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Abstract

Modeling is an important part of software engineering, but it is also used in many
other areas of application. In that context the arrangement of diagram elements by
hand is not efficient. Thus, layout algorithms are used to create or rearrange the
diagram elements automatically in order to free users from this. However, different
types of diagrams require different types of layout algorithms.

Planarity and orthogonality are well-known drawing conventions for many
domains such as UML class diagrams, circuit schemata or entity-relationship models.
One approach to arrange such diagrams is considered by Roberto Tamassia and
is called Topology-Shape-Metrics approach, which minimizes edge crossings and
generates compact orthogonal grid drawings. This basic approach works with
three phases: the planarization, the orthogonalization, and the compaction. The
implementation of these phases are considered in this thesis in detail with respect
to a generic, extensible architecture, such that every phase can be exchanged
with different alternatives. This leads to a considerable amount of flexibility
and expandability. Special handling of high-degree nodes has been implemented
based on this architecture. Moreover, approach and implementation proposals
for interactive planarization and for handling edge labels, hypergraphs and port
constraints are presented.
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Chapter 1

Introduction

“The usefulness of a drawing of a graph depends on its readability that
is, the capability of conveying the meaning of the graph quickly and
clearly.” Roberto Tamassia [Di +99].

Computer systems as well as the hard- and software development usually consist
of large complex conceptual structures. In many cases, people that hold different
experiences and knowledge backgrounds are involved in these processes. Thus, the
design of such structures needs to be comprehensible to let all participants work in
the same, desired direction.

Frequently, graphical representations are used to model relations in such areas
of application. Especially graphs are used to represent relations between different
objects in diagrams. Examples of such representations are circuit schematics, state
diagrams, and database dependencies for application developers.

A readable drawing is important. Figure 1.1 shows the same diagram with
different layouts. The first one in Figure 1.1a is hard to read because of the many
edge crossings, though it is in compact shape. A force-based layout algorithm is
applied to the drawing with the result that no crossings remain (see Figure 1.1b).
The relations between the elements of the drawing are much clearer, but they need
more drawing space. Usually these diagrams are two-dimensional, and they can
become large quite fast. The manual maintenance and manual expansion of such
diagrams is expensive, hence tools that are able to do the layout automatically are
desired.

Different types of drawings require different types of layout algorithms. Each
layout algorithm provides different aesthetics criteria. There are general criteria
such as edge crossings and total edge lengths, and there are criteria that depend
on the user preference and the use case. In this thesis, the considered layout
algorithm provides orthogonal graph drawings. Orthogonality is ensured if all
the segments of the edges in a graph are drawn horizontally or vertically. These
types of drawings are widely used in circuit schematics and in software diagrams

1



1. Introduction

a. Result of a database query.

b. Same drawing with force-based layout.

Figure 1.1. Different layouts for the same diagram [Mut05].
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Figure 1.2. Entity-relationship diagram.

like the Unified Modeling Language (UML) class diagrams or entity-relationship
models. Figure 1.2 shows an orthogonal drawing of an entity-relationship model.
Every edge segment is bounded by a bend or an endpoint.

Orthogonal drawings can be realized with a basic layout algorithm, namely
the Topology-Shape-Metrics (TSM) approach. Roberto Tamassia introduced this
algorithm in 1987 [Tam87]. Its task is to compute compact orthogonal grid drawings
with few edge crossings and a few number of edge bends.

To do that, firstly, the algorithm calculates a planar embedding of an input
graph. If no planar embedding exists dummy nodes are introduced to obtain
one. Then, the algorithm computes a bend-minimal and compact orthogonal
grid drawing with respect to the input embedding. If it is allowed to change
the embedding of the input graph, the problem becomes NP-hard [GT02]. The
approach is divided into three parts, namely planarization, orthogonalization, and
compaction. This allows a good exchangeability and expandability.

The completion of the implementation of that algorithm in a modeling tool as
well as the consideration of extensions are the main contributions of this thesis.

3



1. Introduction

1.1 Related Work

Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is an academi-
cal research project that improves the graphical model-based design of complex
systems with automatic layout [Fuh11]. Miro Spönemann et al. created a framework
for the integration of different layout algorithms to support automatic layout for
the diagrams modeled in KIELER [SFH09; Fuh+10].

Claußen, Döhring, and Kutschmar worked at the implementation of the TSM

algorithm in 2010 [Cla10; Döh10; Kut10]. They realized the planarization part of the
algorithm including two different planarity testing techniques. Moreover, Claußen
implemented most parts of the orthogonalization phase of the TSM approach. In
that context, the authors implemented various shortest path finding algorithms
and the creation of flow networks together with a method to solve the minimum
cost flow problem. Thus, they created some important foundations for this thesis.

Other related works are documents and workgroups that consider the TSM

approach. Basics of orthogonal drawing and the TSM algorithm can be found in var-
ious publications of Tamassia et al. [TDBB88; Di +94; Di +99]. Besides these papers
the institutes Technische Universität Dortmund, the Friedrich-Schiller-University
Jena, the University of Cologne, the University of Sydney, and oreas GmbH de-
veloped and still support the Open Graph Drawing Framework (OGDF)1, which
provides several layout algorithms. In particular, the TSM algorithm as well as a
lot of extensions and variations of that are part of its library. Many ideas of their
approaches were used in this thesis [Chi+07; GM04; JLM98; Ker07; KM98; MM96].
The OGDF provides a wide range of planarization algorithms. Their algorithms are
suitable and efficient in generating and arrangement layouts. Thus, the following
question comes up: Why implement an own TSM algorithm? Even if the framework
is open, the algorithms of OGDF are written in C++, so that their source-code could
not be integrated in the KIELER Layout Algorithms (KLay) which is a Java-based
project. The goal is to research new variants and extensions of the different parts of
the generic TSM approach. Hence, a new Java-based implementation is essential.

Eiglsperger et al. considered in 2003 the TSM approach with respect to different
layout approaches of UML diagrams [EKS03]. In that context he considered mixed
upward planarization to allow directed edges in the diagrams. Chimani, Gutwenger,
Mutzel, and Wong et al. investigated upward planarization in 2008 as well [Chi+10].
Their approach produces much better results for upward crossing minimization.

1http://www.ogdf.net/
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1.2. Contributions

1.2 Contributions

The focus of this work lies on the embedding of the existing parts of the TSM

algorithm into a generic architecture and on the completion of the implementation
of the algorithm as well as the evaluation and partial implementation of possible
extensions.

In that context some changes are done to extend the implementation of the
existing planarization and orthogonalization. Additionally, the implementation for
finding a suitable external face was considered.

The compaction with all its intermediate processors was implemented to fi-
nalize the whole algorithm in order to layout first diagrams. In that context, the
compaction phase itself was created. It consists of the creation of a flow network
and its solution in order to achieve small edge lengths. Moreover, the technique for
the creation of grids and the mapping of the graph elements on these grids were
implemented.

An extension of the compaction was the realization of more general input
graphs, especially graphs that are not in rectangular shape. A mechanism was
introduced that adjusts input graphs with dummy nodes to be in rectangular face.
Secondly, a process was considered that subdivides edges with bends into edges
with dummy nodes at the positions of the bends. Furthermore, a method was
implemented to remove all dummies of the graph correctly in order to ensure the
graph represents its original.

In addition, the algorithms were extended to allow cutedges and cutvertices.
Furthermore, methods to allow graphs with high-degree nodes are evaluated and
two of them are implemented, namely the Giotto approach and the Quod approach.
Additional possible extensions of that algorithm were evaluated like interactive
planarization and planar drawing alternatives. Besides all that, the handling of
directed edges, port-constraints and edge labels are considered. Implementation
ideas for handling self-loops and multi-edges were investigated.

1.3 Overview

In Chapter 2 basics of graph theory are presented. Furthermore, flow networks
are described as well as graph drawing conventions. Different aesthetics criteria
of drawings are considered, and the TSM layout approach is presented. The
implementation of that algorithm is embedded in the research project KIELER.

5



1. Introduction

Finally, the general architecture of the layout algorithms implemented in KIELER is
presented.

Afterwards the three parts of the TSM algorithm are considered. Firstly, the
planarization is presented in Chapter 3. In that context, the planarity testing
and the additional edge insertion phase are described. Chapter 4 forms the
orthogonalization. Here, Tamassia’s algorithm for setting angle- and bend-data to
the graph is considered. In that process the creation of a flow network in the context
of orthogonalization and its solution is presented. Finally, the step to calculate the
external face of the input graph is discussed.

Chapter 5 considers among others the main contributions of the this thesis.
First the compaction phase itself is discussed. The creation and the solving of flow
networks to minimize the lengths of the graph edges are considered. Additionally,
a lot of steps around that phase to allow more general input graphs are discussed.
A part of these steps is to bring the input graph in rectangular shape. In that
process the general method to transform the internal and external faces of a graph
in rectangular shape is investigated. Moreover, the implementation of that method
is presented. Additionally, the special case for handling cutvertices and cutedges is
presented. After the compaction phase has calculated the relative edge length the
technique for adding graph nodes on positions into a grid is shown. Afterwards
the removal of the different dummies of the graph is discussed.

The second main chapter forms Chapter 6, which includes the evaluation and
the presentation of the implementation of some extensions. Especially the eval-
uation and implementation of the Giotto approach and the Quod approach to
allow graphs with higher degree than four are described. Besides that approach,
some methods to draw planar graphs are presented, and the possible realization
of the interactive planarization in the implemented algorithm is shown. Further-
more, the finding of an optimal embedding to let the external face be suited is
presented. Some additional desired extensions are hyperedges, edge labels and
port-constraints which are considered as well. Additionally, the possible imple-
mentation of some smaller basic extensions are discussed, such as multi-edges and
self-loops.

Finally, a conclusion is given in Chapter 7 to complete the thesis. In that process
an evaluation of the different layout algorithms of KLay is presented.

6



Chapter 2

Preliminaries

This chapter considers definitions to set the base for the graph drawing environ-
ment. The essentials are introduced here bases mainly on [Di +99] and [KW01].
Furthermore, flow networks are introduced. Then, aesthetics criteria of graph
drawing are presented, and the TSM approach is discussed. Moreover, the KIELER

as a platform for implementing and testing layout algorithms is introduced, which
includes an implementation of the TSM algorithm. This chapter ends with the
description of the generic architecture for the different layout algorithms used in
KIELER with special focus on the TSM algorithm.

2.1 Basics of Graph Drawing

Definition 2.1 (Graph, Subgraph). A graph G = (V, E) consists of a finite set of
vertices V and a finite set of edges E. An edge e P E with e = (v, w) represents a pair
of nodes where v, w P V. e is a denoted as a self-loop if v = w. A graph G1 = (V1, E1)
is a subgraph of G if V1 Ď V and E1 Ď E.

Definition 2.2 (Degree). The degree of a vertex v, called deg(v), is the number of
edges incident to the vertex. Self-loops count twice.

Definition 2.3 (Directed, Undirected). A graph is directed if all pairs of E are
ordered. v is called source and w is called target of a directed edge (v, w). If all
edges are unordered the graph is called undirected. A mixed graph contains directed
and undirected edges.

Definition 2.4 (Completeness). An undirected graph G is complete if every pair of
its distinct vertices is connected by an unique edge.

Definition 2.5 (Bipartiteness). A graph is a bipartite if its vertices can be divided
into two disjoint sets U and V such that every edge connects a vertex in U to one
in V; that is, U and V are each independent sets.

7



2. Preliminaries

v0 v1

v2 v3

v4

e0

e1

e2

e4

e6

e3

e5

Figure 2.1. Directed graph with self-loop.

Definition 2.6 (Drawing). A drawing Γ of a graph G is a mapping of each vertex v
to a distinct point Γ(v) and each edge (v, w) to a simple open Jordan curve with
endpoints Γ(v) and Γ(w). A directed edge is often drawn with an arrow.

Figure 2.1 shows a drawing of a directed graph G = (V, E) with the described
definitions where V = {v0, v1, v2, v3, v4}, E = {e0, e1, e2, e3, e4}. For example, v0 is
source and v1 is target of e1. e0 = (v0, v0) is a self-loop on v0 and e. g., deg(v0) = 4
and deg(v1) = 3.

Definition 2.7 (Path). A (directed) path in a (directed) graph G = (V, E) is a
sequence (v0, v1, ..., vn) of distinct vertices of G with (vi, vi+1) P E for i P 0, . . . , n´ 1.
A path is a (directed) cycle if (vn, v1) P E. A directed graph is acyclic if it has no
directed cycles.

v w
e

a. Simply connected edge.

v s w
e1 e2

b. Subdivision of the edge of Figure 2.2a.

Figure 2.2. Subdivision example.

In the following, an important term of the context of this thesis is introduced,
the planarity.

Definition 2.8 (Planarity). A drawing Γ is planar if no two distinct edges cross. A
graph is planar if there is a planar drawing of G.

8



2.1. Basics of Graph Drawing

A graph is called to be maximal planar if it is planar but adding any edge
would destroy that property.

Definition 2.9 (Subdivision). A subdivision of a graph G is a graph resulting from
the subdivision of edges in G. The subdivision of an edge e = (v, w) yields a graph
containing one new vertex s with a set of edges replacing e with two new edges,
e1 = (v, s) and e2 = (s, w).

Figure 2.2 illustrates an example for a subdivision. The edge e = (v, w) can be
subdivided into two edges, e1 = (v, s) and e2 = (s, w), connecting to a new vertex
s.

a. Drawing of K5.

0 1 2

3 4 5

b. Drawing of K3,3.

Figure 2.3. Drawings of the smallest non-planar graphs.

Figure 2.3 shows drawings of two special graphs, the K5 and the K3,3. K5 is a
complete graph with 5 vertices. K3,3 is a complete bipartite graph, which is divided
into two sets. Each set consists of three elements. Both graphs are not planar, since
there is no representation of that graph that is planar. They are even the smallest
graphs that are not planar.

Theorem 2.10 (Kuratowski1). A finite graph is planar if and only if it does not contain a
subgraph that is a subdivision of K5 and K3,3.

Definition 2.11 (Embedding, Equivalent). A (planar) embedding of G is an equiva-
lence class of drawings that is defined by the circular order of the adjacent edges
of each vertex v of a graph. If each vertex v of G has drawings with same circular
sequence of adjacent edges around v for two (planar) embeddings, they are called
to be equivalent.

9
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34
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a. Non-planar drawing.

0 1

2

34

5

b. Planar drawing of Fig-
ure 2.4a with another embed-
ding.

0 1

2

34

5

0

2

1

4

3

c. The dual graph of the
drawing of Figure 2.4b.

Figure 2.4. Different representations of a graph.

An embedded planar graph is usually called plane graph. Figure 2.4a and
Figure 2.4b present two different drawings for the same graph. The drawing of
Figure 2.4a is not planar since the edges (0, 1) and (2, 5) cross. Changing the
embedding of that graph leads to a planar drawing as shown in Figure 2.4b. The
example graph is planar since there is at least one planar drawing.

Definition 2.12 (Face). A planar drawing partitions the plane into regions called
faces. The unbounded face is called external face.

Definition 2.13 (Dual Graph). The dual graph G‹ of an embedding of a planar graph
G has a vertex for each face of G and an edge ( f , g) connecting every two faces f
and g that are adjacent by an edge in G.

Figure 2.4c shows the planar drawing of Figure 2.4b and its dual graph. The
five faces of the original plane are the vertices of G‹ that are connected with dashed
lines. A graph can be divided into different levels of connectivity.

Definition 2.14 (Connectivity). A graph is connected if there is a path between
every vertex in that graph. A cutvertex is a node that divides the graph into two
components if it is removed. A biconnected graph contains no cutvertices.

1http://en.wikipedia.org/wiki/Planar_graph
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a. Upward planar drawing.

0

21

43

5

b. Upward non-planar draw-
ing.

0

21

43

5

c. Non-upward planar draw-
ing.

Figure 2.5. Different drawings illustrating upward planarity.

Definition 2.15 (ST-Graph). A st-graph is an acyclic directed graph with a single
source s and a single sink t with following properties:

Ź Given a topological numbering of G, every directed path of G visits vertices
with increasing numbers.

Ź For every vertex v of G, there is a simple directed path from s to t containing v.

Definition 2.16 (Planar ST-Graph). A planar st-graph is a st-graph which is planar
and embedded with vertices s and t on the boundary of the external face.

Definition 2.17 ((Mixed) Upward Drawing). A drawing of a directed / mixed
graph is called (mixed) upward drawing if each (directed) edge is represented by a
curve monotonically increasing in the vertical direction.

