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Abstract

A planar and orthogonal layout is a popular approach in automated graph draw-
ing. Minimizing the number of edge crossings and restricting the graph drawing to
horizontal and vertical lines usually results in an easy to read and visually appeal-
ing layout. In many practical applications, especially UML class diagrams, entity-
relationship-diagrams for databases or electric wiring schemes, an orthogonal graph
drawing is one of the most useful layouts. This thesis provides a basic layout algo-
rithm that will result in a graph drawing with a low number of edge crossings and
an orthogonal layout that is suitable for such applications.
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1 Introduction

There exist various approaches and algorithms on the layout of graphs, each meeting
di�erent aesthetic criteria. The best choice for a suitable algorithm usually depends
on user preference and the use case. This thesis gives an example for a layout
algorithm that provides an orthogonal drawing of a graph. The drawing of a graph
is considered orthogonal if all edge sections (i. e. parts of edges, separated by bend

points) in the drawing are either horizontal or vertical, which implies that all angles
in bend points or between edges are multiples of 90◦. As a side-e�ect, and ful�lling
additional aesthetic criteria, the presented algorithm used for orthogonalization keeps
the number of bend points as well as the number of edge crossings in the graph
drawing very low. Such a layout will result in a clearly arranged and highly readable
graph. It is therefore a suitable algorithm in many applications. It is especially a
preferred choice for many diagram layouts in UML, database applications (such as
entity-relationship diagrams) or many technical use-cases such as wiring schemes or
VLSI design.
This thesis is based on a Java implementation of the presented algorithm. This
implementation was the subject of a bachelor project at the Christian-Albrecht-
University in Kiel in 2010. The major part of the project was the implementation
of the planarity testing algorithm by John M. Boyer and Wendy J. Myrvold [1]
as described in Chapter 4, hence that part occupies a relatively large part of this
document. The second part of the project and base of the bachelor thesis consisted
in the implementation of algorithms for orthogonalization and compaction of graphs,
and the integration of these algorithms in in a graph layouter based on the topology-
shape-metrics approach as described in Chapter 3.

1.1 Structure of this document

This �rst introductory chapter will give a short overview of the thesis and the im-
plementation of the graph layout algorithm, while Chapter 2 will recapture the ba-
sic de�nitions of graph theory relevant to the algorithms presented in this thesis.
Chapter 3 will give an overview of the main algorithm used by the layouter and its
individual phases, along with the important terminology required in these phases
of the algorithm. The following chapters will then deal with each of the phases in
the main algorithm: the planarity test in Chapter 4, planarization in Chapter 5,
orthogonalization in Chapter 6 and compaction in Chapter 7. Chapter 8 gives a
�nal conclusion with some examples what can still be done in the project.
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1 Introduction

...

...

...

...

Figure 1.1: An overview of the implementation of the layouter plug-in

1.2 Implementation

The layout algorithm has been implemented in the Java programming language and
is part of the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1

project. The KIELER project consists of a series of plug-ins to the Rich Client Frame-
work of the Eclipse IDE2. It has been developed by the Real-Time and Embedded
Systems Group of the Department of Computer Science at the Christian-Albrechts-
Universität zu Kiel. Its aim is to enhance the graphical model-based design by inte-
grating various modeling languages and o�ering automatic layout for their graphical
components. The algorithm presented in this thesis is an example of the various
layout algorithms provided in the KIELER project for the automatic layout of dia-
grams. The implementation accompanying this thesis can be found in the KIELER
Eclipse plug-in de.cau.cs.kieler.klay.planar.
The implementation is based on a simple graph data structure, as seen in Figure 1.2.
Since the project consists of a large variety of interchangeable algorithms, it heavily
relies on the strategy design pattern to provide common interfaces and abstractions
for the individual algorithms. Figure 1.1 shows a rough layout of the project. Each
step in the algorithm (i. e. topology, shape and metrics steps) has its own interface
for implementing algorithms, which can therefore be easily exchanged or improved
separately. As for the implemented algorithms, two state-of-the-art algorithms for
planarity testing were successfully implemented, the Boyer-Myrvold-Algorithm [1]
and the Left-Right Planarity Test [13]. Along with a basic algorithm for planariza-
tion, which is the subject of an accompanying bachelor thesis by Christian Kutschmar
[19], these algorithms provide the topology part of the layouter project. Additionally,

1 http://www.informatik.uni-kiel.de/rtsys/kieler
2http://www.eclipse.org

2

http://rtsys.informatik.uni-kiel.de/trac/kieler/browser/trunk/plugins/de.cau.cs.kieler.klay.planar
http://www.informatik.uni-kiel.de/rtsys/kieler
http://www.eclipse.org


1.3 Related Work

some simple approaches to orthogonalization and compaction algorithms were im-
plemented to gain basic layouting functionality. These still provide far from optimal
solutions, especially since the implemented orthogonalizer is limited to a maximal
vertex degree of 4. Unfortunately, the compaction algorithm has not been �nished
completely at the time this thesis is published.

Figure 1.2: On overview over the graph data structure used in the Java implemen-
tation

1.3 Related Work

This thesis basically documents the implemented layout algorithm based on the
topology-shape-metrics approach. Therefore, all works describing this approach or
algorithms used in one of its phases are related to this thesis. Some basic information
on automated graph drawing and especially orthogonal graph drawing using the used
approach can be found in the various works of Tamassia et al. [26, 3, 2]; or the book
on graph drawing by Michael Kaufmann and Dorothea Wagner [14]. Single phases
of the approach are detailed in various works of Tamassia, Gutwenger et al. or Klau
et al. [24, 25, 10, 9, 22, 15, 16, 5, 17]. Special note should be taken of the bachelor
thesis by Christian Kutschmar [19], which describes the planarization algorithm used
in the topology phase, since it is based on the same graph layouter implementation
as this thesis.
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2 Basics of Graph Theory

Since the subject of this thesis is a layout algorithm for graphs, a basic understand-
ing of graphs is vital for its comprehension. This chapter will recapture the most
important de�nitions of graph theory that are used in the context of this document.

