclipse instance.

1http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/UMLSim
2http://www.papyrusuml.org
3http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KAOM

60

http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/UMLSim
http://www.papyrusuml.org
http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KAOM

Bibliography

[1] Torsten Amende. Synthese von SC-code aus SyncCharts — Ein compiler für
SyncCharts. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, May 2010. http://rtsys.informatik.uni-kiel.de/

~biblio/downloads/theses/tam-dt.pdf.

[2] Charles André. SyncCharts: A visual representation of reactive behaviors. Technical
Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France, Rev. April 1996.

[3] Nils Beckel. View Management for Visual Modeling. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, October
2009. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

nbe-dt.pdf.

[4] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogeneity—the
Ptolemy approach. Proceedings of the IEEE, 91(1):127–144, Jan 2003.

[5] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software—Practice and Experience,
30(11):1203–1234, 2000.

[6] Object Management Group. Unified Modeling Language, Superstructure version
2.3. http://www.omg.org/cgi-bin/doc?formal/2010-05-05.pdf, May 2010.

[7] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, June 1987.

[8] Steffen Jacobs. Konzepte zur besseren Visualisierung grafischer Datenflussmod-
elle. Student resarch project, Christian-Albrechts-Universität zu Kiel, Department
of Computer Science, February 2007. http://rtsys.informatik.uni-kiel.de/

~biblio/downloads/theses/sja-st.pdf.

[9] Christian Motika. Semantics and execution of domain specific models — KlePto and
an execution framework. Diploma thesis, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, December 2009. http://rtsys.informatik.

uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf.

[10] Steve Northover and Mike Wilson. SWT: The Standard Widget Toolkit, volume 1.
Addison-Wesley, July 2004.

[11] Inc. Object Technology International. Eclipse platform technical overview. http:

//www.eclipse.org/whitepapers/eclipse-overview.pdf, February 2003.

61

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbe-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbe-dt.pdf
http://www.omg.org/cgi-bin/doc?formal/2010-05-05.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sja-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sja-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

Bibliography

[12] Steffen Prochnow and Reinhard von Hanxleden. Statechart development beyond
WYSIWYG. In Proceedings of the ACM/IEEE 10th International Conference on
Model Driven Engineering Languages and Systems (MoDELS’07), volume 4735 of
LNCS, Nashville, TN, USA, October 2007.

[13] Arne Schipper. Layout and Visual Comparison of Statecharts. Diploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
December 2008. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/ars-dt.pdf.

[14] Matthias Schmeling. ThinKCharts — The thin KIELER SyncCharts editor.
Student research project, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, September 2009. http://rtsys.informatik.uni-kiel.de/

~biblio/downloads/theses/schm-st.pdf.

[15] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF Eclipse
Modeling Framework. Eclipse Series. Addison-Wesley, Pearson Education, 2nd edi-
tion, 2009.

62

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf

	Introduction
	Related Work
	Outline

	Technology
	Eclipse
	Plug-ins
	The Eclipse Modeling Framework (EMF)
	The Graphical Editing Framework (GEF)
	The Graphical Modeling Framework (GMF)

	Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)
	Thin KIELER SyncCharts Editor (ThinKCharts)
	KIELER Infrastructure for Meta Layout (KIML)
	KIELER Structure Based Editing (KSBasE)
	KIELER Execution Manager (KIEM)

	KIELER View Management (KiVi)
	Overview
	Triggers & TriggerStates
	Effects
	Combinations
	View Management Controller
	Concurrency

	KiVi Implementation
	Core Components
	Extension Points
	View Management Controller
	Trigger
	TriggerStates
	Effects
	Combinations

	Preferences

	Implemented Features
	Triggers & TriggerStates
	SelectionTrigger
	ButtonTrigger
	EffectTrigger
	ModelChangeTrigger
	StateActivityTrigger

	Effects
	UndoEffect
	LayoutEffect
	HighlightEffect
	CompartmentCollapseExpandEffect
	ArrowEffect

	Combinations
	LayoutCombination
	LayoutAfterCollapseCombination
	ShowHierarchyCombination
	LayoutAfterModelChangedCombination
	SignalFlowCombination
	SyncChartsCombination
	HighlightSelectedTransitionsCombination

	Conclusion
	Summary
	Future Work