Definition 2.18 ((Mixed) Upward Planarity). A (mixed) upward planar drawing of
a mixed / directed graph is a (mixed) upward drawing with no edge crossing.
A graph G is called (mixed) upward planar if it has a planar (mixed) upward
drawing.

Figure 2.5 shows different drawings to make the definition of the upward
planarity clearer. Figure 2.5a illustrates a drawing that is upward planar, while
Figure 2.5b is not planar since the edges (1, 4) and (2, 3) cross. This drawing can
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2. Preliminaries

be adjusted to be planar as seen in Figure 2.5c, but then it looses the upwardness
property.

2.1.1 Flow Networks

In the following, the flow network is introduced. It leads to the minimum cost flow
problem that is needed in the context of the orthogonalization and the compaction.
A complete overview about network flows and especially solving minimum cost
flow problems is presented by Ahuja et al. [AMO93].

Definition 2.19 (Flow Network). A flow network N = (N, A) is a directed graph.

Ź Each source node has a production and respectively each sink node has a consump-
tion.

Ź The sum of produced and consumed units of every node in the whole drawing
is equal.

Ź An arc (v, w) contains the following properties:

1. A lower bound bvw P R.

2. A capacity uvw P R.

3. A cost cvw P R.

For a better distinction to the original graph G we call vertices of N nodes and
edges of N arcs.

Definition 2.20 (Feasible Flow). A feasible flow x is a function x : A Ñ R with
following properties:

Ź Capacity: bvw ď xvw ď uvw @(v, w) P A

Ź Mass balance: b(v) = ∑w:(v,w)PA xvw ´∑w:(w,v)PA xwv @v P N

Each node of v P N is associated with a number b(v) denoted supply value, such
that

Ź if b(v) ą 0 Ñ v is a supply node,

Ź if b(v) = 0 Ñ v is a transport node, and

Ź if b(v) ă 0 Ñ v is a demand node.

12



2.1. Basics of Graph Drawing

The first property of the feasible flow definition states that the flow of an edge
(v, w) cannot be less than the lower bound and cannot top the capacity border uvw.
The second property states that the subtraction of the total supply of a node minus
the total demand of the node is b(v) (supply / transport / demand value) of this
node. For each non-source node and non-target node the amounts of the flow of
the incoming arcs and of the outgoing arcs have to be equal (flow conservation).

Next, the minimum cost flow problem is introduced. Such a calculation is one
of the fundamental problems in the network flow theory and has been studied
extensively in the past.

Definition 2.21. The cost of flow x in N is defined as c(x) = ∑(v,w)PA cvw ¨ xvw.

Definition 2.22 (Minimum Cost Flow Problem). Minimize c(x) for a given flow
network N with source s P N and target t P N, with required flow d such that the
following constraints are satisfied:

Ź Capacity constraints: xvw ď uvw

Ź Required flow: ∑(v,w)PA xvw = d

Ź Skew symmetry: xvw = ´xwv

Ź Flow conservation: ∑(v,w)PA xvw = 0, with v ‰ s and w ‰ t

To work with minimum cost flow one has to assume that every node is reachable
by another node and that there is at least one solution of the Minimum Cost
Flow (MCF) problem.

2.1.2 Drawing Conventions

As seen above, a graph can be drawn in many different ways. Thus, the concept
of drawing conventions is introduced which defines basic rules for drawings that
have to be satisfied to be admissible [Di +99].

Ź Polyline Drawing: Each edge is drawn as a polygonal chain.

Ź Straight-line Drawing: Edges are drawn as straight line connections between two
vertices.

13
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a. Polyline drawing. b. Straight-line drawing.

c. Orthogonal drawing. d. Grid drawing.

Figure 2.6. Different drawings showing drawing conventions.

Ź Orthogonal Drawing: Edges are polygonal chains that only consists of horizontal
and vertical segments. A segment is bounded by a vertex or a bend of that edge.

Ź Grid Drawing: Each vertex, bend, and crossing of the graph get an integer
coordinate on a grid.

14



2.1. Basics of Graph Drawing

2.1.3 Aesthetics Criteria

A good layout can be a picture worth a thousand words; a poor layout can confuse
or mislead. Graphs are used to represent information and structure in various
areas of the software engineering. To achieve the readability of the information
presented, properties of a drawing are specified, the so called aesthetics criteria [Di
+99].

Ź Minimization of edge crossings; Ideally, there is a planar drawing so that there is no
edge crossing, but not every graph admits one. If there is no planar embedding
the goal is to find a drawing with a minimal total number of crossings between
edges.

Ź Minimization of the drawing area; It is essential in practical visualization systems
to save screen space. Furthermore, it is relevant if one cannot arbitrarily scale
the graph down.

Ź Minimization of the edge length; This criterion is divided into three similar mini-
mization concepts:

1. Total edge length: Minimize the sum of the edge lengths.

2. Maximum edge length: Minimize the maximum edge lengths.

3. Uniform edge length: Minimize the variance of the edge lengths.

Ź Minimization of the bend number; This criterion contains three concepts likewise
the criterion for the edge length:

1. Total bend number: Minimize the total number of bends along the edges.

2. Maximum bend number: Minimize the maximum number of bends on an edge.

3. Uniform bend number: Minimize the variance of the number of bends on an
edge.

Ź Minimization of the aspect ratio; Aspect ratio is defined as the ratio of the length of
the longest side to the length of the shortest side of the smallest rectangle with
horizontal and vertical side covering the drawing. Drawings with high aspect
ratio may not be conveniently placed on a screen, even if it has small area.

In the following, the TSM approach after Tamassia is described. This algorithm is
suited for orthogonal grid drawings and hence useful in industrial plans like data
flow modelings or in UML class diagrams.
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2. Preliminaries

2.2 Topology-Shape-Metrics Approach

Roberto Tamassia et al. introduced the TSM algorithm first in 1987 and in 1988,
respectively [Tam87; TDBB88]. The idea behind that approach is that an orthogonal
drawing can be described by three properties, defined in the terms topology, shape
and metrics that are used as follows [Di +99]:

Ź Topology: Two orthogonal drawings are topologically equal if one can be obtained
from the other by continuous deformation that does not alter the sequence of
edges contouring the faces of the drawing.

Ź Shape: Two orthogonal drawings have the same shape if, firstly, they have the
same topology and secondly, one can be obtained from the other by modifying
only the length of edges without changing their angles.

Ź Metrics: Two orthogonal drawings have the same metrics if they are congruent,
up to a translation and/or rotation.

According to these three properties the TSM algorithm is divided into the following
three steps:

1. Planarization: This step determines the topology of the drawing which is de-
scribed by a planar embedding. This step reduces the number of edge crossings
as much as possible. One way is to find an embedding that is planar, if there is
one. Otherwise, a maximal planar subgraph is built and all violating edges are
removed, such that the result is planar. In a second step these violating edges
are added to the graph again by inserting one dummy vertex for each edge
crossing.

2. Orthogonalization: This step determines the shape of the plane by calculating
the angles and the bends in the drawing. The goal of this step is to minimize
the number of bends without changing the topology. This is done by creating a
network flow model that has to be minimized to get the angles of edges around
a node and the correct placement of bend-points.

3. Compaction: Final coordinates of the vertices and edge bends are determined,
and additionally, the previously added dummies are removed. In this step the
main goal is to minimize the drawing area, by minimizing the length of the
edges.
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Figure 2.7. Steps of the TSM approach.

The result of processing these three steps on a graph is an orthogonal shape
with few edge crossings and with small edge length respectively small area space.
Figure 2.7 shows the results of every step of the algorithm with an example. The
considered example is the K3,3 graph of Figure 2.3b that can not be drawn planar,
and its concrete structure is ({0, 1, 2, 3, 4, 5}, {(0, 1), (0, 3), (0, 5), (1, 2), (1, 4), (2, 3),
(2, 5), (3, 4), (4, 5)}). In the first phase a maximal planar subgraph is calculated, and
the remaining violating edges are removed, here edge (1, 4). In a second phase, still
part of the planarization, a dummy node is inserted at the place the edges would
cross, and the removed violating edges are inserted again, such that the crossing
edge (0, 5) and the violating edge (1, 4) are connected to the new dummy node.
The result is a planar embedding of the original graph which contains dummy
nodes that avoid edge crossings, see Figure 2.7a.

Such a plane is needed to process the orthogonalization phase. The result of this
phase is presented in Figure 2.7b, that is a representation with angle-data around a
node and minimum bend-data for each edge. Orthogonality is ensured because
only multiples of 90˝ are assigned as angles and each edge consists of segments
that are only horizontal or vertical. The resulting representation contains no real
coordinates, it defines only the shape.
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In order to set such coordinates to the graph elements the final compaction
phase is used. This phase makes the drawing as compact as possible by minimizing
the edge length. Additionally, the planar dummy nodes are removed and the edges
are connected with their original source and original target nodes. The result,
shown in Figure 2.7c, is an orthogonal and compact drawing of the given graph
with few edge crossings.

The order of the steps taken represent an order of importance of aesthetics
criteria as well. The planarization is the first step, such that the edge crossing
minimization is the most important criterion. Then minimizing the number of
bends with the orthogonalization is the second most important criterion, and
least important is the minimization of the drawing area that is determined by
the compaction. The result is that each phase affects the aesthetics criteria of its
successor phase.

In addition, a drawing could consists of less bend-points if the orthogonalization
would be processed first, and respectively, a drawing could be drawn with less
space if the compaction would be processed before. Such a phase swapping is not
possible, since each successor step requires the changed graph structure as input,
as done by the preceding step. Without the preceding steps each phase would form
a NP-hard problem.

An implementation of Tamassia’s approach is part of the layout library of the
following project.

2.3 Kiel Integrated Environment for Layout Eclipse Rich
Client

KIELER2 is an academical research project that aims to enhance the graphical model-
based design of complex systems [Fuh11]. The main idea is to consistently employ
automatic layout in all graphical components of the diagrams within the modeling
environment. This leads to new possibilities for diagram editing, browsing, and
dynamic visualizations. This project continues the Kiel Integrated Environment
for Layout (KIEL) project. While KIEL concentrates on a single modeling language,
namely Statecharts, KIELER aims to integrate different modeling languages into the
rich client platform Eclipse3. KIELER is licensed under the Eclipse Public License 4,

2http://www.informatik.uni-kiel.de/rtsys/kieler/
3http://www.eclipse.org
4http://www.eclipse.org/legal/epl-v10.html
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KIELER Infrastructure for
Meta Layout
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Glue Code

extract graph

apply layout

Diagram
Glue Code

attach layout result

transform graph

Figure 2.8. Overview of KIML structure [Fuh11].

an open source software license.

One of the main concepts of KIELER is to offer automatically generated layouts,
to support the creation and maintenance of diagrams as well as modern dynamic
visualization techniques. Thus, the user of KIELER is free from so-called enabling
steps, which are things that have to be done to prepare the model for changes
the user actually wants to make. Normally, these are things like making space
for nodes by moving nodes of the diagram around, or taking care of the edge
routing and so on. The KLay project provides Java-based implementations of layout
algorithms for the automatic layout feature that can be used with any graphical
editor. The core component of bridging the layout algorithms of KLay and graph
editors is the KIELER Infrastructure for Meta Layout (KIML). KIML provides a bridge
that puts the content of the editor in a data structure that can be understood by a
layout algorithm. A brief overview of KIML is presented in the following subsection.

2.3.1 KIELER Infrastructure for Meta Layout

Apart from layout algorithms themselves, the topic of automatic layout consists
of the problem of getting the diagram in a format understandable by the layout
algorithm and applying the resulting layout back to the diagram. KIML solves such
problems as generically as possible, such that many algorithms can be used for
many diagram editors. Furthermore, KIML allows layout algorithms to offer layout
options for the user that affect the resulting layout, for instance, setting a minimum
distance between the nodes. Figure 2.8 illustrates the structure of KIML.
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Figure 2.9. KLay architecture overview [Sch11].

A lot of existing layout algorithms are provided, libraries like Graphviz [Ell+02]
and OGDF [Chi+07]. On the other hand the library of KLay includes implementations
of own layout algorithms that are

Ź a force-based algorithm (KLay Force),

Ź a layerd-based algorithm (KLay Layered) [Spö09; Sch11; Car12], and

Ź the TSM algorithm (KLay Planar) [Kut10; Cla10]

which is considered in this thesis. The implementations of KLay base on a special
architecture that is presented in the following section.

2.4 KLay Architecture

This architecture was presented first by Christoph Daniel Schulze [Sch11] in the
KLay Layered implementation (see Figure 2.9). It is divided into main phases and
several small intermediate processors.

A phase is basically an own part of the algorithm like the orthogonalization
in the KLay Planar algorithm. There are empty slots before and after a phase that
can be filled with intermediate processors, which solve tasks for each phase like
bringing the data structure in readable form or cleaning up the data structure. This
concept provides a high degree of exchangeability and extensibility, since each
phase can be exchanged with another variant or can be extended with new features
by changing the phase itself or introducing a new intermediate processor.
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Figure 2.10. KLay Planar architecture.

In addition, the code is better readable since the complex layout algorithm is
divided into smaller parts (phases), which taken by itself are easier to understand
than the whole algorithm. Hence, the whole algorithm can be maintained easier.

2.4.1 KLay Planar Architecture

The phases and intermediate processors concept is suitable for the implementation
of the TSM algorithm because the TSM algorithm is also divided into different parts.
The planarization step consists of two parts with own context and own functionality,
building the maximal planar subgraph and the additional edge reinsertion. Both
pieces are part of the planarization algorithm itself and hence, they are handled as
phases. Additionally, the orthogonalization and the compaction form own sections
of the algorithm, thus they are both handled as single phases in the implementation.

The graph structure has to be adjusted between these phases, e. g., the faces of a
planar embedding are computed before processing the orthogonalization, or a grid
drawing can be calculated for the result of the compaction, for a more comfortable
and efficient processing on the drawing. For such tasks intermediate processors
are created and are added to the corresponding slots between the phases.

In the following chapters different phases of the TSM algorithm and intermediate
processors as well as their realizations are discussed.
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Chapter 3

Planarization

The task of planarization is to find a planar embedding of a given graph g. If
there is such a plane graph we are finished. Otherwise a planar subgraph of g is
taken. In a second step the missing, violating edges are added again to the graph
with a dummy node for every crossing such that the resulting graph is planar, but
contains some dummy nodes.

The dummy nodes do not distort the subsequent phases of the TSM algorithm
and can be kept until the compaction phase is finished. After this last phase of
the algorithm the planarization dummies are removed. Additionally, the edges are
connected back to its original vertices.

This chapter starts off with an introduction of an algorithm for planarity testing.
in addition, the strategy for inserting dummy nodes is described.

3.1 Planarity Testing

The presented technique bases on the work of Ole Claußen, who implemented
the algorithm of Boyer and Myrvold [Cla10]. This algorithm checks a graph for
planarity, and if the graph is not planar, it is able to find a planar subgraph of the
given graph in linear time to the number of vertices [BM04]. The calculated planar
representation contains a fixed order of edges on each vertex in counter-clockwise
direction and therefore defines a topology for the given graph.

The general computation of planar subgraph with minimum edge crossings is
known to be NP-hard [Yan78]. Among others, the reason is that a given graph can
have exponentially many planar embeddings. Thus, testing algorithms compute
a maximal planar subgraph, such that adding any missing edge of the subgraph
would break the planarity property. Hopcroft and Tarjan presented the first linear
time planarity testing algorithm, and several extensions and improvements have
emerged until today [HT74; BM04; MM96; JLM98].

Boyer and Myrvold’s algorithm first calculates a Depth First Search (DFS) on
the given graph, which results in a spanning tree, generally known as the DFS-tree.
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Figure 3.1. Creation of a DFS-tree.

Definition 3.1 (DFS-Tree). A DFS-tree of a graph is a spanning tree emerged by
a DFS. Nodes that have been visited before are not visited again. Each node is
ordered by an index, called DFS Index (DFI).

Since visited nodes are not visited again not all edges of a given graph might
be part of the tree. It is immediate that every DFS-tree is planar. These edges
are called back-edges. In the following, the algorithm of Boyer and Myrvold is
described, which is implemented in KLay Planar. Listing 3.1 illustrates the steps of
that algorithm.

Listing 3.1. Algorithm of Boyer and Myrvold.

1 Procedure ( g : Graph ) {
2 c a l c u l a t e a DFŚ t r e e ;
3 order i t s nodes according DFI (v0, v1, ..., vn)
4 for ( vi : vn, ..., v1, v0 ) {
5 embed vi planar , toge ther with a l l back´edges (vj, vi), j ą j ;
6 i f ( embedding of a back´edge i s not p o s s i b l e ) {
7 re turn g i s not planar ;
8 }
9 }

10 re turn g i s planar ;
11 }
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a. Back-edge insertion.
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b. Swapping of the wrong back-edge of Fig-
ure 3.2a.

