
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

Effective Visualization of IEC 61499
Function Blocks

With the CAKeFEED Function Blocks Editor

Matthias Schmeling

April 17, 2010

Department of Computer Science
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Dipl. Inf. Miro Spönemann

Dr. Partha S. Roop

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Auckland,

iv

Abstract

Function blocks are a commonly used language for the description of distributed con-
trol systems. The new standard IEC 61499 provides a mighty and comfortable means
of function blocks design, especially for embedded real-time systems. Currently,
there is a limited number of tools available that allow to create software systems
with function blocks. These are either commercial and not open source or have only
restricted usability. The CAKeFEED1 function blocks editor is a subproject of the
Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) and provides
a comfortable open source tool to visually manipulate function blocks together with
dynamically updated graphical representations, automatic layout for function block
networks, and a simulation mechanism for counter examples.

1Collaboration between Auckland and Kiel on effective Function Block Examination, Editing, and
Depiction

vi

I would like to thank the following people without whom I would not have accom-
plished this:
Özgün Bayramoglu for always being so supportive.
Falk Starke for making that funny distinctive noise.
Michael Matzen for being the funny guy he is.
Miro Spönemann and Hauke Fuhrmann for being the best advisors I could have run
into.
Partha S. Roop and Prof. Reinhard v. Hanxleden for giving me the chance to come
to Auckland.
And all the others of the Real-Time and Embedded Systems group for being such
nice people.

vii

viii

Contents

1 Introduction 1

2 IEC 61499 Function Blocks 3
2.1 The Basic Function Block . 4

2.1.1 The Execution Control Chart 4
2.1.2 The Hierarchical Concurrent Execution Control Chart 5
2.1.3 The Algorithms . 5
2.1.4 Association of events and variables 5

2.2 The Composite Function Block . 7
2.3 The Service Interface Function Block 7
2.4 The Function Block XML Format . 9

3 Related Work 13
3.1 FBDK . 13

3.1.1 Views . 13
3.1.2 Graphical and textual development 13
3.1.3 User interaction . 13
3.1.4 Library mechanism . 15
3.1.5 Summary . 15

3.2 4DIAC . 15
3.2.1 Views . 15
3.2.2 User interaction . 15
3.2.3 Library mechanism . 17
3.2.4 Summary . 19

3.3 ISaGRAF . 19
3.4 NxtControl . 19
3.5 FBench . 19

4 The Eclipse Project 21
4.1 Eclipse . 21
4.2 Eclipse Modeling Framework . 22
4.3 Graphical Editing Framework and Draw2D 22
4.4 Graphical Modeling Framework . 24

4.4.1 The Ecore Model . 24
4.4.2 The Generator Model . 25
4.4.3 The Graphical Definition Model 25
4.4.4 The Tooling Definition Model 26

ix

Contents

4.4.5 The Mapping Definition Model 26
4.4.6 The Diagram Editor Generator Model 27
4.4.7 The generated Editor . 27

4.5 Xtend . 27
4.6 Xpand . 29
4.7 Check . 30
4.8 The KIELER Project . 31

5 Concept 33
5.1 Modeling approaches . 33

5.1.1 The XML-conformant Meta-Model 33
5.1.2 The custom Meta-Model . 36
5.1.3 The hybrid Meta-Model . 38
5.1.4 The remaining models . 42

5.2 The Structure of the Editor . 42
5.2.1 Hierarchy Levels . 42
5.2.2 Separation of Concerns . 42
5.2.3 Reuse of Elements . 42
5.2.4 CAKeFEED and KIELER . 44

5.3 Code Modifications . 44
5.3.1 Attribute and Type Awareness 46
5.3.2 Port Layout . 46

5.4 Simulation . 46
5.4.1 The KIELER Execution Manager 46

5.5 Import and Export . 47

6 Implementation and Results 49
6.1 Modeling . 49

6.1.1 The Meta-Model . 49
6.1.2 The Graphical Definition Models 52
6.1.3 The Tooling Definition Models 55
6.1.4 The Mapping Models . 55

6.2 Code Modifications . 56
6.2.1 Type and Attribute Awareness 56
6.2.2 Port Layout . 62

6.3 Simulation . 63
6.3.1 The Data Component . 63

6.4 Import and Export . 67
6.4.1 The Import Handler . 67
6.4.2 The Export Handler . 68
6.4.3 The Transformations . 68

6.5 Evaluation . 68

7 Conclusion 71

x

Contents

7.1 Summary . 71
7.2 Future Work . 71

8 Bibliography 73

xi

Contents

xii

List of Figures

2.1 A function block that conforms to the IEC 61499 standard. 3
2.2 A simple function block network. 4
2.3 A simple Execution Control Chart (ECC). 4
2.4 Execution of an ECC. 6
2.5 An Hierarchical Concurrent Execution Control Chart (HCECC). . . . 7
2.6 Execution of an HCECC. 8
2.7 Execution of an HCECC. 9
2.8 A basic and a composite function block. 10
2.9 A service interface function block and a service sequence. 10
2.10 The basic function block that corresponds to the XML text in Listing 2.1. 11

3.1 The Function Block Development Kit (FBDK) workspace. 14
3.2 The user interface of Framework for Distributed Industrial Automa-

tion and Control (4DIAC). 16
3.3 Editing function block interfaces in 4DIAC. 17
3.4 In 4DIAC ECCs are edited in a different tab. 18
3.5 The workspace of FBench. 20

4.1 The roles of the different projects. 22
4.2 A simple ecore model. 23
4.3 The complete Graphical Modeling Framework (GMF) process. 24
4.4 A graphical definition model of the company. 25
4.5 A tooling definition model to modify a company diagram. 26
4.6 The mapping definition model for the company example. 26
4.7 The finished Company Diagram Editor. 28

5.1 Adding input events. 35
5.2 A custom ecore model for function blocks. 37
5.3 A library mechanism for the editor could work like this. 38
5.4 Hierarchy levels in the old and the new ecore model. 39
5.5 An extract of the hybrid meta-model. 41
5.6 Loading a resource. 43

6.1 The Eclipse Modeling Framework (EMF) tree editor. 50
6.2 The three main classes of the meta-model. 51
6.3 The different types of events and variables. 53
6.4 The different types of connections. 54

xiii

List of Figures

6.5 How events and variables may be connected. 55
6.6 How different ports appear in the diagram. 56
6.7 The workflow of the method handleNotificationEvent. 57
6.8 The hierarchy of the command classes. 58
6.9 The relative sizes of the upper and lower parts change depending on

the numbers of events and variables. 58
6.10 How edit parts react to changes in model elements. 59
6.11 The old and the new attribute awareness. 60
6.12 What happens when a change occurs. 60
6.13 Input ports point to the left while output ports point to the right. . 61
6.14 The different port figures. 61
6.15 The default BorderItemLocator and the one employed by the function

blocks editor. 62
6.16 The interface provided by the KIEM. 63
6.17 The behavior of the data component. 64
6.18 The corresponding function block network. 64
6.19 The ECC of function block A. 65
6.20 Simulation of the function block network. 67
6.21 Simulation of the ECC. 67

xiv

List of Acronyms

4DIAC Framework for Distributed Industrial Automation and Control

BFB Basic Function Block

CFB Composite Function Block

CAKeFEED Collaboration between Auckland and Kiel on effective Function Block
Examination, Editing, and Depiction

ECC Execution Control Chart

EMF Eclipse Modeling Framework

FBDK Function Block Development Kit

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

HCECC Hierarchical Concurrent Execution Control Chart

IDE Integrated Development Environment

IEC International Electrotechnical Commission

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

KSBasE KIELER Structure-Based Editing

OCL Object Constraint Language

PLC Programmable Logic Controller

QVTO Query/View/Transformation Operational

SIFB Service Interface Function Block

TMF Textual Modeling Framework

UML Unified Modeling Language

W3C World Wide Web Consortium

xv

List of Figures

XML Extensible Markup Language

XSD XML Schema Definition

XPath XML Path Language

xvi

1 Introduction

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is a project
that provides features to enhance graphical software development. It is discussed in
detail in Section 4.8. One of its goals is to provide diagram and textual editors
for a wide range of modeling languages and another one is to improve these with
lots of generic enhancements that naturally work with all of its editors. With this
in mind, developing a visual editor for the IEC 61499 standard suggests itself. This
standard employs function blocks to describe complex software systems. That the
editor is a part of the KIELER project brings several advantages. On the one hand,
it means that it can benefit from the Graphical Modeling Framework (GMF). This
framework provides a means to generate code for graphical editors from a handful of
input models and is discussed in detail in Section 4.4. On the other hand, the editor
also benefits from the wide range of features provided by KIELER itself.

Problem Description When designing a graphical editor a lot of questions have to
be answered. One important decision that has to be made is what kinds of editing
methods the editor should offer. Another one is how the information is to be displayed
that is important for the edited model elements. Furthermore, while it is common
to start from scratch it is also possible to take an existing editor and enhance it
with additional features. When designing an editor from scratch, it is further to be
decided what the underlying model of the data looks like. In the case of the GMF
there are several possible means to provide these models: It can be provided by
using an ecore model, an XML Schema Definition (XSD), or annotated Java code, for
example. In addition, since the GMF generates a generic graphical editor, some parts
of it might not be suitable for editing function blocks, which means that they have
to be altered or removed. Sometimes even new features have to be implemented. In
the case of the function blocks editor, which has been developed in the course of this
thesis and is called Collaboration between Auckland and Kiel on effective Function
Block Examination, Editing, and Depiction (CAKeFEED), the topics that have to be
addressed are the implementation of attribute awareness, additional layouts, a means
of simulation of counter examples, and a custom import and export mechanism.

Thesis Outline In this thesis the development of the CAKeFEED function blocks
editor is discussed. The next chapter deals with the basics of the IEC 61499 function
blocks language. More detailed information about the standard can be found in one
of the books by Valeriy Vyatkin [24]. Chapter 3 introduces several existing function
block editors. Chapter 4 introduces the Eclipse Project and related technologies that
the CAKeFEED function blocks editor is based on. In Chapter 5 the ideas behind the

1

1 Introduction

project are discussed while Chapter 6 is about details of the implementation and its
results. Chapter 7 concludes this thesis with a summary and an outlook on possible
future work.

2

2 IEC 61499 Function Blocks

IEC 61499 [2] is a new standard for distributed control systems. It is an advancement
of the IEC 61131 standard, which deals with Programmable Logic Controllers (PLCs).
For more information on IEC 61131 and PLCs see the book by Karl-Heinz John and
Michael Tiegelkamp [15] and the one by W. Bolton [8], respectively.

In general, function blocks are a means to describe several independent compu-
tational units and their relations with each other. IEC 61499 however, specifies the
structure of a computational unit more precisely than its predecessor. Every function
block is divided into two parts: The controlling part and the data part. Figure 2.1
shows this structure.

The controlling part is responsible for the behavior of the function block. It is
influenced by the input events on the left side. Depending on the current state
of the function block it may send out events that in turn affect the behavior of
other function blocks. The results of a function block’s computations depend on the
incoming data that arrives through the input variables on the left side. The results
of a computation are sent through the output variables on the right and may be
reused by other function blocks.

A set of interconnected function blocks forms a function block network. An exam-
ple network is shown in Figure 2.2.

IEC 61499 further distinguishes different types of function blocks. These are de-
scribed in the following sections.

Variable_A
Variable_B

Variable_C

Event_A

Event_B
Event_C

Function Block

Figure 2.1: A function block that conforms to the IEC 61499 standard.