2.1 Graphs

A graph is an abstract object used to model objects and their relations. Graphs are
formally de�ned as an ordered pair G = (V,E), where V is a set of vertices and E is
a set of edges. While vertices are the basic elements in a graph, the edges represent
links between these elements. Edges are de�ned as an unordered pair (v, w), where
v and w are elements from V . The existence of an edge (v, w) in a graph G means
that the vertices v and w are connected. v is said to be adjacent to w. The number
of vertices |V | is the order of a graph and the number of edges |E| is the size of
a graph. The number of edges adjacent to a vertex v is called the degree δ(v) of a
vertex.
A graph is a directed graph if its edges maintain information on its direction, i. e.
they are de�ned as an ordered pair of vertices, where the �rst vertex is the source
and the second vertex the destination of the edge. A mixed graph contains both
directed and undirected edges. In a multigraph, multiple edges between the same
vertices are allowed, as well as self loops, i. e. directed or undirected edges with the
same source and destination vertex.
A connected component in a graph is a subset of its vertices and edges, where every
vertex is reachable from every other vertex via a path. A k-connected component is
one such component, where a connected component remains after the removal of any
k vertices. In particular, a biconnected component (bicomp) remains a connected
component after the removal of one vertex. A vertex connecting separate bicomps in
one connected component is called a cut vertex, while an edge connecting separate
connected components is called a cut edge or bridge.

2.2 Planarity

The drawing of a graph is considered planar if it does not contain any edge crossings.
A graph, on the other hand, is considered planar if a planar drawing exists for the
graph. A planar embedding of a graph de�nes the order in which edges have to be
added to every vertex in order to obtain a planar drawing. For example the graph
shown in Figure 2.1a is planar, but the drawing is not. In Figure 2.1b, the same

5



2 Basics of Graph Theory

(a) A planar graph (b) A planar drawing of the graph

Figure 2.1: Examples of planar graphs

graph is drawn with a proper planar embedding, and therefore the drawing of the
graph is planar. The two graphs in Figure 2.2a and Figure 2.2b are both not planar,
since there is no possible way to draw these graphs in a planar way. These two graph
are known as Kuratowski graphs K5 and K3,3. It is proven that every nonplanar
graph contains either a K5 or a K3,3 as a subgraph [18].

(a) The K5 graph (b) The K3,3 graph

Figure 2.2: Kuratowski graphs, which are both not planar

2.3 Faces and the Dual Graph

A planar embedding de�nes the set of faces in a graph. Every cycle in a planar graph
that has no edges leading from the cycle into the region surrounded by it forms a
face. A face in a graph is adjacent to another face, if it shares an edge with it.
The unbounded area on the outside of a graph drawing is the external face, while
all other regions are internal faces. Dependent on the faces is the dual graph G̃ of a
planar graph G. The dual graph G̃ contains a vertex for every face in G. Adjacent
faces in G are represented by adjacent vertices in G̃. This implies that for every
edge in G separating two faces, there is an edge in G̃ that connects the two vertices
representing these faces. For every bridge in G, the dual graph contains a self loop.

6



2.4 Flow Networks

2.4 Flow Networks

Algorithms often attempt to reduce a problem to another problem with a well known
solution. For instance, algorithms in the later phases of the approach discussed in this
thesis are usually reduced to problems in �ow networks. Flow networks are frequently
used to model transportation problems such as tra�c on roads or electrical current.
A �ow network is a directed graph in which a �ow travels on edge paths. The edges
in a �ow network are called arcs. Each arc (u, v) has a capacity value c(u, v), which
acts as an upper bound for the allowed �ow through theses arcs. They may also
have a lower bound value. The vertices in a �ow network are usually called nodes.
Two special nodes in a �ow network are the source s and the sink t. The produce
and consume �ow respectively. If a problem requires multiple sources or sinks, it
can easily be reduced to a single source and sink node: The two nodes s and t are
added to the network, for every source v an arc (s, v) is embedded with a capacity
equal to the supply value of v and for every sink u an arc (u, t) is embedded with
a capacity equal to the demand value of u. Solving a problem in a �ow network
requires assigning a �ow value f(u, v) to every arc.
Every feasible �ow in the network must ful�ll the following properties:

1. The �ow in any arc can never exceed its capacity (f(u, v) ≤ c(u, v))

2. The �ow from one node u to another node v must be the opposite of the �ow
from v to u (f(u, v) = −f(v, u))

3. The net �ow in every node must be zero, except in the source and the sink
(
∑

v∈V f(u, v) = 0, u 6= s ∧ v 6= t)

The most common problem in �ow networks is the maximum �ow problem, which
consists of �nding the largest possible �ow from the source to the sink, i. e. maxi-
mizing

∑
v∈V f(s, v). Another problem is the minimum cost �ow problem. In this

problem, every arc (u, v) is assigned a cost a(u, v) and the cost of sending a �ow
from u to v is f(u, v) · a(u, v). Solving the problem requires sending a given �ow
from the source to the sink with a minimal �ow cost.
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3 Overview of the

Topology-Shape-Metrics Approach

A commonly used algorithm for orthogonal layout is the topology-shape-metrics ap-
proach. It is basically a series of three phases, each with its own individual algo-
rithms. These three phases �x the topology (by �nding a planar embedding), the
shape (by computing an orthogonal representation) and the metrics of the graph (by
minimizing the edge length). This division in phases provides great modularity, so
the algorithms can be chosen, developed or improved independently. The topology-
shape-metrics approach is detailed by Roberto Tamassia et al. [26], but information
on the approach can be found in many sources [2, 14].
Figure 3.1 shows the K3,3 Kuratowski graph. This non-planar graph will serve as
an example graph for algorithms throughout this thesis. The following sections will
give an overview how algorithms in the phases should deal with this example graph.