Figure 3.2. Back-edge insertion.

First, an arbitrary DFS-tree is calculated with an arbitrary start node, such that
each node can be identified by a DFI. Then, the nodes of the tree are processed in
the opposite order in which they have been added. Thus, the graph rebuilding is
started with the leaves of the DFS-tree, and the graph is processed upward to the
root. In that process all back-edges are planar embedded. With every cycle of the
algorithm, the invariant ensures that nodes that are involved in later embeddings
are part of the external face. To ensure this invariant there is a possibility that the
biconnected components need to be turned around prior to their embedding. If an
embedding fails, meaning there are crossings in the tree, the given graph g is not
planar. If all edge embeddings are complete, it is a planar embedding of g.

An example for this algorithm can be seen in Figure 3.1. The graph of the
drawing of Figure 3.1a is checked to be planar. The first step is to create the DFS-tree
with arbitrary root, here c (see Figure 3.1b). Its node list is (c, d, a, b, e, f ). The DFI

of each node is labeled with a small number next to the node.

Afterwards, the back-edges are reinserted to the graph (see Figure 3.2). A
problem exists at the embedding of (c, f ). Hence, the embeddings of f are swapped,
such that the counter-clockwise order of the edges is changed and the problem is
solved. This is illustrated with the blue non-crossing edge in Figure 3.2b.
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Figure 3.3. Planar embedding of Figure 3.1a.

Since all back-edges are embedded correctly, the graph is planar, hence the
embedding can be used to do the next phases of the TSM algorithm.

A more detailed description of that algorithm is presented in the thesis of Ole
Claussen [Cla10]. The example graph of Figure 3.3 is planar. If a given graph is
not planar, the algorithm calculates an embedding of a planar subgraph and a set
of violating edges. As described before, each violating edge is inserted again by
adding a dummy node to the position where the edges would cross. This process
is described in the following section.

3.2 Edge Insertion

The task of this algorithm is to embed violating edges back into the planar graph,
while creating a minimum number of dummy vertices. This is done by calculating
a path for the new edge that crosses a minimum number of faces. The shortest
edge path in the dual graph corresponds to this path.

The algorithm to embed the remaining edges (v, w) is as follows. First, the dual
graph G‹ of the input graph G is processed. Then, Dijkstra’s algorithm is used to
calculate the shortest path in G‹ for every face adjacent to v and every face adjacent
to w. Afterwards, the edge (v, w) is added to the graph along this path. In that
process for every edge in G‹ a dummy vertex is inserted in G. Then, this dummy
vertex is connected with edges, crossing the involved faces to avoid edge crossings
between these edges and the inserted edge (v, w).
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Figure 3.4. Edge insertion example.

An example for the described algorithm is presented in Figure 3.4. It is assumed
that an edge (9, 10) is desired to be inserted into the embedding of Figure 3.4a. The
dual graph of the embedding is calculated, which is illustrated in Figure 3.4b. Then,
the source of the path would be s P {D, E} and the target would be t P {A, B, F}. A
shortest path, calculated by Dijkstra’s algorithm, would be (D, A), such that the
edge (9, 10) would be placed along that path. The edge (3, 5) is adjacent to the
faces A and D. To avoid the crossing of edge (3, 5) and (9, 10), a dummy node is
inserted to subdivide the two edges, as in Figure 3.5.

The determination of the faces of an embedding is assumed in the previously
described algorithm. This process is explained in the following section.

3.2.1 Face Calculation

Christian Kutschmar implemented a method to determine the faces of a planar
embedding [Kut10]. The aim of that processor is to walk along the edges. In that
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Figure 3.5. Result of the edge insertion of Figure 3.4.

process the adjacent faces of each edge in the planar embedding are calculated.
The correct behavior is ensured since the edges of a planar embedding around a
vertex are ordered counter-clockwise (see Section 4.2). Hence, each successor edge,
whether clockwise (last counter-clockwise) or counter-clockwise, of an edge at a
vertex can be calculated uniquely.

0 1 3

2

e1 e3

e2

Figure 3.6. Simple connected graph example.

The algorithm starts by checking all edges whether the left or right face of that
edge is unknown. If the left face of the edge is unknown a circular walk-through is
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Figure 3.7. Calculation of the left and right face.

triggered, which can be seen in Figure 3.7a. Each found edge is added to the face
until the start node is reached. The resulting face of the example consists of the
edges a1, a2, and a3. Respectively, for an unknown face on the right hand side of
an edge a walk-through in counter-clockwise order is started which is presented in
Figure 3.7. The resulting face in the example contains the edges b1, b2, and b3.

Listing 3.2. A snippet of the face calculation.

1 Procedure ( g : Graph ) {
2 for ( e P E ) {
3 i f l e f t f a c e of e i s unknown then
4 c r e a t e new f a c e f
5 s e t l e f t f a c e of e = f
6 s e t n0 = s t a r t node of e
7 s e t n1 = n0
8 s e t e0 = e
9 s e t e1 = e

10 . . .
11 do {
12 add f to e1 and vice versa
13 s e t n1 = other ad jacent node of e1
14 s e t e1 = next c lockwise edge of n1
15 } while n1 ‰ n0 or e1 ‰ e0
16 . . .
17 }
18 }
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3. Planarization

Kutschmar’s code works only for biconnected graphs, but not for all simple
connected graphs. His code goes clockwise around the adjacent faces until the start
node is reached again. However, a tree as in Figure 3.6 requires more time passing
a node, such that the break condition of the do-while loop does not work for this
case and has to be extended, which is a contribution of this thesis.

Even if the edges are passed until the current edge is equal to the starting edge,
it would lead to the same result. For instance, let e1 be the start edge in the tree
example and the algorithm passes the other edges in clockwise direction, then the
next edge again would be e1 and the loop would break.

To solve this problem the break condition of the do-while loop is adjusted in a
way that the start node has to be equal to the current node and the start edge has
to be equal to the current edge to break the loop (see Listing 3.2). The resulting
walk-through around a face passes the edges until the start edge and start node are
reached. Now trees are processed correctly.
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Chapter 4

Orthogonalization

As mentioned before, the orthogonalization works on a planar embedding produced
by the planarization step and changes the shape of the graph. The result of that
step is an orthogonal representation including angle- and bend-data. This chapter
bases on the approach of Tamassia [Di +99].

For a start, some preliminaries are presented to extended the definitions of
the flow network context. Furthermore, the orthogonalization phase, bases on
Tamassia’s consideration, is discussed. In that context the technique for minimizing
the number of bends in the flow model is considered, and the final mapping
of that result on the original graphs elements is briefly described. Additionally,
the intermediate processors FaceDetermination and the ExternalFaceProcessor are
discussed.

Table 4.1. The architecture of the orthogonalization.

Typ Name Description

Preprocessing FaceDetermination Determining the faces of a planar
embedding.

ExternalFaceProcessor Choice of an external face.
Phase TamassiaOrthogonalization Orthogonalization of TSM

algorithm.
Postprocessing -

4.1 Preliminaries

In Section 2.1.1 the flow network was introduced. In that context the MCF problem
is defined, which has to be solved to set angles to vertices and bends to edges. The
established algorithms to solve the MCF problem take the so called residual network
into account.

31



4. Orthogonalization

.

0

1

a

b

c

2,3,1

0,1,2

1,1,0

a. Example of an flow network with arc
labeling xvw, cap(v, w), cost(v, w).

0

1

a

b

c

1,1

2,-1

1,2

1,0

b. Residual network of Figure 4.1a with arc
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Figure 4.1. Flow network example with its corresponding residual network.

Definition 4.1 (Residual Network). In the residual network G(x) with flow x each arc
(v, w) P A is replaced by two arcs (v, w) and (w, v) with the following properties:

Ź Arc (v, w) has costs cvw and a residual capacity rvw = cvw ´ xvw.

Ź Arc (w, v) has costs cwv = ´cvw and a residual capacity rwv = xvw.

Furthermore, arcs with a residual capacity of zero are removed so that the
residual network consists only of arcs with positive residual capacity.

Figure 4.1b shows the residual network of the flow network of Figure 4.1a. Arc
(a, b) is split into two edges (a, b) and (b, a). Two of three possible units of flow run
from node a to node b. Thus, the residual capacity is 1 and the edge costs of arc
(a, b) remain consistent. Arc (b, a) of the residual network has a residual capacity
of the original flow naming 2 and negative costs. Both edges are accepted in the
residual network. In addition, arc (a, c) of the flow network has only the edge (a, c)
in the residual network since the flow is zero. Furthermore, arc (b, c) of the flow
network has only a back-edge in the residual network because the residual capacity
is zero.

Definition 4.2 (Reduced Cost). For each node i P N the number πi is the potential
of node i. The reduced cost cπ

ij of an edge (i, j) P E is defined as cπ
ij = cij + πi ´ πj.

Theorem 4.3 (Reduced Cost Optimality). A feasible flow x is optimal if and only if
there is a potential π such that all edges (i, j) P G(x) yield: cπ

ij ě 0.
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Figure 4.2. Vertex- and bend-angles of a planar orthogonal drawing.

4.2 Tamassia’s Approach

Roberto Tamassia et al. [Di +99] considered a technique where the construction
of a flow network is used to minimize the number of bends and to determine the
relative position of the incident edges around each vertex by angles. This approach
allows a maximal node degree of four, since it assumes that edges adjacent to a
node can only lie on the right, top, left, or bottom of a node. In the following, some
essentials are introduced to understand this approach.

4.2.1 Angles and the Orthogonal Representation

Definition 4.4 (Angle). A vertex-angle is defined by the counter-clockwise angle
between two consecutive edges adjacent to a vertex. The angle which is formed by
a bend is called bend-angle.

Theorem 4.5. The sum of the measures of the vertex-angles around a vertex in an orthogo-
nal plane is equal to 360˝.

Theorem 4.6. The sum of the measures of the vertex- and bend-angles inside an internal
face f of a planar orthogonal drawing is (2n´ 4)90˝ and (2n + 4)90˝ for the external face
respectively, where n is the number of edges.

The theorem can be understood easily with Figure 4.2. Each arbitrary vertex has
an angle measure of exactly 4 ¨ 90˝ around it. An orthogonal representation H for a
graph G is an extension of the planar representation and describes, in addition to
the topology, the shape of a drawing for G by specifying the angles inside a face
and the bends, including bend-angles of the edges. Each edge (v, w) gets a list
of angles that form the bends in the final drawing. In addition, each vertex v is
equipped with a list of adjacent edge and angle pairs. Furthermore, an orthogonal
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4. Orthogonalization

0 1 2

3

Figure 4.3. Orthogonal drawing with four vertices and four bends.

representation can be regarded as an equivalence class for drawings with similar
shapes.

For a better orientation the counter-clockwise angle directions are mapped on
identifiers:

Ź A 90˝ angle is called left.

Ź A 180˝ angle is called straight.

Ź A 270˝ angle is called right.

Ź A 360˝ angle is called full.

A drawing of the orthogonal representation is presented in Figure 4.3, and the
angle-data of that representation is stated as follows:

Table 4.2. Angle-data of Figure 4.3.

Node Angles (edge; angle direction)
0 ((0, 2); straight), ((0, 3); left), ((0, 1); left)
1 ((0, 1); left), ((1, 3); left), ((1, 2); straight)
2 ((1, 2); left), ((2, 3); straight), ((0, 2); left)
3 ((0, 3); straight), ((2, 3); left), ((1, 3); left)

For example, let us consider node 0. The edge (0, 2) has as counter-clockwise
successor edge (0, 3). The angle between these edges is straight (180˝). Respectively,
the successor of edge (0, 3) is edge (0, 1) with an angle of (90˝) positioned at its left
hand side. Meaning if one looks along edge (0, 3) from node 0 to node 3, the edge
(0, 1) is the counter-clockwise next angle and lies on the left hand. The same yields
for the last entry ((0, 1); left) of the orthogonal representation.

In the following, the transportation problem is described as an illustration in
the context of network flow minimization.
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Figure 4.4. Drawing of a directed graph with source A and target B illustrating the road
plan of a transportation problem.

Transportation Problem

The transportation problem considers the problem of finding an optimal distribu-
tion plan for a single commodity. Assuming there is a company which produces
commodity in a factory at location A that needs to be transported to a warehouse
at location B. An one way road plan is given in Figure 4.4, and a maximal workload
of the different roads is the goal. A single road consists of the tuple (xvw, c(x), uvw)

and has a lower bound of zero.
Instead of determining the maximal workload, the goal of this part of Tamassia’s

algorithm is to calculate the minimum workload of the different roads under the
condition that each road has to be passed at least one time. This leads to the next
subsection.

4.2.2 Orthogonalization Network Flow

In the context of the orthogonalization, arc properties are only integer variables,
and the flow function x produces only non-negative values. A network flow model
for orthogonalization is a directed graph such that the nodes of that model are the
vertices and faces of the original graph. Angles can be seen as commodity of the
transportation problem that are supplied by the vertices and transported between
the faces. The roads of the transportation problem illustrate the arcs of the network.
Listing 4.1 shows a brief overview of Tamassia’s orthogonalization algorithm which
begins with the construction of the flow network. Afterwards, a minimum cost
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Figure 4.5. Transformation of a planar embedding to a flow network.

flow is computed for the constructed network. The used minimum cost flow solver
in our implementation is the Successive Shortest Path (SSP) algorithm [AMO93].
Finally, the calculated minimum cost flow is used to determine the angle- and
bend-data to generate an orthogonal representation.

Listing 4.1. Steps of Tamassia’s approach.

1 Construct the flow network N ;
2 Compute flow x of minimum c o s t for N ;
3 Compute orthogonal r e p r e s e n t a t i o n with r e s p e c t to x ;

Constructing the Flow Network

The result of the edge insertion phase 3.2 is a plane graph. To convert a graph into
a flow network the following steps have to be done.

Ź Creating a node v in N for every vertex and every face of the original graph G.

Ź Connecting each vertex node v of N with the face node w of N, if the face is
adjacent with the vertex in the original graph G.

Ź Connecting each face node v of N with another face node w of N for every edge
in G that is adjacent to both faces.

The example of Figure 4.5b shows the creation of the network flow model of
a planar embedding. The network flow model consists of 8 nodes in which the
round ones are the vertex nodes and the rectangular ones are face nodes. Black
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4.2. Tamassia’s Approach

solid lines describe the node adjacent face arcs and the black dashed lines are the
arcs between adjacent faces. The grey connections correspond to the edges of the
original planar embedding 4.5a and illustrate the crossings of the face arcs.

The idea behind the flow network model is as follows. The flow in an arc (v, f )
represents the measure of an angle formed at vertex v inside face f bounded by the
lower bound bv f = π/2 and the capacity uv f = 2π. The cost is zero since such an
angle is at a vertex and not at a bend. The flow in arc ( f , g) represents the number
of bends with π/2 angle in face f along an arc between faces f and g. Each unit of
cost along such an arc is equal to a bend-point.

Minimum Cost Flow

The next step is to compute the flow x of minimum cost for N (Listing 4.1). In the
following, the SSP algorithm is discussed. It is a popular minimum cost flow solver
that utilizes the residual network to find the shortest path.

This algorithm is based on the repeated usage of a shortest path algorithm.
Starting with an optimal pseudo flow that ensures the condition of capacity and
non-negativity but violates the condition of mass balancing, the algorithm tries
to reach the mass balancing without breaking the conditions of optimality and
capacity. This SSP algorithm can be viewed as a generalization of the Ford–Fulkerson
algorithm [EK72].

Listing 4.2. Processing of the SSP minimizer.

1 Procedure (n : Network ) {
2 Transform n by adding source and sink
3 Set i n i t i a l flow x = 0
4 E s t a b l i s h p o t e n t i a l s π with Bellman & Ford ’ s algorithm .
5 Reduce c o s t of π

6 while ( G(x) conta ins a path from s to t ) {
7 Find s h o r t e s t path P from s to t with D i j k s t r a ’ s algorithm .
8 Reduce c o s t of π

9 Get minimal c a p a c i t y along P
10 I n c r e a s e current flow x along P with minimal c a p a c i t y
11 Update the r e s i d u a l network G( x )
12 }
13 }

The functionality of the algorithm is described by Listing 4.2. In the first step
source and target nodes are added to the network, such that each start node
of the network is now successor of the source node and each final node of the
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Figure 4.6. Mapping of the angles from network flow to original graph.

network is now ancestor of the target node. On the one hand, Bellman and Ford’s
shortest path finder calculates the node potentials, which defines the distance
from a node to the source on the shortest path. On the other hand, Bellman and
Ford’s algorithm is able to detect negative cycles in the network and make all edge
costs non-negative. Now, Dijkstra’s algorithm1 with better performance can be
used to find shortest paths. In order to keep the edge costs non-negative on each
iteration the node potentials are updated and the edge costs are reduced like in
Definition 4.2. Additionally, the residual network is updated, and if that network
does not contain a path from source to target the algorithm is finished.

