
The Kiel Esterel Processor:

A Multi-Threaded Reactive Processor

Dissertation

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

(Dr. -Ing.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Xin Li

Kiel
2007

1. Gutachter Reinhard von Hanxleden

2. Gutachter Michael Mendler

Datum der mündlichen Prüfung 23. Juli 2007

Acknowledgements

This thesis would not have been possible without the support of many people. My
deepest gratitude is to my supervisor, Professor Reinhard von Hanxleden, for his precious
suggestions, friendly advice, and giving me the freedom to pursue a research topic. Most
of all, for his patience with my mistakes and extreme generosity with his time. His
scientific vision, high standards, detailed comments and discussions, and solid insight
into embedded system design have given me guidance to follow throughout my research
efforts. I am also grateful to him for having provided me chances to attend many
conferences, which have expanded my horizon and inspired me to conduct this research
work.

Furthermore, my special thanks go to Prof. Michael Mendler at the Universität Bamberg,
Prof. Stephen A. Edwards at Columbia University, Dr. Stavros Tripakis and Dr. Claudio
Pinello at Cadence Berkeley Labs, and Prof. Alberto Sangiovanni-Vincentelli at the
University of California Berkeley for their inspiring talks, suggestions and advice which
were very helpful for my work.

Claus Traulsen and Malte Tiedje read a draft version of this thesis and gave me lots of
helpful comments, I really appreciate their help. I thank also Marian Andreas Boldt for
his discussions and collaboration. In addition to this, I am grateful for all the discus-
sions with Steffen Prochnow, Jan Lukoschus, and Sascha Gädtke. I further thank my
colleagues Gesa Walsdorf, Isabella Cembrowski, Maren Lutz, Hauke Fuhrmann, and Tim
Grebien for their kind help during my study in the Real-time and Embedded Systems
group.

I acknowledge the DAAD and DFG for giving me the financial support for this work.

Last, but not least, I would never have finished this work without the moral support
and encouragement of my parents (Zhenhua Li and Sujiao Wu), my wife (Di Zang) and
my daughter (Luopian Li) to whom I dedicated this dissertation.

iii

iv

Abstract

Many embedded systems belong to the class of reactive systems, which continuously react
to inputs from the environment by generating corresponding outputs. The programming
of reactive systems typically requires the use of non-standard control flow constructs,
such as concurrency or exception handling. Most programming languages do not support
these constructs at all, or their use induces non-deterministic program behavior. To
address these difficulties, the synchronous language Esterel has been developed to express
reactive control flow patterns in a concise manner, with a clear semantics that imposes
deterministic program behavior under all circumstances.

There are different options to synthesize an Esterel program into a concrete system, e. g.,
software, hardware, and HW/SW co-design implementations. However, these classical
synthesis approaches suffer from the limitations of traditional processors, with their in-
struction set architectures geared towards the sequential von-Neumann execution model,
or they are very inflexible if HW synthesis is involved.

Recently, another alternative for synthesizing Esterel has emerged, the reactive pro-
cessing approach. Here the Esterel program is running on a processor that has been
developed specifically for reactive systems. However, the main challenge when designing
a reactive architecture is the handling of control.

This thesis presents the Kiel Esterel Processor (KEP). In the KEP, the multi-threaded
reactive architecture is responsible for managing the control flow of all threads. The
KEP Instruction Set Architecture is complete in that it allows a direct mapping of all
Esterel statements onto KEP assembler. It supports Esterel’s concurrency operator ||
in a very precise, direct and efficient way. It also supports full Esterel preemptions,
i. e., the delayed and immediate strong/weak abortion and suspension. All other Esterel
kernel statements, e. g., the Esterel exception, delay, and signal emission, etc., are also
implemented directly and semantically accurate by the KEP.

As the experimental comparison with a 32-bit commercial RISC processor indicates, the
KEP has advantages in terms of memory use, execution speed, and energy consumption.
Another advantage is the predictability of its timing behavior at the program level.

v

vi

Contents

Contents v

List of Figures ix

List of Tables xiii

1 Introduction and Motivation 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Research Contribution . 3

1.4 Thesis Organization . 5

2 Background and Related Work 7

2.1 Implementation Technologies . 7

2.2 Compilation Approaches . 9

2.3 Handling Esterel via Reactive Processors 12

3 The KEP Instruction Set Architecture 17

3.1 The Esterel Language . 18

3.1.1 Esterel Statements . 20

3.1.2 An Example Program . 27

3.2 Design of the Esterel-type Instructions 30

3.2.1 Handling Concurrency . 31

3.2.2 Handling Preemption . 32

3.2.3 Handling Exceptions . 35

3.2.4 Handling Signal and Schizophrenia 35

v

vi CONTENTS

3.2.5 Handling Delays . 36

3.2.6 Summary of Esterel-type Instructions 37

3.3 Further Instructions . 39

3.4 From Esterel to KEP Assembler . 42

3.4.1 Code Generation for the KEP – The Compiler’s Perspective . . . 42

3.4.2 EXAMPLE: Code Translation . 44

3.5 Encoding KEP Instructions . 45

3.6 Summary . 49

4 The KEP Architecture 53

4.1 The KEP Architecture Overview . 53

4.2 The Reactive Core . 55

4.2.1 The Thread Block . 56

4.2.2 The Reactive Block . 60

4.2.3 Decoder & Controller . 87

4.3 The Interface Block . 89

4.4 The Data Handling Block . 95

4.5 The Tick Manager and Energy Saving 96

4.6 Putting It All Altogether . 98

4.7 Summary . 102

5 Experimental Results 103

5.1 The KEP Evaluation Platform . 103

5.1.1 Compilation . 104

5.1.2 Implementation . 104

5.1.3 Validation . 106

5.2 Comparison with Other Execution Platforms 106

5.3 Evaluation Results . 109

5.4 Summary . 117

6 Conclusion and Outlook 119

6.1 Conclusion . 119

6.2 Recommendations for Further Research 121

CONTENTS vii

A KEP Instruction Set 125

A.1 Esterel-type Instructions . 125

A.1.1 Preemption . 125

A.1.2 Exception . 128

A.1.3 Concurrency . 128

A.1.4 Delay . 130

A.1.5 Signal Emission and Testing . 132

A.1.6 Others . 136

A.2 Classical Instructions . 138

A.2.1 Program and Machine Control . 138

A.2.2 Boolean Variable Manipulation 142

A.2.3 Data Transfer . 144

A.2.4 Arithmetic Operations . 145

A.2.5 Logical Operations . 149

B An Introduction to the KEP Evaluation Platform 153

B.1 Function Description of the KEP Assembler Compiler 153

B.1.1 Options of the KEP Assembler Compiler 153

B.1.2 The KEP Configuration File . 154

B.1.3 The Further Configuration . 156

B.2 Function Description of the TestDriver 157

B.3 Function Description of the KEP Evaluation Program 162

B.3.1 Starting an Evaluation . 162

B.3.2 Debugging a Program . 163

B.3.3 Validating a Program . 165

Bibliography 167

viii CONTENTS

List of Figures

2.1 The schizophrenia problem (a) and the typical solution (b). 11

2.2 The architecture overview of multi-processing (a) and multi-threaded (b). 15

3.1 Simple: a module illustrating the structure of the Esterel program (a),
and a possible execution trace (b). 18

3.2 The equivalent expression of the await statement by kernel statements. . 23

3.3 The equivalent expression of the sustain statement by kernel statements. . 24

3.4 Delay: an Esterel module illustrating the difference of Esterel delay ex-
pressions (a), and a possible execution trace (b). 24

3.5 Abort1: an Esterel module illustrating the strong abort nest (a), and a
possible execution trace (b). 26

3.6 Abort2: an Esterel module illustrating the mixed abort/weak abort nest
(a), and a possible execution trace (b). 27

3.7 Abort3: an Esterel module illustrating the weak abort nest (a), and a
possible execution trace (b). 28

3.8 EXAMPLE: an Esterel module illustrating Esterel parallel, preemption,
and exception statements (a), and a possible execution trace (b). The
KEP assembler includes labels (in brackets) that list the line number
(“Lxx”) and thread id (“Tx”). 29

3.9 Translation rules of the every statement. 30

3.10 The KEP instructions for handling concurrency. 31

3.11 The KEP instruction for handling preemption. 33

3.12 Translating the Esterel RUNNER module (a) to the KEP assembler pro-
gram (b) with refined instructions employed. 34

3.13 KEP instruction for handling exception. 35

3.14 REINC: Translation of the Esterel signal declaration (a) into to the KEP
SIGNAL instruction (b). 36

ix

x LIST OF FIGURES

3.15 The KEP instruction for handling multiple signal awaiting. 37

3.16 Translating the Esterel variable declaration to the KEP instructions. . . 39

3.17 Translating the Esterel interface declaration to the KEP instructions. . . 41

3.18 Translating the Esterel COUNT module (a) to the KEP assembler pro-
gram (b). 42

3.19 The EXAMPLE: (a) Esterel; (b)Concurrent KEP Assembler Graph (CKAG),
where rectangles are transient nodes, octagons are delay nodes, and tri-
angles are fork/join nodes. 50

3.20 Translating the Esterel EXAMPLE module (a) to the KEP assembler pro-
gram (b) by KEP compiler, or manually (c). 51

4.1 The interface connections of the KEP. 54

4.2 Overview of the architecture of the KEP. 55

4.3 Architecture of the Thread Block. 56

4.4 Algorithm for creating KEP threads. 58

4.5 Execution status of a single thread. 59

4.6 The status of the whole program, as managed by the Thread Block. . . . 59

4.7 Algorithm for running threads. 59

4.8 Algorithm for managing thread status (1). 61

4.9 Algorithm for managing thread status (2). 62

4.10 Architecture of the Present Element. 62

4.11 Algorithm for handling signal test. 63

4.12 Executing an AWAIT instruction twice in a tick. 64

4.13 Algorithm for handling the delay instructions (Decoder & Controller). . . 65

4.14 Algorithm for handling the delay instructions (AWAIT Element). 66

4.15 Architecture of the AWAIT Element. 67

4.16 Translation of concurrent Esterel await case statements (a) into to an
equivalent Esterel program without concurrent await case statements (b). 67