3

2 IEC 61499 Function Blocks

Figure 2.2: A simple function block network.

INITOINIT

REQ CNFREQ

INIT

START 11

INIT

REQ

Figure 2.3: A simple ECC.

2.1 The Basic Function Block

Basic Function Blocks (BFBs) are the atomic units in a function block network.
Their behavior is defined by an Execution Control Chart (ECC). An ECC is an
event-driven state machine. Figure 2.3 depicts a simple example ECC. For more
detailed information on state machines and ECCs see the books by Egon Börger and
Robert Stark [9] and K. Thramboulidis [23].

2.1.1 The Execution Control Chart

As can be seen in the Figure 2.3, an ECC consists of a number of states, which are
represented by rectangles. Only one of the states may be active at any time. In
addition, states may be connected by transitions, which are shown as arrows. As
soon as the trigger of one of the outgoing transitions of the active state is true, that

4

2.1 The Basic Function Block

transition is taken. This means that its target state becomes the currently active one.
A 1 indicates that the trigger is always true and thus the transition is always taken.
The state with the label START is always active at first. States may also reference
an action, which consists of a reference to an algorithm and an output event. Upon
activation of the state, the referenced algorithm is executed and the output event
is emitted. Note that these output events correspond to the aforementioned output
events that control the behavior of other function blocks. Figure 2.4 depicts a sample
execution of an ECC.

2.1.2 The Hierarchical Concurrent Execution Control Chart

To simplify the creation and depiction of more complex ECCs, a new version of this
language has been developed by Gareth Shaw [13] that supports hierarchy as well
as parallelism. These charts are called Hierarchical Concurrent Execution Control
Charts (HCECCs). The support of hierarchy has been realized by allowing any state
in an ECC to be replaced by another ECC. Whenever the replaced state would usu-
ally become active, the START state of the replacing ECC is activated instead. In
addition, the ECC may be deactivated as soon as one of its outgoing transitions is
taken, just as a normal state. Parallelism is realized by allowing an ECC to be re-
placed by a number of other ECCs. When such a compound of ECCs is activated,
every single START state is activated and any of their outgoing transitions may be
taken simultaneously. The deactivation of an ECC compound is the same as for ECCs
and states. Note that while HCECCs have a strong resemblance to Charles André’s
SyncCharts language [5], there are semantical ambiguities regarding their execution.
One example of such an ambiguity is the question whether inner states or the START
state of a deactivated ECC will be activated again once the ECC is reentered. Fig-
ure 2.5 depicts an HCECC with hierarchy and parallelism, and Figures 2.6 and 2.7
show a sample execution of that HCECC.

2.1.3 The Algorithms

As has been mentioned previously, the activation of a state in an ECC or HCECC may
invoke the execution of an algorithm. The algorithm in turn reads the values of the
input variables and uses them to compute values for the output variables. Usually,
an algorithm consists solely of source code written in a specific language, such as
Java or C++. However, other forms such as structured text or ladder diagrams are
also possible.

2.1.4 Association of events and variables

In Figure 2.8(a) a BFB is depicted. The final element that completes the description
of a BFB are the associations between events and variables. An important question
regarding variables is the point in time when they are updated to their new values.
Since algorithms take some amount of time to execute and compute the values of
variables in between, some of the output variables of a function block might already

5

2 IEC 61499 Function Blocks

INITOINIT

REQ CNFREQ

INIT

START 11

INIT

REQ

(a) START state is active.

INITOINIT

REQ CNFREQ

INIT

START 11

INIT

REQ

(b) Signal INIT is received.

INITOINIT

REQ CNFREQ

INIT

START 11

INIT

REQ

(c) Return to START state.

Figure 2.4: Execution of an ECC.

6

2.2 The Composite Function Block

REQ CNFREQ

START 1STOP

INIT

REQ

EV_0DO_0 ALG_0

EV_1DO_1 ALG_1

EV_2DO_2 ALG_2

EV_3DO_3 ALG_3

1
1

1
1

Figure 2.5: An HCECC.

have changed while others have not. This might lead to inconsistent behavior. To
remedy this, all variables may be connected to one or more events and are only up-
dated when these events occur. This serves as a means of synchronization to function
blocks. Associations are depicted by black lines as can be seen in Figure 2.8(a). In
the example, variable AIV_01 is updated when event AIE_01 is active and variable
AOV_01 is updated when event AOE_02 is active.

2.2 The Composite Function Block

Like BFBs, Composite Function Blocks (CFBs) also contain a number of input and
output events and variables that may be connected by associations. However, as
shown in Figure 2.8(b), the interior of a CFB looks entirely different. It consists of a
number of other function blocks of which the events and variables may be connected
with each other. With this it is possible to express hierarchies, and function block
networks of arbitrary complexity can be created. Note that unlike function block
networks, composite function blocks contain additional interface events and variables
that may be connected to inner function blocks.

2.3 The Service Interface Function Block

While the Service Interface Function Block (SIFB) has input and output events and
variables and associations just like BFBs and CFBs, there is no such thing as an
interior of SIFBs since this is hidden from the user. Instead, SIFBs act as interfaces

7

2 IEC 61499 Function Blocks

REQ CNFREQ

START 1STOP

INIT

REQ

EV_0DO_0 ALG_0

EV_1DO_1 ALG_1

EV_2DO_2 ALG_2

EV_3DO_3 ALG_3

1
1

1
1

(a) START state is active.

REQ CNFREQ

START 1STOP

INIT

REQ

EV_0DO_0 ALG_0

EV_1DO_1 ALG_1

EV_2DO_2 ALG_2

EV_3DO_3 ALG_3

1
1

1
1

(b) Signal INIT is received.

REQ CNFREQ

START 1STOP

INIT

REQ

EV_0DO_0 ALG_0

EV_1DO_1 ALG_1

EV_2DO_2 ALG_2

EV_3DO_3 ALG_3

1
1

1
1

(c) Transitions are taken simultaneously.

Figure 2.6: Execution of an HCECC.
8

2.4 The Function Block XML Format

REQ CNFREQ

START 1STOP

INIT

REQ

EV_0DO_0 ALG_0

EV_1DO_1 ALG_1

EV_2DO_2 ALG_2

EV_3DO_3 ALG_3

1
1

1
1

(a) Signal STOP is received.

Figure 2.7: Execution of an HCECC.

to parts of the software system that are not part of the function block network,
such as hardware controllers for example. The behavior of an SIFB is described by
a number of service sequences, which define what kinds of outputs are generated by
the occurrence of certain inputs. Figure 2.9(b) shows a simple service sequence for
the successful handling of a request that could be one of many service sequences for
the SIFB depicted in Figure 2.9(a). Whenever the event REQ is present, the request
is handled. In the case of a successful execution the event CNF is returned.

2.4 The Function Block XML Format

There is a commonly used Extensible Markup Language (XML) [14] Format for the
description of function blocks and function block networks that is also defined in
the standard [3]. For the remainder of this thesis, it is sufficient to understand the
example shown in Listing 2.1, which corresponds to the BFB shown in Figure 2.10.
The example above showcases three important things to note about the XML for-

mat: It supports the specification of a lot more information than is necessary for the
description and execution of function blocks. This includes version information, com-
piler information, and much more. Also, the format employs intermediate containers
for child elements on many occasions. For example, instead of distinguishing input
events and output events with two different tags, both types of events are represented
by the same tag and then put into an intermediate container called EventInputs or
EventOutputs. The Listings 2.2 and 2.3 illustrate the difference. In addition, all
references to other function blocks, events, variables, etc. consist solely of a string
which is the name of the referenced element. This implies that every name has to
be unique. Why these three facts are important is explained in detail in Section 5.1.

9

2 IEC 61499 Function Blocks

(a) A basic function block.

(b) A composite function block.

Figure 2.8: A basic and a composite function block.

(a) A service interface function block.

APPLICATION RESOURCE

REQ+

CNF+

request

(b) A service sequence.

Figure 2.9: A service interface function block and a service sequence.

10

2.4 The Function Block XML Format

Listing 2.1: A basic function block in XML format.
1 <? xml v e r s i o n=" 1 .0 " encod ing="UTF−8"?>

<!DOCTYPE FBType SYSTEM " h t t p : //www. h o l o b l o c . com/xml/ L i b r a r yE l emen t . dtd " >
<FBType Name="FBAND" Comment="Boolean AND" >

<I d e n t i f i c a t i o n Standard="61499−1−D.1 " C l a s s i f i c a t i o n="Boolean f u n c t i o n s " />
<Ve r s i o n I n f o O rgan i z a t i o n="Rockwe l lAutomat ion " Ve r s i o n=" 0 .1 " Author="JHC" Date="01−08−05" />

6 <Ve r s i o n I n f o O rgan i z a t i o n="Rockwe l lAutomat ion " Ve r s i o n=" 0 .0 " Author="JHC" Date="99−02−20" />
<Comp i l e r I n f o heade r="package fb . r t . math ; " c l a s s d e f=" c l a s s FB_AND ex t end s FBFunction2 " >

<Compi l e r Language="Java " Vendor="IBM" Product="Vi sua lAge " Ve r s i o n=" 3 .0 " />
</ Comp i l e r I n f o>
<I n t e r f a c e L i s t>

11 <Even t I npu t s>
<Event Name="REQ" >

<With Var=" IN1" />
<With Var=" IN2" />

</Event>
16 </Even t I npu t s>

<EventOutputs>
<Event Name="CNF" >

<With Var="OUT" />
</Event>

21 </EventOutputs>
<Inpu tVa r s>

<Va rDec l a r a t i o n Name=" IN1" Type="BOOL" />
<Va rDec l a r a t i o n Name=" IN2" Type="BOOL" />

</ Inpu tVa r s>
26 <OutputVars>

<Va rDec l a r a t i o n Name="OUT" Type="BOOL" Comment=" Re su l t " />
</OutputVars>

</ I n t e r f a c e L i s t>
<BasicFB>

31 <Algor i thm Name="REQ" >
<Other Language="Java " Text=" p u b l i c v o i d service_REQ (boo l ean q i) . . . " />

</Algo r i thm>
</BasicFB>

</FBType>

Figure 2.10: The basic function block that corresponds to the XML text in List-
ing 2.1.

11

2 IEC 61499 Function Blocks

Listing 2.2: A function block in XML with intermediate containers.
<FBType Name="FB_AND" Comment="Boolean AND" >

<I n t e r f a c e L i s t>
<Even t I npu t s>

<Event Name="A" >
5 <With Var="C" />

</Event>
</ Even t I npu t s>
<EventOutputs>

<Event Name="B" >
10 <With Var="D" />

</Event>
</EventOutputs>
<Inpu tVa r s>

<Va rDec l a r a t i o n Name="C" Type="BOOL" />
15 </ Inpu tVa r s>

<OutputVars>
<Va rDec l a r a t i o n Name="D" Type="BOOL" />

</OutputVars>
</ I n t e r f a c e L i s t>

20 <BasicFB>
. . .

</BasicFB>
</FBType>

Listing 2.3: A function block in XML without intermediate containers.
<FBType Name="FB_AND" Comment="Boolean AND" >

2 <InputEven t Name="A" With="C" />
<OutputEvent Name="B" With="D" />
<InputVar Name="C" Type="BOOL" />
<OutputVar Name="D" Type="BOOL" />
<BasicFB>

7 . . .
</BasicFB>

</FBType>

12

3 Related Work

This section discusses some existing function block editors, their main features and
editing methods, and why it was decided to stick with the KIELER project.