Bellman and Ford’s algorithm needs O(nm) time, where n is the number of arcs
and m is the number of nodes. The number of iterations is at most nU, where U is
the largest supply, and Dijkstra’s shortest path finder needs O(n2). Summing up
O(n3U) complexity is received for the SSP algorithm.

4.2.3 Compute Orthogonal Representation

The minimum cost flow can be computed by the methods introduced in the
preceding subsection. Now the question is how to get an orthogonal representation
from that minimum cost flow solution. The angles and the bends are derived

1http://en.wikipedia.org/wiki/Dijkstras_algorithm
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4.3. Preprocessing

from the minimum flow, separately. To add edge angles to the vertices one has to
consider the node arcs of the flow network.

Figure 4.6 illustrates the mapping of the flow of a node arc to its corresponding
angle. The round node is the original vertex that has node arcs to the angular
adjacent face nodes. The MCF solver calculates a flow value of 2 for arc (0, 0), 1 for
arc (0, 1), and 1 for arc (0, 2). The flow is directly mapped to the angle between the
adjacent face and a flow value, where

Ź 0 forms a left angle,

Ź 1 forms a straight angle,

Ź 2 forms a right angle, and

Ź 3 forms a full angle.

In the presented example the angle between e1 and e3 is a straight one, the one
between e3 and e2 is a left angle, and the one between e2 and e1 is left as well.

Bends are the units of the flow of face arcs. Hence, to add the bends to
the original graph edges means to iterate over all face arcs of the network and
furthermore adding the bends to the corresponding original edges in the original
graph. Depending on the left and right face of an edge the bends are added with
left or right angle.

4.3 Preprocessing

The orthogonalization phase uses the faces of the given planar embedding to create
the flow network. After the planarization step, there is a possibility that these faces
are unknown, especially other preprocessors are able to insert dummies that lead to
another faces environment. Hence, an own intermediate processor is implemented
for the determination of the faces, denoted as FaceProcessor. That algorithm is the
same as the one in Section 3.2.1.

4.3.1 The External Face

An extension of the face calculation is the choice of a maximal external face. A
face is maximal if its number of adjacent edges is higher or equal to the number of
adjacent edges of any other face. Every face of the graph embedding can be treated
as external, by simply turning inside out. Additionally, this ensures the embedding
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Figure 4.7. Area discrepancy of the same embedding with different external faces.

since the counter-clockwise order of edges around every node of Figure 4.7a is
equal to the order of edges around every node of Figure 4.7b.

Even if the embedding of the presented example on the left side is equal to the
one on the right side, the external faces are different. Using a non-maximal external
face (Figure 4.7a) results in a representation with the undesired edge (0, 2) marked
bold since the algorithm has to lay this edge around the remaining elements of
the graph drawing. Figure 4.7b shows a drawing of the same embedding with
a maximal external face. The length of the edge (0, 2) is less than the length of
the same edge in Figure 4.7a whereas all other edges have same edge lengths.
Reflecting the aesthetics criteria of Section 2.1.3 the minimal total edge length of
the graph drawing should be ensured to let the used area be minimal. Hence, it is
meaningful to use a maximal face as external.

This feature is treated as an intermediate processor because there are extended
features of the TSM approach that do not need to calculate a new external face, like
Interactive Planarization which needs to keep the original drawing, and thus the
original embedding and original faces.
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Chapter 5

Compaction

This is the last part of the TSM algorithm and considers the problem of compacting
the representation calculated by the orthogonalization. The task here is to assign
minimum lengths to the segments of the edges of the orthogonal representation
with the condition that there are no edge crossings and no node overlaps. Tamassia
investigated a technique that uses a flow network to minimize the edge lengths [Di
+99].

Table 5.1. The architecture of the compaction.

Type Name Description

Preprocessing BendPointProcessor Creating dummy nodes for bend-points.
RectShapeProcessor Bringing faces in rectangular shape.
FaceSidesProcessor Associating edges with face sides.

Phase TidyRectangleCompaction Doing the compaction of TSM
algorithm.

Postprocessing GridDrawingProcessor Mapping the graph elements on a grid.
RectShapeRemover Removal of dummy nodes and dummy

edges that ensure rectangular faces.
BendDummyRemover Removal of bend-point dummy nodes.
PlanarDummyRemover Removal of planar dummy nodes.

Table 5.1 shows the different steps of the compaction. This chapter is structured
as follows. First, the algorithm for compacting orthogonal representations and
its embedding in the architecture of KLay Planar are considered. In that context,
the construction of flow networks and the used algorithm to minimize them are
discussed. Furthermore, the preprocessing intermediate processors for handling
more general graphs and its implementation in KLay are considered. Finally, the
postprocessing steps are discussed, in which the intermediate processors for grid
drawing and dummy removal are presented.
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Figure 5.1. An example of an orthogonal representation with rectangular faces.

5.1 Tidy Rectangular Compaction

The problem of compacting general orthogonal representations with respect to
minimum edge-length is NP-hard. Thus, Tamassia defined some restrictions
to make such a computation possible. The compaction by Tamassia requires
orthogonal representations that contain no bends as input. Furthermore, each face
of the input has to have a rectangular shape.

Figure 5.1 shows an example of such an orthogonal representation. The dashed
nodes represent bend-points and the solid nodes are previously added nodes of the
graph structure. The orthogonal representation consists of at most four bend-points
that are on the external face, since each internal face is in rectangular shape. An
internal face can only be rectangular if it consists of four end nodes, where either
all of them have left angles or all have right angles. Additionally, between these
bend nodes, nodes with straight angles are allowed.

Listing 5.1 illustrates the process of the algorithm. The input of that algorithm
is an orthogonal representation with n vertices with a maximum degree of four,
with no bends and faces in rectangular shape. The output is a planar orthogonal
grid drawing with minimum height, width, area, and total edge length with regard
to the derived rectangular form. The edge lengths are calculated by solving a flow
network, once for the horizontal segments and once for the vertical segments.
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5.1. Tidy Rectangular Compaction

Listing 5.1. Tidy Rectangular Compaction.

1 Procedure ( g : Graph ) {
2 s e t s o l v e r = new simple flow s o l v e r ;
3

4 Nhor = c r e a t e h o r i z o n t a l segments flow network ;
5 c a l c flow of Nhor with simple flow s o l v e r ;
6 map flow of Nhor to lengths of edges of g ;
7

8 Nver = c r e a t e v e r t i c a l segments flow network ;
9 c a l c flow of Nver with simple flow s o l v e r ;

10 map flow of Nver to edge lengths of edges of g ;
11 }

Then, the total flow of the networks is minimized by a simple flow solver.
Afterwards, the flows of the networks are mapped to the length of the edges of
the original graph. Finally, every edge segment of the graph has a relative edge
length and can be drawn on a grid which is done in a postprocessing intermediate
processor.

In the following, the described steps are discussed more detailed.

5.1.1 Again the Flow Network

A flow network is used to calculate minimal edge lengths just as it is done with
the calculation of bend-points in the orthogonalization. In the following, the flow
network for the horizontal segments is denoted Nhor, and the network for the
vertical segments is denoted Nver, respectively.

Network Nhor consists of nodes which represent the internal faces of the original
graph. Additionally, Nhor has two nodes on the external face denoted s and t,
representing the lower and upper region of the external face. Nhor has an arc for
every adjacent pair of faces f and g, meaning they share a horizontal segment e.

The arcs of the flow network in the context of the compaction have the following
properties:

1. A lower bound bvw = 1.

2. A capacity uvw = 8.

3. A cost cvw = 1.

The flow in arc ( f , g) represents the length of segment e.
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Figure 5.2. Example for minimum cost flow in the context of the compaction.
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Figure 5.2a and Figure 5.2b shows Nhor and Nver with a flow of minimum cost
for the example of Figure 5.1. The round vertices with grey edges represent the
orthogonal representation and the rectangular nodes with source s and sink t are
associated with the nodes of the flow network model. Its nodes are connected by
directed edges, drawn black. Since for every arc the lower bound is bvw = 1, every
edge of the original network has at least a relative length of 1. As mentioned in
Section 2.1.1, the incoming flow of a node has to be equal to the outgoing flow in
general flow networks. In order to ensure this condition the flows of the arcs are
increased iteratively.

Results as in Figure 5.2a and Figure 5.2b are computed. For example, the sum
of the incoming flow of arc (5, t) of Figure 5.2a is 2, so the sum of its outgoing flow
has to be 2, too. And indeed, in the original graph the required length of the edge
(8, 3) is 2.

The following properties of the networks Nhor and Nver are immediate. Both
networks are planar and acyclic, with unique source nodes and unique sink nodes
on their external faces. Thus, Nhor and Nver are planar st-graphs.

The technique for solving such minimum cost flow problems is considered
more detailed in the following. This method was developed and implemented in
this thesis.

5.1.2 Simple Flow Solving

The SSP algorithm of Section 4.2.2 which solves the minimum cost flow problem
during orthogonalization, is not useful in this context. The minimum cost flow
problem here has constant arc costs of 1 and arc lower bounds equal to 1. Addi-
tionally, an initial flow of 1 is assumed. These constraints make the problem much
easier. Hence, a flow solver is presented that solves the problem more efficiently.

Each non-source and non-sink node is a transport node. With the definition
of feasible flow, one knows that the sum of the incoming flow and the sum of the
outgoing flow have to be equal in order for the total flow to be feasible (see mass
balancing Section 4.2.2).

The basic parts of the algorithm are presented in Listing 5.2. First, each arc
gets a flow of 1 corresponding to the smallest relative edge length. Afterwards, a
Breadth First Search (BFS)1 from source to sink node is processed and each found
node is added to a list of nodes, such that the list is ordered by the BFS. Then for
each non-source and non-sink node of the list it is checked whether the sum of

1http://en.wikipedia.org/wiki/Breadth-first_search
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incoming flows is equal to the sum of outgoing flows. If this is the case there is
nothing to do since the flow of that arc is feasible. If the sum of outgoing flows
is greater than the sum of incoming flows (gap is higher than 0), the sum of the
incoming flow has to be increased to reach the mass balancing.

Increasing the flow of an arc (v, w) means that on the one hand the incoming
flow of node w is increased but for the other incident node v the outgoing flow is
increased. The same procedure is done for an incoming arc of node v, in order to
ensure the mass balancing of v. This process is repeated until the source node is
reached.

Listing 5.2. Simple Flow Solving Algorithm.

12 Procedure ( n : Flow Network ) {
13 s e t flow of a r c s of n to 1
14 b f s _ s t r u c t = perform breadth f i r s t search on n
15 for ( node : b fs s t r u c t u r e ) {
16 i f ( node == source or node == sink ) {
17 continue
18 }
19 gap = outgoing node flows ´ incoming node flows
20 i f ( gap > 0 ) {
21 path = c a l c s h o r t e s t path to source
22 for ( arc : path ) {
23 add gap to arc flow .
24 }
25 } e lse i f ( gap < 0 ) {
26 path = c a l c s h o r t e s t path to sink
27 for ( arc : path ) {
28 add gap to arc flow .
29 }
30 }
31 }

A node can be incident to various incoming arcs and outgoing arcs, and the
question is which arc flow should be increased to keep the flow minimal.

An example for that question is illustrated in Figure 5.3 for the horizontal edge
lengths. The sum of the incoming flow of node 5 is equal to 3, and the sum of its
outgoing flow is equal to 6 (see Figure 5.3a). The gap of 3 has to be added to one
of the incoming arcs in order to let the node 5 satisfy the balancing condition. The
solution is to take the incoming arc with the shortest path to the source. Then, the
flow of the arcs with the lowest flows are increased, and the total edge length of
the given orthogonal representation stays minimal. In the presented example the
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b. Feasible solution by increasing the flows
along the shortest path.

Figure 5.3. Flow increasing example.

path (5, 3, s) is taken and each flow of arcs between that nodes are increased by 3.
The result is shown in Figure 5.3b.

The same has to be done for the other direction if the sum of outgoing flows of
a node is smaller than the sum of incoming flows. Then the shortest path to the
sink node is calculated and the flow of each arc is adjusted.

The complexity of that simple flow solver is stated as follows. Adding initial
flow to arcs and performing the BFS is only done once and so negligible. The used
implementation of Dijkstra’s algorithm needs O(n2) in rare cases. This is done for
every node with gap not equal to 0. Assuming the rare case that all non-source
and non-sink nodes have such a gap, Dijkstra’s algorithm is processed for n´ 2
nodes. Increasing the nodes arcs is only linear and is negligible, too. Summing up
a complexity of O((n´ 2)(̇n2)) is received for this algorithm.

In practical applications the algorithm is much faster, since the gap of incoming
and outgoing flows during the processing is often 0. Furthermore, Dijkstra’s
algorithm is only performed for a subgraph N1 of N such that the number of nodes
of N1 is n1 which is much smaller than n. For example, consider the minimum cost
flow of the network in Figure 5.2a. It only needs a flow arc increase at node 5, and
the path processed by Dijkstra’s algorithm to the sink node is also short such that
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the algorithm works in linear time here. All in all, the complexity varies depending
on the given orthogonal representation.

5.2 Preprocessing

The compaction phase needs a representation with edges without bend-points,
because every edge segment is assigned its own edge length. Furthermore, faces in
rectangular shape are required. Thus, the preprocessors BendDummyProcessor and
RectShapeProcessor are introduced. Finally, a third processor is presented which
calculates the sides of each face, which makes life easier in many processes.

5.2.1 Insertion of Bend-Point Dummies

The task of the BendDummyProcessor is to exchange the bend-points of the edges
with dummy vertices.

The idea behind that processor is presented in the following (see Listing 5.3).
The process iterates over all bend-points of the edges of g, and each edge e = (v, w)

is subdivided with a new dummy node d for its bend-point. This includes the
creation of d, connecting d with the source of e by updating e to (v, d), and the
creation of a new dummy edge e1 = (d, w) that connects the d with the target of
the original edge e.

Listing 5.3. Snippet of the BendDummyProcessor

32 process ( g : Graph ) {
33 for ( e : edges of the graph ) {
34 for ( bp : bends´points of e ) {
35 subdivide e with new dummy node d ;
36 s e t angle´data of d ;
37 }
38 }
39 }

Furthermore, angle-data of each new dummy node has to be set to ensure a
correct orthogonal representation.

The following observation is immediate. If a bend-point forms a right turn, the
edge combination of e and e1 forms counter-clockwise (left) angle of 90˝. The reverse
combination e1 and e forms (right) angle of 270˝. Respectively, for a bend-point that
form a left turn, it is processed vice versa.
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Figure 5.4. Example for bend-point dummy node insertion.

An example for the described algorithm is illustrated in Figure 5.4. The dummy
nodes and dummy edges are marked with dashed lines. Edge (1, 4) is subdivided.
First, B0 is inserted as well as the new dummy edge (B0, 4), and e is updated to
(1, B0). Afterwards, B1 is inserted. In that process, a new dummy edge (B1, B0)

is added, and e is updated again to (1, B1). The resulting representation, seen in
Figure 5.4b, contains no more edge bends.

5.2.2 Making Faces Rectangular

In general, the faces of a orthogonal representations may not be in rectangular
shape. Hence, an intermediate processor is added to the processing slot before the
compaction phase, namely the RectShapeProcessor, which transforms the shape of
the given faces into rectangular shapes. This is done by splitting non-rectangular
faces by adding dummy vertices and dummy edges. The presented technique bases
on the book of Di Battista et al. [Di +99].

A rectangular refinement of an orthogonal representation H is denoted H1. The
algorithm for the construction of H1 works as follows. Firstly, for each face f of H
it is checked whether its shape is rectangular. If f is in rectangular shape there is
nothing to do. Otherwise f has to be transformed and the following properties for
every adjacent edge e have to be calculated:

Ź next(e); Representing the following edge of e when traversing the boundary of f
counter-clockwise.

Ź corner(e); Representing the shared vertex of the edge e and next(e).
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Figure 5.5. A more complex example of an orthogonal representation containing faces with
non-rectangular shape.

Ź turn(e); A property that describes a direction change between e and next(e) with
the following conditions:

1. turn(e) = +1, if e and next(e) form a left turn.