4.17 Algorithm for handling the parallel await. 68

4.18 Architecture of the Watcher. 70

4.19 Algorithm for configuring watchers. 71

4.20 Architecture of a Reactive Block with three Watchers. 72

4.21 NESTED: the Esterel module illustrating the preemption statements (a),
the KEP assembler program (b). 73

LIST OF FIGURES xi

4.22 A possible execution trace of the NESTED module. 73

4.23 Architecture of the Thread Watcher (TWatcher). 75

4.24 Architecture of the Local Watcher (LWatcher). 76

4.25 Algorithm for indexing the LWatcher and the TWatcher. 77

4.26 Algorithm for triggering Watchers. 78

4.27 Algorithm for triggering the LWatcher and the TWatcher. 79

4.28 Algorithm for handling all watchers. 80

4.29 Esterel modules illustrating the trap nest, and possible execution trace.
T0 denotes the initial thread, T1 is thread 1, etc. 82

4.30 The KEP programs corresponding to the Trap1 and Trap2 modules (Fig-
ure 4.29). 83

4.31 Algorithm for setting and clearing an exception. 85

4.32 Algorithm for covering and handling exceptions. 86

4.33 Algorithm for Join Review mechanism for handling exception. 87

4.34 The example of waking up a thread. 88

4.35 Algorithm for the Decoder & Controller. 89

4.36 Architecture of the Reactive Core of the KEP. 90

4.37 Architecture of an Interface Block. 91

4.38 The signal definition of an module (a), and the corresponding UniSignal
codes of the signals (b). 92

4.39 Algorithm for building the UniSignal. 92

4.40 Algorithm for handling interface signals when a tick starts/finishes. . . . 93

4.41 Algorithm for executing the signal emission instruction. 94

4.42 Translating the Esterel combined valued signal (a) to the corresponding
assembler code for KEP (b). 95

4.43 A waveform of the Tick signal and derived values. 96

4.44 An example KEP assembler code illustrating the Tick Manager (a), and
a resulting timing diagram (b). 98

4.45 Execution the EXAMPLE program. 99

5.1 Structure of the KEP evaluation platform. 103

5.2 The EXAMPLE Esterel program: (a) Esterel; (b) KEP Assembler; (c)
KEP Machine Code Listing. 105

xii LIST OF FIGURES

A.1 Translating an Esterel CountAwaitCase module (a) to its equivalent form
(b), and the corresponding assembler code for KEP (c). 133

B.1 The ABRO KEP Machine Code Listing. 158

B.2 The KEP Evaluation Program. 163

B.3 Debugging a Program. 164

List of Tables

2.1 Comparison of implementation alternatives. 9

3.1 Overview of the KEP Esterel-type instruction set architecture. Esterel
kernel statements are shown in bold. 38

3.2 Overview of the KEP non-Esterel-type instruction set architecture. . . . 40

5.1 The code size and RAM usage (in word) comparison of the CURVE im-
plementation between KEP, MCS51, and MicroBlaze. 107

5.2 Performance comparison between the KEP3 and EMPEROR. 108

5.3 Extending a KEP to different threads. 109

5.4 Concurrency analysis of benchmarks. 110

5.5 Comparison of compilation time of the benchmarks. 111

5.6 Preemption character analysis of benchmarks. 112

5.7 Effects on the Reactive Core’s cost/performance of the various watchers
architecture. 113

5.8 Analysis of context switches (CSs), in absolute numbers and relative.
Minimal and maximal relative values are shown bold. 113

5.9 Memory usage comparison between KEP and MicroBlaze implementa-
tions. “(b)” refers to measurements in bytes, “(w)” to words. 114

5.10 The worst-/average-case reaction times (in clock cycles) for the KEP and
MicroBlaze implementations, in absolute and relative values. 115

5.11 The energy consumption comparison between KEP and MicroBlaze im-
plementations. 116

B.1 The code format of the 31st char of the information string. 159

B.2 The code format of the information string of the on-board KEP. 159

xiii

xiv LIST OF TABLES

Chapter 1

Introduction and Motivation

1.1 Introduction

In the past decades, computer systems have rapidly surrounded us. Nowaday, if we take
a close look at applications, we will be surprised at how many computer systems can
be found in our daily life, e. g., mp3 players, the computer controlled microwave ovens,
washing machines, engine controllers and ABS for automobiles. Unlike a general-purpose
computer, such as a computer on our desktop, these embedded systems are special-
purpose systems in which computers are completely encapsulated by the devices they
control. In general, an embedded system is pre-defined for very specific requirements.

Applications can be divided into one of three categories [18], i. e., the transformational
systems, which compute output values from inputs values and then stop, e. g., batch pro-
cessing, simulations, compilers; the interactive systems, which constantly interact with
their environment in such a way that the computers can be viewed as the masters of the
interaction, e. g., databases, operating systems; or the reactive systems, which continu-
ously react to stimuli coming from their environment by sending back to stimuli, e. g.,
engine controllers, traffic control, microcontrollers, etc. In general, most of embedded
systems are reactive systems.

Reactive systems are purely input-driven and they must react at a pace that is dictated
by the environment. Any automatic control system can be classified as a reactive system,
e. g., nuclear plant controllers, airplane flight systems, etc. The essential characteristics
of reactive systems can be summarized as following [49]:

Criticality They are highly critical, just like the systems they control are critical.
Failure of these systems could cause catastrophic consequences for human life.

Parallelism At least the parallelism between the system and its environment must be
taken into account during the specification. Moreover, it is very often convenient
for the designer to conceive the system as a set of parallel components, cooperating
in order to achieve the desired behavior.

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Determinism A reactive system determines a sequence of output signals from a se-
quence of input signals in a unique way. This determinism makes their design,
analysis, and debugging much easier. Thus it must be preserved by the implemen-
tation.

For programming a reactive system, a traditional programming language, e. g., C or Java,
can be employed. However, this has several shortcomings. First, classical asynchronous
languages lack high-level parallel programming primitives, and asynchronous parallelism
can cause an unwanted non-determinism. The correctness of a model that is directly
described by common program language would be hard to certify, which is an essential
requirement of a safety-critical system. Second, the classical programming languages
lack statements for modelling reactive control structures. Furthermore, those languages
are relatively low level, hence, the developers have to not only focus on specifying the
functions of a module, but also have to implement those functions.

In the 1980s, the synchronous languages were introduced, which can cope with the above
mentioned drawbacks of traditional programming language. Although several languages,
e. g., Esterel [23], Lustre [65], and Signal [63], were presented for different purposes, they
still have some common features [11, 10]. First, concurrency—all of these languages
support functional concurrency and include that express concurrency in a user-friendly
manner [55]. Second, simplicity—those languages have a simple formal model to make
formal reasoning tractable, especially for clearly describing formal model as simple as
possible [77]. Finally, synchronicity—they are based on the synchrony hypothesis, which
states in essence that a system responds in zero time to environmental requests [23].
Gradually, the synchronous languages have attracted some leading companies which
develop automatic control software for critical applications, such as Schneider, Dassault,
Aerospatiale, Snecma, Cadence, Texas Instruments, and Thomson [10, 49]. The key
advantage of synchronous languages is that the synchronous approach has a rigorous
mathematical semantics which allows the programmers to develop critical software faster
and better.

Our work focuses on the Esterel language, which currently appears to be the best-known
synchronous language in industry and academia [10]. In the industry area, Esterel is used
in applications such as developing DSP chips for mobile phones [30, 3], designing and
verify DVD chips, and programming the flight control software of Rafale fighters [22, 49].
Although its strength has been proven, it still contains some weaknesses, for example,
the comparatively inefficient implementation of Esterel modules in general [102].

1.2 Motivation

Esterel is an imperative language dedicated to the programming of reactive applica-
tions [21, 19]. In contrast to many high-level languages, Esterel is both parallel and
deterministic. The language is based on a formal mathematical semantics.

1.3. RESEARCH CONTRIBUTION 3

In Esterel, signals are used to communicate internally and with the environment. The
execution of an Esterel program is divided into logical instants, or ticks. The synchrony
hypothesis of Esterel implies that the outputs generated from given inputs occur at the
same logical instant [23]. Signals are present or absent throughout an instant, indicating
the occurrence of certain events, and they may also carry a value.

The Esterel parallelism is expressed by the concurrency operator (“||”). It groups state-
ments in parallel, which also can be regarded as threads. When several threads are active
concurrently, they may communicate back and forth instantaneously, that is, within the
same logical tick. The communication between concurrent modules depends on local
signals.

The Esterel preemption includes weak and strong abortion, suspension [18], and excep-
tion handling. The strong abortion kills its body immediately; the weak abortion first
terminates its current reaction. On the contrary, the suspension can temporarily halt its
body when the trigger occurs. The exception handling mechanism defines an exit point
for a trap body. If the body exits the trap, the trap statement immediately terminates
and weakly aborts the trap body.

Neither traditional processors nor classical programming languages have similar struc-
tures or statements (instructions) to handle corresponding Esterel statements efficiently.
Hence, the implementation of the Esterel semantics on commercial off-the-shelf (COTS)
processors is problematic since it must be simulated. Therefore, an Esterel-based design
proves its efficiency on model description and validation, but can hardly enhance the im-
plementation performance or reduce resource usage. Although researchers have studied
different compiling techniques for synthesizing Esterel programs to efficient intermediate
languages, the final execution code is still fairly large and has long execution times.

Since traditional processors have difficulties to handle Esterel programs efficiently, it is
natural to raise the question whether a special processor can be developed for handling
Esterel structure directly? In other words, whether an Application Specific Instruction-
set Processor (ASIP) can be used for targeting Esterel programs? Furthermore, what
benefits can result from this alternative strategy, especially compared with previous
Esterel implementations?

1.3 Research Contribution

The focus of this dissertation is the development of a reactive architecture. The project
was driven by the desire to achieve predictable, competitive execution speeds at minimal
resource usage, in terms of processor size and power usage as well as instruction and data
memory. This work has resulted in the Kiel Esterel Processor (KEP). It is a custom
multi-threaded reactive processor, to our knowledge it is the first of this kind.