3.1 FBDK

The FBDK [10] is a free function blocks editor developed by Rockwell Automation1

and managed by Holobloc, Inc.2. It is widely used in applied research. This section
discusses the key aspects that affect function block development with FBDK.

3.1.1 Views

A screenshot of FBDKs workspace is shown in Figure 3.1. It provides three different
views on the currently edited function block. In the upper left there is a window that
shows the outline of the function block. It is mainly used to select different parts
that are to be modified, such as the interface, which specifies inputs and outputs,
the ECC of a BFB, or the function block network of a CFB. The currently selected
part is graphically depicted in the window on the upper right. Finally, there is the
textual view at the bottom that shows either the corresponding source code [2] or
the equivalent XML source text [3].

3.1.2 Graphical and textual development

The textual view is not only there to look at the XML source text or source code. It
can also be used as a textual editor to modify the source text. Any changes made
to the text are also reflected in the graphical view, albeit only after pressing the

PARSE button in the toolbar. Note that while this feature works with the XML
source text, it is not available for the source code.

3.1.3 User interaction

The only other way to edit the properties of a function block is to right-click into
the graphical view and choose an action from the context menu, which makes special
editing windows appear. The connection of events and variables is also done with the
help of the context menu since there is no drag-and-drop mechanism. Additionally,
the possibilities to change the graphical appearance of the diagrams is limited. While

1http://www.rockwellautomation.com/
2http://www.holobloc.com/

13

3 Related Work

Figure 3.1: The FBDK workspace.

14

3.2 4DIAC

it is possible to select a single element like an ECC State and drag it around, there is
no way of selecting multiple elements at once. Also, there are no automatic alignment
or layout options available.

3.1.4 Library mechanism

When developing a CFB it is necessary to create and modify its function block net-
work. New function blocks are inserted into the network by using the context menu
and selecting NEW and FB. Then, a file wizard pops up from which the user can
select a file that stores another function block and give a name to it. This mechanism
is not as comfortable as dragging and dropping from a palette but still fast and easy
to use.

3.1.5 Summary

The FBDK is a good free tool that has some nice features such as the graphical and
textual view, and the possibility of editing function blocks textually. However, the
user interface sometimes can be tedious as diagrams have to be laid out manually,
one element at a time.

3.2 4DIAC

The 4DIAC project, developed by the PROFACTOR GmbH, provides an open IEC
61499 compliant function block editor for Eclipse and uses the Graphical Editing
Framework (GEF), a framework that allows to create graphical user interfaces. How-
ever, it was developed without the help of the GMF, which means that it cannot
benefit from the features offered by the KIELER project.

3.2.1 Views

Figure 3.2 depicts the user interface of 4DIAC. It provides an overview and an outline
on the left side, a diagram view where interfaces, networks and ECCs can be modified,
a library view on the right with all available types of function blocks, and a properties
view at the bottom where several properties of diagram elements can be adjusted.

3.2.2 User interaction

Instead of employing context menus, almost all modifications to function blocks
are done with the help of the properties view at the bottom. Names, comments,
and other attributes can be changed there. In addition, 4DIAC sometimes provides
specialized views to manipulate certain attributes. For example, when editing the
interface of a function block, a window with multiple tabs for adding and removing
events and variables is displayed, as shown in Figure 3.3. Also, instead of selecting
parts of function blocks like ECCs or function block networks in the overview, 4DIAC
employs multiple tabs that are each responsible for one part of the function block.

15

3 Related Work

Figure 3.2: The user interface of 4DIAC.

16

3.2 4DIAC

Figure 3.3: Editing function block interfaces in 4DIAC.

For example, there is a special tab that opens a new editor to modify the ECC of a
function block. This is depicted in Figure 3.4.
Connecting function blocks in 4DIAC is more comfortable than in FBDK. It is done

by simply clicking and holding the left mouse button over an event or a variable and
releasing it over another one. However, one major shortcoming is that connections
cannot be rerouted by the user. Instead, 4DIAC routes them automatically but always
chooses the direct path.

3.2.3 Library mechanism

The insertion of function blocks into a network is quick and comfortable in 4DIAC.
Predefined or self-defined types of function blocks can be dragged from the palette on
the right and dropped onto the canvas in the middle of the workspace. In addition,
it is possible to create groups of types in the palette and to delete them. Also, the
appearance of the palette can be modified for example by laying out the types in
lists or columns.

17

3 Related Work

Figure 3.4: In 4DIAC ECCs are edited in a different tab.

18

3.3 ISaGRAF

3.2.4 Summary

As a GEF project, 4DIAC comes with drag-and-drop editing and a wide range of
customizable views. It also offers some additional features such as the function
block type palette that can be extended by the user. It also separates concerns by
providing different tabs for the function block interface, the ECC, the network and so
on. However, the fact that the connections are not routable by the user is a major
shortcoming, especially in large diagrams.

3.3 ISaGRAF

ISaGRAF 3 is a commercial function block tool developed by ICS Triplex ISaGRAF
Inc. that offers a wide range of functionality in all aspects of function block devel-
opment. However, since it is not publicly available it could not be tested.

3.4 NxtControl

Another commercially available tool is NxtControl4 by the nxtControl GmbH. It has
a similarly rich set of functionality like ISaGRAF, but unfortunately could not be
tested either.

3.5 FBench

The free FBench tool5 was developed by Cheng Pang at the University of Auck-
land. Figure 3.5 shows its workspace. It is very similar to FBDK as it provides an
overview for selecting elements, a graphical view, and a textual view of the edited
function block. Also, many modifications are done by using a context menu, and the
possibilities to manipulate the graphical representation are exactly the same. The
advantages of FBench in comparison to FBDK are that it provides a properties view
to edit attributes and is able to compile created function blocks to executable Java
code.

3http://www.isagraf.com/index.htm
4http://www.nxtcontrol.com/
5http://www.ele.auckland.ac.nz/~vyatkin/fbench/index.html

19

3 Related Work

Figure 3.5: The workspace of FBench.

20

4 The Eclipse Project

The CAKeFEED function blocks editor is based on many different tools. The roles of
all the projects are illustrated in Figure 4.1. Eclipse is an Integrated Development
Environment (IDE) that is easily extensible and thus supports the development of
additional plug-ins that further enhance its capabilities. One way of developing such
plug-ins is to use the GMF. This is a framework that makes use of the EMF and the
GEF. The EMF provides a means to specify models to develop software in a model-
driven way. The GMF is a framework that encapsulates the Draw2D library and
allows to comfortably implement graphical applications. The GMF employs models
of the EMF, which describe systems like function blocks to generate Java code for a
graphical diagram editor that allows to create and edit the systems described in the
EMF models. Xtend, Xpand, and Check are languages developed by the Eclipse Mod-
eling Project1 and are used within the GMF to write model transformations and code
templates and to check models for inconsistencies. The KIELER project eventually
comprises the CAKeFEED function blocks editor together with several other editors
and provides them with a number of enhancements that improve their capabilities.
The following sections give a short overview of the employed tools. For more

detailed information see the study thesis [19] that precedes this diploma thesis.

4.1 Eclipse

Eclipse is not only the name of an IDE but also that of the open source community,
which was founded by IBM in 2001. Since 2004 it is supported by the Eclipse
Foundation, a not-for-profit organization that employs staff members who provide
services to the open source developers of the Eclipse Project.
The main advantage that makes Eclipse so suitable for additional enhancements

is its extensibility. Simply put, it consists only of a small kernel that can load and
start other plug-ins. All additional functionality, such as the possibility to edit Java
code in a special editor or to draw Unified Modeling Language (UML) [18] sequence
diagrams, is added by loading plug-ins that provide the corresponding functionality.
Additionally, any plug-in may define its own extension points that can be used by
other plug-ins to employ services they cannot provide themselves. This way, it is
possible to create custom IDEs for special purposes or even an all-round development
platform that can cater to any need.

1http://www.eclipse.org/modeling/

21

4 The Eclipse Project

generates

CAKeFEED

Eclipse

EMF

GMF

GEF

Draw2D

KIELER

Xpand

Xtend

Check

uses uses

uses

uses

builds on

Figure 4.1: The roles of the different projects.

4.2 Eclipse Modeling Framework

The EMF2 [22] allows its users to specify models of software systems that are to be im-
plemented and is able to automatically generate source code based on those models.
The so-called ecore models are very similar to UML class diagrams as they contain
classes, aggregations and associations. These meta-models as well as instances of
the meta-models are stored in XML files. Figure 4.2 depicts a small ecore model and
Listing 4.1 shows its textual representation. For more information on the EMF refer
to the study thesis [19].

4.3 Graphical Editing Framework and Draw2D

The GEF3 is a framework that provides a means to create graphical environments
for Eclipse applications. It encapsulates Draw2Ds drawing capabilities in its more
abstract edit parts, which serve as the interfaces between the figures in Draw2D, the
EMF model, and the user. In the GEF all diagram elements drawn with Draw2D,
which are also called figures, are represented by their own edit parts. Since figures in
Draw2D might themselves contain other figures, it is also possible, and very common,
for edit parts to contain other edit parts. In addition, edit parts offer a lot of
functionality that figures do not: They support user interaction like clicking and
dragging and their reactions on those user triggered events can be modified by using

2http://www.eclipse.org/emf/
3http://www.eclipse.org/gef/

22

4.3 Graphical Editing Framework and Draw2D

Figure 4.2: A simple ecore model.

Listing 4.1: The textual representation of the ecore model.
1 <? xml v e r s i o n=" 1 .0 " encod ing="UTF−8"?>

<ecore :EPackage xm i : v e r s i o n=" 2 .0 "
xmlns : xmi=" h t t p : //www. omg . org /XMI"
xm l n s : x s i=" h t t p : //www.w3 . org /2001/XMLSchema−i n s t a n c e "
xm l n s : e c o r e=" h t t p : //www. e c l i p s e . o rg /emf /2002/ Ecore "

6 name="company" nsURI="company" n s P r e f i x="company">
<e C l a s s i f i e r s x s i : t y p e=" e c o r e : EC l a s s " name="CompanyDiagram">

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name=" companies " upperBound="−1"

eType="#//Company" conta inment=" t r u e "
11 eOppos i t e="#//Company/ diagram"/>

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name="worke r s " upperBound="−1"

eType="#//Worker" conta inment=" t r u e "
eOppos i t e="#//Worker/ diagram"/>

16 </ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=" e c o r e : EC l a s s " name="Company">

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name="diagram" lowerBound="1"

eType="#//CompanyDiagram"
21 eOppos i t e="#//CompanyDiagram/ companies "/>

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name=" c o n t r a c t s " upperBound="−1"

eType="#//Cont rac t " conta inment=" t r u e "
eOppos i t e="#//Cont rac t / employer "/>

26 <eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e c o r e : EA t t r i b u t e "
name="name" lowerBound="1" eType=" ecore :EDataType

h t t p : //www. e c l i p s e . o rg /emf /2002/ Ecore#//ESt r i ng "/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=" e c o r e : EC l a s s " name="Cont rac t ">

31 <eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name=" employer " lowerBound="1"

eType="#//Company" eOppos i t e="#//Company/ c o n t r a c t s "/>
<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "

name=" employee " lowerBound="1"
36 eType="#//Worker" eOppos i t e="#//Worker/ c o n t r a c t s "/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=" e c o r e : EC l a s s " name="Worker">

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name="diagram" lowerBound="1"

41 eType="#//CompanyDiagram"
eOppos i t e="#//CompanyDiagram/worke r s "/>

<eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e co r e : ERe f e r e n c e "
name=" c o n t r a c t s " upperBound="−1"

eType="#//Cont rac t " eOppos i t e="#//Cont rac t / employee "/>
46 <eS t r u c t u r a l F e a t u r e s x s i : t y p e=" e c o r e : EA t t r i b u t e "

name="name" lowerBound="1" eType=" ecore :EDataType
h t t p : //www. e c l i p s e . o rg /emf /2002/ Ecore#//ESt r i ng "/>

</ e C l a s s i f i e r s>
</ ecore :EPackage>

23

4 The Eclipse Project

Figure 4.3: The complete GMF process.

edit policies. For more detailed information on the GEF and Draw2D see the study
thesis [19].