1 2

3 4 5

0

Figure 3.1: The K3, 3 Kuratowski graph will be the common example graph

3.1 Topology Phase

The �rst step is the topology phase. The topology of a graph is de�ned by the
clockwise order of edges in the adjacency list of each vertex. Two graphs are equal in
their topology if one can be transformed into the other without changing the order of
edges adjacent to every vertex. The result of the �rst phase is a planar representation
of the graph. Formally, a planar representation P is a function P (v) = (e1, . . . , eδ(v)),
ei ∈ E, that assigns an ordered list of edges to every vertex v. It de�nes a �xed
topology for the graph. The algorithm used in this project divides the topology
phase into two steps:
First, a planarity testing algorithm operates on the graph. Although the primary use

9



3 Overview of the Topology-Shape-Metrics Approach

of these algorithms is to determine whether a graph is planar or not, they are usually
able to �nd a planar subgraph of the given graph (if it is not initially planar), and
compute a planar representation of this subgraph. Figure 3.2a shows the computed
planar subgraph of the example graph in Figure 3.1. It contains all the vertices of
the example graph, but the edge (2, 3) is missing, since it can't be inserted without
losing planarity. An algorithm for planarity testing is explained in Chapter 4 of the
thesis.
To acquire a full planar representation of the given input graph, some edges may
have to be re-inserted into the planar subgraph resulting from the planarity test.
These edges are added by a planarization algorithm. To maintain planarity, the
inevitable edge crossings are replaced by dummy vertices. The algorithm minimizes
the number of inserted dummy vertices and maintains a correct planar embedding
of the graph. The example graph with the additional edges and dummy vertices
is shown in Figure 3.2b. The edge (3, 2) is now part of the graph, divided by the
new dummy vertex 6. The order of the edges on each vertex after planarization
de�nes a valid planar representation of the whole input graph. The algorithm used
for planarization is further explained in Chapter 5.

1

2

3

4

50

(a) A planar subgraph of the example
graph

1

2

3

4

50

6

(b) A full planar representation of the
graph

Figure 3.2: The topology phase provides a planar representation of the graph

3.2 Shape Phase

The second phase de�nes the shape of the graph. The shape of a graph extends the
topology, but also a�ects edge bends and angles in the graph. Two graph drawings
are of equal shape if they di�er only in the length of their edges. The shape of the
graph is de�ned by an orthogonal representation. An orthogonal representation H is
formally de�ned as a function H(f) = (r1, . . . , rδ(f)), ri = (ei, si, ai) from the set of
faces to a list of 3-tuples (er, sr, ar), where er ∈ E is an edge adjacent to the face,
sr is a string of bends along this edge (consisting only of 90◦ or 270◦ angles) and
ar is the angle the edge forms with the following edge in clockwise order inside the
face. Such an orthogonal representation is the result of an orthogonalization algo-

10



3.3 Metrics Phase

rithm. Figure 3.3 shows how the example graph would be drawn with an orthogonal
representation computed by the orthogonalization algorithm. Such an algorithm for
orthogonalization is detailed in Chapter 6.

1

23

4

5

0

6
A B

C

DE

F

Figure 3.3: The shape phase provides an orthogonal representation of the graph

3.3 Metrics Phase

The �nal phase is known as the metrics phase. Two graphs with equal metrics
have an identical drawing. In the metrics phase the last part missing for a �nal
drawing is computed, which is the actual edge length. This is done by a compaction

algorithm. Usually, such an algorithm minimizes either the total edge length, the
total drawing area or the maximal edge length. Examples for compaction algorithms
are discussed in Chapter 7 of the thesis. The metrics phase also maps the graph
metrics back to the original input graph, thus removing the added dummy vertices
and edges. Figure 3.4 shows how the example graph would be drawn after the whole
topology-shape-metrics algorithm has performed a layout on the graph.

1

23

4

5

0

Figure 3.4: The �nal drawing of the processed graph
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4 Planarity Testing

The �rst step on the way to a planar and orthogonal layout consists of a planarity
test. A planarity test basically checks if a graph is planar, i. e. if it can be drawn
without any edge crossings. Additionally, and relevant for the layouter, the planarity
test can compute a planar subgraph, if the input graph is not initially planar, and
also provide a planar representation of the graph or the planar subgraph. A planar
representation gives a �xed order of edges on each vertex in clockwise direction and
therefore de�nes a topology for the graph. While the computation of a maximum

planar subgraph (i.e. the globally largest planar subgraph) is known to be NP -hard
[27], the testing algorithm should be able to compute a maximal planar subgraph,
meaning a subgraph in which any additional edge would break the planarity prop-
erty.
The �rst linear time algorithm for planarity testing is due to John Hopcroft and
Robert E. Tarjan [12]. Over time, many alternative algorithms, extensions or im-
provements emerged [21, 20, 13, 1]. In the layout implementation accompanying
this thesis, two possible testing algorithms were implemented. On the one hand an
algorithm based on the left-right planarity criterion [13], which will not be discussed
further in this thesis. On the other hand the algorithm developed by John M. Boyer
and Wendy J. Myrvold in 2004 [1]. This second algorithm will be the main subject
of this chapter. It provides a planarity test as well as the computation of a planar
subgraph in time linear to the number of vertices in the graph. The basic idea of the
algorithm is to copy the graph (i. e. the vertices), and then adding edges one by one
until the graph is maximal planar. This is accomplished by �rst adding the edges
of a spanning tree (which is obviously planar), and then adding the back edges one
by one, starting at the tree leaves and building the graph upwards to the root of the
tree.

4.1 Preprocessing and basic terminology

4.1.1 Depth First Search

The algorithm starts out performing a Depth First Search (DFS) on the graph. A
DFS on a graph results in a spanning tree, the DFS-Tree, and an ordering of the
vertices, assigning every vertex a Depth First Search Index (DFI). The DFS also
separates the edges in the graph in two groups: The tree edges and the back edges,
Since the algorithm does not distinguish between directed and undirected edges,
forward edges and cross edges are also interpreted as back edges.
Figure 4.1a shows the K3, 3 example input graph for the algorithm. Figure 4.1b

13



4 Planarity Testing

1 2

3 4 5

0

(a) The example input
graph

1 2

3 4 5

0

(b) A spanning tree of the
graph

1 2

3 4 5

0

0

3

1

4

3

1

4

2

52

(c) Insertion of virtual
root vertices

Figure 4.1: The preprocessing of an example graph visualized

shows a possible DFS-Tree with all the tree edges. The back edges would be (0, 4),
(0, 5), (1, 5) and (2, 3).