This thesis presents the architecture of the KEP. Notable features of the KEP include
the following:

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

1. The KEP is the first reactive processor which employs a multi-threaded architec-
ture for directly handling concurrency. This strategy uses resources efficiently and
easily scales up to very high degrees of concurrency.

2. The KEP contains a full-custom reactive core, whose instruction set and data
path have been tailored exclusively for the processing of Esterel code. Hence, all
types of Esterel preemptions, delays, and exceptions, can be handled by KEP very
efficiently.

3. The KEP also includes an interface block for handling Esterel input, output and
local types of pure and valued signals. Furthermore, testing the presence and
values of signals across logical instants (corresponding to Esterel’s pre operator)
are also directly supported.

4. Throughout the development of the KEP, scalability has been considered, hence
the allowed number of signals, the maximum thread number, the nesting depth of
preemption primitives, and other design parameters are fully configurable.

5. Unlike other reactive processing approaches, the KEP Instruction Set Architecture
(ISA) is complete in that it allows a direct mapping of all Esterel statements onto
KEP assembler. All the Esterel kernel statements, including delay, preemption,
concurrency and exception handling, are implemented directly and semantically
accurately by the KEP, and they can be freely combined and nested as defined by
the Esterel semantics. However, it can also make unrefined processing approaches
fairly costly. The KEP ISA therefore not only supports common Esterel statements
directly, but also takes into consideration the statement context. Providing such
a refined ISA further minimizes hardware usage while preserving the generality of
the language.

Advantages of the KEP compared with traditional processors include:

Performance As the instruction set and data path have been developed specifically
for Esterel execution, the Esterel module can be executed fairly fast on KEP. This
benefits two key aspects of system performance, i. e., the Worst Case Reactive
Time (WCRT) and Average Case Reactive Time (ACRT).

Memory Because most typical Esterel statements can be expressed directly with just
a single KEP instruction, an Esterel program executed on the KEP has very low
instruction and data memory usage.

Power Usage For controller programming, the main goal of Esterel, the control signals
tend to be more often absent than present [19]. Due to the architecture of the
KEP, very few instruction cycles are needed for executing a blank event, which
corresponds to the condition of all signals being absent.

1.4. THESIS ORGANIZATION 5

Logic Area The KEP offers a novel light-weight thread model, i. e., the multi-threaded
architecture, to implement Esterel concurrency efficiently. This characteristic sig-
nificantly reduces its logic resource usage for implementing a practical (industry
scale) Esterel module.

Predictability The KEP is not designed to optimize (average) performance for general
purpose computations, and hence does not have a hierarchy of caches, pipelines,
branch predictors, etc. This leads to a simpler design and execution behavior and
further implies that control-flow is preserved while compiling Esterel into machine
code, and that the execution platform has a very predictable timing behavior.

In summary, the KEP is an efficient reactive processor for handing practical Esterel
modules, and appears to be very competitive with other implementations.

This dissertation focuses on the KEP hardware, i. e., its architecture and execution
model. However, since starting the KEP project, a set of closely related activities
have started, in particular considering its compiler [85, 26], timing analysis [86, 28, 27],
and HW/SW co-design [58, 57]. This dissertation will summarize these activities as is
appropriate to help the understanding of the KEP itself.

1.4 Thesis Organization

This dissertation is composed of five main sections. The next chapter provides an
overview of the Esterel language and existing Esterel implementation methods. It also
reviews some previous reactive processor approaches. In Chapter 3, we give an overview
of the KEP instruction set architecture (ISA) design. Chapter 4 provides the detailed
descriptions of the core contributions of this research work, i. e., the multi-threaded
reactive processor architecture model. It is followed by a presentation of the KEP eval-
uation platform, which includes the KEP compiler, the evaluation hardware platform
and the evaluation software. Experimental results are presented in Chapter 5, and are
also compared with results of its competitors and other implementations. We finally
conclude with a summary of this work, and propose considerations for future work in
Chapter 6.

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2

Background and Related Work

Most reactive applications can be divided to the data handling part and control han-
dling [19] part. Unlike the data handling, which continuously produces output values
from input values, the control handling produces discrete output signals from input
ones. For example, transportation systems, robots, communication protocols, periph-
eral drivers, and human-machine interface fall into this category. The Esterel language
was developed to design control-dominated reactive programs as an imperative concur-
rent language.

There exist two major versions of Esterel language, i. e., Esterel V5 [19], which most
academical tools use; and the newer Esterel V7 [116], enhances some complex control
description statements and new powerful hardware datapath expressions. It is currently
evolving into an IEEE standard. The KEP targets Esterel V5 language.

In this thesis, we generally refer to V5 unless indicated otherwise.

2.1 Implementation Technologies

To build a real system for an Esterel specification, several implementation methods have
been introduced, which can be distinguished by what they generate:

• Hardware Synthesis
Hardware implementations [14, 117, 47, 111, 110, 32], where an Esterel program
is synthesized into a hardware circuit presentation (e. g. VHDL or Verilog HDL),
lead to small footprints (low memory requirements) and cheap implementations.
However, hardware implementations are not flexible, meaning that even a tiny
modification of the program will require a re-synthesis. Furthermore, for an indus-
try scale Esterel module, which may include some data path handling, its resourc
usage may increase rapidly. In short, it can be used for implementing pure Esterel
modules, e. g., a RAM controller, but is not suitable for realizing common large
scale Esterel applications [38].

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

• Software Synthesis
In a software implementation [23, 44, 46, 39, 50], an Esterel program is first syn-
thesized into sequential, lower level language codes (e. g., C or JAVA), and then
compiled to codes which can be executed at a target COTS processor. See also
Section 2.2. In contrast to the hardware synthesis, it is a very flexible solution, and
has low costs for the data path and arithmetic operations. However, classical pro-
cessor architectures cannot handle reactive control constructs, such as abortions,
directly, and cannot concurrently observe multiple signals. Therefore, handling
these control constructs correctly, including priority resolution, turns out to be
fairly expensive on classical software implementations. Moreover, the footprint
(memory requirement) can be too large for low-cost microcontrollers.

• Hardware/Software Co-design
A co-design implementation partitions a model into hardware and software compo-
nents [7]. This implementation suits small control-dominated embedded systems,
and tries to achieve a good balance of flexibility, performance and cost. It is
composed of a few Application Specific Integrated Circuits (ASIC) combined with
software procedures on general-purpose processors [37, 6]. The SW/HW interface
is synthesized for internal communication [107, 93]. As a result, it combines the
advantages of hardware and software implementation methods, but also inherits
some shortages [24, 79]. The co-design approach has been explored for example
by the POLIS project [6, 99].

• Reactive Processors
The reactive processor implementation aims to combine the advantages of custom
hardware and traditional software. See also Section 2.3. It implements an Esterel
program on a reactive processor whose instruction set has been tailored to Esterel.
In other words, it can be viewed as the ASIP (Application Specific Instruction
Processor) implementation [31, 75]. However, depending on whether a traditional
processor core is used as a part of reactive processor, this approach can be further
distinguished to two variants:

Patched Reactive Processor implementations combine a COTS processor core
with an external hardware block, which implements additional Esterel-style
instructions.

Custom Reactive Processor implementations consist of a full-custom reactive
core, whose instruction set and data path have been tailored exclusively for
the processing of Esterel code.

Driven by the limitations of traditional processors, the reactive processing approach tries
to achieve a more efficient execution of reactive programs by providing an ISA that is
a better match for reactive programming. The architectures proposed so far specifi-
cally support Esterel programming; however, they should be an attractive alternative to
traditional processor architectures for reactive programming in general.

2.2. COMPILATION APPROACHES 9

Hardware Software Co-design Patched Custom
Processor Processor

Architecture
Speed ++ – + + +

Selected Berry [14], Berry et al. [23], Baleani et al. Roop et al. Li et al.
References Edwards [47] Edwards [44] [7] [105] [90]
Flexibility – – ++ – +/– +

Esterel Compliance ++ ++ +/– – ++
Logic Area ++/– + + – – +/–

Cost Memory ++ – – – + +
Power Usage ++ – – – – +

Appl. Design Cycle – – ++ +/– ++ ++

Table 2.1: Comparison of implementation alternatives.
++ represents best; – – means worst, e. g., Cost ++ means very low production costs.

Of course, each implementation has its advantages and drawbacks. Table 2.1 provides
a high-level comparison of these implementation alternatives.

2.2 Compilation Approaches

In general, an Esterel program is first validated via a simulation-based tool set, and then
compiled to an intermediate language, e. g., C or VHDL. Different technologies are used
to compile the Esterel language. In the past, various techniques have been developed to
synthesize Esterel into software; see [48, 10] for an overview, which also places Esterel
code synthesis into the general context of compiling concurrent languages. The KEP
compiler belongs to the family of simulation-based approaches, which try to emulate
the control logic of the original Esterel program directly, and generally achieve compact
and yet fairly efficient code. These approaches first translate an Esterel program into
some specific graph formalism that represents computations and dependencies, and then
generate code that schedules computations accordingly.

A nice historical overview of the original Esterel compilers can be found on the web [54].
The Esterel V1 and V2 compilers built automata for Esterel programs. Later the V3

10 CHAPTER 2. BACKGROUND AND RELATED WORK

compiler accelerated the automata-building process by simulating the intermediate code
(IC) format – a concurrent control-flow graph hanging from a reconstruction tree handles
Esterel’s concurrency and preemption statements. However, the problem is the state
explosion. As a result, although these compilers can produce very fast code, they can
hardly be scaled to an industry program size [10].

To address this shortcoming, one can employ circuits to represent the intermediate
code, since circuits are roughly linear while automata are exponential. The later Esterel
compilers V4 and V5 adopt this idea. For example, the Esterel compiler V5, which is one
of the most used Esterel compilers, translates the IC into a combinational logic network
in a very direct way, and then uses a simple topological-sort-based scheduling technique
to translate the logic network into sequential code [48].

However, the logic netlist representation of the V5 compiler still has some shortcomings.
For example, in the circuit, every part is assumed to be always active. However, the
software code which is generated via the circuit approach wastes time on evaluating idle
portions of the program – a simulation of evaluating each gate in the network in every
clock cycle. Obviously, the compilation technology of V5 could result in slow code [10].