4.4 Graphical Modeling Framework

Both the EMF and the GEF are employed by the GMF to generate graphical editors
for specific visual languages. The EMF is used to create a meta-model of the elements
that are to be described by the language. After the language and several other models
have been specified, the GMF generates Java code based on the GEF and GMF runtime
libraries that implements the graphical editor for the specified language. However,
before the code can be generated there are some models that have to be created.
These are discussed in the following sections. The complete process is depicted in
Figure 4.3.

4.4.1 The Ecore Model

As has been mentioned above, the ecore model defines the entities that are to be
created with the generated diagram editor. Simply put, it is like a UML class diagram
with classes, associations, and aggregations.
The example shown in Figure 4.2 represents a company diagram in which the user

can add companies and workers. Additionally, companies can employ workers with
the help of contracts. It is possible for a company to have contracts with several
workers and workers can also have contracts with more than one company. It is even
possible for a pair of company and worker to have several different contracts. Note
that the company diagram is the root whereas companies and workers are supposed
to be represented as notes in the diagram and can be connected by contracts.

24

4.4 Graphical Modeling Framework

Figure 4.4: A graphical definition model of the company.

4.4.2 The Generator Model

The generator model looks very much like the ecore model. The difference between
the two is that the generator model contains further information on the code gen-
eration, which may be altered by the user. For example it is possible to specify a
different name for the generated project or another path for the source code. Once
that is done, the generator model is used to generate the Java Code for the entities
defined in the ecore model, which comprises the classes themselves along with get-
ter and setter methods, a package and a factory to create instances of the objects.
Additionally, the so-called edit code is created that encompasses providers for the
modification of the model elements. It is also possible to automatically generate test
code as well as a tree editor that is able to create and modify instances of the model
elements.

4.4.3 The Graphical Definition Model

The graphical definition model is responsible for the visual representation of model
elements in the diagram editor. The outline of an example that fits to the ecore
model in the preceding section is depicted in Figure 4.4.
Here, the company is represented by a rectangle with a black outline while workers

are depicted as ellipses with a black outline. Contracts connect companies and
workers and are represented by black lines. The figures in the figure gallery are tied
to nodes or connections, depending on whether they are supposed to be depicted as
the former or the latter. Additionally, there are diagram labels that show the names

25

4 The Eclipse Project

Figure 4.5: A tooling definition model to modify a company diagram.

Figure 4.6: The mapping definition model for the company example.

of companies and workers. These are tied to the labels within the company rectangle
and the worker ellipse, respectively. To access these inner labels it is necessary to
define child accesses as seen in the figure.

4.4.4 The Tooling Definition Model

The tools that are provided to the user are defined in the tooling definition model.
In Figure 4.5 the outline of a tooling definition model for the manipulation of the
company diagram is depicted.
This model is very simple as it consists merely of a tool palette with one tool

group. It contains three tools; one to create a new company, another one to create a
new worker, and a third one to create a contract between a company and a worker.

4.4.5 The Mapping Definition Model

The mapping definition model is the one that ties the previous ones together. It as-
signs the graphical elements and tools defined in the graphical and tooling definition
models to the model elements in the ecore model. Also, it defines which model ele-
ments are the top level elements in the diagram, which are their children, and where
those are located. The outline of the mapping definition model for the company
example is shown in Figure 4.6.
Note that the canvas of the editor is mapped to the class CompanyDiagram and not

26

4.5 Xtend

the class Company itself. This is done so that it is possible to depict the company as a
top level node that is drawn onto the canvas. Workers also act as top level nodes. The
class Contract is mapped to the corresponding polyline connection and the contract
tool with the help of a link mapping. In addition, the company and worker top level
node mappings contain feature label mappings that let them display their names.

4.4.6 The Diagram Editor Generator Model

When the mapping definition model is complete the diagram editor generator model
can be generated. It augments the information from the former with additional
information about the code that is to be generated. For example it is possible to
change the name of the plug-in-, and the path of the generated code, to enable model
validation, and much more. However, the diagram editor generator model is much
more complex than the previous ones and should only be modified by advanced
users. Note that if one of the underlying models has to be changed, the diagram
editor generator model has to be changed, too. Unfortunately, it is not yet possible
to transfer the changes directly. Instead, the model has to be regenerated and all
previous modifications have to be applied again. To remove this intermediate step,
it is possible to define a Query/View/Transformation Operational (QVTO) [4] trans-
formation that is automatically executed after the diagram editor generator model
has been generated.

4.4.7 The generated Editor

Finally, the diagram editor generator model can be used to generate the code of the
diagram editor. Figure 4.7 shows what the result of the example looks like.
The editor provides a canvas and tools to draw companies, workers, and contracts

between them. It is also possible to give each company and worker a name when they
are created. Additionally, there are many features which the GMF provides for free:
drag-and-drop editing, context menus, collapsible compartments and tool groups, an
outline, undo and redo, saving and loading wizards, a menu bar, and much more.
Note that the worker names look a little out of place. This is due to the fact that
no layout for the ellipse figures has been specified. In a more elaborate editor this
is very well possible as well as defining insets for the labels, drawing dashed lines,
coloring figures, and much more.

4.5 Xtend

Xtend is one of several languages provided by the Eclipse Modeling Project. It is a
functional language with which it is possible to write transformations that can be
understood and executed by an XtendFacade to transform model elements. For the
remainder of this thesis it is only necessary to understand the commands import and
create. The former is used to import an ecore model by using its namespace prefix.
For example if there is an ecore model with the namespace prefix example, the line

27

4 The Eclipse Project

Figure 4.7: The finished Company Diagram Editor.

28

4.6 Xpand

import example; imports that ecore model. The create command is a convenience
operation to create new model elements. Listing 4.2 shows a simple example.

Listing 4.2: A simple transformation.
import company;
import enterprise ;

create enterprise :: EnterpriseDiagram this companyDiagramToEnterpriseDiagram
5 (company::CompanyDiagram input)

this . enterprises .addAll(input .companies.CompanyToEnterprise()) −>
this .employees.addAll(input .workers .WorkerToEmployee())

;

10 create enterprise :: Enterprise this companyToEnterprise
(company::Company input):

this .setName(input.Name) −>
this . contracts .addAll(input . contracts .ContractToContract())

;
15

create enterprise :: Employee this workerToEmployee(company::Worker input)
this .setName(input.Name)

;

20 create enterprise :: Contract this contractToContract(company::Contract input)
this .setEmployee(input.employee.WorkerToEmployee())

;

The first step is to import all needed ecore models. Suppose there are two mod-
els with the namespaces company and enterprise. The first one is the model from
the example above and the second one is like the first with the only exceptions
that the class CompanyDiagram is replaced by the class EnterpriseDiagram, the class
Company is replaced by the class Enterprise, and the class Worker is replaced by the
class Employee. The first transformation, also called extension in Xtend terms, takes
a company diagram as an argument and creates an enterprise diagram, which is
returned upon completion. Additionally, the lists of companies and workers are re-
placed by lists of enterprises and employees, which result from calling the extensions
companyToEnterprise and workerToEmployee, respectively. Note that the extension is
called for every company and every worker in the company diagram, since the two
lists are implicitly being iterated through. As can be seen, there is a compact syntax
for doing this because it is a very common case. The extension companyToEnterprise
creates an enterprise from a company by replacing its contracts with new contracts
from the enterprise model. Note that although both classes have the same name and
attributes, they are entirely different. The extension workerToEmployee in turn takes
a worker as argument and creates a new employee with the same name. Finally, a
company contract is translated into an enterprise contract by replacing its worker
with an employee. Thus, it is possible to transform a whole company to an enter-
prise by simply executing the extension companyToEnterprise with a company as its
argument.

4.6 Xpand

Another language developed by the Eclipse Modeling Project is Xpand. It is used to
define code templates which the GMF uses to generate the diagram editor code. On
some occasions it is necessary to alter the code templates in order to augment the

29

4 The Eclipse Project

diagram editor with additional features. The basic keywords are explained with the
help of the example depicted in Listing 4.3.

Listing 4.3: A simple code template
«IMPORT ’http://www.eclipse.org/gmf/2009/GenModel’»

3 «DEFINE additions FOR company::Company−»
I am the Company named «self.Name»
«FOREACH getContracts(self) AS contract»
I have a contract with «contract .getEmployee().getName()»

«ENDFOREACH»
8 «ENDDEFINE»

The IMPORT statement is used to import data models, which are derived from ecore
models. With the EXTENSION statement it is possible to import QVTO transforma-
tions and reuse them in the template. The DEFINE ... FOR statement is used to
define a new code template rule for the specified node in the data model. In order
to invoke other template rules the EXPAND statement is used. Finally, there are other
statements like IF, ELSEIF, FOREACH and others of which the meaning is intuitive.
In the example above, there is a template rule, which specifies that for every com-

pany the code ’I am the Company named <CompanyName>’ should be generated.
In addition, for every contract of the company the code ’I have a contract with
<WorkerName>’ is generated.

4.7 Check

The final language provided by the Eclipse Modeling Project that is important for
this thesis is the Check language. With Check it is possible to check models for
inconsistencies. The language is very compact and can be explained with the short
example shown in Listing 4.4.

Listing 4.4: A check file for the company example.
import company;

2
context Company WARNING "This company has no name!" :

(this .name != null) && (this.name.length > 0)
;

7 context Worker WARNING "This worker has no name!" :
(this .name != null) && (this.name.length > 0)

;

context Company WARNING "This company has no contracts!"
12 this . contracts . size > 0

;

Again, the import statement is used to import ecore models by using their name-
space prefixes. A check rule begins with the keyword context. The name of the
class that follows this keyword defines which element in the diagram is to be marked
as inconsistent in the case of that rule being active. It might be followed by an
additional if that further restricts the scope of the rule. Then the ERROR statements
initiates the error message that is to be displayed if the rule is active. Alternatively,
it might be replaced by a WARNING statement that indicates that the inconsistency
produces a warning rather than an error. Finally, the check rule is concluded by an

30

4.8 The KIELER Project

expression that is to be true for the rule to not become active. In the example above
all companies and all workers are required to have a name. Also, every company has
to have signed at least one contract, otherwise a warning message is shown. How
these rules can be checked in the diagram editor or be invoked programmatically is
discussed in the study thesis [19].

4.8 The KIELER Project

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)4 is a
project that combines all of the aforementioned tools to provide graphical and textual
editors that have been augmented with a number of additional features to further
improve their usability. As has been pointed out by Hauke Fuhrmann and Reinhard
von Hanxleden [12], graphical editors can be greatly improved in terms of usability
and efficiency when techniques like automatic layout and structure-based editing are
employed.
The original idea of the KIELER project was, as described by Spönemann et al.