2. turn(e) = 0, if e and next(e) form a straight line.

3. turn(e) = ´1, if e and next(e) form a right turn.

Ź front(e); Representing an edge that is calculated by traversing f counter-clockwise
such that the sum of the turn values for all edges between e and f ront(e) is
equal to 1. This includes the turn of e but excludes the turn of f ront(e).

In the following, an example is presented in which the edge properties are
computed. The the internal face 0 of Figure 5.5 is not in rectangular shape. Its
edges are traversed in counter-clockwise direction, shown by the arrow on the left.
Table 5.2 illustrates all adjacent edges of face 0 and their properties. For example,
let us consider edge (1, 2). The next edge in counter-clockwise direction is edge
(2, 3) with the corner 2. The edges (1, 2) and (2, 3) form a right turn, so its turn
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Table 5.2. Edge properties of face 0 of the orthogonal representation shown in Figure 5.5.

Edge Next Corner Turn Front

(0, 1) (1, 2) 1 +1 (1, 2)
(1, 2) (2, 3) 2 ´1 (8, 9)
(2, 3) (3, 4) 3 ´1 (7, 8)
(3, 4) (4, 5) 4 +1 (4, 5)
(4, 5) (5, 6) 5 ´1 (7, 8)
(5, 6) (6, 7) 6 +1 (6, 7)
(6, 7) (7, 8) 7 +1 (7, 8)
(7, 8) (8, 9) 8 +1 (8, 9)
(8, 9) (9, 10) 9 ´1 (0, 14)
(9, 10) (10, 14) 10 +1 (10, 14)
(10, 14) (14, 0) 14 +1 (14, 0)
(14, 0) (0, 1) 0 +1 (0, 1)

is ´1. The front of the edge (1, 2) is the edge (8, 9) since the sum of turns of the
edges along the path ((1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8)) is equal to 1.

For every edge of an internal face f the front is defined, since by Theorem 4.6
∑ePE turn(e) = 4. Hence, traversing f with a start edge e with a turn of ´1, 0 or 1
always leads to a sum of turns equal to 1, and thus f ront(e) always exists.

Furthermore, only edges with a turn of ´1 destroy the rectangular shape of
an internal face. The faces are traversed counter-clockwise such that all left turns
and straight passing edges do not destroy the rectangular face property. Thus, only
edges with turn(e) = ´1 are extended with a dummy edge.

After the described properties are calculated for every edge e of f , f ront(e) for
each edge with turn(e) = ´1 is subdivided with a new dummy vertex r, and a
dummy edge e1 = (corner(e), r) is inserted. It is important to ensure the correct
angle-data in H1. Hence, H1 is updated such that e and e1 form a straight line. All
involved elements are equipped with a property called RectShapeDummy. Elements
with such a property are identified by the rectangular shape dummy removal
processor, which removes them. The algorithm can only be used for internal faces,
since adjacent edges of the external face might contain undefined fronts.

Face 0 of the example of Figure 5.5 is in rectangular shape after that algorithm
is processed. In the following, the algorithm for the external face is presented.
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The External Face

The refinement of the external face fext can be done with a variation of the above
algorithm. The adjacent edges of fext are traversed in clockwise direction, and
∑ePE turn(e) = ´4. Thus, traversing the adjacent edges of the external face until
the start edge e is reached sometimes leads to turn(e) = ´4. In this case the front
of e is undefined.

The idea behind that algorithm is to add a new rectangle of dummy nodes and
dummy edges around fext, which represents the new external face f 1ext that is in
rectangular shape. Afterwards, fext is traversed in clockwise direction. Starting at
an arbitrary edge, in Figure 5.6 the edge (0, R4), every passed edge with a right
turn is extended onto its front, just as in the algorithm for internal faces. Secondly,
every edge with an undefined front is extended onto a side of the rectangle, with
the result that fext is split into different faces that are in rectangular shape.

In the following, the implementations of the described algorithms are presented.

Implementation

The main parts of the RectShapeProcessor are illustrated in Listing 5.4. During
the processing of the parts the faces are frequently traversed counter-clockwise or
clockwise. For that purpose a face can be equipped with a property (e, corner(e))
that stores a start edge and the corner in counter-clockwise or clockwise direction.

Listing 5.4. Refinement of the faces to have a rectangular shape.

40 process ( g : Graph ) {
41 s e t ext_ f ace = e x t e r n a l f a c e of g ,
42 determine clockwise d i r e c t i o n of ext_ f ace ,
43 i f ( ext_ f ace i s in not r e c t a n g u l a r shape ) {
44 r e f i n e ext_ f ace ,
45 }
46 r e f i n e the i n t e r n a l f a c e s of g ,
47 }

The determination of the counter-clockwise direction can be easily calculated
by traversing the adjacent edges of a face with an arbitrary start edge e = (s, t).
Then, the source s of e is taken as corner and all edges are traversed. If at the
end of this process ∑ePE turn(e) = 4, the direction is counter-clockwise and the
property is filled with the property (e, s). Otherwise it holds ∑ePE turn(e) = ´4
and the property is filled with (e, t) to ensure the counter-clockwise direction. For
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Figure 5.6. Refining the external face of the orthogonal representation of Figure 5.5.

the external face a clockwise traversing is desired, hence the direction property
with corner s is adjusted such that s is exchanged with t, and vice versa.

In the next step of the implementation the external face is checked to be in
rectangular shape. The technique for checking faces for rectangular shape can
be used for external faces as well as for internal faces. The idea is to start at the
previously calculated property edge and traverse the adjacent edges of a face. If a
direction change happens, store the turn and go ahead. If another direction change
is reached compare this one with the stored one. If they are not equal, the face
is not in rectangular shape. But if they are, the remaining edges are passed an
checked. If the start edge is reached, it is concluded that the face is in rectangular
shape.
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Refinement of the External Face If the external face is not in rectangular shape,
its refinement bases on the algorithm mentioned before. Listing 5.5 gives an
overview of the implementation of that refinement.

First, the edge’s properties are determined. In this step, the adjacent edges
of the external face are traversed clockwise and every edge e is equipped with
the properties next(e), corner(e), and turn(e). In the following steps, the stored
properties next(e) and corner(e) are always used to get the next edge in clockwise
direction by traversing the edges, such that e. g., the fronts can be determined easily
with the technique described before.

Listing 5.5. Snippet of the refinement of the external face.

48 process ( g : Graph ) {
49 s e t ext_ f ace = e x t e r n a l f a c e of g ;
50 determine edge ’ s p r o p e r t i e s of ext_ f ace ;
51 c a l c u l a t e edge ’ s f r o n t s of ext_ f ace ;
52

53 add new r e c t a n g l e to g ;
54 ass ign each edge with undefined f r o n t to a s ide ;
55

56 determine s t a r t edge of s ide l e f t ;
57 connect o r i g i n a l e x t e r n a l f a c e with r e c t a n g l e ;
58 s e t r e c t a n g l e as new e x t e r n a l f a c e ;
59 }

Then, the rectangle skeleton is added to g, which consists of a dummy node for
each bend and four edges representing their connections (see Figure 5.7a). Secondly
the embedding of g is extended as well as the angle-data of the orthogonal repre-
sentation. This is important for the following phases and intermediate processors
which assume a correct orthogonal representation of g. After the rectangle is added
each edge with undefined front is assigned to a side of the rectangle that describes
which side is the front of the edge.

Connecting the edges of the original external face to the sides of the new
external face consists of the following steps:

Ź A dummy vertex r is inserted on the front edge (v, w).

Ź For that process, the front is split into two edges connected with the dummy
vertices (v, r) and(r, w). This is done by adjusting the front to (r, w) and inserting
a new dummy edge (v, r).

54



5.2. Preprocessing

7

3

6

5 4

2

01

R1 R2

R0 R3

R8

R9

R4

R5

R6

R7

0

0

1

2

3

a. Wrong edge extensions.

7

3

6

5 4

2

01

R1 R2

R0 R3

R4

R5

R6

R7

R8

R9

0

0

1

2

3

b. Correct edge extensions.

Figure 5.7. Problems with the edge extensions.

Ź Then, the corner of the extending edge is connected to the dummy vertex r.

Ź All embeddings and angle-data of the involved nodes and edges are updated.

The edges of the old external face are passed clockwise, which ensures on the one
hand the correct bridging of the faces, but on the other hand this does not solve
the problem illustrated in Figure 5.7.

Note that the front is calculated once before bridging the faces. Figure 5.7a
illustrates the latter. The sides of the rectangle are described by the number 0 for
left, 1 for top, 2 for right, and 3 for bottom. The arrow shows the start position of
the bridging. First, edge (0, 1) is connected to the left side of the rectangle. Dummy
node R4 is added and the dummy edge (R0, R4) is inserted to split the front which
is after the processing of the subdivision (R4, R1). R4 is connected to the corner
of (0, 1) denoted 1 and the involved node, dummy embeddings and angle-data
are updated, as described before. Then, face 0 is traversed clockwise and each
edge with a front that equals one of the rectangle edges is extended. Everything
works fine except for the extended dummy edges (5, R8) and edge (7, R9). They
are connected to the wrong edges of the rectangle such that there are undesired
edge crossings.
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This results from the originally calculated fronts of these edges that are updated
by the extension of edge (0, 1), and the later extension of edge (4, 5), such that
f ront(4, 5) = (R4, R1) and f ront(6, 7) = (R8, R1). This can be solved with two
variants.

1. Only 4 edges are attached to the rectangle with respect to the condition that
only one edge is connected to one side. Then, there are no such problems. The
resulting faces can be handled as internal faces and can be made rectangular
later at the refinement of the internal faces.

2. A start side is determined, and the first edge in clockwise direction with a front
that is equal to the start side is calculated. Afterwards, the face bridging is
started with the calculated edge and the problem is solved.

Since all edge properties for the external face are calculated anyway, it would be
wasteful to take the first option. Hence, the second one is taken and one has to
think about its realization.

The left side of the rectangle is taken more or less arbitrarily as the desired start
side. The idea behind that is to search for the first edge el with a front that is equal
to the left side, by finding the last edge eb with a front equals the bottom side.

The path, resulting by traversing the face from eb to el in clockwise direction,
may not include an edge with a front that is equal to the left or bottom side, in this
case el is the sought-after start edge. In the example of Figure 5.7b the start edge
(4, 5) is illustrated by the arrow. This is the first edge in clockwise direction with
a front that is equal to the left side. Now the bridging can be done without any
conflicts.

The described start edge is calculated and the final connection of the adjacent
old external face edges to the rectangle can be done. The rectangle is set to be the
new external face, and the procedure is finished.

Refinements of the Internal Faces After the shape of the external face is pro-
cessed, all internal faces are handled. Each non-rectangular internal face is refined
by the presented algorithm of Section 5.2.2. Listing 5.6 shows an overview of the
implementation. Firstly, all non-rectangular faces are stored. In this process, the
presented technique for checking whether a shape of a face is in rectangular shape
is used. Edge properties are calculated like they were in the refinement of the
external face, but here each face is traversed in counter-clockwise direction. This
is done for an easier handling of cutvertices which are described in the following
subsection.
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Listing 5.6. Refinements of the internal faces.

60 process ( g : Graph ) {
61 nr_ f aces = f i l t e r non´r e c t a n g u l a r f a c e s of g ;
62 for ( f : nr_ f aces ) {
63 determine edge ’ s p r o p e r t i e s of f ;
64 c a l c u l a t e edge ’ s f r o n t s of f ;
65 determine s t a r t edge of a s ide of f ;
66 s p l i t f ;
67 }
68 }

As shown above all fronts of edges exist, so they can be calculated. Each face
can be divided into face sides, just like the sides of the rectangle. The problem
with the wrong order by connecting the edges with a side of a face exists at the
refinement of an internal face as well. The same procedure as for the external face is
done for getting a start edge. Then each face is split until there are no edges with a
right turn. Each emerged face, by splitting the non-rectangular face, is rectangular,
again, as can be seen in the example of Figure 5.5. Since each edge with a right
turn is extended, all resulting faces have to be in rectangular shape.

Handling Cutvertices

As mentioned in Section 2.1, a cutvertex is a node that divides a graph into
different components if it is removed. The described methods for making the
faces rectangular may yield wrong results for orthogonal representations with
cutvertices, see Figure 5.8. When traversing a face, e. g., setting the edge properties
in the algorithms above, the question is how to handle a cutvertex.

Let us consider the counter-clockwise traversed internal face 1 of Figure 5.8a.
With the presented techniques the traversal would start with edge (0, 1), passing
edges (1, 2), (2, 3),(3, 4), (4, 5) and would reach edge (5, 0). Here, the problem
is how to decide which edge should be taken next, since the traverse is started
counter-clockwise; logically speaking, the next edge in the walk-through would
be edge (0, 1). This would cause an exclusion of the edges (0, 6), (6, 7), and (8, 0)
from the walk-through. This would lead to an error.
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Figure 5.8. Refinement of the faces of an orthogonal representation with a cutvertex.

Hence, the next edge choice of a vertex, especially for a cutvertex, has to be
handled differently from the global traversal direction. The solution to this is to
take always the next edge in clockwise direction. This always leads to the longest,
complete path. Since the global traversal starts with an edge in counter-clockwise
direction, it is guaranteed that even after taking the next clockwise edge of a node
the global traversal still keeps its counter-clockwise direction.

If the external face would do its traversal counter-clockwise a cutvertex would
have to pass in counter-clockwise direction, otherwise not all edges are passed,
see Figure 5.8b that has same problem as mentioned above. This would cause
a lot of overhead, since anywhere a cutvertex is handled a distinction between
external- and internal face would be needed. Thus, the external face is traversed
clockwise and each cutvertex has to be passed in clockwise direction, too. Hence,
each cutvertex can be treated equally everywhere in the implementation.

Handling Cutedges

Another problem is caused by cutedges. These are edges which would divide
a graph in two components if they are removed. Figure 5.9 shows two typical
examples for such edges. The algorithm above traverses the external face of an or-
thogonal representation in clockwise direction to determine the edge properties. In
that process, a cutedge is passed twice in both direction. The properties of a twice
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passed edge are overridden such that only the last added properties are stored. The
next steps of the algorithm would traverse with wrong edge paths. For example, Fig-
ure 5.9a has the traverse path (0, 1), (1, 2), (2, 3), (3, 0), (0, 4), (4, 5), (5, 6), (6, 7), (7, 4), (0, 4).
Table 5.3 illustrates the edge properties of the example of Figure 5.9a. The edge
(0, 4) is passed twice such that the final properties of that edge would be the one of
line 10.

Table 5.3. Order of setting edge properties of the external face of Figure 5.9a.

Time counter Edge Next Corner Turn

1 (0, 1) (1, 2) 1 ´1
2 (1, 2) (2, 3) 2 ´1
3 (2, 3) (3, 0) 3 ´1
4 (3, 0) (0, 4) 0 +1
5 (0, 4) (4, 5) 4 0
6 (4, 5) (5, 6) 5 ´1
7 (5, 6) (6, 7) 6 ´1
8 (6, 7) (7, 4) 7 ´1
9 (7, 4) (0, 4) 4 +1

10 (0, 4) (0, 1) 0 0

Thus, every cutedge is equipped with two edge properties for every direction.
An additional property previous(e) is added to the edge properties in every di-
rection. When traversing the adjacent edges of a face, it is checked whether the
next edge e1 of an edge e has the property previous(e1) = e. If so, the direction is
correct and the edge properties of this direction can be used. Otherwise the edge
properties of the other direction of e1 are taken.

Since the direction of an edge is important, the break condition of the edge
traversed is adjusted. As mentioned in Section 3.2.1, the condition is extended to
check whether the start node equals the current node and the start edge equals the
current edge. Thus, the traversal ends at the start edge with the correct direction.

Trees A particular characteristic of trees are that all edges are cutedges, see
Figure 5.9b. A second characteristic is that their leaves form full-angles. A full-
angle represents an edge turn of ´2 for the external face and an edge turn of 2 for
internal faces. Thus, for the external face it is ensured that ∑ePE turn(e) = ´4, and
for internal faces it is ensured that ∑ePE turn(e) = 4, respectively.
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Figure 5.9. Two examples for orthogonal representations with cutedges.

Table 5.4 shows a snippet of the edge properties of the external face of Fig-
ure 5.9b. Each edge (s, t) in the table exists with swapped source and target (t, s)
to illustrate the different directions of the edge properties. Each of the edges
(0, 1), (2, 3), (4, 5) forms a full-angle and has a turn of ´2, and summing up all
edge turns result in ´4.

Table 5.4. Result of setting edge properties of the external face of Figure 5.9b.