4.1.2 Least Ancestor and Low points

During the DFS, the algorithm computes two additional pieces of information for
every vertex v: The least ancestor is the vertex of lowest DFI that can be reached
from v by using only a back edge. The low point is the vertex of lowest DFI that
can be reached from v by using zero or more tree edges and one back edge. Hence,
the low point is also the least ancestor of all the vertices in the subtree below the
vertex v. In the example graph, the least ancestor of 5 would be 0, of 2 would be 3,
and so on. The low points of all vertices would be 0.

4.1.3 Virtual Root Vertices

The algorithm maintains a bicomp of the graph in form of a virtual root vertex. These
virtual vertices act as an image of the cut vertex for the corresponding bicomp. Every
bicomp contains exactly one virtual vertex at any time, and the virtual vertex has
the lowest DFI of vertices in the bicomp. The virtual vertices are inserted into the
graph during the preprocessing DFS for every child node in the DFS-Tree, forming
a singleton bicomp (a bicomp that consist only of the virtual vertex and the child
vertex). The virtual vertices are later removed one by one when a bicomp is merged
into a large one by adding edges. Figure 4.1c shows the example graph with added
virtual vertices.

4.1.4 Pertinence and Activity

Two other important properties of vertices are their pertinence and external activity

state. These are both dependent on the vertex currently processed in the main loop
of the algorithm.
A vertex is considered externally active if it has a back edge to a vertex of lower DFI
than the processed vertex in the original graph. This means that the vertex will be
important in any future step of the algorithm. Externally active vertices have to be
kept on the external face of the graph at any time. As soon as an externally active

14



4.2 Algorithm Outline

vertex vanishes from the external face, the back edge can not be embedded without
losing the planarity of the graph.
A pertinent bicomp is a bicomp that is considered important for the embedding of a
back edge in the current step of the algorithm. A bicomp is pertinent if it contains a
pertinent vertex, and a vertex is pertinent either if it has a virtual root vertex that
marks a pertinent bicomp, or if it is the endpoint of a back edge to be embedded in
that step of the algorithm.

Algorithm 4.1: The main loop of the algorithm

1 procedure planarity(G: graph)
2 initialize G′ via depth �rst search on G

4 for each vertex v ∈ G in reversed order of their DFI do

6 for each DFS child c of v in G
7 embed the tree edge (vc, c) in G

9 for each back edge (v, w) ∈ G incident to v do

10 if w has a higher DFI than v then

11 walkup(G′, v, w)

13 for each pertinent virtual root vc of v ∈ G do

14 walkup(G′, vc)

16 for each back edge (v, w) in G incident to v do

17 if w has a higher DFI than v then

18 if not (v, w) ∈ G′ then

19 G is not planar

21 perform postprocessing on G′

22 end

4.2 Algorithm Outline

As already mentioned, the algorithm starts performing a DFS on the input graph.
During the DFS, every traversed vertex is copied to a new working graph, and the
least ancestor and low point values are computed for each vertex. Additionally, the
virtual root nodes are added to the working graph, each representing a (singleton)
bicomp.
After the preprocessing DFS, the algorithm starts with the main loop. This loop
traverses the vertices in the graph in descending order of their DFI, thus rebuilding
the graph starting at the leaves of the DFS-Tree and working the way upwards to
the root. For every traversed vertex, the loop performs four steps:
First, the tree edge from the parent to the vertex is embedded in the graph. Then
the pertinent subgraph is determined by calling the walkup method on every vertex
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4 Planarity Testing

to which a back edge should be embedded. This method marks certain bicomps in
the graph as pertinent, so this information can be used in the next step. The third
step constitutes the major part of the algorithm, namely embedding the back edges
and merging the bicomps on the way. At last, in the fourth step, the algorithm
checks if all back edges were properly embedded. If that is not the case, the graph
is (obviously) not planar. After the main loop is done, a last postprocessing DFS
is performed on the graph to merge all leftover bicomps. Algorithm 4.1 shows the
planarity test algorithm in pseudo code. The walkup and walkdown methods are
detailed in the next two sections.

Algorithm 4.2: The walkup method

1 procedure walkup(G: graph, v: starting vertex, w vertex)
2 raise the back edge �ag of w

4 (x, dirx)← (w, 1)
5 (y, diry)← (w, 0)

7 while x 6= v do

9 if x or y are marked as visited then break the loop
10 mark x and y as visited

12 if x is a virtual root vertex then

13 zc = x
14 else if y is a virtual root vertex then

15 zc = y
16 else

17 zc = nil

19 if zc 6= nil then
20 set z equal to the parent of the virtual root vertex zc

21 mark zc as pertinent
22 (x, dirx)← (z, 1)
23 (y, diry)← (z, 0)

25 else

26 (x, dirx)← GetSuccessorOnExternalFace(x, dirx)
27 (y, diry)← GetSuccessorOnExternalFace(y, diry)
28 end

4.3 The Walkup Method

The walkup is a subroutine of the algorithm responsible to mark the pertinent sub-
graph for the currently processed vertex v. The routine is invoked for every endpoint
of a back edge w that has a higher DFI than v. It is therefore invoked for every
vertex below v in the DFS-Tree that should be connected to v by a back edge. The
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4.3 The Walkup Method

purpose of this method is to determine which vertices and bicomps are pertinent
during the embedding of that back edge.
The walkup starts at the vertex w, the endpoint of a back edge, and raises a back

edge �ag for w, thus marking it pertinent. It then traverses the external face of the
graph until it encounters a virtual root vertex. The bicomp represented by that vir-
tual root vertex is marked as pertinent and the method jumps to the parent bicomp
of that virtual vertex and continues traversal of the external face there. This way,
the method works its way upwards (hence the name walkup), until the vertex v is
reached.
Figure 4.2 shows an example graph section during the main algorithm. In this case,
the currently processed vertex is v = 1 and the back edge (1, 5) should be embedded
(a). The walkup method is called on the vertex 5, where the back edge �ag of 5 is
raised (b). It then traverses the external face and encounters vertex 34, marks it as
pertinent and jumps to vertex 3 (c). Similarly, it will encounter vertex 12, mark it
as pertinent and jump to 1 (d). There it will stop since it has reached the starting
vertex.