[21], to enhance model-based design by providing automatic layout mechanisms
and thus to improve the efficiency of the development process. Over time, the
KIELER project has grown into a wide collection of subprojects, which all have the
goal to make model-based design better. Some of these projects were also used in
this thesis to improve the CAKeFEED function blocks editor. One of those is the
KIELER Structure-Based Editing (KSBasE) [16] project by Michael Matzen, which
adds structure-based editing mechanisms to any editor created with the GMF. The
other one is the KIELER Execution Manager (KIEM) [17] by Christian Motika that
provides a means to simulate models created with GMF editors. In addition, there
are other projects such as the KIELER View Management [7] project by Nils Beckel
and the KIELER Textual Editing Framework [6] project by Özgun Bayramoglu. The
View Management project allows to automatically invoke functions that improve the
readability of diagrams, such as zoom or fade in and fade out effects. The Textual
Editing Framework uses Xtext [11] from the Textual Modeling Framework (TMF) to
provide an exemplary textual editor for SyncCharts.
Like the other projects mentioned before, CAKeFEED is a part of the KIELER

project and as such benefits from its other subprojects.

4https://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/WikiStart

31

4 The Eclipse Project

32

5 Concept

This chapter presents the problems that had to be addressed during the development
of the CAKeFEED function blocks editor and one or several possible solutions for each.
Section 5.1 discusses three different approaches on how to model function blocks. In
Section 5.2 the structure of the editor is explained that results from the decisions
documented in the preceding section. Section 5.3 discusses how attribute and type
awareness and the layout of ports have been dealt with, while Section 5.4 is about
the simulation of function blocks. Section 5.5 presents the translation from the XML
Function Block format to the XML format that the editor uses and vice versa.

5.1 Modeling approaches

Three different approaches to modeling function blocks have been identified in the
course of this thesis. They all take the existence of the XML Format into account,
which is specified in the IEC 61499 function blocks standard [3] as it is a requirement
for the editor to be able to read and write that format. Since any editor created with
the GMF saves documents in XML by default, the first possible approach discussed in
Section 5.1.1 is to make the editor use exactly the same format as is specified in the
standard. Another possible approach is to provide an import and export mechanism
to translate the XML format of the editor into the one specified in the standard and
vice versa. This one is discussed in Section 5.1.2. The approach that has finally
been employed is explained in Section 5.1.3. It is a compromise between the two
aforementioned approaches.

5.1.1 The XML-conformant Meta-Model

As has been mentioned above, there is an XML format for function blocks defined
in the function blocks standard [3]. It is possible to translate that format to an
ecore model. The advantage is that instances of the resulting model are saved in
exactly the same format as specified in the XSD, which means there is no need to
implement a mechanism to import and export function blocks written in the XML
format. However, there are some shortcomings to this approach:

Intermediate Containers On the one hand, the XML format often uses intermediate
containers to distinguish model elements that are of the same class but have different
purposes. Listing 5.1 illustrates this.

33

5 Concept

Listing 5.1: Intermediate containers in the function blocks XML format.
<?xml version="1.0" encoding="UTF−8"?>

2 <!DOCTYPE FBType SYSTEM "http://www.holobloc.com/xml/LibraryElement.dtd" >
<FBType Name="FBAND" Comment="Boolean AND" >

...
< InterfaceList >
<EventInputs>

7 <Event Name="REQ" >
<With Var="IN1" />
<With Var="IN2" />

</Event>
</EventInputs>

12 <EventOutputs>
<Event Name="CNF" >
<With Var="OUT" />

</Event>
</EventOutputs>

17 <InputVars>
<VarDeclaration Name="IN1" Type="BOOL" />
<VarDeclaration Name="IN2" Type="BOOL" />

</InputVars>
<OutputVars>

22 <VarDeclaration Name="OUT" Type="BOOL" Comment="Result" />
</OutputVars>

</ InterfaceList>
<BasicFB>
...

27 </BasicFB>
</FBType>

As shown in the figure, input events and output events are both of the same class
called Event. To distinguish both kinds of events, they are put into intermediate
containers, which are either called EventInputs or EventOutputs. In addition, these
two intermediate containers are contained in another intermediate container called
InterfaceList, which, while making the purpose of the following elements clearer to
the reader, serve no semantical purpose at all and could as well be left out. The
same function block could be defined by using the two different classes of events
InputEvent and OutputEvent, which are direct children of the FBType element. This
is shown in Listing 5.2.

Listing 5.2: A function blocks XML format without intermediate containers.
<FBType Name="FBAND" Comment="Boolean AND" >

2 <InputEvent Name="REQ" >
<With Var="IN1">
<With Var="In2">
</InputEvent>
<OutputEvent Name="CNF" >

7 <With Var="OUT">
</OutputEvent>
<InputVar Name="IN1" Type="BOOL" />
<InputVar Name="IN2" Type="BOOL" />
<OutputVar Name="OUT" Type="BOOL" />

12 <BasicFB>
...

</BasicFB>
</FBType>

The intermediate containers have implications on the diagram editor. Since child
references in mapping models are not allowed to leave out intermediate containers,
each one would have to be represented in the diagram, which means that the user has
to create them manually. So, instead of simply adding an InputEvent to a function
block, the user has to add an InterfaceList and an EventInputs container before finally
adding the Event.
Fortunately, this usability issue can be remedied by employing the KSBasE [16]

project in the editor. This project allows to define transformations for any model

34

5.1 Modeling approaches

(a) Adding an input event to a function
block with intermediate containers.

(b) Adding an input event to a function
block without intermediate containers.

Figure 5.1: Adding input events.

element depicted in a diagram. For example, it is possible to define a transformation
AddInputSignal that automatically adds an InterfaceList and an EventInputs container
when needed before adding the Event. Such a transformation may be invoked either
by using the context menu, the appropriate entry in the menu bar, or a keyboard
shortcut. The last problem to address is that elements added by using KSBasE would
have to be laid out, as they are usually placed in an arbitrary position inside their
parent container. However, this is possible with automatic layouts as demonstrated
in [20].

String References On the other hand, all references in the resulting ecore model,
like events referenced in the With elements or function block types referenced in FB
elements, are of the type String, where the string contains the name of the referenced
element. Note that all function block types are stored in a single file. So this method
of referencing only works because all function block types are supposed to have a
unique name and to be stored in a file of the same name. In the EMF references are
represented by an XML Path Language (XPath) [1] expression as shown in Listing 5.3.
While references to elements in the same file may be changed to an arbitrary

format, this is not possible for references that refer to elements in a different file.
In that case the reference has to have the format <resource ># <fragment > where
<resource > and <fragment > can be freely changed but the # has to remain in
any case. Thus, it is not possible to replace the XPath reference by a simple name.
However, there is one last option to modify the XML format as needed that has been

35

5 Concept

Listing 5.3: A string reference compared to an XPath expression.
<fBs name="controller">
<type xsi:type="cakefeed:BasicFunctionBlockType" href="BFBType"/>
...

</fBs>
5

<fBs name="controller">
<type xsi:type="cakefeed:BasicFunctionBlockType" href="default.bfbtype#//@bFBType"/>
...

</fBs>

used in the KIELER Infrastructure for Textual Modeling project. There, the textual
format of SyncCharts is replaced by a new grammar written in Xtext [11]. With
Xtext it is possible to specify a grammar that imitates the XML syntax and provides
keywords for all needed elements like FBType, Event, and so on. However, writing
a new Xtext grammar is a lot of work and probably more than implementing an
import and export mechanism with an Xtend transformation that transforms XPath
references to strings. As the goal of this approach was to save the additional work
of writing a transformation for the import and export of function blocks, replacing
this by the work of writing an Xtext grammar is not a desirable solution.

5.1.2 The custom Meta-Model

The previous section showed that it is not possible to simply use the ecore model
that results from the XSD without further work like creating an Xtext grammar or
an Xtend transformation. Due to these circumstances, another approach comes to
mind that involves creating a custom ecore model that is tailored to the needs of
the GMF and providing an Xtend transformation to translate instances of this model
to the function blocks XML format and vice versa. In addition, this model could be
created in such a way that it has minimal complexity to make it as accessible as
possible. What such a model could look like is depicted in Figure 5.2.
As can be seen, a lot of classes have been left out so that only the ones are included

that are important for function block semantics. Also, since events, variables, and
connections are represented by only one class each, it is possible in the resulting
diagram editor to connect input events with output variables for example and to do
other things that make the diagram invalid. However, these violations can easily be
checked against and marked as errors with the Check language. This has been dis-
cussed in the study thesis [19]. Another way of preventing these violations would be
to use Object Constraint Language (OCL) constraints. The main difference between
the original and the new ecore model is hidden in the class FunctionBlock: The model
does not discern function blocks and function block types like the old one. Instead,
there is only one class FunctionBlock that formally acts as both as every function
block is its own function block type. This means that whenever there are two equal
function blocks they have two different function block types. More importantly, it is
not possible to define one type and assign it to several function blocks as is the case
in the original model. To remedy this, a library mechanism has to be implemented

36

5.1 Modeling approaches

Figure 5.2: A custom ecore model for function blocks.

37

5 Concept

Canvas

BFBType

BFB

Library

BFBType
BFBType

CFBType

CFBType
CFBType

CFBType
CFBType

SIFBType
SIFBType
SIFBType

SIFB
drag and drop

drag and drop

Figure 5.3: A library mechanism for the editor could work like this.

that allows to store already created function blocks in a collection that resembles a
library of function block types and to drag any type to the diagram canvas to create
a new instance of the type. As can be imagined, this is not a trivial task. Figure 5.3
depicts an example for a library mechanism.
Another disadvantage of the new model is that the transformation that transforms

its instances to the XML format has to be much more complex. The main difficulties
result from the fact that a function block may contain an arbitrary number of other
function blocks. This implies that there might be an arbitrary number of hierarchy
levels within one function block diagram whereas in the XML format every function
block may only contain one further level of function blocks, namely inside of its
function block network. All of those further function blocks are black boxes that
refer to their type, which is stored in another file, instead of showing their inner
structure directly. Figure 5.4 illustrates this.
This implies that the transformation has to get rid of the exceeding hierarchy

levels by storing them in function blocks contained in different files. Also, hierarchy
levels with the same structure are not supposed to be stored to different files as they
represent the same function block types. As function blocks may have an arbitrary
number of hierarchy levels it is a costly task to determine whether a hierarchy level
is already included in a separate function block or not.

5.1.3 The hybrid Meta-Model

During the course of this thesis it was decided that an editor is desired where there
is not an arbitrary number of hierarchy levels, but where function blocks merely

38

5.1 Modeling approaches

same file

different file

CFBType

FBNetwork

CFBType

CFBType

FBNetwork
different file

FBNetwork

(a) Only one hierarchy level in the old ecore model.

same file
CFBType

FBNetwork

CFBType

BFBType

FBNetwork
same file

(b) Several hierachy levels in the custom ecore model.

Figure 5.4: Hierarchy levels in the old and the new ecore model.

39

5 Concept

point to function block types that specify their inner structures. This is already the
case in the ecore model resulting from the XSD. Also, many of the classes that are
defined in that meta-model but have been omitted in the custom meta-model have
been found to be useful for the specification of function blocks. Some of those classes
are Identification and VersionInfo for example. However, as has been discussed before,
that meta-model is not suitable for an editor created with the GMF: If no custom
Xtext grammar is employed then there has to be an Xtend transformation in any
case. This leads to a third possible approach, which uses a more elaborate Xtend
transformation and a meta-model that originates from the one resulting from the
XSD but that has been modified to better suit the needs of the GMF. The changes
that have been made to the meta-model are discussed in the following paragraphs.