The EC/Synopsys compiler first constructs a concurrent control flow graph (CCFG),
which it then sequentializes [46]. Threads are statically interleaved according to signal
dependencies, with the potential drawback of superfluous context switches; furthermore,
code sections may be duplicated if they are reachable from different control points (“sur-
face”/“depth” replication [17]).

The SAXO-RT compiler [39] divides the Esterel program into basic blocks, which sched-
ule each other within the current and subsequent logical tick. An advantage relative
to the Synopsis compiler is that it does not perform unnecessary context switches and
largely avoids code duplications. However, the scheduler it employs has an overhead
proportional to the total number of basic blocks present in the program. The grc2c com-
piler [100] is based on the graph code (GRC) format, which preserves the state-structure
of the given program and uses static analysis techniques to determine redundancies in
the activation patterns. A variant of the GRC has also been used in the Columbia Es-
terel Compiler (CEC) [50, 51], which again follows SAXO-RT’s approach of dividing the
Esterel program into atomically executed basic blocks. However, their scheduler does
not traverse a score board that keeps track of all basic blocks, but instead uses a compact
encoding based on linked lists, which has an overhead proportional to just the number
of blocks actually executed.

On the other hand, in the POLIS project, an Esterel program will be translated to
the Co-design Finite State Machines (CFSMs). The CFSM sub-network can be directly
mapped into the abstract hardware description format BLIF. For the software, a Control-
Data Flow Graph (CDFG) called S-GRAPH specifies the transition function of a single
CFSM [6].

In summary, there is currently not a single Esterel compiler that produces the best
code on all benchmarks, and there is certainly still room for improvements. For exam-

2.2. COMPILATION APPROACHES 11

% Esterel

module REINC:

input S;

output O1,O2;

loop
signal S in

present S then
emit O1;

else
emit O2;

end;

pause;

emit S

end signal
end loop

% Esterel

module REINC:

input S;

output O1,O2;

loop
signal S in

present S then
emit O1;

else
emit O2;

end;

pause;

emit S;

end signal ;
% replicate

signal S in
present S then

emit O1;

else
emit O2;

end;

pause;

emit S;

end signal ;
end loop

(a) (b)

Figure 2.1: The schizophrenia problem (a) and the typical solution (b).

ple, the simulation-based approaches presented so far restrict themselves to interleaved
single-pass thread execution, which in the case of repeated computations (“schizophre-
nia” [17]) requires code replications; it should be possible to avoid this with a more
flexible scheduling mechanism.

The schizophrenia problems are not only a problem of Esterel, but occur in all syn-
chronous languages that provide local declarations as micro steps [106]. Schizophrenic
programs are those compound statements which can be run and exited or terminated
and reentered inside the same reaction [114]. The problem is caused because the local
variables and signals involved may have two distinct occurrences in the same reaction
with different values or statuses.

For example, consider the situation of a local declaration nested inside of a loop body,
which is shown in Figure 2.1(a). The signal S is defined inside the loop. Each iteration
refers to a fresh signal S. In a given instant two instances of S cohabit: the first being
emitted at the end of the loop, and the second being tested as the loop is reentered.
The problem is that these micro steps all belong to the same macro step and therefore
all data values coexist at the same point of time.

12 CHAPTER 2. BACKGROUND AND RELATED WORK

The traditional solution to this problem is unrolling of loops and renaming local declara-
tions in the different loop bodies, as shown in Figure 2.1(b). Obviously, this method will
generate unnecessarily large code. Some other solutions are also discussed by Tardieu
et al. [115] and by Schneider et al. [106]. In short, they all lose efficiency as the cost of
curing the schizophrenia problem. However, this schizophrenia program will not bring
any problem in the KEP implementation because the micro-step of the KEP execution
will exactly follow the original definition of the Esterel program, see also Section 3.2.4.

2.3 Handling Esterel via Reactive Processors

Up to now, there are only limited and fairly recent investigations for reactive proces-
sors. Since all the introduced reactive processors are handling Esterel programs, they
can also be called Esterel Processors. An introduction of different reactive processor
implementations is presented in [119].

The first Esterel processor, called REFLIX [105], was presented by Salcic, Roop et al. in
2002. In this approach, a traditional soft microcontroller core (FLIX) is combined with a
custom hardware block that extends the instruction set of the traditional microcontroller
by certain new, Esterel-like instructions. Although its supported Esterel-style statements
(instructions) were very limited, it performed better than its competitors, i. e., the FLIX
and other microcontrollers. Another Esterel processor, which is similar to the REFLIX,
was also presented by Chow et al. in 2004 [38]. In this work, the FLIX processor
is replaced by the PIC processor [95], which is more popular in the industry control
domain. However, both of them have to depart from the original Esterel semantics to
adhere the control path of the traditional processor. For example, considering nested
traps, the control path there delicately depends on address ranges and parallel relations
of the traps—there is no corresponding control path for handling this situation directly
in the traditional processors. This is further explained in Section 4.2.2. In 2005, Z.
Salcic et al. presented the REMIC as a custom processor [104]. Since the essence of the
REMIC is similar to its ancestors, it still inherits some of their limitations, e. g., the weak
Esterel semantic compatibility. Both the RePIC and the REMIC were extended to multi-
processing architectures, e. g., the EMPEROR [41], to handle Esterel concurrency [103,
104].

In 2004, we have presented the first prototype of the KEP [89]. The architecture de-
scribed in that paper is now referred to as the “KEP1”. It represented to our knowledge
the first custom-designed reactive processor, and the first reactive processor that cor-
rectly handled weak and strong abortion. However, it did not provide full concurrency,
and logic and arithmetic expression were also not supported.

In the following year, the KEP2 improved over the KEP1 in that it includes an interface
block that supports the PRE-operator, and can handle further Esterel-constructs such
as variables and local signals [86, 88]. Furthermore, it contains an ALU and supports
some classical logic and arithmetic expression. The KEP2 also includes a Tick Manager,

2.3. HANDLING ESTEREL VIA REACTIVE PROCESSORS 13

which can provide a constant logical tick length and detects timing overruns. We have
also presented [86] an approach to analyze the Worst Case Reaction Time (WCRT) of
the KEP2.

An important improvement of the next generation of the KEP is the implementation of
concurrency [90] in 2006. The KEP3 was the first truly concurrent KEP. It implements
Esterel’s concurrency operator via multi-threading, which scales well to high degrees
of concurrency with minimal resource overhead. Half a year later, the KEP3a and
its compiler were presented [85, 84]. The KEP3a improves over the KEP3 in that
it supports exception handling and provides context-dependent preemption handling
instructions. The compiler employs a priority assignment approach that makes use
of a novel concurrent control flow graph and has a complexity that in practice tends
to be linear in the size of the program. Unlike earlier Esterel compilation schemes,
this approach avoids unnecessary context switches by considering each thread’s actual
execution state at run time. Furthermore, it avoids code replication present in other
approaches.

The latest version of the KEP is the KEP4, which is presented in this thesis. It enriches
its control path for handling some delicate and complex mixed Esterel control structures,
and supports more options for generating various configured processor series. It is the
most powerful, flexible, and stable version of the KEP so far.

The KEP has also been employed as a platform for HW/SW co-design. Some extended
works enrich the research of the multi-threaded reactive processor. Gädtke et al. [57, 58]
presented an approach to accelerate reactive processing via an external logic block that
handles complex signal expressions. An Esterel program is synthesized into a software
component, running on the Kiel Esterel Processor, and a hardware component, consisting
of simple combinational logic. The transformation process involves a two-step procedure,
which first partitions the program at the source level and subsequently performs the
synthesis. An intermediate logic minimization, at the source code level, facilitates the
synthesis of compact logic blocks.

Another important part of the KEP project is the development of the KEP com-
piler [26, 85], including WCRT analysis [27, 28]. The analysis of the WCRT is influenced
by the KEP in two ways: the exact number of instructions for each statement and the
way parallelism is handled. The analysis is performed on a graph representation, the
Concurrent KEP Assembler Graph (CKAG). In a first step we compute whether con-
current threads terminate instantaneously, thereafter it is able to compute for each
statement how many instruction are maximally executable from it in one logical tick.
The maximal value over all nodes gives us the WCRT of the program.

According to the classification method in Section 2.1, which depends on whether the
processor description strategy is based on an existing COTS processor or not, the whole
KEP series and the REMIC falls in the Custom Processor [78] implementation approach.
Other Esterel processors, i. e., REFLIX and RePIC, belong to the Patched Processor [80]
implementation approach. Another classification method is based on the concurrency
handling methods of these Esterel processors. Figure 2.2 compares the multi-processing

14 CHAPTER 2. BACKGROUND AND RELATED WORK

and the multi-threaded architectures. Of course it is always possible to translate an
Esterel program into an equivalent program that has a flattened state space, i. e., se-
quentialization. The REFLIX, the RePIC, and the KEP2 and its predecessor can be
classified to this type. However, to handle concurrency directly, in the multi-processing
implementation approach, every Esterel thread is mapped onto an independent processor
to be executed, and a thread control unit handles the synchronization and communica-
tion between processors, as is done by the EMPEROR [124]. It allows the distributed
execution of Esterel programs and also handles Esterel’s concurrency operator. The
EMPEROR uses a cyclic executive to implement concurrency, and allows the arbitrary
mapping of threads onto processing nodes. This approach has the potential to speed up
execution relative to single-processor implementations. However, their execution model
potentially requires to replicate parts of the control logic at each processor. The most
efficient concurrency implementation approach is multi-threaded, which employs multi-
threading to implement concurrency. In this way, a single KEP core is extended to
handle concurrency by an interleaved control flow. Each Esterel thread has an indepen-
dent program counter and threads are scheduled according to their activation status and
a dynamical changed priority. The KEP3 and later versions of the KEP fall into this
category.