a

b

c

d 1

2

3

4 5

6 7

34

7112

Figure 4.2: The walkup for the back edge (1, 5) (a) during processing of vertex 1:
The back edge �ag of 5 is raised (b) and the vertices 3 and 34 (c) as well
as 1 and 12 (d) are marked as pertinent.
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4 Planarity Testing

Algorithm 4.3: The walkdown method

1 procedure walkdown(G: graph, v′: virtual root vertex)
2 clear the merge stack S

4 for dirv′ ∈ 1, 0 do

5 (w, dirw)← successoronexternalfaceof(v′, dirv′)
6 while w 6= v′ do

8 if w has a raised back edge �ag then

9 merge vertices on merge stack S
10 embed the back edge (w, v′)

12 if w has a pertinent virtual root vertex w′ then

13 choose traversal direction dirw′ ∈ 1, 0
14 push (w, dirw) on the merge stack
15 push (w′, dirw′) on the merge stack
16 (w, dirw)← (w′, dirw′)

18 else if w is externally active then
19 break the 'while' loop

21 else

22 (w, dirw)← GetSuccessorOnExternalFace(w, dirw)

24 if not S is empty then

25 break the 'for' loop
26 end

4.4 The Walkdown Method

After the walkup has determined the pertinent subgraph, the walkdown method can
perform the major work of the algorithm. The purpose of the walkdown is to �nally
embed the back edges in the graph. While the walkup traverses the graph from the
endpoint of the back edge upwards, the walkdown starts at the currently processed
vertex and makes its way downwards to the endpoint of the back edge. It is invoked
for every virtual root vertex of the currently processed vertex v and starts traversing
the external face.
If it encounters a vertex that has any virtual root vertices marked as pertinent, it puts
the encountered vertex together with the virtual root vertex on a stack, jumps down
to the pertinent bicomp and continues traversal there. The direction of the traversal
(i.e. clockwise or counterclockwise) does not matter and is up to the implementing
programmer.
If it encounters a vertex whose back edge �ag is raised, all the bicomps on the stack
have to be merged. That means the adjacency list of the virtual root vertex is added
to the adjacency list of the parent vertex and the virtual root vertex is removed
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4.4 The Walkdown Method

from the graph. Any bicomps containing externally active vertices may have to be
�ipped, so that these vertices remain on the external face. After the bicomps have
been merged, the back edge can be embedded into the graph and the method can
continue traversing the external face.
Traversal halts as soon as it reaches the virtual root vertex it started on, or if it
encounters an externally active vertex that is not pertinent, a so-called stopping

vertex. Since the embedding of a back edge after such a vertex will break planarity,
the algorithm cannot traverse the face any further. But it may still traverse the face
in the other direction. If it encountered a stopping vertex in both directions, at least
one of the back edges cannot be embedded. The algorithm will then detect these
missing edges in the main loop.
Figure 4.3 continues the example from Section 4.3. The currently processed vertex
is 1 and the walkdown is invoked for vertex 12 (a). In this example the vertex 6
shall be an externally active vertex. The method traverses the face in a random
direction. If it travels clockwise, it will encounter the externally active vertex 6 and
stop there (b). If it travels counterclockwise, it will encounter the vertex 3, which
has a pertinent virtual root 34 (c). Both vertices 3 and 44 will be put on the merge
stack and traversal continues in 34. Independent of the now chosen direction, the
method will encounter vertex 5, which has a raised back edge �ag. Now the method
merges all vertices on the merge stack and embed the edge (12, 5).
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Figure 4.3: The walkdown for root vertex 12 (a) during processing of vertex 1: The
external face is traversed, while pushing vertices 3 and 34 on a merge
stack (c), until vertex 5 is reached. Then the vertices on the stack are
merged and the edge (12, 5) embedded (d).
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(a) Embedding an edge after counter-
clockwise traversal
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(b) Embedding an edge after clockwise
traversal

Figure 4.4: The direction in which a bicomp is traversed determines if it has to be
�ipped before merging.

4.5 Flipping and Merging Biconnected Components

When merging two bicomps, on some occasions the lower bicomp may have to be
�ipped. That choice is dependent on the direction, in which the algorithm traverses
the external face. For example, if the algorithm traverses the face in counterclockwise
direction, it will embed the edge as seen in Figure 4.4a, and if it traverses the face
in clockwise direction, it will embed the edge on the other side (Figure 4.4b). Since
the traversal of a bicomp will not go beyond a stopping vertex, a bicomp will have
to be �ipped if and only if it is traversed in the same direction as the parent bicomp.
Merging the adjacency lists of the two merged vertices is also dependent on the
traversal direction. If the face is traversed in clockwise direction, the adjacency list
of the virtual root vertex is appended to the adjacency list of its parent vertex,
otherwise it is prepended to the list.

4.6 Processing of an example graph

This section should clarify the algorithm by explaining the single steps it performs on
the example graph used throughout this thesis, the K3,3 graph. The preprocessing
step has already been performed on this graph in Section 4.1, so this section starts
with the DFS-Tree, including the virtual vertices, as shown in Figure 4.5a. As a
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(d) The graph after postprocessing

Figure 4.5: Performing the algorithm on the K3, 3 graph

reminder, the missing back edges are (0, 4), (0, 5), (1, 5) and (2, 3).