Replace String Attributes with Object References In the GMF references are
required to be of an object type so that only proper editing possibilities are provided
to the user, such as adding an input event to a function block or connecting an output
event to an input event. If those references are mere string attributes in the ecore
model, the GMF can neither provide graphical editing mechanisms such as drawing
a connection from one point to the other, nor check if a user action is invalid like
connecting an event to a variable. This means that every string attribute, which
is used as a reference in the original ecore model such as the type attribute of a
function block, has to be replaced by a reference with the proper type, for example
a type reference with the type FunctionBlockType. Of course, these references have
to be changed back by the Xtend transition when exporting a model.

Remove intermediate Containers Where possible, intermediate containers like the
classes InterfaceList or EventInputs have been removed to make editing more comfort-
able. These containers can easily be inserted by the Xtend transformation.

Add Subclasses On some occasions, subclasses were added to improve the usability
of the editor. One example, as shown in Figure 5.5, is the addition of the classes
InputEvent and OutputEvent that are subclasses of Event. These two classes serve to
distinguish input events from output events. The same is done for variables. Further,
the classes InputWith and OutputWith are added that extend the class With, which
models associations. InputEvents may only aggregate InputWiths while OutputEvents
may only aggregate OutputWiths. By giving the referenced variable in the class
InputWith the type InputVariable and the referenced variable in the class OutputWith
the type OutputVariable, it is no longer possible for the user to associate an input
event with an output variable and vice versa. Although this could also be done by
employing the Check language, it is more comfortable because this way it is not
possible for the diagram to enter an invalid state whereas with Check invalid states
can be entered but are then marked as erroneous.

40

5.1 Modeling approaches

Figure 5.5: An extract of the hybrid meta-model.

41

5 Concept

5.1.4 The remaining models

The remaining models including the graphical definition model, the tooling definition
model, and the mapping definition model are modeled in the usual way as described
in the study thesis [19]. The only specialty is that the graphical definition model
contains custom figures that implement attribute awareness. These are discussed in
detail in Section 5.3.1

5.2 The Structure of the Editor

The decision to use the hybrid meta-model had several implications for the nature of
the editor. The four most important aspects are discussed in the following sections.

5.2.1 Hierarchy Levels

As has been mentioned before, the inner structure of function blocks is defined by
their types. This means that they do not reveal their inner structure but rather are
black boxes while their inner structure is defined in the diagram of the function block
type. Thus, every diagram has always only one hierarchy level. Although the use
of an arbitrary number of hierarchy levels also has its advantages, the restriction to
one level is necessary to ensure compatibility to the IEC 61499 XML format.

5.2.2 Separation of Concerns

Since every function block is edited in its own diagram, other function blocks that are
not relevant to the one currently being edited cannot obstruct the view. Thus, the
focus always remains on the relevant parts of the system being created. However, as
with the previous point, the View Management for Visual Modeling [7] project would
be useful to improve usability when not every function block has its own diagram as
is the case in the custom meta-model.

5.2.3 Reuse of Elements

By employing the hybrid meta-model the need for a newly implemented library
mechanism is reduced. While it would enhance usability, it is sufficient to use a
mechanism that is built-in in every GMF editor: As depicted in Figure 5.6, it is
possible to load other function block types into the one currently edited by right-
clicking on the diagram canvas, selecting Load Resource from the context menu and
selecting any files that are to be loaded. While they are not visible in the diagram
editor, the instances defined in the loaded files can then be selected as the type of any
function block in the diagram. This mechanism is very similar to the one employed
by the FBDK with the only exception that types are chosen after the creation of a
function block instead of before.

42

5.2 The Structure of the Editor

(a) Select Load Resource.

(b) Choose the file to load. (c) Set the type attribute.

Figure 5.6: Loading a resource.

43

5 Concept

5.2.4 CAKeFEED and KIELER

The nature of the meta-model that was used also determines how much the editor
can benefit from the features provided by the KIELER project. The hybrid meta-
model is designed in such a way that on the one hand it does not rely on any feature
offered by the KIELER project but on the other hand can still benefit from any of
them. The use of only one hierarchy level and the separation of concerns reduce
the need for automatic layout and view management which otherwise would have
been direly needed. Still, the employment of those two features can greatly improve
the usability of the editor as single levels of hierarchy also benefit from automatic
layout and large function block networks can make good use of view management. If
the XML-conformant meta-model was employed, the use of structure-based editing
would have been compulsory. However, the editor resulting from the hybrid meta-
model can also benefit from it since especially the addition of events and variables
with the help of drag-and-drop editing can be time consuming. To sum it up, it
might be worth to try and create a function blocks editor based on another of the
proposed meta-models in the future, especially if closer ties to the KIELER project
are desired.

Automatic Layout While view management and structure-based editing are not
used in the CAKeFEED editor yet, automatic layout is already employed. Since func-
tion block diagrams are dataflow diagrams, the best results can be achieved with
Miro Spönemann’s hierarchical dataflow layout [20]. As can be seen in Figure 5.7(a),
it provides very clean layouts in the CAKeFEED editor. Even diagrams with many
crossovers of connections like the one shown in Figure 5.7(b) yield good results. Since
it is not uncommon for function blocks to have many ports, also a diagram with lots
of such function blocks has been tested. Again, the result looks very clean, as can be
seen in Figure 5.7(c). However, sometimes the layouts have small flaws as some con-
nections have more bend points than would be needed. These incidents are marked
by green circles in the figures. Also, sometimes the routing of connections is not
optimal and higher complexity often comes with larger unused areas.

5.3 Code Modifications

Although the function blocks editor that is generated from the hybrid meta-model
and its accompanying other models already provides a great deal of the needed
functionality, there is still one important part missing along with some features
that improve its usability. These have to be implemented by manually modifying
the generated code. While these manual modifications are sufficient to enhance
the editor, the Xpand language was used to embed them in the code generation
templates so that they are applied automatically every time the code is generated.
How this is done is explained in the study thesis [19]. The following sections describe
the manually implemented attribute and type awareness of function blocks and the
layout of event and variable ports.

44

5.3 Code Modifications

(a) A function block diagram with hierarchical dataflow layout.

(b) A layouted diagram with many connection crossovers.

(c) A layouted diagram with many function blocks that have lots of ports.

45

5 Concept

5.3.1 Attribute and Type Awareness

Due to the built-in Load Resource mechanism that comes with any GMF editor it
is possible to set the type attribute of a function block to any function block type
defined in another file. However, the change of the attribute alone has no effect on
the figure of the function block depicted in the diagram. The reason for this is that
the structure of edit parts as well as figures is supposed to be static. This means that
the events and variables of a function block are supposed to be permanent and not to
be removed or substituted. This problem is addressed by enhancing the behavior of
the edit parts, which form the interfaces between the user and the figures. They are
modified so that they send notifications to the figures whenever the user has changed
the type of a function block.

5.3.2 Port Layout

The function block standard [2] specifies certain positions for different ports. While
events have to be located at the upper part of the function block, variables are
supposed to be located at the lower part. This issue has also been addressed in the
editor. Usually, the layout of a figure’s children is determined by the layout of the
parent figure. This is also how the children of state figures are laid out in the study
thesis [19]. However, with ports it is slightly different. Although the port figures
formally count as children of the function block figures, they are not located inside
that figure like usual children. Instead, they appear at the border on the outside
of the figure. Due to these circumstances, layouts do not affect them and their
locations are determined by locators. Whenever the user tries to change the position
of a port figure, the assigned locator returns a set of valid locations in which the
figure might be placed. In the CAKeFEED editor, the set of valid locations calculated
by the default locator is restricted by another specialized locator to ensure that all
ports are located in the right places. The advantage of locators compared to usual
layouts is that the user can still change the position of events and variables within
the bounds that the locators provide while layouts always assign one fixed location
to an element that cannot be changed by the user.

5.4 Simulation

In the course of the thesis it was decided that the function blocks editor should be
augmented with a feature that provides a means to simulate counter examples of a
function block network. Such a counter example is simply a sequence of event and
ECC state activations that leads to an erroneous state. The KIEM [17] is used to
accomplish this goal.

5.4.1 The KIELER Execution Manager

The KIEM provides an infrastructure for the simulation of domain specific models.
With its help it is possible to simulate function blocks behavior by implementing pro-

46

5.5 Import and Export

ducers and observers that produce or observe simulation data, respectively. Hereby,
the KIEM merely plays the role of a data bus that connects the producers and ob-
servers, which are also called data components. The data components use the KIEM
to communicate with each other. If a data component produces data that can be
reused by other components, it is called a producer, while a data component that
only reads data from other data components is called an observer. In addition, it is
possible for data components to be both a producer and an observer or even neither
of the two. The latter is the case if the data component only performs some tasks in
its initialization, but makes no use of the data bus during the simulation. In the case
of the function blocks editor only one data component is needed that is neither a
producer nor an observer as it merely loads the counter example during initialization
and displays active events and transitions during simulation.

5.5 Import and Export

As discussed before, the function blocks editor needs to be augmented with an import
and export mechanism that allows to translate function blocks created with the editor
into the XML format defined in the standard [3] and vice versa. This is done with the
help of the transformation framework, which is a product of the KSBasE [16] project.
Several transformations have been developed, which can translate function blocks in
the IEC 61499 function blocks format into the XML format that is used by the GMF
editor, and also transform function blocks in the GMF XML format into the IEC 61499
format. This enables the user to import function blocks into the GMF editor that
have been created with other tools such as FBDK or FBench and to export those
created with the GMF editor for further processing in other tools that understand
the IEC 61499 function blocks format.

47

5 Concept

48

6 Implementation and Results

The implementations of the concepts discussed in Chapter 5 are explained in detail
in this chapter. Section 6.1 deals with the models that are used to generate the editor
with the GMF. Section 6.2 explains how the attribute and type awareness and the
layout of ports were implemented. The implementation of the simulation feature is
discussed in Section 6.3 while the implementation of the import and export feature is
explained in Section 6.4. Finally, Section 6.5 gives a short evaluation of the employed
approaches.

6.1 Modeling

In this section, the different models are explained that are used to generate the
function block editor. These are the meta-model, the graphical definition model, the
tooling definition model, and the mapping definition model. The generator model
as well as the diagram editor generator model are omitted as they are automatically
generated and the few changes made to them are of a trivial nature.

6.1.1 The Meta-Model

The hybrid meta-model is derived from the XSD and as such contains a wide range
of classes that help define function blocks. Note that these classes are intended to be
used by the generated EMF tree editor, which is used as an overview of the currently
edited function block. In the overview it is possible to add all those elements including
compiler information, version information, and more. In addition, it is possible to
define whole systems with devices and resources in which function block networks
can be embedded that have been developed with the GMF diagram editor. Figure 6.1
illustrates this.
Since the meta-model is very large, it is not explained in its entirety and only

the parts that need a deeper understanding are discussed. The three main classes
that are important for the diagram editor are BasicFunctionBlockTypeDiagram, Com-
positeFunctionBlockTypeDiagram, and FunctionBlockNetwork. These three each make
up the canvas of either the basic function block type editor, the composite function
block type editor, or the function block network editor. Figure 6.2 shows the rela-
tions between those classes. Note that some aspects have been simplified or omitted
to keep the diagram simple.

BasicFunctionBlockTypeDiagram The class BasicFunctionBlockTypeDiagram con-
tains the BasicFunctionBlockType, which inherits several attributes from its super

49

6 Implementation and Results

Edit the system here.

Select a function block network here.

Figure 6.1: The EMF tree editor.

50

6.1 Modeling

Figure 6.2: The three main classes of the meta-model.

51

6 Implementation and Results

classes such as a name, events, and variables. In addition, it may contain a Sync-
Chart that serves as its ECC and a range of different algorithms that encompasses
function block diagrams, ladder diagrams, structured text, and source code algorithms.
For the sake of brevity, these have been merged into a single class Algorithm in the
diagram. The meta-model of SyncCharts is explained in the study thesis [19].