Although the multi-processing strategy seems a straightforward solution for the imple-
mentation of the Esterel language, it cannot avoid two essential limitations. First, to
handle Esterel preemption and statements, it can neither support necessary Esterel-style
instructions, nor follow the original Esterel semantics directly. For example, again con-
sider the nested trap illustrated in Section 4.2.2. Since the Esterel threads are executed
on different processors, when both of them throw exceptions, some complex mechanisms
should be built for handling these exceptions correctly—this also degrades efficiency.
Second, to handle the Esterel concurrency, such an architecture can hardly support the
arbitrary nesting of concurrency and preemption. Furthermore, for a real embedded sys-
tem, in particular if one wants to scale up to high degrees of concurrency and preemption
nests, the multi-processor approach is relatively hardware-intensive.

Since multi-processing and multi-threaded reactive processors employ different strategies
to handle Esterel concurrency, their compilers, which synthesize an Esterel program
to the target reactive processor codes, also use different approaches to implement the
communication between threads. For example, for multi-processing, the EMPEROR
Esterel Compiler 2 (EEC2) [124] is based on a variant of the GRC, and appears to be
competitive even for sequential executions on a traditional processor. However, their
synchronization mechanism, which is based on a three-valued signal logic, does not seem
to be able to take compile-time scheduling knowledge into account, but replaces it by
repeating cycles through all threads until all signal values have been determined. Hence
the compiler needs to generate sync instructions, to ensure that signals are not tested
before they are emitted [41]. On the other hand, the multi-threaded implementation
approach implements interleaving by inserting priority setting code at the context switch
point. See also Section 3.2.1.

2.3. HANDLING ESTEREL VIA REACTIVE PROCESSORS 15

(a) (b)

Figure 2.2: The architecture overview of multi-processing (a) and multi-threaded (b).

To give a summary review of previous Esterel processors other than the KEP series,
we note that they have three significant limitations. First, the function of their Esterel
style instructions is incomplete and cannot implement reactive control flow according
to the original Esterel semantics. Second, it is not obvious how this design, i. e., multi-
processing for handling Esterel concurrency, would support the arbitrary nesting of
concurrency and preemption. Finally, for a real embedded system, in particular if one
wants to scale up to high degrees of concurrency and preemption nests, the multi-
processor approach leads to relatively hardware-intensive implementations and large
executables.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

The KEP Instruction Set
Architecture

The development of the KEP was driven by the desire to achieve competitive execution
speeds at minimal resource usage, considering processor size and power usage as well as
instruction and data memory. A key to achieve this goal is the instruction set archi-
tecture (ISA) of the KEP, which allows the mapping of Esterel programs into compact
machine codes while still keeping the processor light-weight. Notable features of the
KEP ISA include the following:

• Unlike earlier reactive processing approaches, the KEP ISA is complete in that it
allows a direct mapping of all the Esterel statements onto KEP assembler. All the
Esterel kernel statements, including delay, preemption, concurrency and exception
handling, are implemented directly and semantically accurate by the KEP, and
they can be freely combined and nested as defined by the Esterel semantics. Valued
signals and local variables are also supported.

• The KEP ISA is efficient in that most of the commonly used Esterel statements
can be expressed directly with just a single KEP instruction.

• A characteristic of the Esterel language is that it provides a set of powerful control
flow operators, which can be combined with each other in an arbitrary fashion.
This makes the language concise and facilitates formal analysis; however, it can also
make unrefined processing approaches fairly costly. The KEP ISA therefore not
only supports common Esterel statements directly, but also takes into consideration
the statement context. In particular, it provides preemption instructions that
map onto different types of hardware units depending on whether preemptions
are nested or not and whether they include single threads or multiple threads.
Providing such a refined ISA further minimizes hardware usage while preserving
the generality of the language.

17

18 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

[L01] module Simple:

[L02] input A;

[L03] output O1, O2;

[L04] signal M in
[L05] loop
[L06] [await A;

[L07] emit M;

[L08] present M then
[L09] emit O1;

[L10] end present;
[L11] ||
[L12] await M;

[L13] emit O2;];

[L14] end loop;

[L15] end signal ;
[L16] end module

Tick -
A A

M
O1
O2

A

M
O1
O2

(a) (b)

Figure 3.1: Simple: a module illustrating the structure of the Esterel program (a), and
a possible execution trace (b).

This chapter presents the KEP instruction set architecture. In Section 3.1 we introduce
some chosen Esterel statements/structures. The following Section 3.2 describes the
design of the KEP’s Esterel-type instructions, and classical processor instructions are
presented in Section 3.3. Section 3.4 illustrates how to translate an Esterel program
to the KEP assembler. Finally, the method of the instruction encoding is sketched in
Section 3.5.

3.1 The Esterel Language

Esterel is an imperative synchronous language for the development of complex reactive
systems. The module is the basic Esterel program unit. It is composed of the module
name, the description of input/output signal interfaces, and an executable body. To
write an Esterel program, a designated main module is necessary, and a collection of
modules can also be included and referred to in the main module.

Figure 3.1(a) shows a simple example. In this case, the name of the module is defined
as Simple by module Simple:L01

1, and the end moduleL16 indicates the end of the module.

As mentioned before, the signal is a fundamental concept of Esterel. The interface
signals declared in the module interface are used to communicate with the environment.
For example, in Figure 3.1, line 2 defines an input signal A, and line 3 defines two output

1To aid readability, we here use the convention of subscripting instructions with the line number
where they occur.

3.1. THE ESTEREL LANGUAGE 19

signals O1 and O2. The other signal type is local signals. It aims to handle the internal
communication of the Esterel program. The signal ML04 and end signalL15 define the
scope of local signal M.

Furthermore, there is a special pure signal tick, which represents the activation clock
of the reactive program. Its status is present in each instant. This signal is declared
implicitly and cannot be redeclared.

Signals have a presence status, i. e., present or absent. At each tick, a signal is either
present (emitted) or absent (not emitted). By default, signals are absent except for
the tick signal. The statuses of signals are instantaneously broadcast throughout the
program, which implies that all statements see each of them in a consistent way. In
Esterel, the broadcasting of signals is used for processing communication. It is easy
to understand that the input broadcasting is implicit because concurrent statements
evolve in lock step in the same input environment. Furthermore, the signal broadcasting
allows that the presence status of a signal can be tested by multiple signal receivers.
For example, in the second tick, the signal M is emitted by emit ML07, and is tested
by present M thenL08 and triggers await ML12 simultaneously. Besides, from within the
programs, the input and output signals can be equally tested for presence or absence,
as well as the local signals used within the program.

An Esterel module reacts to an input event by generating an output event. The reaction
is conceptually considered as instantaneous, and is called an instant or tick, see also
Section 4.5. It reacts to the input event sequences (input histories) repeatedly and
generates output histories. An Esterel module is deterministic, i. e., the module always
produces the same sequence of outputs when it is given the same sequence of inputs.

Figure 3.1(b) shows a possible execution trace of this module, with input signals shown
above the time line and local and output signals below the time line. Note that the
reaction is assumed to take no time because of the synchrony hypothesis. From the
user’s point of view, there is no need to worry about the internal reaction time, the
output is considered as being generated at the same time as the input event occurrs—
without logical delay.

An Esterel statement starts in some instant, remains active for a while, and may termi-
nate in the current or some later instant. A statement is instantaneous if it terminates in
the same instant it starts in; e. g., in the second tick of the Simple module, the emit ML07

emits signal M, and present M thenL08 tests this signal immediately. Both of them are
instantaneous statements. On the contrary, a non-instantaneous statement may delay
some instants after it starts. For example, the delay statement await AL06 always takes
time. It starts at the first instant, stays active, and terminates at the second instant
even if A occurs at the first instant. Hence, it lasts one A.

In summary, the timing semantics of the Esterel statements relies on four structural
notions. The starting instant of an Esterel statement is determined by the context of
this statement in a program. The internal execution environment of this statement
determines its termination. Since Esterel has block exits, the execution of a statement

20 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

can also be determined to exit a trap before this statement terminates. Finally, a
statement can be aborted (killed) by some other part of the program.

The timing characteristic of the Esterel statements, i. e., at which “instant” they are
performed, is one of the key properties of Esterel statements. Furthermore, the preemp-
tion and concurrency statements provide that Esterel has more powerful control flow
than traditional programming languages. Hence, to design a processor targeting the di-
rect execution of Esterel, it is necessary to study the semantics of the Esterel statements
first.

3.1.1 Esterel Statements

There are dozens of Esterel statements. Hence, it seems difficult to decide which state-
ments should be chosen as the instructions to be implemented by the processor directly.
In fact, the choice of the instruction set is also a common issue in the ASIP design
field [1, 62, 75].

Fortunately, there is a very small number of kernel statements in Esterel and a com-
paratively large number of derived statements. The derived statements can always be
replaced by equivalent constructions that involve only kernel statements; the derived
statements are merely syntactic sugar, i. e., convenient shorthands for the programmer.
In fact, the accepted set of Esterel kernel statements has evolved over time. For example,
the halt statement, which performs no action and never terminates nor exits traps [23],
used to be regarded as a kernel statement [13, 11], but now is considered as the combi-
nation of the loop and the pause. We here adopt the definition of which statements are
kernel statements from the v5 standard [19, 17].

The following description briefly introduces the semantics of the Esterel kernel state-
ments. For a more detailed discussion, refer to [23, 16, 19].

• ||

“||” is the parallel statement. It forks control into concurrently executed threads.
The two threads of a parallel immediately start when the parallel statement starts.
The parallel statement will stay active whenever one of its threads remains active,
unless a branch exits a trap. If both of its threads are terminated, the parallel
statement will terminate instantaneously.

If a parallel’s threads terminate in different instants, the parallel will wait for the
last one to terminate. Furthermore, parallel threads may simultaneously exit traps.
If one thread exits the trap T or both threads exit the same trap T, of course the
parallel will exit T. However, if threads try to exit different traps T1 and T2 in
the same instant, the parallel will exit the outermost of these traps, the other one
will be discarded.

• suspend . . . when S
The suspend statement provides a suspension mechanism. It freezes the state of a

3.1. THE ESTEREL LANGUAGE 21

body for the instant when the trigger event occurs. In this statement, the sensitive
signal S is also called the guard. In the initial instant, the body of the suspension
is started; and then the guard controls execution of the body in each instant. If the
body of the suspension terminates or exits a trap, so does the suspend statement;
if it pauses, then the suspend statement also pauses. Note the default format of
this statement implies a delay. Hence, only if the body of suspension does not
terminate in the first instant then the sensitive signal S will be tested for presence
as long as the body of suspension remains active.