Time counter Edge Next Corner Turn

1 (0, 1) (1, 0) 1 ´2
2 (1, 0) (0, 2) 0 +1
3 (0, 2) (2, 3) 2 ´1
4 (2, 3) (3, 2) 3 ´2
5 (3, 2) (2, 0) 2 +1
6 (2, 0) (0, 4) 0 +1
7 (0, 4) (4, 5) 4 ´1
8 (4, 5) (5, 4) 5 ´2
9 (5, 4) (4, 0) 4 +1

10 (4, 0) (0, 1) 0 0
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Figure 5.10. Representation with marked face sides.

5.2.3 Face Sides

The FaceSideProcessor is an intermediate processor that makes some processes
easier on the implementation side. For example, during the compaction phase only
the left and right face sides are interesting for the construction of the network Nhor,
and the top and bottom sides for the construction of the network Nver, respectively.
These sides can be easily determined with the calculated faces sides.

Moreover, the structure of the graph does not change during the compaction,
such that the calculated face sides can also be used in the grid drawing step. Firstly,
the sides are used there to iterate over the edges and set their real coordinates, and
secondly they are used to set the grid dimensions.

Figure 5.10 presents an example with marked face sides. Each side is described
by a number, where

Ź 0 represents the left side,

Ź 1 represents the top side,

Ź 2 represents the right side, and

Ź 3 represents the bottom side.

Every edge e is adjacent to two faces f and g. A face f can contain e on the
same side as g or on the opposite side, depending on the face. All internal faces
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that are adjacent by an edge to the external face, have the edge on the same side of
the external face. All internal faces connected with another internal face have the
edge on the opposite side of the other internal face.

Each face of the example is in rectangular shape. This is not a necessary
condition to use that processor, but at this point of the TSM algorithm orthogonal
representations in that shape are considered. Only the bend-points of each edge
have to be exchanged by dummies for this algorithm, since each edge segment
itself is mapped on a face side.

Listing 5.7. Face sides processor.

69 procedure ( g : Graph ) {
70 i n i t i a l i z e visited_ f aces : Se t of V i s i t E n t r y
71 i n i t i a l i z e completed_ f aces : Se t of f a c e s
72 while ( current_ f ace ‰ n u l l ) {
73 i n i t i a l i z e f ace_sides : Array of edge l i s t s ;
74 add f a c e edges to corresponding s ide ;
75 choose next current_ f ace ;
76 }
77 }

The algorithm to fill the face sides with edges is realized as follows. Two sets
are created. visited_ f aces stores a VisitEntry for each new found face, during the
walk-around of the adjacent edges of a face f .

A VisitEntry consists of the following attributes:

Ź The found new face.

Ź A start edge ese which represents the current edge of the traversal.

Ź The incident node of ese in clockwise direction of the found face. If f is an
external face the direction stays the same, and if f is an internal face the node is
the opposite node of ese, to ensure the node in clockwise direction of the new
face.

Ź An integer side index that stores the current face side of ese. If f is an external
face the side stays the same as above, and if f is an internal face, it yields
sideindex = (sideindex + 2)/4, the opposite side.

The set completed_ f aces stores all finished faces.
Afterwards, the procedure iterates over all faces, and each of the four face sides

is used as a list of edges. Starting on the left side (side index = 0), and the first
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edge in clockwise direction of the side is used as start edge to ensure the correct
order in every side list.

Then, a traversal over all adjacent face edges is started. Each face that is found
is added with the described properties to visited_ f aces. A side is filled with edges
until an edge and its next edge form a direction change. If the turn is a right turn
the side index is increased, and if the turn is a left turn the side index is decreased.
The example of Figure 5.10 contains only faces in rectangular shape. Thus, in that
example there are only right turns with the result that the side index can only be
increased. The traversal of adjacent face edges ends if the start edge and the start
node are reached.

Finally, a non-completed face is chosen from the set of visited faces to be
processed as next. The start edge and the start node of the stored properties are
used to ensure the correct direction of the new face as well as the side index to
ensure the correct side.

If visited_ f aces consists of only already completed faces the method ends and
all faces are equipped with its face sides.

5.3 Postprocessing

After the preprocessing is done the orthogonal representation contains no bend-
points, and secondly, all faces are in rectangular shape. The compaction phase
sets the relative edge lengths. All that is left for the postprocessing to do is the
mapping of all graph elements on a grid as well as the removal of the various
inserted dummies. These issues are handled by intermediate processors, which are
considered in the following.

5.3.1 Grid Drawing

A grid is introduced to give the elements of the orthogonal representation real
coordinates. Nodes, bend-points and edge crossings get a unique position in the
grid. Since edge crossings and bend-points are handled as nodes they are easy to
integrate into the grid. The basic idea behind that approach is to go along the sides
of each face and set each node that is not already set onto a position of the grid.

Then, the grid size is calculated easily, by taking the left and top sides of the
external face. Summing up the relative lengths of their edges determines the height
and width of the grid. For example, Figure 5.11 has a height of 1 + 1 + 1 = 3 and a
width of 1 + 2 = 3.

63



5. Compaction

0 1 2 3

0

1

2

3

1

1

1

1 1

1

1

3

1

1 2

1

1

1

1

1B3 B4

0 P0 5 2

34R0 B0

B2 B1

Figure 5.11. Grid drawing of K3,3 with marked edge lengths.

Afterwards, the process of filling the grid is done. Listing 5.8 illustrates that
method. The external face is taken as start face. To find a correct start position
into the grid, the leftmost, lowermost node is used. That is the only node incident
to an edge on the left side (side[0]) and incident to an edge on the bottom side
(side[3]). The set visited_ f aces stores every new found face of the graph during an
adjacent face edges traversal. If a traversal is finished, the processed face is added
to completed_ f aces.

Listing 5.8. Grid drawing processor.

78 f i l l G r i d ( g : Graph ) {
79 current_ f ace = e x t e r n a l f a c e of g ;
80 determine le f tmost , lowermost s t a r t node ;
81

82 i n i t i a l i z e visited_ f aces : Se t of f a c e s
83 i n i t i a l i z e completed_ f aces : Se t of f a c e s
84 while ( current_ f ace ‰ n u l l ) {
85 s e t edge p o s i t i o n s i n t o the grid ;
86 choose next current_ f ace ;
87 }
88 }
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Figure 5.12. Increasing the grid positions.

After these sets are initialized, each face is traversed to set each adjacent, not
already set node to a position into the grid. The face is traversed in clockwise
direction with a start edge incident to the start node calculated before.

The relative length of the edge (v, w) determines the distance between the
nodes v and w. Depending on the current face side the position is changed in
horizontal or vertical direction. Figure 5.12 shows the increase of the grid position
(x, y) depending on the current face side index si, labeled with 0, 1, 2, 3.

Ź If si = 0 the y coordinate, representing the current height, is increased.

Ź If si = 1 the x coordinate, representing the current width, is increased.

Ź If si = 2 the y coordinate is decreased.

Ź If si = 3 the x coordinate is decreased.

Each found face during the traversal of a face is added to visited_ f aces, and
each finished face is added to completed_ f aces set, as mentioned in Section 5.2.3.
Then a visited, not completed face is taken to do the described procedure again.
After all faces are considered, each node of the graph has a unique position in the
grid. Now, node sizes and real diagram coordinates can be set to each node in the
grid.

The last step of the algorithm is to remove the before added dummies, which is
described in the next subsection.
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a. Grid representation of the K3,3 with all
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b. K3,3 without rectangular shape dummies.

Figure 5.13. Removal of rectangular shape dummies.

5.3.2 Dummy Removal

The dummies are removed in three steps described by the following intermediate
processors:

Ź RectShapeRemover

Ź BendDummyRemover

Ź PlanarDummyRemover

To illustrate the dummy removal steps the repeatedly considered K3,3 graph is used
(see Figure 5.13).

Rectangular Shape Dummies

The task of this intermediate processor is to remove all edges and nodes introduced
by the RectShapeProcessor. In that process, each node n of the grid is checked for
a RectShapeDummy property, which is added at the insertion. If such a node is found,
it is processed as follows.

The edges (v, r) and (r, w) of the dummy node r with no property that identifies
the edge (r, corner(e)), are merged back to (v, w). Additionally, r is removed from
the graph and from the grid as well as the edge (r, corner(e)).
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Figure 5.14. Removal of bend dummies.

This is illustrated in Figure 5.13. Figure 5.13a has one rectangular shape
dummy labeled with R0. The edges (0, R0) and (R0, B1) are merged to (0, B1).
Furthermore, node R0 and the extending edge (R0, B4) are removed. The result,
seen in Figure 5.13b, contains no rectangular shape dummies.

Bend Dummies

After the rectangular shape dummies are removed, the bend dummies are consid-
ered. The dummies are nodes for each bend-point itself and dummy edges, which
are needed to subdivide the original edges during the BendDummyProcessor. Thus, it
is easy to remove the dummies by simply iterating over all nodes of the grid, and
if a node with property BendDummy is found, it is processed as follows.

The edges (v, b) and (b, w) incident to the bend dummy node b are merged back
to one edge (v, w). In that process, the original edge is retained and the dummy
edge is removed. If the dummy edge contains bend-points, they are added to the
bend-point list of the original edge. If no incident edge of b is an original edge, an
arbitrary edge is taken to be retained.

An example for this process is presented in Figure 5.14. For example, the edges
(0, B2) and (B2, 1) can be easily merged back to the edge (0, 1). B2 and (0, B2) are
removed, and the original edge (B2, 1) is updated to (0, 1).
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Figure 5.15. Removal of planarization dummies.

Additionally, the edge (0, 1) is equipped with a bend-point with the position
of B2. Since the edge (0, B2) contains no bend-points, the bend-point list of (0, 1)
needs no more updates.

For edges with more bend dummies like (0, 3), there is a possibility that no
original edge around a bend dummy. For example, if the grid iteration finds B0 first
and then B1, then one of the incident edges is removed and the other is equipped
with a bend-point at the position of B0. If B1 is removed, the originally merged
edge (0, 3) is equipped with a bend-point with the position of B1. Secondly, the
bend-points of the removed edge (B1, 3) are added to the bend-point list of (0, 3).
When the process is done for all bend dummies the result contains no bend-point
dummies (see Figure 5.13b).

Planarization Dummies

The last remaining dummies are the planarization dummies. A planarization
dummy is always incident with four edges, two inserted dummy edges and two pre-
viously set edges. The dummy edges can be identified with the PlanarizationDummy

property. The opposite incident edge of a dummy edge is a previously set edge.
This can be easily determined with the angle-data of the orthogonal representation.
Hence, the opposite incident edges are merged back to the previously set edges
and the planarization dummy is removed.
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Figure 5.15 illustrates that method. The only planarization dummy node P0

is removed and the opposite incident edges (1, P0), (P0, 4) and (0, P0), (P0, 5) are
merged. The result is presented in Figure 5.15b which does not contain any
planarization dummies.

The order of the dummy removal processors is important. They come in the op-
posite order in comparison to the dummy insertion processors. This results from the
fact that each dummy insertion step assumes an input graph that includes dummies
that were inserted in the preceding steps. For example, the RectShapeProcessor

needs dummies for edge bends. If these bends would be removed before the
rectangular shape dummies are removed, exceptions would be caused during the
step of the RectShapeRemover. The implementation would need to handle these
exceptions, such that the code would not be readable and would be more error
prone. Furthermore, the intermediate processors should be as generic as possible
in order to depend on other intermediate processors as less as possible. This is
ensured by the described order.
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Chapter 6

Extensions

The preceding chapters consider the different parts of the TSM algorithm. This
chapter describes implemented features as well as ideas for not realized features.

Firstly, different techniques for extending the TSM algorithm to provide graphs
with a higher degree than four are considered. In that context the implementation
of the Giotto algorithm as well as the implementation of the Quod algorithm are
presented.

Furthermore, extensions such as interactive planarization and the finding of an
optimal embedding are discussed. Secondly, their possible realizations in KLay Pla-
nar are described. The compaction works with input graphs that contains faces in
rectangular shapes. This often leads to non-space-minimal results. Hence, a second
compaction heuristic is mentioned. Furthermore, planar drawing alternatives are
considered. Additionally, a method is presented to allow directed graphs. Finally,
ideas to handle basic extensions, like handling of self-loops and multi-edges are
presented.

6.1 Node Degree Higher Than Four

A restriction of the presented TSM approach is that nodes cannot be incident to
more than four edges, since in the orthogonalization phase at most four edges can
be incident to a node and in the compaction part vertices of a graph are placed on a
two-dimensional grid. Nodes with arbitrary degree are required in many practical
applications. Hence, this problem has been studied extensively in the past and
several extensions were formulated. Three of them are considered which mainly
bases on Klau and Mutzel [KM98], Kaufman and Wagner [KW01],and Eiglsperger,
Kaufman and Siebenhaller [EKS03]. They are illustrated in Figure 6.1.

One approach is the so called Giotto model [TDBB88]. Vertices with a higher
degree than four are drawn as boxes on the grid that consist of more than one grid
position. This approach is simple to realize but requires more drawing space than
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a. Giotto result. b. Kandinsky result. c. Quod result.

Figure 6.1. Planar graphs drawn with different high degree approaches [KM98].

other approaches. Furthermore, the size of high-degree nodes is increased, which
makes this approach problematic for graphs containing size constraints on vertices.

The Kandinsky approach represents all graph vertices as squares of equal size,
arranged on a coarse vertex grid [FK96]. Edges are allowed to run on a finer grid,
which is defined by the maximal vertex degree. Thus, the edges can be put closer
to each other.

Another approach is called Quod (quasi–orthogonal grid embedding) algorithm
that is an extension of the Giotto model, which allows the edges to leave the grid
around high degree vertices and become diagonal [KM98].

Each of the presented techniques has its advantages and its disadvantages
[KM98]. In short, they are illustrated in Table 6.1.

Table 6.1. Advantages and disadvantages of the different high degree approaches.

Property Giotto Kandinsky Quod

Used Space ´´ + ´´

Number of Bends ++ ´ ´

Original Vertex Size ´ + +
Complexity ++ ´ +

As seen in Figure 6.1, Giotto and Quod lead to results with more drawing space
than the Kandinsky algorithm, since in the Kandinsky approach lots of edges are
drawn in the finer grid. Giotto produces results with few bends, because the size of

72



6.1. Node Degree Higher Than Four

0

3

5

1

2

4

a. High-degree vertex.

E1

E3

E4

E5

E2

2

1

4

32

b. Expansion cycle that avoids vertex de-
grees higher than four.

Figure 6.2. Transformation of a high-degree node into an expansion cycle.

each high degree node is increased on multiple grid positions. Thus, the incident
edges can be connected with that node without additional bends. However, the
original vertex size is increased, which can be problematic in graphs with fixed
vertex size constraints such as UML class diagrams.

To avoid this, the Giotto approach can be extended by the Quod algorithm. Each
grown high degree node can be resized to its original size. Then, the incident edges
are equipped with bend-points at the connecting positions, such that a diagonal
edge segment connects that bend-point with the resized node.

In order to allow high degree nodes in the context of KLay Planar, the Giotto
algorithm is realized, because of its simple nature and the low bend size. Addi-
tionally, the implementation of the Giotto approach is extended with the Quod
algorithm to support node size constraints. The user of KIELER is allowed to decide
which high-degree node strategy should be taken.

The Giotto approach and the Quod approach belong to the type of reduction
algorithms that can divide a node in two different ways:

Ź Expansion cycle of dummy nodes.

Ź Sequence of successive dummy nodes.

An expansion cycle replaces every high-degree vertex vh of a graph. Each edge of
vh is assigned to a vertex of the cycle and all cycle nodes are connected to two
other cycle nodes (see Figure 6.2). Thus, each vertex of that cycle is incident to two
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Figure 6.3. Transformation of a high-degree node into an sequence of dummy nodes.

dummy edges and an original edge. This is done before the orthogonalization is
processed such that the input embedding of the orthogonalization contains only
nodes with a maximal degree of four. After the compaction phase is finished and
the grid drawing processor is finished, the dummy nodes of the expansion cycle
are set to a position of the grid. These positions are used to determine the size and
position of vh. Results like in Figure 6.1a are produced.

The second approach of the reduction is to replace vh with a sequence of
dummies as in Figure 6.3. This allows every dummy node to be incident to at least
two original edges. In many cases this approach leads to more compact results.

6.1.1 Implementation

The implementation is divided into three parts. Firstly, the creation of expansion
cycles to avoid high-degree nodes is considered. Furthermore, the realization of
the transformations back to high-degree nodes with the Giotto approach and the
Quod approach are discussed.