CompositeFunctionBlockTypeDiagram The CompositefunctionBlockTypeDiagram
is the container of the CompositeFunctionBlockType. Like the BasicFunctionBlockType,
this class inherits a name attribute as well as input and output events and variables.
Also, it inherits the attributes of a function block network that lets it contain other
function blocks and connections.

FunctionBlockNetwork The FunctionBlockNetwork simply contains other func-
tion blocks and the connections between them.

Events and Variables Note that there are several different subclasses of events and
variables. These are depicted in Figure 6.3. On the one hand, they are divided into
input and output classes. These are used to distinguish inputs and outputs so that
it is not possible to connect an input event in the interface of a function block to
another input event in the same interface for example. On the other hand, there
are classes prefixed with either IF or FB. This is used to distinguish between events
and variables that are contained in the interface of a basic or composite function
block type and those that are contained in a function block. This is required since
sometimes it is necessary to connect an input event in an interface to an input event
in a function block, for example. Figure 6.5 summarizes how the different kinds of
events and variables may be connected to each other.

Connections To ensure that events and variables are connected correctly, it is also
necessary to have a number of different classes for connections. They are depicted in
Figure 6.4. For brevity, connections for internal variables have been left out. Every
one of them has a source and a destination attribute with different types. There
are those connections that may only connect two events or variables in the interface
of a function block type, those that may only connect two that are contained in
function blocks, and those that may connect interface and function block events or
variables. Note that the function blocks language is a dataflow language, which
means that connections may only start at either interface input ports or function
block output ports and end at either interface output ports or function block input
ports. The relations between events, variables and connections are also summarized
in Figure 6.5.

6.1.2 The Graphical Definition Models

The graphical definition models of the CAKeFEED editor define the appearance of
diagram elements. As this type of model is explained in the study thesis [19], only

52

6.1 Modeling

Figure 6.3: The different types of events and variables.

53

6 Implementation and Results

Figure 6.4: The different types of connections.

54

6.1 Modeling

IFInputEvent

IFOutputEvent

IFInputVar

IFOutputVar

FBInputEvent

FBOutputEvent

FBInputVar

FBOutputVar

IFIFEventConnection

IFFBEventConnection

FBIFEventConnection

FBFBEventConnection

IFIFDataConnection

IFFBDataConnection

FBIFDataConnection

FBFBDataConnection

Figure 6.5: How events and variables may be connected.

the notable aspects of the particular models for the CAKeFEED editor are explained
here. Important to note is that the figures that represent function blocks are custom
figures as well as those that represent ports in interfaces. There has to be a number
of different figures for events and variables in interfaces since events and variables
feature a short line at the side, which is on the left in the case of inputs and on
the right in the case of outputs. Ports in function blocks do not have these lines,
thus there is no need for a distinction between inputs and outputs. Take a look at
Figure 6.6 for a summary of port appearances.

6.1.3 The Tooling Definition Models

The tooling definition models are straight-forward. They simply contain creation
tools for all different elements that need to be created including basic function block
types, events, variables, connections, and others.

6.1.4 The Mapping Models

Although the mapping models might seem complicated, their overall structure is
rather easy to understand. In the case of basic and composite function block type
diagrams the top level elements are mapped to the appropriate types, in the case of
function block networks the top level elements are mapped to function blocks. Also,
each type or function block contains its corresponding event and variable mappings

55

6 Implementation and Results

Interface Input Event

Interface Output Event

Interface Output Variable

Interface Input Variable

Function Block Variable

Function Block Event

Figure 6.6: How different ports appear in the diagram.

and sometimes additional child mappings for algorithms or other elements. Finally,
each model contains appropriate link mappings for the connections.

6.2 Code Modifications

This section discusses the implementation of the type and attribute awareness of
function blocks as well as the special appearance of the event and variable ports and
how they are laid out.

6.2.1 Type and Attribute Awareness

The desired behavior of a function block figure is to display a number of events and
variables that correspond to the ones defined in its function block type. Also, these
events and variables have to be able to react to user input like clicking and dragging.
This is not possible for simple figures. Instead, there also have to be edit parts that
implement this behavior. The easiest way to bring edit parts into the editor is to
add event and variable references to the FunctionBlock class in the ecore model.
This leads to both function blocks and function block types containing events as well
as variables although it would be sufficient if only the function block type contained
them. The next step is to make the edit part of the function block react to a change
of the function block’s type by removing old events and variables and adding new
ones that correspond to the newly selected type. This is done by overriding the
method handleNotificationEvent in all function block edit parts with the help of a
custom code template.
The template is constructed in such a way that whenever the code for a function

block edit part is to be generated, the new definition of the method handleNotifica-
tionEvent is appended. The workflow of the method is depicted in Figure 6.7. In this
method the edit part checks whether the type of the function block has been changed.

56

6.2 Code Modifications

type changed?

retrieve events and variables

remove old events and variables

more new events or variables?

add new event / variable

adapt new event / variable

yes

no

yes

no

Figure 6.7: The workflow of the method handleNotificationEvent.

If that is the case, it retrieves the new events and variables from the newly selected
type. Then it removes all events, variables, and connections from the function block.
After that, it iterates over all events and variables, puts a command on the command
stack for every element to be added, and executes them. Finally the same is done
with commands that adapt the attributes of the newly created elements to those of
the elements in the type. The commands for removing events and variables, adapting
their attributes, and removing connections are subclasses of the class FBCommand,
which is a subclass of Command and features an additional attribute functionBlock
that denotes the function block to be changed by the command. Figure 6.8 illustrates
this.

The Function Block Figure As defined in the standard [2], function blocks have
a specific shape that identify them as such. To give the function block figures in
the diagram editor the same appearance they are represented by custom figures
with special drawing methods that create the required shape. An additional feature
that improves the usability of the editor is the fact that the function block figures
adjust their appearance based on the number of events and variables: As depicted
in Figure 6.9, the figures automatically resize their upper and lower parts depending
on the numbers of input and output events and variables.
This is possible by making the figure aware of its corresponding model element’s

attributes as has been done before in the study thesis [19]. Although the mechanism
has been improved since then, the basic approach is the same: The figure is regis-
tered as a listener to the model element, which makes the model element call the

57

6 Implementation and Results

Command

FBCommand

DeleteEventsAndVarsCommand

AdaptEventsAndVarsCommandClearConnectionsCommand

new attribute 'functionBlock'

override 'execute' method

override 'execute' methodoverride 'execute' method

Figure 6.8: The hierarchy of the command classes.

(a) (b)

Figure 6.9: The relative sizes of the upper and lower parts change depending on the
numbers of events and variables.

58

6.2 Code Modifications

model element figure

call register method

call HandleNotificationEvent

adjust appearance

return
register figure

return

Figure 6.10: How edit parts react to changes in model elements.

handleNotification method of the edit part. In this method, the edit part reacts to
the changes. Figure 6.10 illustrates this.
The difference between the old and the new approach is rather subtle: Whereas in

the study thesis [19] an attribute aware figure had a reference to its corresponding
edit part to get a link to its model element, it now only has a reference to its model
element that is set by the edit part itself. Figure 6.11 illustrates this.
By registering the figure as a listener to the model element, its handleNotification-

Event method is called every time a change is made to the model element. Thus, the
figure can recalculate the new number of events and variables and adapt its template
points. The drawing methods have been changed so that they draw an outlined
polygon along those template points. The whole process is depicted in Figure 6.12.

The Port Figures Like the function block figures, the figures of events and variables
also have custom drawing methods. Depending on whether they are input or output
events/variables they draw themselves pointing in different directions. This is shown
in Figure 6.13.
Every port has a boolean attribute reverse that indicates whether the line is to

be drawn to the left or to the right of the port’s square. In addition, there are
methods that compute the location of the square and the start point as well as
the end point of the line depending on the reverse attribute. The figures of interface
input and output events and variables are derived from the super class PortFigure and
have a constructor that sets their reverse attribute and their fill color. Figure 6.14
summarizes this.

59

6 Implementation and Results

create Figure

Edit PartModel Element Figure

provide pointer to Edit Part

get Model Element

get Model Element

return Model Element

return Model Element

return

(a) The figure needs a pointer to its edit part.

create Figure

Edit PartModel Element Figure

provide pointer to Model Element

get Model Element

return Model Element

return

(b) No additional pointer is needed.

Figure 6.11: The old and the new attribute awareness.

register as listener

Model Element Figure

handleNotificationEvent

change an attribute

recalculate events
and variables

redraw Figure

return

Figure 6.12: What happens when a change occurs.

60

6.2 Code Modifications

Figure 6.13: Input ports point to the left while output ports point to the right.

PortFigure

IFInputEventFigure

calculate position of square and line
based on 'reverse' variable

IFOutputEventFigure

IFInputVariableFigure IFOutputVariableFigure

reverse = false
color = red

reverse = true
color = red

reverse = false
color = blue

reverse = true
color = blue

Figure 6.14: The different port figures.

61

6 Implementation and Results

(a) (b)

Figure 6.15: The default BorderItemLocator and the one employed by the function
blocks editor.

6.2.2 Port Layout

In the IEC 61499 function blocks standard, it is defined that all ports have to be in
a certain location: Input events are supposed to be located on the upper left side,
while output events are supposed to be located on the upper right, input variables
on the lower left, and output variables on the lower right side. To adhere to these
restrictions, locators have been employed in the CAKeFEED editor.

Use of Locators Locators determine the relative position of side affixed children
compared to their parent figure. The BorderItemLocator, which is used as default
for side affixed children, returns as possible positions those on the border of the
parent figure. In the function blocks editor, the possible positions are restricted as
the CakefeedBorderItemlocator limits the position of input events and variables to
the left border and output events and variables to the right border of the function
block. In addition, the possible positions of events are restricted to the upper part
and the ones of variables to the lower part of the function block. To realize this,
the CakefeedBorderItemLocator contains a reference to the function block figure it
is assigned to. Thus, it can retrieve the bounds of that figure’s upper and lower
part. In addition, it has two boolean attributes input and ctrl that define whether
it is supposed to restrict the location of inputs or outputs and events or variables,
respectively. When asked to return a valid location, the locator first lets its super
class calculate all locations along the border of the function block. Then it restricts
them based on the upper and lower regions of the function block figure and the
input and ctrl attributes. Figure 6.15 compares the default BorderItemLocator and
the CakefeedBorderItemlocator.

62

6.3 Simulation

Choose a counter example here. Click here to step forwards.

Click here to step backwards.

Figure 6.16: The interface provided by the KIEM.

6.3 Simulation

The simulation of counter examples has been implemented with the help of the KIEM
[17]. It provides a user interface that consists of a property field used to select a file
that contains a counter example, a step forward button, and a step backward button
as depicted in Figure 6.16.

6.3.1 The Data Component

The data component simulates the counter example. Figure 6.17 illustrates its be-
havior. When the step forward button is pressed for the first time, the initialize
method is called that parses the file containing the counter example and produces a
W3C document object. In any following activation of the step forward or step back-
ward button the number of the current tick is updated and the events and ECC
transitions that have to be highlighted are extracted from the W3C document object.
Finally, these elements are highlighted by drawing them in a light green color. Note
that whether an event or a transition has to be highlighted is determined solely by
the name of the event or the source and target states, as this is the only information
available in a counter example. This means that the simulation only works correctly
when all states in an ECC and all function blocks have a unique name. Event names
only need to be unique within their own function block. The Listings 6.1 and 6.2
show a simple counter example and Figures 6.18 and 6.19 depict the corresponding
function block network and the ECC of function block A.
As can be seen, the function block network represents a ring of three interconnected

function blocks. The counter example states that in every tick the output event
of one of the function blocks is active along with the input event of the following
function block, which means that the connection that connects both events has to be

63

6 Implementation and Results

Figure 6.17: The behavior of the data component.