From the second tick, if signal S is present, the suspension body will not be
executed in the instant and it is kept frozen for the next instant. In this case, the
body of the suspension is suspended for this instant. On the other hand, if signal
S is absent, then the body receives the control for this instant, i. e., the body is
activated for the instant.

Incidentally, the suspension statement was not a kernel statement before.

• trap T in . . . exit T . . . end trap
The trap statement expressed as trap T in . . . end trap, and the exit statement
expressed as exit T , are a statement pair which provides the exception mecha-
nism. The trap statement defines a scoped exit point T for its body; and the exit
statement exits from the trap.

When the trap statement starts, it immediately starts its body and behaves as its
body until termination or exit. The termination of its body terminates the trap
statement itself. If the body exits the trap T , then the trap statement immediately
terminates, and its body will be weakly aborted. Furthermore, when traps are
nested, the outer one takes priority.

• pause
The pause statement pauses for one instant. It pauses when started, and then it
terminates in the next instant. The semantics of pause exactly equals await tick,
which means waiting for the next tick to arrive. The pause statements act as
state variables. Incidentally, the halt statement, which was considered as a kernel
statements, pauses forever and never terminates.

• signal S in . . . end
This statement is a local signal declaration statement. Unlike the interface dec-
laration, which just can be placed in the beginning of the Esterel module, the
local signal declaration is an executable statement, and can be placed wherever a
statement can.

When started, this statement immediately starts its body with a fresh local signal
S overriding any such signal that might already exist; and then it behaves as its
body until termination or exit. The status of the local signal S is not exported.

• emit S
The emit statement provides signal emission. An emit S statement instantaneously

22 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

broadcasts the signal S , i. e., sets its status to present and terminates instanta-
neously. The emission of signal S is just valid for the current instant, i. e., although
the status of a signal S is present in current instant, it will be absent again in the
next instant (unless it is emitted again).

• present S then . . . else . . . end
Corresponding to the signal emission statement, which sets the presence of a signal,
the present statement tests the signal presence.

When the signal test statement starts, it checks a signal expression and performs
a conditional branch. Each of the then and else branches can be omitted, but at
least one of them must be specified. The present statement terminates when the
body of the corresponding branch terminates.

• nothing
This is a dummy statement, which performs no action and terminates instanta-
neously.

• loop . . . end loop
This statement provides an infinite loop. When started, it immediately starts its
body. Whenever its body terminates, it is immediately restarted; and if its body
exits a trap, so does the whole loop. Note that the body of a loop cannot terminate
instantaneously from its starting, i. e., any execution path of its body must include
either a pause or an exit statement. A loop statement never terminates. Hence,
the solution of escaping from the loop is to enclose it within a trap, and to execute
an exit statement to exit the trap.

• ;
The “;” separates two statements to a sequence. The first statement of a sequence
starts when the sequence starts. When the first statement terminates, control is
passed instantaneously to the second one, which determines the behavior of the
sequence from then on. When the first statement exits a trap, the second statement
will never start.

A sequence of emit S1; emit S2 emits two signals simultaneously and terminates
instantaneously. However, it does not mean that the instantaneous statements can
be placed arbitrarily in a sequence. For example, testing a signal at first and then
emitting it is forbidden because such a sequence breaks constructiveness [18]. On
the contrary, testing and emitting a signal in two parallel threads is allowed.

To map the Esterel statements to an Esterel processor in a direct way, it would suf-
fice implement all of the kernel statements, although some Esterel expressions, e. g.,
valued signals, cannot be described by the Esterel kernel statement [19]—some basic
data handling statement are required. In principle, any set of Esterel statements from
which the remaining statements can be constructed is considered as a valid set of ker-
nel statements. This process, i. e., expanding derived statements into equivalent, more

3.1. THE ESTEREL LANGUAGE 23

% Esterel

await S; ⇒

% Esterel

trap T in
loop

pause;

present S then
exit T;

end present;
end loop;

end trap;

Figure 3.2: The equivalent expression of the await statement by kernel statements.

primitive statements, is called dismantling. However, it is questionable whether it really
is a proper strategy to just implement the kernel statements and then dismantle all of
other statements into the kernel statement expression.

Let us review the alternative expression of the pause statement, i. e., await tick. It implies
the statement waits for a tick presence event. Hence, the basic expression of waiting for
a signal S is await S , which is one of the most frequently used Esterel control statements.
Figure 3.2 lists a possible dismantling expression of this statement.

Obviously, it is inefficient to represent all Esterel functions and structures by kernel
statements. Employing derived statements could express a reactive module in a more
flexible and simplified way. If we put all Esterel control statements together, and further
consider what gives Esterel an advantage over traditional programming languages for
modelling reactive systems, we can identify groups of Esterel constructs and statements
that are not supported by traditional programming languages, i. e., signal emission,
delay, concurrency, preemption and exception [19].

• Signal Emission: e. g., emit, sustain, etc.
As mentioned above, a signal is absent unless it is emitted. However, the previous
presence of a signal in the last tick is recorded. In Esterel, the pre(S) directly
expresses the status of S at the previous instant.

Note that there is another signal type, i. e., the valued signal. In addition to its
presence status, a valued signal carries a value, which can be of arbitrary type.
For a valued signal, the emit S(e) statement evaluates the data expression e, emits
S with that value, and terminates instantaneously. Unlike its presence status, the
valued signal’s value, which is expressed as ?S , is persistent. The value is kept
until the valued signal is emitted in a forthcoming tick. The expression pre(?S)
yields the value of S at the previous instant. An initial value can be given to a
signal, and it is initial for both ?S and pre(?S).

Furthermore, the sustain statement provides continuous emission of a signal. Figure
3.3 shows its equivalent expression by kernel statements.

24 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

sustain S; ⇒
% Esterel

loop
emit S;

pause;

end loop;

Figure 3.3: The equivalent expression of the sustain statement by kernel statements.

% Esterel

module Delay:

input A;

output O1, O2, O3;

[await immediate A;

emit O1;

||
await A;

emit O2;

||
await 2 A;

emit O3;]

end module

Tick -
A

O1

A

O2

A

O3

(a) (b)

Figure 3.4: Delay: an Esterel module illustrating the difference of Esterel delay expres-
sions (a), and a possible execution trace (b).

• Delay : e. g., await, pause, etc.
The await statement is the simplest temporal statement. In its basic form, i. e.,
await S , it waits for a delay. In total, there are three forms of delay expressions:

– standard delays start in current instant, and then wait until a delay elapses
in some further instant. Standard delays never elapse instantaneously.

– immediate delays terminate instantaneously if the signal expression is true
in the starting instant.

– count delays are similar to the standard delays, but wait for a specified
delay count.

Figure 3.4 illustrates differences of those delay expressions of the await statement.
The await immediate A is an immediate delays statement. The await A provides a
standard delay for signal A. And the await 2 A specifies the count number for the
delay as 2.

3.1. THE ESTEREL LANGUAGE 25

• Concurrency : i. e., ||
In Esterel, a thread forks on a || parallel statement, and terminates when all its
branches have terminated. The signals emitted by any of its branches or by the
rest of the program are instantaneously broadcast to all branches in each instant.

When several threads are active concurrently, they may communicate back and
forth instantaneously, that is, within the same logical tick. Therefore, imple-
menting a concurrent Esterel program onto a sequential processor efficiently and
correctly becomes a challenge.

• Preemption: e. g., [weak] abort, suspend, etc.
Various types of preemption are one of the key features for making Esterel’s con-
trol flow primitives richer than that of traditional, sequential programming lan-
guages [15]. The Esterel preemption includes abortion and suspension [18]:

– Abortion
An abortion statement kills its abort body upon a specific trigger signal. In
strong abortion, expressed by abort, the body does not receive control at
the instant when the trigger occurs. For weak abortion, performed by weak
abort, the body receives control for a last time at the abortion time. The
abortion statements support all kind of delay expressions. For example, an
abort . . . when 2 S statement kills its body when the signal S occurs twice
after the tick of the statement started.

– Suspension
The suspension performed by suspend freezes the state of a body for the
instant when the trigger event occurs. Unlike the abortion statements, the
suspend statement does not support count delays, and there is also no weak
suspension2.

The following three illustrations describe the subtle difference between abort and
weak abort.

Figure 3.5(a) shows the Esterel module Abort1 as an example of a nested strong
abort. After starting, the module watches signals A and B as abortion trigger
signals and stays to wait for signal C at line 3. Those two abortions are nested,
and the outer abortion, triggered by B, has higher priority. In case signals A, B, and
C occur simultaneously, after the initial instance (as the abort is not immediate),
signal B takes priority over A. That means the module will kill the bodies of
abortion A and abortion B immediately, executes emit HL11 and then haltL12. This
is illustrated by the trace in Figure 3.5(b).

Figure 3.6(a) shows the module Abort2, which illustrates the response trace of a
mixed nested strong/weak abortion. Similar to Abort1, the module watches signals
A and B as abortion trigger signals and stays on the delay statement waiting for

2The Esterel V7 adds weak suspend as a new control statement. However, it is not an issue in this
thesis.

26 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module Abort1:

input A, B, C, D;

output E, F, G, H;

[L01] abort
[L02] abort
[L03] await C;

[L04] emit E;

[L05] await D;

[L06] emit F;

[L07] when A;

[L08] emit G;

[L09] await D;

[L10] when B;

[L11] emit H;

[L12] halt
end module

Tick -

A
B
C

H

(a) (b)

Figure 3.5: Abort1: an Esterel module illustrating the strong abort nest (a), and a
possible execution trace (b).

signal C. When A, B, and C occur simultaneously, the signal A again triggers a
strong abortion, so the body of abortion A is killed immediately. However, the
body of abortion B will not be killed immediately. That means emit GL08 will be
executed. The following statement await DL09 will result in pause, so it has no
further effect in this instance. The body of abortion B is killed and then emit HL11

and haltL12 will be executed. The corresponding trace is shown in Figure 3.6(b).