The main loop processes the vertices in reversed order of their DFI, in this case
they are processed in the order 5, 2, 4, 1, 3, 0. The �rst signi�cant events occur during
processing of vertex 1, when the back edge (1, 5) should be embedded. At this point,
the walkup method is called on vertex 5. It raises the back edge �ag on 5, traverses
the external face and encounters virtual vertex 25. The vertex is marked as pertinent
and traversal resumes at vertex 2. The same happens for vertices 42 and 4, as well
as 14 and 1. Then the currently processed vertex v is reached and the walkup stops.
Now the walkdown is called on all pertinent virtual root vertices of 1, namely vertex
14. It starts traversal at 14 and immediately reaches vertex 4. Since 42 is pertinent,
both 4 and 42 are pushed on the merge stack. The same happens for vertices 2 and
25. After that, vertex 5 is encountered, which has a raised back edge �ag. Now the
vertices 4 and 42 as well as 2 and 25 are merged, and the edge (14, 5) is embedded.
The result is shown in Figure 4.5b. The method will continue traversal from vertex
5, but will soon encounter the starting vertex 14 (since the bicomps are now merged)
and stop.
The next vertex in the main loop is vertex 3, which has a back edge to vertex 2. The
walkup is called on 2, the back edge �ag on this vertex is raised and the vertices 14

and 31 are marked as pertinent.
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4 Planarity Testing

The walkup method is now invoked on the virtual root vertex 31. It traverses the
external face starting at 31, �nds vertex 1, pushes 1 and 14 on the merge stack
and continues at vertex 14. The clockwise traversal will encounter vertex 5 and
the counterclockwise traversal will encounter vertex 4, both of which are externally
active (since the input graph contains the edges (0, 5) and (0, 4)). The walkdown
stops here, and the algorithm detects that the edge (31, 2) has not been embedded.
The graph is therefore marked as not planar.
At last, the vertex 0 is processed. The walkup is invoked twice this time, once on
vertex 4 and once on vertex 5, both endpoints of back edges. The back edge �ag for
these two vertices are raised and each time the vertices 14, 31 and 03 are marked as
pertinent.
The walkdown will again encounter either vertex 4 or vertex 5, after the vertices 3,
31, 1 and 14 have been pushed on the merge stack. Assuming the algorithm chooses
a counterclockwise traversal, the vertex 4 is encountered �rst. The vertices 3 and
31, as well as 1 and 14 are merged and the edge (03, 4) is embedded. The traversal
is resumed and the vertex 5 is encountered. Since the merge stack is empty at this
point, the edge (03, 5) can be embedded immediately and further traversal will stop
at the starting vertex 03. The resulting graph is shown in Figure 4.5c.
After the the main loop has terminated, a last postprocessing DFS is performed on
the graph. In this example case, the DFS will notice the left-over virtual vertex 03,
and will merge it with vertex 0. The overall result of the planar testing algorithm
on the example graph is shown in Figure 4.5d.
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5 Planarization

Since the planarity testing algorithm provides only a planar representation for a
subgraph of the original input graph, some edges are missing and have to be re-
inserted in the graph. This is done in the second part of the �rst phase of the
topology-shape-metrics algorithm, the planarization. The aim of the planarization is
to add all edges that were removed during the computation of the planar subgraph,
while keeping the graph planar and the planar representation intact.
Since the graph resulting from the previous step is maximal planar, i. e. any of the
missing edges inserted into the graph will break planarity, every edge crossing is
replaced with an additional dummy vertex. One possible algorithm that adds edges
to a planar graph has been introduced by Gutwenger et al. in 2001 [10]. The simpler
algorithm implemented in the graph layouter, and the one discussed in this chapter, is
detailed in the bachelor thesis of Christian Kutschmar [19]. His thesis is based upon
the same layouter implementation as this thesis and is therefore directly related.
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(a) The graph with a dummy vertex

1

2

3

4

50

6

(b) The graph with the embedded edges

Figure 5.1: Embedding of an edge requires the addition of dummy vertices on every
crossing edge. In this example the vertex 6 is added on the edge (1, 4). All
these dummy vertices are then connected by a path of edges ((2, 6), (6, 3))
representing the original edge (2, 3).

5.1 Inserting an edge

The algorithm will not only embed an additional edge into a planar graph, but will
also attempt to do this while creating the minimum number of dummy vertices. It
does this by �nding an embedding path for the new edge that crosses a minimal
number of faces. This path corresponds to the shortest edge path in the dual graph.
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5 Planarization

Therefore the embedding of edge (v, w) in graph G is performed using the following
algorithm: First, the dual graph G̃ of the input graph G is computed based on its
faces, as seen in Figure 5.2. For every face f adjacent to v and every face g adjacent
to w, the shortest path in the dual graph G̃ between the vertices representing f and
g is found. Dijkstra's algorithm [4] can be used to accomplish this. The edge is
then added into the graph following this path, i. e. for every edge in the dual path a
dummy vertex is added on the corresponding edge in G, and these dummy vertices
are connected by edges crossing the relevant faces.
In the example graph, the edge (2, 3) should be embedded. The source vertices of the
path would therefore be v ∈ {C,D} and the target vertices would be w ∈ {A,B}.
All of these vertices are adjacent to each other, so the shortest path can be chosen
freely. Choosing the edge (D,B), the dummy vertex 6 is added splitting the edge
(1, 4) in the original graph (see Figure 5.1a). Now, embedding the edges (2, 6) and
(6, 3) will result in a correct planar graph containing all edges, as seen in Figure 5.1b.
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(a) A planar graph with its faces
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(b) The dual graph

Figure 5.2: The planarization algorithm requires the construction of the dual graph
for every inserted edge. The shortest path in the dual graph corresponds
to the embedding path with the least edge crossings.
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6 Orthogonalization

The �rst phase in the layouter has de�ned the topology of the input graph, meaning
that the graph has a �xed order of edges on every vertex. Now the second phase
will de�ne the shape of the graph. In other words, it computes an orthogonal repre-

sentation, which de�nes the number and order of bend points on every edge and the
angles (in multiples of 90◦) the edges form at these bend points and at the vertices.
The basic algorithm to �nd an orthogonal representation with a minimum number
of bend points has been developed in 1987 by Roberto Tamassia [24]. Unfortunately,
this algorithm is limited to graphs with a maximal vertex degree of 4, since it places
the vertices of the graph on a 2-dimensional grid. Since this is usually not very useful
in practice, several alternative approaches have been introduced to extend the basic
algorithm and allow the orthogonalization of graphs containing vertices of higher
degree. The Giotto approach [26], for instance, allows vertices to occupy multiple
points in the grid. This requires them to be larger, making this approach simple
to implement but problematic if used with graphs that contain size constraints on
vertices. Another approach is the Kandinsky orthogonalization [7], which allows
edges to leave the grid while remaining vertical or horizontal. This way, the edges
can be put closer to each other on the surface of a vertex. Another approach is the
Quod orthogonalization [15]. It stands for quasi-orthogonal, as it allows the edges to
leave the orthogonal grid and become diagonal. Figure 6.1, taken from the paper by
Gunnar Klau and Petra Mutzel [15], shows a comparison of the di�erent approaches
on high-degree vertices.