Figure 6.18: The corresponding function block network.

64

6.3 Simulation

Listing 6.1: A simple counter example.
1 <?xml version="1.0" encoding="UTF−8"?>

<FB Type="input\rmc\example\example" Name="input\rmc\example\example">

<Tick Id="1">
<Component Name="A">

6 <InputSignals>
</InputSignals>
<OutputSignals>
</OutputSignals>
<SourceState>S0</SourceState>

11 <DestinationState>S1</DestinationState>
</Component>
<Component Name="B">

<InputSignals>
</InputSignals>

16 <OutputSignals>
</OutputSignals>

</Component>
<Component Name="C">

<InputSignals>
21 </InputSignals>

<OutputSignals>
</OutputSignals>

</Component>
</Tick>

26
<Tick Id="2">

<Component Name="A">
<InputSignals>
</InputSignals>

31 <OutputSignals>
<Signal>A2</Signal>

</OutputSignals>
<SourceState>S1</SourceState>
<DestinationState>S2</DestinationState>

36 </Component>
<Component Name="B">

<InputSignals>
<Signal>B1</Signal>

</InputSignals>
41 <OutputSignals>

</OutputSignals>
</Component>
<Component Name="C">

<InputSignals>
46 </InputSignals>

<OutputSignals>
</OutputSignals>

</Component>
</Tick>

Figure 6.19: The ECC of function block A.

65

6 Implementation and Results

Listing 6.2: A simple counter example (continued).
<Tick Id="3">

<Component Name="A">
<InputSignals>
</InputSignals>

5 <OutputSignals>
</OutputSignals>
<SourceState>S2</SourceState>
<DestinationState>S3</DestinationState>

</Component>
10 <Component Name="B">

<InputSignals>
</InputSignals>
<OutputSignals>
<Signal>B2</Signal>

15 </OutputSignals>
</Component>
<Component Name="C">

<InputSignals>
<Signal>C1</Signal>

20 </InputSignals>
<OutputSignals>
</OutputSignals>

</Component>
</Tick>

25
<Tick Id="4">

<Component Name="A">
<InputSignals>
<Signal>A1</Signal>

30 </InputSignals>
<OutputSignals>
</OutputSignals>
<SourceState>S3</SourceState>
<DestinationState>S0</DestinationState>

35 </Component>
<Component Name="B">

<InputSignals>
</InputSignals>
<OutputSignals>

40 </OutputSignals>
</Component>
<Component Name="C">

<InputSignals>
</InputSignals>

45 <OutputSignals>
<Signal>C2</Signal>

</OutputSignals>
</Component>

</Tick>
50 </FB>

66

6.4 Import and Export

Tick 4

Tick 2 Tick 3

Figure 6.20: Simulation of the function block network.

Tick 1
Tick 2

Tick 3

Tick 4

Figure 6.21: Simulation of the ECC.

highlighted. Also, in every tick, the source and destination states of function block
A change. This indicates that certain transitions in the ECC of function block A are
taken and have to be highlighted. Figure 6.20 shows the simulation of the function
block network and Figure 6.21 that of the ECC.

6.4 Import and Export

The import and export of function blocks is realized with the help of two handlers,
the import handler and the export handler. These implement execute methods that
are invoked when the appropriate entry in the context menu is selected. However,
the work on this feature is not finished at this moment.

6.4.1 The Import Handler

The supposed workflow of the import handler is the following:

1. Open file wizard

2. Read file

3. Transform model

4. Store model in new file

67

6 Implementation and Results

5. Open file in new editor

First, it opens a dialog that lets the user select a file that contains a function
block stored in the XML format defined in the standard [3]. Then a new resource is
created for a new function block. After that, an Xtend transformation is employed
to translate the function block that is defined in the file selected by the user into a
function block that conforms to the XML format used by the editor. The transformed
function block is then stored in the newly created resource, which is opened in a new
editor window for the user to edit.

6.4.2 The Export Handler

The planned behavior of the export handler is as follows:

1. Get currently edited model

2. Transform model

3. Store model in new file

First, it extracts the currently edited element from the opened diagram. Then it
chooses the appropriate transformation based on the class of the element. After that,
the chosen transformation is executed with the element as argument. Then, a new
resource is created that can contain the resulting element in the IEC 61499 function
blocks format and the transformed element is stored in it.

6.4.3 The Transformations

Since the hybrid meta-model has been derived from the meta-model that results
from the XSD, the transformations needed to translate IEC 61499 function blocks and
CAKeFEED function blocks into one another are quite simple. The four tasks these
transformations have to fulfill are to eliminate and insert intermediate containers, to
transform object references into strings, and to transform strings into object refer-
ences. The first three tasks are trivial, since intermediate containers can easily be
omitted or inserted by changing some pointers and object references can easily be
replaced by the names of their objects. However, to transform strings into object
references, it is necessary to search the workspace for files that contain objects with
the name defined in the string. This is not possible with Xtend alone. Fortunately,
it is possible to write a Java extension in Xtend, which can execute a method writ-
ten in Java. At this moment, the transformations are not complete, since the Java
extensions still have to be written.

6.5 Evaluation

The approach of using the hybrid meta-model presented in this thesis has several
advantages. On the one hand, its similarity to the original meta-model derived from

68

6.5 Evaluation

the XSD results in a separation of concerns as basic function block types, composite
function block types, and function block networks are all created and edited in differ-
ent windows, and also in a better clarity because there is only one level of hierarchy
in every diagram. It also makes the development of transformations for import and
export a lot easier.
The use of Eclipse and the GMF together with the EMF and the GEF is advantageous

because many useful features are automatically provided, which would otherwise
have to be implemented manually. These features include drag-and-drop editing,
outlines, overviews, menu and tool bars, the properties view, and many others. In
addition, there are many extension points, which provide a comfortable means to
extend existing features or add new ones. A disadvantage is the XML format used by
GMF editors. Although it is already very flexible, the need for a # between resource
and fragment makes the approach of the XML-conformant meta-model infeasible.
The KIELER project provides excellent support for the CAKeFEED editor since the

KIEM alleviates the implementation of counter example simulation and the automatic
layout saves users of the editor a lot of work that would otherwise be spent on
tweaking the layout of function block diagrams manually.

69

6 Implementation and Results

70

7 Conclusion

This chapter concludes the thesis with a summary in Section 7.1 and an outlook on
possible future work in Section 7.2.

7.1 Summary

In this thesis, a new GMF diagram editor for the function blocks language has been
presented that conforms to the IEC 61499 function blocks standard. Several different
approaches to the creation process have been discussed, such as the XML-conformant
meta-model, the custom meta-model, and the hybrid meta-model along with their
advantages and disadvantages. One of these approaches has been employed to im-
plement the editor and has been explained in detail. While the chosen meta-model
was the most advantageous for this project, the other ones have other interesting
qualities and it may proof worthwhile to employ them, too. The KIELER project has
been used to show how graphical editors created with the GMF can benefit from the
features of KIELER. It was shown how the KIEM can be used to implement a simula-
tor in a GMF editor and how attribute aware figures can easily be implemented with
the classes provided by the KIELER. Also, the versatility of the GMF was utilized
to make function blocks react to user inputs by adapting their events and variables
to the chosen type. In addition, the layout of events and variables was realized by
employing locators.

7.2 Future Work

The CAKeFEED function blocks editor provides a comfortable environment for the
creation of function blocks. However, some of the features have potential to be
extended in the future. The import and export mechanism could be completed
and the simulation feature could be extended by a simulation mode where the user
specifies the active inputs. Also, it might be worth a try to employ the custom meta-
model instead of the hybrid meta-model so that the features of the KIELER can be
used more effectively. In the course of that approach it would also be an interesting
endeavor to develop a generic library mechanism for GMF editors and to explore the
use of multiple hierarchy levels.

71

7 Conclusion

72

8 Bibliography

[1] XML Path Language (XPath) Version 1.0, 1999. http://www.w3.org/TR/
xpath/.

[2] IEC 61499-1: Function blocks - part 1 architecture, 2005. http://webstore.
iec.ch/preview/info_iec61499-1{ed1.0}en.pdf.

[3] IEC 61499-2: Function blocks - part 2 software tool requirements, 2005. http:
//webstore.iec.ch/preview/info_iec61499-2{ed1.0}en.pdf.

[4] Meta object facility (mof) 2.0 query/view/transformation specification. Techni-
cal report, OMGObject Management Group, 2007. http://www.omg.org/mof/.

[5] C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–
FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.

[6] Ö. Bayramoglu. The KIELER textual editing framework. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Dec.
2009. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/
oba-dt.pdf.

[7] N. Beckel. View Management for Visual Modeling. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Oct.
2009. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/
nbe-dt.pdf.

[8] W. Bolton. Programmable Logic Controllers. Newnes, 2009.

[9] E. Börger and R. Stark. Abstract State Machines. Springer, 2003.

[10] J. Chouinard and R. W. Brennan. Software for next generation automation
and control. In Industrial Informatics, 2006 IEEE International Conference on,
pages 886–891, 2006.

[11] S. Efftinge and M. Völter. oAW xText: A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit, 2006.

[12] H. Fuhrmann and R. von Hanxleden. On the pragmatics of model-based design.
In Proceedings of the 15th International Monterey Workshop on Foundations
of Computer Software, Future Trends and Techniques for Development (2008),
LNCS (to appear), Budapest, 2010. Also available as Technical Report 0913,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, May
2009.

73

8 Bibliography

[13] P. Z. S. Gareth D. Shaw, Dr. Partha S. Roop, editor. A hierarchical and con-
current approach for IEC 61499 function blocks, IEEE International Conference
on Emerging Techonologies and Factory Automation, 2009.

[14] C. F. Goldfarb and P. Prescod. XML Handbook, Third Edition. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2000.

[15] K.-H. John and M. Tiegelkamp. IEC 61131-3: Programming Industrial Automa-
tion Systems. Springer, 2001.

[16] M. Matzen. Structure-Based Editing in Eclipse. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Mar. 2010. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf.

[17] C. Motika. Semantics and execution of domain specific models—KlePto and
an execution framework. Diploma thesis, Christian-Albrechts-Universität zu
Kiel, Department of Computer Science, Dec. 2009. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf.

[18] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004.

[19] M. Schmeling. An Eclipse-Editor for Safe State Machines. Student re-
search project, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, Sept. 2009. http://rtsys.informatik.uni-kiel.de/~biblio/
downloads/theses/schm-st.pdf.

[20] M. Spönemann. On the automatic layout of data flow diagrams. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Mar.
2009. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/
msp-dt.pdf.

[21] M. Spönemann, H. Fuhrmann, R. von Hanxleden, and P. Mutzel. Port con-
straints in hierarchical layout of data flow diagrams. In Proceedings of the 17th
International Symposium on Graph Drawing (GD’09), volume 5849 of LNCS,
pages 135–146. Springer, 2010.

[22] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Mod-
eling Framework 2.0. Addison-Wesley Professional, 2009.

[23] K. Thramboulidis. Advances in Computer, Information, and Systems Sciences,
and Engineering. Springer, 2006.

[24] V. Vyatkin. IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. ISA, 2007.

74