Figure 3.7(a) shows the module Abort3, which illustrates the response trace of a
nested weak abortion. In this case, when A, B, and C occur simultaneously, the
body of abortion A receives the control for a last time. That means await CL03 is
terminated. Then the following concurrent statement emit EL04 will be executed.
The await DL05 statement is a sequential statement which takes multiple cycles
(equal to two sequential statements: pause; await immediate D;), so the body of
abortion A is killed, emit GL08 will be executed. For similar reasons, emit HL11 and
haltL12 will be executed in this tick. The resulting trace is shown in Figure 3.7(b).

• Exception: i. e., trap and exit
As mentioned before, an exception is declared with a trap scope, and is thrown with
an exit statement. An exit T statement causes control flow to move to the end of the
scope of the corresponding trap T declaration. Compared with control structures of
traditional programming languages, this is similar to a goto statement. However,
there are complications when traps are nested or when the trap scope includes
concurrent threads. The following rules apply: if one thread raises an exception
and the corresponding trap scope includes concurrent threads, then the concurrent

3.1. THE ESTEREL LANGUAGE 27

% Esterel

module Abort2:

input A, B, C, D;

output E, F, G, H;

[L01] weak abort
[L02] abort
[L03] await C;

[L04] emit E;

[L05] await D;

[L06] emit F;

[L07] when A;

[L08] emit G;

[L09] await D;

[L10] when B;

[L11] emit H;

[L12] halt
end module

Tick -

A
B
C

G
H

(a) (b)

Figure 3.6: Abort2: an Esterel module illustrating the mixed abort/weak abort nest (a),
and a possible execution trace (b).

threads are weakly aborted; if concurrent threads execute multiple exit instructions
in the same tick, the outermost trap takes priority.

All these constructs are orthogonal. This means that they can be freely mixed at any
nesting depth without restriction. Many languages limit concurrency to the top level,
therefore loosing orthogonality. In fact, an Esterel program consists of a collection of
nested, concurrently running threads described using a traditional imperative syntax,
and arbitrary preemption structures also can nest or be nested by those threads [15].
The following section gives an Esterel example to illustrate the intricacies of the reactive
control flow constructs.

3.1.2 An Example Program

Let us consider the EXAMPLE Esterel module in Figure 3.8(a). In this module, two
concurrent threads are enclosed in an every block, which restarts its body whenever the
input signal S is present (except for the initial tick, when S is ignored, as the every is
not “immediate”). At the beginning of the body of the every block, it declares two trap
scopes, i. e., the T1 trap and the T2 trap. The T1 trap is the outer one. Then two
threads are forked. The first thread initially waits for the input signal I, and then builds
two nested preemption blocks. The outer one is a weak abortion, which can be triggered
by the local signal A at the first tick (immediate). The inner one employs the H signal
as the guard of a suspension. Its body is a sustain RL08 statement which emits the local

28 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module Abort3:

input A, B, C, D;

output E, F, G, H;

[L01] weak abort
[L02] weak abort
[L03] await C;

[L04] emit E;

[L05] await D;

[L06] emit F;

[L07] when A;

[L08] emit G;

[L09] await D;

[L10] when B;

[L11] emit H;

[L12] halt
end module

Tick -

A
B
C

E
G
H

(a) (b)

Figure 3.7: Abort3: an Esterel module illustrating the weak abort nest (a), and a possible
execution trace (b).

signal R continuously. Following the body of the weak abortion A, the output signal O1
will be emitted, and then the control exits the T1 trap. The second thread initially idles
for two ticks, and then emits A if R is present, and exits the T2 trap.

A possible execution trace is shown in Figure 3.8(b), with input signals shown above
the time line and local and output signals below the time line. All signals are absent at
the initial tick; at the second tick, the presence of signal S triggers the start of the every
body, and then the initial thread creates two sub threads, i. e., the thread 1 and the
thread 2; afterward the control stays at the delay statements of either of sub threads,
i. e., the await IL05 of the thread 1, and the await 2 tickL14 of the thread 2.

At the third tick, the presence of signal I terminates the await IL05 statement. The control
goes through, and enters the scope of the preemption nest, emits the inner signal R, and
then stays there. Thread 2 pauses for one tick. However, the count delay statement
await 2 tickL14 does not terminate.

At the fourth tick, since the signal H is present, the body of the suspension is frozen.
Hence, the inner signal R will not be emitted. On the other hand, the thread 2 terminates
the await 2 tickL14 statement. It tests the status of the signal R, and jumps to the end of
the present scope because the signal R is absent. The execution of exit T2L18 causes an
exception of the T2 trap. The thread 2 is terminated immediately, and thread 1 is also
weakly aborted. Hence, the emit O2 statement, which is located after the end of the T2
trap scope, is executed. Now the control stays at the end of the every block, and will be
halted until the presence of input signal S in some later instant restarts the body of the
every block.

3.1. THE ESTEREL LANGUAGE 29

% Esterel

module EXAMPLE:

input S, I , H;

output O1, O2;

[L01,T0] signal A,R in
[L02,T0] every S do
[L03,T0] trap T1 in
[L04,T0] trap T2 in
[L05,T1] [await I ;

[L06,T1] weak abort
[L07,T1] suspend
[L08,T1] sustain R;

[L09,T1] when H;

[L10,T1] when immediate A;

[L11,T1] emit O1;

[L12,T1] exit T1;

[L13] ||
[L14,T2] await 2 tick ;

[L15,T2] present R then
[L16,T2] emit A;

[L17,T2] end present;
[L18,T2] exit T2;];

[L19,T0] end trap;

[L20,T0] emit O2;

[L21,T0] end trap;

[L22,T0] end every;

[L23,T0] end signal
end module

Tick -
S I

R

H

O2

S I

R R
A
O1

(a) (b)

Figure 3.8: EXAMPLE: an Esterel module illustrating Esterel parallel, preemption, and
exception statements (a), and a possible execution trace (b). The KEP assembler in-
cludes labels (in brackets) that list the line number (“Lxx”) and thread id (“Tx”).

The signal S is present in the fifth tick, and in the sixth tick the signal I is present. The
behavior of the program in those two ticks is similar to what happened in the second
and third ticks.

In the seventh tick, none of the input signals are present. Hence, the signal R is emitted
by the sustain RL08 statement of the thread 1. Note that in the same tick, the thread 2
tests the signal R via the present RL15 statement, so the second thread enters the “then”
branch and executes emit A16 to set the inner signal A as present, and then throws an
exception of the T2 trap by the execution of exit T2. Note that the weak abortion A
in the thread 1 is triggered by the presence of signal A, hence the body of the abortion
will be weakly killed. The control jumps to the emit O1L11 and executes it, and then
exits the T1 trap. Hence, the parallel threads throw two exceptions at the same time.
Since the T1 trap and the T2 trap are nested and the T1 trap is the outer one, it takes
priority. Therefore, the control jumps to the end of the scope of the T1 trap, and then

30 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

every S do
ρ

end every;
⇒

% Esterel

await S;

loop
abort
ρ

halt ;

when S;

end loop;

⇒

% KEP Assembler

AWAIT S

A0: ABORT S,A1

ρ

HALT
A1: GOTO A0

Figure 3.9: Translation rules of the every statement.

halts until the presence of input signal S in some later instant restarts the body of the
every block.

3.2 Design of the Esterel-type Instructions

To design the instruction set architecture for directly describing the high level language
Esterel, one of the challenges is how to describe the control structures in a natural way,
and to allow arbitrary nesting. Of course, implementing all Esterel control statements
directly might be possible, but would not be practical when considering silicon real
estate, cost, and complexity. Hence, the implementation of those instructions should
achieve competitive execution speeds at minimal resource usage, considering processor
size and power usage as well as instruction and data memory. The key to achieve this goal
is the instruction set architecture (ISA) of the KEP, which allows the mapping of Esterel
programs into compact machine code while still keeping the processor light-weight.

To achieve the above target, we use two simple and effective design strategies. First, all
Esterel kernel statements should be implemented. It provides the possibility of handling
all Esterel control structures correctly and efficiently. Second, some other frequently
used non-kernel Esterel statements/structures are also directly supported. The choice of
these Esterel statements is mainly based on our experiences, which is a common method
in the ASIP instruction set design strategy.

Of course, the second strategy also implies some other Esterel statements, which are
infrequently used, or are difficult/inefficient to be implemented, will be handled by
standard Esterel syntax translation. For example, the every statement which was used
in Section 3.1.2, can be easily dismantled. Figure 3.9 shows the translations. The final
KEP expression costs four instructions, which is still acceptable.

Recall the classification of the Esterel statements described in Section 3.1.1. The fol-
lowing discusses how to handle each class of statements, i. e., handling concurrency,
preemption, exception, emission, and delay.

3.2. DESIGN OF THE ESTEREL-TYPE INSTRUCTIONS 31

% Esterel

[

ρ1

||
ρ2

];

%

% KEP Assembler

PAR 1, P1

PAR 1, P2

PARE PEND

P1: ρ1

P2: ρ2

PEND: JOIN 0

%

Figure 3.10: The KEP instructions for handling concurrency.

3.2.1 Handling Concurrency

One of the key issues of Esterel-type instruction design is how to implement Esterel’s
concurrency operator (“||”). A concurrent Esterel statement with n concurrent threads
extended by the ||-operator is translated into KEP assembler as follows. First, threads
are forked, meaning n new threads will be created, in addition to the previously existing
thread(s). The fork is performed by a series of instructions that consist of n PAR instruc-
tions and one PARE instruction, which together initialize the Thread Block. Each PAR
instruction creates one thread, by assigning a start address, i. e., initializing an address
register that is associated with this thread in the Thread Block, and a non-negative pri-
ority. The main thread that starts the program is implicitly assigned priority 0, which
is the lowest possible priority. For example, in the KEP code shown in Figure 3.10(b),
the PAR 1, P1 instruction creates a thread with priority 1 that starts at label P1. The
end address of each thread is the address of the instruction which is immediately after
the last instruction of this thread. This address is stored by the Thread Block as the end
address of this thread. The end address is either given by the start address specified in
a subsequent PAR instruction, or, if there is no more thread to be created, it is specified
in a PARE instruction. In Figure 3.10(b), the fork instructions create two threads, the
first with address ranging from P1 to (but excluding) P2, and the second ranging from
P2 to (but excluding) PEND. Furthermore, the Thread Block still separately keeps track
of the incoming thread that executes the fork instructions; for this thread, its program
count is set to the end address of the finally created thread. The fork instructions are
followed by KEP instructions for each of the created threads, in the specified address
ranges. The code block for the last thread is followed by a JOIN instruction, which waits
for the termination of all forked threads and concludes the concurrent statement.