Reduction

In order to create expansion cycles for every high-degree node an intermediate
processor, called ExpansionCycleProcessor is introduced. It is added to the first
processing slot of the preprocessors of the orthogonalization. The possibly added
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Figure 6.4. Performing orthogonalization and compaction on expansion cycle.

cycles form new faces that are calculated at the face determination processor.
However, the external face processor chooses the face with maximal edge count,
which could possibly be the expansion cycle. Thus, an exception has to be done
where no expansion cycle face is taken as the external face. Dummy nodes of the
expansion cycle faces are marked with special properties to identify them.

Table 6.2. The adjusted preprocessor list of the orthogonalization.

Typ Name Description

Preprocessing ExpansionCycleProcessor Extend an embedding with expansion
cycles to avoid high-degree nodes.

FaceDetermination Determining the faces of a planar
embedding.

ExternalFaceProcessor Choice of an external face.

Each high-degree vertex vh of the embedding is processed as follows to create
an expansion cycle. All incident edges of vh are stored, and vh is removed from the
graph. Then, the expansion cycle is created by adding a dummy node for each of
the stored edges. Each dummy node is connected with its two neighbor dummy
nodes by dummy edges (see Figure 6.2b). The correct embedding of the cycle has
to be ensured. In that process the dummy edges are embedded in a way so that
they form a new face and each original edge is connected to a dummy node such
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that no edge crossing appears. Since the embedding of vh is planar, the cycle is
built by creating the dummy nodes with respect to the counter-clockwise order of
incident edges of vh.

An expansion cycle may not have a rectangular shape after the orthogonalization
is processed. Since the coordinates and the position of each high-degree vertex of
that cycles are computed in order to be placed in the grid correctly, it would not
be a good idea to let the shapes of the expansion cycle get too complicated. Thus,
the expansion cycle is forced to be in rectangular shape by modifying the network
creation of the orthogonalization algorithm.

Mutzel et al. presented a technique for that extension in 1998 [Mut+98]. In
that method it is distinguished between normal faces and expansion cycle faces.
Each face has a rectangular shape if neither of the angles of the vertices in that
cycle exceeds 180˝. Since each vertex of the expansion cycle has a degree of 3 the
cycle can only form angles of at most 180˝. Thus, the ď 180˝ angle requirement
is automatically satisfied. Secondly, it has to be avoided that bends are added to
the bounding cycle edges. Bends are set by setting the flow in the network on
arcs (g, f ) where g and f are faces. Hence, deleting the arcs (g, f ) where f is an
expansion cycle face makes such flows impossible, and no bends are placed on the
expansion cycle edges.

Table 6.3. The adjusted postprocessor list of the compaction.

Typ Name Description

Postprocessing GridDrawingProcessor Mapping the graph elements on a grid.
GiottoProcessor Transformation of expansion cycles

back to high-degree nodes.
RectShapeRemover Removal of dummy nodes and dummy

edges that ensure rectangular faces.
BendDummyRemover Removal of bend-point dummy nodes.
PlanarDummyRemover Removal of planar dummy nodes.

Giotto Implementation

The high-degree node enlarging is done by an intermediate processor called
GiottoProcessor. This is added to a processing slot after the compaction phase
and after the grid drawing processor, since a grid drawing is needed to calculate
the sizes of high-degree nodes. The adjusted postprocessing order is presented
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Figure 6.5. Back transformation to the high-degree node with Giotto approach.

in Table 6.3. The processor is added before the other dummy removal processors.
This processor decreases the number of nodes of the grid. Thus, it is added before
the other removal processors, such that these do not need to iterate unnecessarily
over the expansion cycle. This can be done, because the GiottoProcessor does not
further influence the other removal processors.

Figure 6.5 illustrates the transformation of an expansion cycle back to a high-
degree node. Each dummy node of the expansion cycle consists of a property
identifying its original node vh. Hence, each dummy can be assigned to a unique
high-degree node. As mentioned before, the positions of the dummy nodes are
used to determine the size of vh as well as to determine the node positions. The
position of the dummy node with the lowest x- and y-coordinate is taken. Secondly,
the position of the node with highest x- and y-coordinate is taken. Afterwards,
all dummy elements of the expansion cycle are removed from the grid. Then, vh
is spanned from the smallest x-coordinate to the highest, and from the smallest
y-coordinate to the highest. Since each expansion cycle always forms a rectangle
there are exactly one dummy node with smallest x- and y-coordinate as well as
exactly one dummy node with highest x- and y-coordinate. The original edges
are again connected to the vertex at the positions of the dummy nodes, and vh is
transformed back to a single node.

The example of the Figure 6.5 has an expansion cycle (E0, E1, E2, E3, E4), which
is desired to be transformed into one high-degree node. The position of E0 is (1, 0)
with smallest x- and y-coordinate. E3 has a position of (2, 2) that forms the highest
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Figure 6.6. Back transformation to the high-degree node with Quod approach.

coordinates. The edges and nodes of the expansion cycle are removed. vh, in the
example vertex 0, is spanned from (1, 0) to (2, 2) and occupies six grid positions.

Quod Implementation

As mentioned before, the Quod approach does not change the size of the nodes,
and it works on the expansion cycle of the reduction, like the Giotto algorithm.
The intermediate processor QuodProcessor is introduced for this approach that
can be exchanged with the Giotto approach by a layout option of KIML. In that
context, the smallest x- and y-coordinates and the highest x- and y-coordinates
are used to calculate the position of vh, e. g., the position of vh is the middle point
of these coordinates. This point is the average value of the smallest and highest
x-coordinates, and the average of the smallest and highest y-coordinates. If the
result is a non-integer, the coordinates are rounded up.

The cycle is removed, and the original edges are connected with vh, just like it
is in the Giotto approach. Now the Giotto and Quod approach start to differ. The
original edges are equipped with bend-points at the positions where they have been
connected with the dummy nodes. Then, the resulting drawing contains diagonal
segments from the dummy positions to vh, and the drawing is quasi orthogonal.

An example of the Quod transformation is presented in Figure 6.6. The high-
degree vertex 0 is set to the grid position (2, 1), since the rounded up average of the
positions (2, 2) and (0, 1) is (2, 1). The expansion cycle is removed, and a bend-point
is added to each original edge at the positions (0, 1), (1, 1), (2, 1), (0, 2), (2, 2).
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Future Work

The Kandinsky approach could be implemented to get more compact results and
intermediate processors can be used for the creation of finer grids. The implemented
method to resolve high-degree nodes could be reused.

A second extension would be the implementation of the dummy nodes sequence
to resolve high-degree nodes. Again, an intermediate processor that resolves high-
degree nodes in a sequence instead of in an expansion cycle could be introduced.
In some situation this leads to more compact drawings, as can be seen in Figure 6.2
and Figure 6.3. Here, only two dummy nodes are introduced by the sequence
approach.

6.2 Interactive Planarization

Additionally to the aesthetics criteria of Section 2.1.3 there is another important
criterion, the so called user mental map. In an interactive visualisation system,
changes to a drawing are made constantly, sometimes by the user and sometimes
by the application. These changes frequently spoil the layout, since node overlaps
might happen. A layout algorithm that rearranges the layout preserves the user
mental map criterion if it destroys the mental map of the user as less as possible, by
minimizing changes to the layout [Ead+91]. Most of the existing layout algorithms
are designed for layout creation, and so is the TSM approach. Such layout algorithms
may completely rearrange the layout and thus destroy the mental map of the
diagram.

The implemented TSM algorithm could lead to completely different drawings,
since the planarization takes an arbitrary embedding of the given graph. In order
to set the user mental map criterion on the top of the importance list of the TSM

algorithm’s criteria and preserving more the mental map, the planarization could
be exchanged. In KIELER automatic layout is always done on a given graph drawing.
The first step of the existing planarization algorithm calculates for a possibly non-
planar graph G a more or less arbitrary planar subgraph G1, without regarding the
original embedding. Thus, the embedding of the graph G can be calculated from
the original node positions of the given graph drawing. The given embedding is
possibly may not be planar. All edge crossings needs to be identified. This could
also simply be done by checking every two edges of the graph whether of their
segments cross each other. For each crossing a dummy vertex could be introduced
to remove the non-planarity property.
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Figure 6.7. Planarization with preserving the given embedding.

The described planarization variant could be implemented within a phase
of KLay Planar which could be optionally exchanged with the original one. The
consecutive parts of the algorithm would not need to be adjusted, since the result
of the exchanged planarization would be a planar graph. Finally, the planarization
dummies would be removed in the PlanarDummyRemover intermediate processor. An
example is presented in Figure 6.7. The embedding is the same as in the original
graph but with the disadvantage that possibly more crossings dummy nodes are
inserted. An embedding with less dummies would result if edge e = (1, 7) would
be placed around the graph such that e would cross (0, 2).

In addition to the approach of Boyer and Myrvold, and the interactive pla-
narization a combination of the two algorithms could be useful. That is, first to
generate a layout with Boyer and Myrvold approach to get a drawing with few
edge crossings. Then, all the other times a new layout is desired the interactive
planarization approach could be used to ensure a better orientation of the user
and still few edge crossings of the existing embedding. This is a more dynamic
approach, which would need some research and possibly some changes to the KIML

architecture.
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6.3 Optimal Embedding

Thorsten Kerkhof considered the determination of an optimal embedding for a
given planar embedding [Ker07]. There are different embedding properties that
can be optimized at the calculation of a planar embedding. Two of them are:

Ź Minimization of the depth graph embedding [PT00].

Ź Maximization the edges of the external face.

The depth of a planar embedding of a graph is a measure of the topological
nesting. Maurizio Pizzonia et al. figured out that minimum depth has advantages
compared to high depth for the aesthetics criteria total bend number and sum
of edge lengths [Piz06]. Both approaches can be combined since their ways of
processing are similar and both approaches are orthogonal to each other [GM04].
Kerkhof implemented the different approaches and showed with experimental
studies that the combination of both approaches leads to the best results.

This extension could be implemented in the environment of KLay Planar, too.
The existing ExternalFaceProcessor takes the face with maximal edge count as
external face. This intermediate processor could be extended with the mentioned
algorithms to get better results.

6.4 Compaction

The implemented compaction requires input graphs which are in rectangular
shape. This restriction often leads to results that are not minimal. In order to
illustrate the drawing gap resulting the example of Figure 6.8a is presented that
shows a drawing of an orthogonal representation computed with the implemented
algorithm of Tamassia. The problem is that the drawing takes more drawing area
than necessary. The orthogonal representation with minimal drawing area is shown
in Figure 6.8b.

The compaction of Tamassia computes often non-minimal results, however in
polynomial time. Klau and Mutzel developed a more complicate approach and
compared it with the heuristic of Tamassia [KM99b]. The comparison shows that
their approach produces much more compact drawings than the one of Tamassia
and secondly they showed that their algorithm works in polynomial time.

They provide a necessary and sufficient condition for all feasible solution which
bases on existing paths in the so called constraint graphs in x- and y-direction. The
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a. Drawing of Figure 6.8a with removed
dummies.
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Figure 6.8. Two drawings with different edge length, respectively different drawing area.

two constraints graphs in horizontal and vertical direction specify the shape of the
given orthogonal representation. Their algorithm works with input graph drawings
that contain no bends and no edge crossings. The task of that algorithm is to extend
the constraint graphs to a complete pair of constraint graphs by adding new arcs
for which the defined condition is satisfied and the total edge length of the drawing
is minimal. A more detailed description is presented in “Optimal Compaction of
Orthogonal Grid Drawings” [KM99b].

6.5 Planar Drawing Alternatives

Drawing planar graphs orthogonally is only one option. In the literature there are
various approaches to draw them. Most of them base on so called triangulated
graphs [FPP90; KB92; Kan92; Kan96; Bad+10]. Hence, this approach is presented
here. As mentioned in Section 2.1, adding any edge to a maximal planar graph
would lead to an edge cross, such that the graph would be no longer planar.
Maximal planar graphs consist of faces bounded by three edges, thus they are often
called triangulated graphs. De Faysseix, Pach and Pollack introduced an algorithm
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0 1

k+1

Gk

Figure 6.9. Triangulating a planar graph bases on the canonical ordering.

that draws planar graphs straight-line without crossings [FPP90]. The algorithm
works in three steps:

1. First, the graph is triangulated.

2. Afterwards, a canonical ordering for triangulated plane graphs is computed.

3. Finally, the vertices of the graph are placed according to the canonical order.

Kant introduced a technique to triangulate a planar graph in linear time [KB92].
The planar canonical ordering is an ordering of vertices v1, v2, ...vn of a maximal
planar graph G with the characteristics that

Ź G is biconnected, and

Ź v1 and v2 are on the external face.

Figure 6.9 illustrates the constructing of a maximal planar graph with the canonical
order. After a subgraph Gk of G is drawn, vk+1 can be drawn without edge crossings,
since it is adjacent only to a sequence of vertices on the outer face of Gk.

An example for the mentioned algorithm is presented in Figure 6.10. The
dashed lines are dummy edges introduced by the augmentation to triangulate
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Figure 6.10. An example of a planar straight-line drawing.

the graph. Computing the canonical order of the graph leads to a drawing of
Figure 6.10b. The dummies are still part of the graph and have to be removed for
the final drawing.

This approach can be implemented in KLay by using the planarization phase
of KLay Planar and then introducing a new phase which does the steps described
above.

6.6 Handling Directed Edges

There are a lot of applications that are modeled with mixed graphs, for example
class diagrams containing class hierarchy (see Figure 6.11). The problem in the
context of directed edges at the planarization is to find a planar upward embedding.
As mentioned in Section 2.1, an upward drawing of a directed graph is a drawing
where each edge is represented by a curve monotonically increasing in the vertical
direction. Even if the testing of arbitrary mixed graph to be upward planar is
NP-hard, there are heuristics that work efficient for graphs with single source node,
the so called st-graphs [HL91].

Chimani, Gutwenger, Mutzel, and Wong introduced an layer free approach for
upward edge crossing minimization [Chi+10]. Their algorithm can be applied to
acyclic directed graphs with single source.
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Figure 6.11. Snippet of a class diagram of KLay Planar.

Secondly, they compared their algorithm with the one of Sugiyama et al. who
introduced a method to draw graphs upward in 1981 [STT81]. Sugiyama’s approach
consists of three phases:

1. Layer Assignment; Assign the nodes to layers such that edges point from lower to
higher layers. Furthermore, split edges spanning several layers such that edges
connect only nodes on adjacent layers.

2. Crossing Reduction; Reorder the nodes on each layer with the objective to reduce
the number of edge crossings.

3. Coordinate Assignment; Assign final node and bend-point coordinates.

Chimani et al. tried to solve the problem that assigning nodes to fixed layers in
the first step can massively influence the subsequent crossing minimization step,
see Figure 6.12a. Requiring edge crossings would become unnecessary if another
“better” layer assignment would be chosen, see Figure 6.12b. Hence, they merged
the phases 1 and 2 of Sugiyama’s algorithm to combine the layer assignment and
crossing minimization in order to obtain drawings with less edge crossings.

The algorithm of Chimani et al. underlies the following idea. As input a st-graph
G is assumed. If G contains more than one source node, an additional dummy
node is introduced as super source node, which is connected to all original sources.
At first a feasible upward planar subgraph is calculated, and afterwards the remaining
edges are iteratively added to that subgraph such that few crossings arise. Then
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a. Representation with unfortunate layering. b. Upward planar representation of the
same graph as of Figure 6.12a.

Figure 6.12. Two representations with different layering strategies.

these crossings are replaced with dummy nodes such that the consecutive parts of
Sugiyama’s algorithm (phase 3) are able to process on a planar graph. Inserting an
edge e into a planar graph thereby means that all arising crossings will lie on e; they
do not introduce additional crossings purely on the planar graph itself. The main
challenge with this approach is that, in contrast to the approach for undirected
graphs, the edge insertion steps are not independent of each other.

A more detailed explanation and a pseudo code for handling that edges is
presented in the paper Layer-Free Upward Crossing Minimization [Chi+10]. In order
to implement this algorithm in the existing TSM implementation the planarization
phases have to be exchanged with a variant of their own, such that upward planarity
testing would be possible, and the edge insertion steps would need to be extended
to allow dependent edge insertions.

6.7 Hypergraphs

Many applications such as electric schematics require hypergraphs, hence handling
of such graphs would be a nice extension of the implemented TSM algorithm.

Definition 6.1 (Hypergraph). A hypergraph is a generalization of a graph in which
an edge can connect any number of vertices. Formally, a hypergraph is a pair
H = (X, E) where X is a set of vertices, and E is a set of non-empty subsets of X
called hyperedges.
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a. Drawing with subset stan-
dard.

b. Drawing with edge stan-
dard, tree-based.

c. Drawing with edge stan-
dard, point-based.