(a) Giotto (b) Kandinsky (c) Quod

Figure 6.1: While the Giotto approach resizes high-degree vertices, the Kandinsky

approach packs edge segments together and the Quod approach allows
edge segments to leave the grid.
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(b) The network arcs in AF

Figure 6.2: The bend-minimizing algorithm reduces the problem to a minimum cost
�ow problem in a �ow network. The network contains vertices for every
face and vertex in the graph, and arcs for vertices (red) and faces (green)
adjacent to each face.

6.1 Bend minimization for 4-planar graphs

This section will �rst detail on the original bend-minimizing algorithm by Tamassia
[24], which is limited to 4-planar graphs, i. e. planar graphs with a maximal vertex
degree of 4. It reduces the bend minimization problem to a �ow network. This �ow
network is constructed according to the following rules:
The set of nodes in the network consists of two node sets U = UF ∪UV . The set UV
contains a source with a �ow supply value of 4 for every vertex in the input graph.
The set UF on the other hand contains a sink node for every face in the input graph,
with a �ow demand value of 4− 2 ∗ δ, where δ is the number of vertices on the face.
In the special case of the external face, the demand value is 4− 2 ∗ δ − 8 instead.
The set of arcs in the �ow network also consists of two arc sets A = AF ∪ AV . The
set AV contains an arc from every node in v ∈ UV to a node in w ∈ UF , where the
vertex corresponding to v is adjacent to the face corresponding to w. The arcs in this
set have a lower bound of 1, a capacity of 4 and a cost of 0 and their construction is
visualized in Figure 6.2a. The second set AF contains an arc from every node v ∈ UF
to another node w ∈ UF , where the faces corresponding to v and w are adjacent.
These faces can be equal, if they contain a bridge. The arcs in this set have a lower
bound of 0, unlimited capacity and a cost of 1 and Figure 6.2b shows the network
with only this second arc set.
After the network is constructed according to these rules, every feasible �ow in it
encodes a valid orthogonal representation of the input graph. If the minimum cost
�ow problem is solved for the network, the resulting �ow encodes the orthogonal
representation with a minimum number of bend points. A possible algorithm to
solve the minimum cost �ow problem is described by Tamassia in [8].
Since every arc in AV leads from a node representing a vertex v to a node representing
a face f in the input graph, the �ow in these arcs represent the sum of angles the
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6.2 Giotto Orthogonalization

face f forms at vertex v in multiples of 90◦. A face can form multiple angles in a
vertex if it contains a bridge. Every arc in AF connects two nodes representing faces
f and g in the input graph, and every unit of �ow in these arcs represents a bend of
90◦ in f , or a bend of 270◦ in g. These bends are part of the edge dividing f and g.
Computing this information allows the construction of an orthogonal representation
of the input graph. A drawing based on the orthogonal representation that would
result from this algorithm can be seen in Figure 6.3b.
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(b) A possible orthogonal drawing of the
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Figure 6.3: The orthogonalization algorithm computes the number of bend points
along each edge and the angles formed by edges in vertices and bend
points.

6.2 Giotto Orthogonalization

The �rst and simplest approach to handle vertices with a degree higher than 4 by the
orthogonalization algorithm is known as the Giotto approach. It was presented to-
gether with the bend minimizing algorithm from Section 6.1 [24]. It simply replaces
every vertex of high degree in the graph with multiple vertices, each connected to
some of the edges of the original vertex. An example transformation is shown in Fig-
ure 6.4. The resulting graph can be orthogonalized with the original bend-minimizing
algorithm, with the additional restriction that all vertices replacing the same origi-
nal vertex have to form a rectangle in the orthogonal representation. After replacing
these vertices with the original, the vertex will occupy multiple point on the grid,
therefore resizing it. Hence, the approach is usually avoided if the vertices of the
input graph have a restricted or �xed size (e. g. in UML class diagrams).

6.3 Quod Orthogonalization

TheQuod orthogonalization approach provides an algorithm to handle vertices with a
degree higher than 4 in a quasi-orthogonal layout. The approach has been introduced
by Gunnar W. Klau and Petra Mutzel in 1998 [15]. Its basic idea is to replace every
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V

(a) A high-degree vertex

V V V1 2 3

(b) The split vertex

Figure 6.4: The Giotto approach splits Vertices of high degree.

vertex in the graph with a higher degree with a cage. A cage consists of a ring
of vertices forming a face, which represents the original node. The ring contains a
vertex for every edge adjacent to the original vertex. Every vertex is connected to a
vertex in the graph with this edge and to the two neighboring vertices in the ring.
Since the vertex with a high degree is removed from the graph and every additional
vertex has a degree of exactly 3, the resulting graph has a vertex degree of at most
4. Figure 6.5 shows how a cage would replace a high degree vertex. After the graph
is reduced to have a vertex degree of at most 4, the bend minimization algorithm
described in Section 6.1 can be used to build an orthogonal representation. The only
additional restriction on the algorithm is that every cage has to form a rectangle on
the grid. After the orthogonalization algorithm is done, the cages have to be replaced
by the original vertices. Unlike the Giotto approach, the vertices do not have to be
resized. Instead, the edges are allowed to leave the grid in the segment between their
endpoint at the cage vertex and the endpoint at the actual vertex. This results in
diagonal edge segments close to high-degree vertices.

V

(a) A high-degree vertex

V

(b) A cage replacing the vertex

Figure 6.5: The Quod approach replaces vertices of high degree with cages.
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7 Compaction

The last phase in the topology-shape-metrics approach is themetrics phase. This last
step will �nally result in a proper drawing of the input graph, by calculating actual
coordinates to vertices and bend points in the graph. Since the basic graph structure,
including all angles and bend points, have already been computed in previous phases,
all that is left to do now is computing the length of the edge segments, or the distance
between the vertices and bend points. The algorithms used in this compaction step
should also minimize the graph size in some way. While some algorithms focus
on minimizing the required drawing area, other algorithms minimize the average
or the maximum edge (segment) length. There exist many di�erent approaches on
compaction algorithms [24] [16] [23], but the one detailed in this chapter will be the
approach by Roberto Tamassia that was introduced together with his approach on
orthogonalization in 1987 [24].
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(a) Drawing of a graph with a regular or-
thogonal representation
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(b) A derived simple orthogonal represen-
tation of the graph

Figure 7.1: Every orthogonal representation can be reduced to a simple orthogonal
representation by adding virtual vertices and edges.

7.1 Simple Orthogonal Representations

Many approaches on compaction require in their �rst step to reduce the orthogonal
representation H of the graph to a simple orthogonal representation H ′. An orthog-
onal representation H ′ is called simple or re�ned if all the faces in the graph are
de�ned as rectangles by H ′. To acquire a simple orthogonal representation H ′ from
H, additional virtual vertices replace every bend point in H. Then the rectangular
parts in the faces have to be separated by virtual edges. To do this for a face f ,

29



7 Compaction

the circular bend string representing the face is built from H. As a reminder, the
orthogonal representation assigns a string of angles, as well as the angle formed with
the next edge, to every edge surrounding the face f in the graph. To get the bend
string for the total face, the strings for the edges are appended in clockwise order. In
between these strings, an additional angle is added for the vertex between the edges.
This additional bend is a right bend for 90◦ angles, a left bend for 270◦ angles or
two left bends for 360◦ angles. 180◦ angles are ignored, as they don't contribute to
the shape of the face.
After the bend string representing the face is built, the face is reduced to rectangles
by replacing every occurrence of left-right-right with a right. The resulting bend
string contains either only four right bends, or no consecutive right bends at all if
it encodes the external face. A simple orthogonal representation derived from the
orthogonal representation of an example graph is shown in Figure 7.1. It visualizes
where virtual vertices and edges have been added to reduce all faces to a rectangular
shape.
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(a) The �ow network for horizontal mini-
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(b) The �ow network for vertical mini-
mization

Figure 7.2: To minimize the edge length in a graph, two separate �ow networks are
constructed. One network minimizes the length of vertical edge segments
(red) and the other minimizes the length of horizontal edge segments
(green).

7.2 Giotto Compaction

A simple and easy to implement compaction algorithm is introduced by Roberto
Tamassia, along with the orthogonalization algorithm presented in Section 6.1 [24]. It
reduces the edge minimization problem to a one-dimensional problem, i. e. the length
of the horizontal and the length of the vertical edges are minimized independently.
This is in general not an optimal approach, since if edge length in one dimension are
minimized �rst, they can block further minimization in the other dimension and vice
versa. For example in Figure 7.3, no further minimization of either the horizontal or
vertical edge segments is possible, but the edge lengths are not minimized.
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7.2 Giotto Compaction

Figure 7.3: The compaction algorithm cannot minimize the vertical or horizontal
edge segments any further, but the edge lengths are not yet optimal.

The algorithm �rst requires reduction of the the orthogonal representation to a simple
orthogonal representation as detailed in Section 7.1. It then creates two �ow networks
to solve the problem: One for the horizontal edge segments and one for the vertical
edge segments. These �ow networks contain a node for each face in the orthogonal
representation. The �rst network contains an arc for each horizontal edge segment
dividing two faces in the graph, the second network contains an arc for each vertical
edge segment. All arcs have a lower bound and cost of 1. Figure 7.2 shows the two
networks for the example graph. The network in Figure 7.2a minimizes the vertical
edge segment lengths, and the network in Figure 7.2b minimizes the horizontal ones.
Solving the minimum cost �ow problem in these networks will result in a graph
drawing with minimal edge length. A �nal orthogonal drawing of the example graph
is shown in Figure 7.4.
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Figure 7.4: A �nal orthogonal drawing of the example graph
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8 Conclusion and Future Work

The layout algorithm based on the topology-shape-metrics approach presented in this
thesis provides a fully orthogonal layout with minimized number of edge crossing and
bend points. It also provides a modular frame for implementing algorithms of its
three phases. The algorithms implemented in the context of the bachelor project
build up to a working, yet very simple graph layouter. There is still a lot of work left
for a fast and useful graph layout. While the algorithms used for planarity testing
are state-of-the-art, there is still place for improvements in all the other phases.
The planarization phase, for instance, could be enhanced to �nd better planar rep-
resentations through the use of SPQR-Trees [9]. The orthogonalization phase is
missing algorithms that handle high-degree vertices correctly. Here an assortment of
approaches (e. g. the Giotto [26], Quod [15] and Kandinski [7] approach) would pro-
vide the user some choices over the resulting layout. There are also more advanced
algorithms for compaction, some of which take prede�ned vertex sizes into account
and some of which doesn't [24, 16, 23, 5, 17].
It would also be a nice addition to add an option for the layout of k-gonal graphs
(as opposed to orthogonal graphs). While an orthogonal graph drawing is embed-
ded in a grid with at most 4 edges per grid point and angles in multiples of 90◦, a
k-gonal graph drawing has k edges on a grid point, and all the angles are multiples
of 360◦/k. A 3-gonal graph, for instance, would result in triangular structures, and
6-gonal graph drawings would contain comb-shaped elements. Approaches for such
k-gonal graph drawings are already present in the basic literature [24, 14].
Another possible enhancement is to allow compound vertices (i. e. vertices that con-
tain other graphs), and especially edges that connect vertices in di�erent graphs (e. g.
a vertex in a graph connected to a vertex in a compound vertex). Also, most algo-
rithms in the project need to be modi�ed or even replaced if embedding constraints
should be allowed [11, 6]. Such embedding constraints could include for example a
prede�ned order of edges on speci�c vertices.
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