Figure 6.13. Different representations of a hypergraph [Kut10].

Mäkinen defined different variants to draw hypergraphs, namely the subset
standard and the edge standard [Mäk90]. The second variant is divided into the
tree-based drawing style and the point-based drawing style. Figure 6.13 illustrates
the different drawing styles. The subset standard tends to get confusing quickly.
Secondly, it is hard to determine clear edge crossings. Thus, most applications
use the edge standard style [San04; EGB06]. In the tree-based drawing style each
hyperedge h P E is drawn as a tree-like structure of lines, whose leaves are the
incident nodes of h. If the tree-like structure of every hyperedge is restricted to be
a star which consists only one hypernode per hyperedge, the point-based drawing
style is obtained.

In 2010 Kutschmar presented a technique that extends the planarization of the
implemented TSM algorithm, in which it is possible to remove edge crossings from
hypergraphs [Kut10]. His implementation work on hypergraphs with edge standard,
especially the point-based shape. Hypergraphs in tree-based shape are transformed
to be in point-based shape. His method to handle hypergraphs efficiently includes
the insertion of dummy nodes. A back transformation to the original graph could
be done as the dummy removal processors of the compaction’s processing.
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6.8 Port-Constraints

The ports of an edge e = (v, w) of a graph drawing are the points where e touches
the nodes v and w. Ports are used at dataflow diagrams and at electric schematics
and have a specific semantic interpretation. Thus, practical applications have
additional constraints on the drawings for such ports, since the positions of the
ports is not arbitrary. Using rectangular vertices, the two ports of an edge can
lie at the top, right, bottom or left side of a vertex. If an edge e is restricted to
be connected with its incident vertices at prescribed sides, then it is called a side-
constraint. Besides to side-constraints, port-constraints define prescribed attachment
points of edges at a vertex.

In order to provide port-constraints in the implemented TSM algorithm the
technique by Gutwenger, Klein and Mutzel could be implemented [GKM07]. They
investigated embedding constraints that restrict the acceptable order of incident
edges around a vertex. Additionally, they introduced a set of hierarchical em-
bedding constraints that include grouping, mirror, and oriented constraints. To be
more precise, the embedding constraints of the edges around a vertex v can be
modeled as a rooted, ordered tree whose leaves are the edges incident to v. The
inner vertices of the trees represent the different embedding constraints as follows:

Ź Grouping constraint vertices; the order of the children of these vertices is
arbitrary.

Ź Mirror constraint vertices; the order of the children of these vertices may be
reversed.

Ź Oriented constraint vertices; the order of the children of these vertices is fixed.

A graph is called ec-planar if it admits a planar embedding satisfying the given
embedding constraints. Gutwenger et al. present an O(n) algorithm for computing
the corresponding ec-embedding in the context of the planarization of the TSM

algorithm. In that process, the mentioned tree structure is used by an extended
planarization algorithm in order to obtain a planar embedding that respects the
predefined constraints.

6.9 Edge Enhancement

The algorithm implementation of KLay Planar is not yet ready to handle labeled
edges, multi-edges and self-loops. In the following, strategies are presented to
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handle such edges.

Figure 6.14. Example graph containing labeled multi-edges and labeled self-loops.

6.9.1 Edge Labels

A typical example of the usage of edge labels are the streets of a city map, which
must be easy to identify by their names. Binucci et al. compared some edges
labeling heuristics with each other [Bin+02]. In that context they presented three
requirements of good labeling:

Ź Any label must be easy to identify to an edge to which it is assigned to.

Ź A label assigned to an edge can not overlap with other drawing elements.

Ź A label must be placed in the best position among all acceptable positions.

One optimization goal is to minimize the drawing area. Most of the labeling
problems have been proved to be NP-hard. The mentioned edge label placement
approaches treat drawings as sets of distinct straight-lines. Secondly, they do not
allow to change the geometry of the given drawing.

A first approach to handle edge labels in the context of the TSM algorithm is
to model the edge labels as dummy vertices. Then, these dummies are placed
arbitrary at a segment of the labeled edge and in an arbitrary direction. However,
it is not clear how to guarantee that the resulting labeled drawing is well readable,
since this approach does not allow any control on the choice of the best position
for a label along an edge. Figure 6.15a shows an orthogonal drawing with such a
random label placement.

Klau and Mutzel et al. investigated a technique to put labels on vertices in a
suitable manner, where they combine the compaction of the TSM algorithm with
labeling techniques [KM99a]. Binucci et al. focus on the integration of a variant of
Klau’s technique for edge labeling.
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Figure 6.15. Different labeled drawings of the same labeled orthogonal representation
[Bin+02].

A description of their considered problem is as follows. Let G be a planar graph,
let H be an orthogonal representation of G and let L be a set of labels for the edges
of G where each edge is associated with at most one label. The algorithm computes
an orthogonal grid drawing of G such that its edges are labeled and have the shape
defined in H. Each edge label is modeled as rectangle with a given integer width
and height. Their proposed heuristics bases on the greedy strategy that computes a
drawing by inserting a label at a time. They designed different algorithms for the
edge labeling problem and experimentally compared their performances. The best
proven heuristic is defined as follows:

Ź Max-ratio-delta-area: The label with highest insertion priority is the one with
maximum aspect ratio. If two labels have the same aspect ratio, the one that
causes the minimum increase of the area is chosen.

They implemented two variants of that heuristic, namely Fast Labeler and Slow

Labeler. The Fast Labeler needs much less processing time than the Slow Labeler

and produces useful results. The Slow Labeler computes more compact drawings
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Figure 6.16. Processing steps of handling multi-edges.

than Fast Labeler, however it needs more processing time. Figure 6.15b shows a
drawing that would result if the Slow Labeler would be used to arrange the same
graph as in Figure 6.15a. The detailed algorithms can be looked up in Labeling
Heuristics for Orthogonal Drawings [Bin+02].

6.9.2 Multi-Edges

Multi-edges are problematic for many parts of the algorithm, since an edge is
identified by its source and target nodes. Multi-edges can be connected several
times to the same source and target.

Hence, multi-edges need special attention. An idea to handling such edges
is described in the following. A multi-edge emu could be treated as a single
edge e

1

mu such that there are no problems while processing the algorithms phases.
Afterwards, e

1

mu could be extended back to emu. Instead of setting e
1

mu on the grid,
all the edges of emu could be placed parallel to each other along the endpoints and
bends of e

1

mu.
The implementation of merging a multi-edge to one edge could be done with

an intermediate processor at the beginning of the implemented algorithm. All
following algorithm parts would then work with a normal edge instead of the
multi-edge. The back transformation could be enqueued in the dummy removal
processors of the postprocessing of the compaction.

An example of this technique is presented in Figure 6.16. The edge (0, 4)
is a multi-edge containing three single edges. This edge would be replaced by
the dashed edge in Figure 6.16b. Then, all phases could be processed correctly.
Afterwards, the edge (0, 4) would be divided into three parallel edges.
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a. Node with self-loop.
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b. Dummy cycle that removes the self-loop.

c. Orthogonal drawing of the dummy cycle. d. Final drawing of a self-loop.

Figure 6.17. Handling of self-loops.

Edge Crossings Another problem with multi-edges are edge crossings. Such
crossings with emu are expensive multiple times, since each containing edge of emu

is crossed.
The position of each crossing is determined by the planarization and identified

by a dummy node. During the mentioned planarization, Dijkstra’s algorithm is
used to determine the shortest path in the dual graph between the endpoints of the
edges to be inserted. Thus, the edges cross the fewest other edges. In order to let
multi-edges be crossed as less as possible all edges of the graph could be equipped
with weights. All non-multi-edges could be weighted with 1 and all multi-edges
could be weighted with the number of contained edges, respectively. Dijkstra’s
algorithm is known to be able to handle such weighted edges [Dij59]. Hence, using
the edge weights would lead to less edge crossings of multi-edges.

6.9.3 Self-Loops

As mentioned before, a self-loop es f = (v, v) is an edge with same start- and target
node. Such edges are problematic for every phase of the algorithm, thus it would
be meaningful to transform self-loops before the phases are processed in something
the phases can handle.

An idea for solving this is to introduce a dummy cycle for each es f . The cycle
would contain the node v and two additional dummy nodes d0, d1 with the edges
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(v, d0), (d0, d1) and (d1, v). The result of this process is illustrated in Figure 6.17.
Two dummy nodes are introduced instead of one, since the edges from v and

back to v should not be treated as a multi-edge. Secondly, the cycle would get its
own face during the algorithm such that each single dummy edge gets a relative
length of 1. Drawings as in Figure 6.17c are the result. Only the cycle dummies
have to be removed and the vertex v is connected with a self-loop containing only
horizontal and vertical segments (see Figure 6.17d).

The dummy cycle creation could be implemented in an intermediate processor,
which is added to the preprocesors of the planarization. Furthermore, the back
transformation to the self-loop could also be done in an intermediate processor
after the dummy removal processors during the postprocessing of the compaction.
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Chapter 7

Conclusion

To complete this thesis an evaluation is given in order to compare the different
KLay layout algorithms with each other. In that context a upward planarity and a
TSM-based algorithm of OGDF are considered. Finally, a short summary is given.

7.1 Evaluation

In the following some drawings are presented that are computed with different
layout algorithms. These drawings are exported from KIELER. KIELER contains a
graph analysis tool. The following properties were measured with that tool:

Ź Number of edge crossings.

Ź Number of bend-points.

Ź Used drawing area which is represented by the geometric mean of the width
and height in pixel.

Ź Aspect ratio.

Ź Edge lengths in pixel which is divided into the average edge length and the
maximal edge length of the drawing.

Firstly, the algorithms KLay Force, KLay Layered, and KLay Planar are compared
with each other. In that process a drawing D1 containing a tree is arranged. A
second diagram D2 with few edges is arranged with the KLay algorithms and the
orthogonal layout algorithm of OGDF. Finally, a third diagram D3 containing a
mixed graph is arranged with KLay Layered, KLay Planar, and the upward planarity
algorithm of OGDF. If not further mentioned each layout algorithm is performed
with minimum spacing between the nodes of 20 pixels.
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Figure 7.1. Drawing D1 computed with KLay Force with Fruchterman and Reingold strategy,
used 10000 iteration and a minimum space of 40.
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b. Quasi orthogonal drawing of D1 with
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Figure 7.2. KLay Planar with different high-degree strategies.
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Figure 7.3. Drawing D1 computed with KLay Layered in right direction.

Table 7.1. Analysis of the tree drawing D1 computed with different KLay algorithms. It
consists of 12 nodes, 11 edges, and an average node degree of 1.83.

Layout Algorithm Crossings Bends Area Aspect Ratio Edge Lengths

KLay Force 0 0 300 1.56 (68, 94)
KLay Layered 0 0 271 0.45 (142, 300)

KLay Planar (Giotto) 0 0 384 0.59 (32, 260)
KLay Planar (Quod) 0 9 384 0.59 (132, 366)

The KLay Force layout algorithm turns out to perform the best results. The
computed drawing contains no bend-points or edge crossings. Secondly, drawings
are clearly structured (see Figure 7.1). KLay Layered divides D1 into three layers and
produces the most compact drawing with bad readability, however. The drawings
computed with KLay Planar are well structured. The disadvantage at using the
Giotto strategy are the adjusted node sizes, but there are no bends. The Quod
approach purchases unchanged node sizes with bend-points and with increased
edge lengths.
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Figure 7.4. Drawing D2 computed with KLay Force with Fruchterman and Reingold strategy.
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Figure 7.5. Drawing D2 computed with KLay Layered.

KLay Force reaches again a clearly structured result after the arrangement of
the diagram D2. However, the drawing requires the most space. The KLay Layered
algorithm tries to form a direction in the drawing and causes one edge crossing
and 7 bends.
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Figure 7.6. Drawing D2 computed with OGDF orthogonal algorithm.
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Figure 7.7. Drawing D2 computed with KLay Planar.

Table 7.2. Analysis of different drawings D2 with different layout algorithms. The graph
consists of 15 nodes, 18 edges, and an average node degree of 2.4.

Layout Algorithm Crossings Bends Area Aspect Ratio Edge Lengths

KLay Force 0 0 437 1.03 (40, 48)
KLay Layered 1 7 312 1.85 (87, 320)

OGDF Orthogonal 0 3 318 2.09 (58, 260)
KLay Planar 0 4 305 2.58 (79, 410)
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7. Conclusion

The OGDF Orthogonal and the KLay Planar algorithms both produce compact
drawings. They computed different embeddings without edge crossings and
0, respectively 1 bend-point. If the number of edges counts approximate twice
the number of nodes, the nodes of the given graph can be put really compactly.
The disadvantage of the rectangular shape problem of KLay Planar, mentioned in
Section 6.4, can be well observed. The edges (7, 9) and (6, 8) are drawn really long.
If such problem could be avoided, much more compact results would be computed.
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Figure 7.8. Drawing D3 computed with KLay Layered .

Table 7.3. Analysis of different drawings of D3 computed with different layout algorithms.
The graph consists of 16 nodes, 30 edges, and an average node degree of 3.75.

Layout Algorithm Crossings Bends Area Aspect Ratio Edge Lengths

KLay Layered 12 13 431 2.44 (128, 333)
OGDF Upward Planarity 12 26 715 0.41 (257, 1256)

KLay Planar 3 20 459 0.72 (155, 1010)
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Figure 7.9. Drawing D3 computed with OGDF upward planarity. 101
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Figure 7.10. Drawing D3 computed with KLay Planar.

D3 is a mixed graph which can be drawn well by the layered algorithm. The
flow from the single source node on the left to the single target nodes on the right is
presented in a nice way. However, the resulting drawing contains 12 edge crossings
which disturb the reading flow. The upward planarity drawing requires the most
drawing area and also 12 edge crossings. Even if it tries to show a flow, it tends to
fail. The reason for that are the undirected edges in the given graph.

The drawing computed with KLay Planar is clearly structured and requires only
3 edge crossings. However, the flow is not presented in a suitable way. The second
disadvantage results from the bend-points that further blow up the drawing. Many
bend-points arise when the graph contains many edges compared to the number
of nodes, here a node degree of 3.75.
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The algorithm of KLay Planar calculates drawings with arbitrary aspect ratio.
However, in some applications this criterion is important. Thus, a layout option
would be useful to determine a horizontal or a vertical orientation of the drawing.
This extension could be done by simply rotating the grid, if it is in the wrong
orientation.

Altogether, the implemented TSM algorithm computes results with really few
edge crossings in comparison to other algorithms. In addition, the algorithms for
the orthogonalization and for the compaction produce compact drawings with few
bend-points with respect to the previously calculated embedding. Fulfilling such
aesthetics criteria leads to clearly structured drawings. Hence, using this algorithm
makes modeling more efficient.

The separation of the three TSM parts builds a base for the properties of expand-
ability, exchangeability and maintainability. Besides that separation the generic
architecture of KLay Planar enhances these properties as well. Intermediate proces-
sors and phases split the algorithm in smaller parts that are easier to handle than
the algorithm in a whole.

Even if the algorithm is divided into separate phases each phase still consists
of a complex structure. Thus, fundamental knowledge background is needed
to maintain or expand them. Furthermore, in comparison to other drawings the
orthogonal grid drawings require relatively much drawing space. This disadvantage
can arise when the graph contains many edges relative to the number of nodes.
This is caused by the orthogonal grid drawing and by the high importance of few
edge crossings.

7.2 Summary

The considered TSM algorithm is suited for the computation of orthogonal grid
drawings. The concepts of the planarization and orthogonalization were described
and the technique of the implemented compaction were discussed in more detail.
The standard TSM algorithm was extended to be able to handle high-degree nodes
with two different strategies. For drawings in tree shape the KLay Force approach
is the better choice and for many drawings containing mixed graphs directed
approaches such as KLay Layered or OGDF upward planarity are more suitable,
since they represent a flow between the graph nodes.
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7. Conclusion

The aesthetics criteria of that algorithm can be further optimized by the im-
plementation of some of the described extensions. For instance, to produce more
compact drawings an optimal embedding could be determined. A different possi-
bility could be to take other compaction algorithms that do not restrict the input
graph with faces in rectangular shapes. Self-loops and multi-edges could be im-
plemented easily with the presented methods. In order to handle directed graphs
mixed upward planarization could be realized.

Additionally, directed edges, hypergraphs and port constraints are considered
separately. Chimani, Gutwenger, Mutzel, Spönemann and Wong presented a
paper in 2011 where these three elements are combined. They investigated directed
hypergraphs with port constrains and showed how edge crossings could be minimal
in this context [Chi+11].
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