The KEP employs the multi-threaded architecture to handle Esterel’s concurrency (see
Section 4.2.1). Therefore, the KEP can deal with concurrency by an interleaved control
flow. This is different from statically scheduled interleaving, which could for example be
implemented with gotos. The threads are assigned dynamic priorities, and the controller
of the processor runs the individual threads accordingly.

32 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

To implement concurrency, a hurdle is how to interleave thread execution to allow the
communication among threads within a logical tick. As already illustrated in the exam-
ple shown in Figure 3.8, a thread may be executed partially, then control may jump to
another thread, and later return to the first thread, all within the same tick. To handle
this, the KEP employs a multi-threaded architecture, where each thread has an inde-
pendent program counter (PC) and threads are scheduled according to their activation
status and a dynamically changing priority, see Section 4.2.1.

The priority of a thread is assigned when the thread is created. Furthermore, it can
be changed subsequently by executing a priority setting instruction (PRIO). To obtain
a more general understanding of how the priority mechanism influences the order of
execution, recall that at the start of each instant, all unterminated threads are activated,
and are subsequently scheduled according to their priorities. Furthermore, each thread
is assigned a priority upon its creation. Once a thread is created, its priority remains
the same, unless it changes its own priority with a PRIO instruction, in which case it
keeps the new priority until it executes another PRIO instruction, and so on. Neither
the scheduler nor other threads can change its priority. Note that a PRIO instruction
is considered instantaneous; the only non-instantaneous instructions, which delimit the
logical ticks, are the PAUSE instruction and derived instructions, such as AWAIT and
SUSTAIN. This mechanism has a couple of implications:

• At the start of a tick, a thread is resumed with the priority corresponding to the
last PRIO instruction it executed during the preceding ticks, or with the priority
with which it has been created if it has not executed any PRIO instructions. In
particular, if we must set the priority of a thread to ensure that at the beginning
of a tick the thread is resumed with a certain priority, it is not sufficient to execute
a PRIO instruction at the beginning of that tick; instead, that PRIO instruction
must have already been executed in the preceding tick.

• A thread is executed only if no other active thread has a higher priority. Once a
thread is executed, it continues to execute until a non-instantaneous statement is
reached, or until its priority is lower than that of another active thread. While a
thread is executed, it is not possible for other inactive threads to become active;
furthermore, while a thread is executed, it is impossible for other threads to change
their priority. Hence, the only way for a thread’s priority to become lower than
that of other active threads is to execute a PRIO instruction to lower its priority
by itself.

3.2.2 Handling Preemption

As mentioned in Section 3.1.1, an Esterel preemption structure defines some key param-
eters, which include its scope, sensitive signal, preemption type and delay expression.
The design of KEP preemption instructions targets to express these parameters in an
efficient format.

3.2. DESIGN OF THE ESTEREL-TYPE INSTRUCTIONS 33

% Esterel

abort
ρ

when S;

%

% KEP Assembler

ABORT S, AEND

ρ

AEND:

%

Figure 3.11: The KEP instruction for handling preemption.

Figure 3.11 shows an example to illustrate the way of handling preemption. The
“abort . . . when A” statement of the Esterel version has been turned into an “ABORT A,
AEND” KEP assembler instruction, which states that the following statements until the
label AEND constitute an abort body that should be strongly aborted when the signal
A has occurred once. Hence, the scope of the abortion is defined as from where the
ABORT instruction is located to the AEND. Furthermore, the delay count is assigned as
the default 1, see also Section 3.3.

As discussed further in Section 4.2.2, the Reactive Block contains a configurable number
of Watcher modules, which are responsible for implementing the preemption operations.
According to the Esterel semantics, a preemption (abortion or suspension) is enabled
when control is in its body, and disabled when control is outside of its body. When a
preemption is enabled, the corresponding trigger signal is watched and the module can
react to the presence of it (is active). Otherwise, the signal will not cause preemption.
We call this scheme Inside/Outside Preemption Range Watching (IOPRW) [89, 88, 86].
Considering the nesting structure of preemption, we can conclude that the outer abortion
has a wider address range which covers the inner one. Hence, the Reactive Block handles
the hierarchy of preemption nesting by this feature.

However, if we further study the structure of an Esterel program, we will that find the
hierarchy of the preemptions tends to be parallel or sequential rather than nested. For
example, most of the preemptions just act on a small range, and do not nest other
preemptions. Hence, if these kinds of preemption are loaded into a watcher, it is unnec-
essary to test whether another preemption is located inside of its scope or not. In other
words, these preemptions are mutually exclusive. Hence, designing some trimmed-down
watcher versions to fit the common structure of the Esterel program can save hardware
resources. See also Section 4.2.2.

To configure different versions of watchers, several instructions are introduced. The
thread-abortion instructions (i. e., TABORT, TABORTI, TWABORT, and TWABORT)
can replace corresponding abortions which neither include concurrent threads nor other
preemptions. An intermediate variant are the local-abortion instructions (i. e., LABORT,
LABORTI, LWABORT, and LWABORT). They can replace corresponding abortions which
may include concurrent threads and also preemptions handled by thread-abortion in-
structions, but cannot include another local-abortion instruction.

34 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module RUNNER:

every MORNING do
trap HEART ATTACK in

loop
abort

sustain WALK

when 10 METER;

abort
[every STEP do

emit JUMP

end every
||

loop
await SECOND do

exit HEART ATTACK

end
each HEART BEAT

when 5 SECOND;

sustain RUN

each LAP

handle HEART ATTACK do
emit GO TO HOSPITAL

end trap
end every
end module

% KEP Assembler

% module RUNNER

EMIT TICKLEN,#20

AWAIT MORNING

A2: ABORT MORNING,A3

A4: ABORT LAP,A5

LOAD COUNT,#10

TABORT METER,A6

SUSTAIN WALK

A6: LOAD COUNT,#5

LABORT SECOND,A8

PAR 1,A9,1

PAR 1,A10,2

PARE A11,1

A9: AWAIT STEP

A14: TABORT STEP,A15

EMIT JUMP

HALT
A15: GOTO A14

A10: A17:

TABORT HEART BEAT,A18

AWAIT SECOND

EXIT HEART ATTACK

A18: GOTO A17

A11: JOIN 1

A8: SUSTAIN RUN

A5: GOTO A4

HEART ATTACK:

EMIT GO TO HOSPITAL

HALT
A3: GOTO A2

(a) (b)

Figure 3.12: Translating the Esterel RUNNER module (a) to the KEP assembler program
(b) with refined instructions employed.

Figure 3.12 indicates how the RUNNER, a well-known Esterel example [19], is translated
to the KEP assembler program, and then optimized by the defined instructions. Sec-
tion 4.2.2 describes the architecture of various watcher types in detail, and Section 5.3
further illustrates the benefit of this strategy.

Finally, the KEP provides preemption instructions that map onto different types of
hardware units depending on whether preemptions are nested or not and whether they
include single threads or multiple threads. This feature is fit for the common structure
of the Esterel program, and further minimizes hardware usage while preserving the
generality of the language.

3.2. DESIGN OF THE ESTEREL-TYPE INSTRUCTIONS 35

% Esterel

trap T in
ρ1

exit T;

ρ2

end trap;

%

% KEP Assembler

TSTART:

ρ1

EXIT TEND, TSTART

ρ2

TEND:

%

Figure 3.13: KEP instruction for handling exception.

3.2.3 Handling Exceptions

To implement Esterel’s exception handling mechanism (trap/exit), the EXIT instruction
is introduced. It associates the trap scope with the corresponding exit. The startAddr
indicates the beginning of the trap body (entry point), and the endAddr defines the end
of the trap scope (exit point).

Figure 3.13 shows a simple case. Two address labels mark the trap scope, and then they
are added into the corresponding exit statement. When the EXIT instruction is executed,
those parameters, which include the whole address information of the trap scope, will
be totally transferred to the Exception Element in the Reactive Block.

3.2.4 Handling Signal and Schizophrenia

Handling emission and testing of a pure signal is fairly straightforward. The basic
principle of the KEP signal handling is setting the status of a signal as “present” if
an emission instruction is executed, and the statuses of all signals will be cleared as
“absent” when a new tick starts.

To enhance the ability of the emission instruction of the KEP, we extend some addi-
tional parameters to support valued signals directly. For example, an Esterel emit A(5)
statement could be expressed as EMIT A,#5, which implies the immediate data 5 will
be put into a data register of the signal A.

Another issue of the Esterel signal handling is how to deal with local signals, which
are declared in Esterel with signal declarations. We introduce the SIGNAL instruction
to implement a signal scope and to correctly handle reincarnation. When executing
a SIGNAL S statement, the previous and current status of S are both cleared, thus a
fresh signal is effectively introduced. Obviously, this straightforward method follows
the original semantic definition of Esterel and can deal with schizophrenic programs
efficiently and correctly—if an Esterel statement must be executed for multiple times
within a tick, the KEP simply does so.

36 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module REINC:

input S;

output O1,O2;

loop
signal S in

present S then
emit O1;

else
emit O2;

end;

pause;

emit S

end signal
end loop

% KEP Assembler

% module REINC

INPUT S

OUTPUT O1,O2

EMIT TICKLEN, #15

A0: SIGNAL S

PRESENT S,A1

EMIT O1

GOTO A2

A1: EMIT O2

A2: PAUSE
EMIT S

GOTO A0

(a) (b)

Figure 3.14: REINC: Translation of the Esterel signal declaration (a) into to the KEP
SIGNAL instruction (b).

To illustrate this, consider again the Esterel module REINC in Figure 3.14(a) (cited
from Figure 2.1(a)) along with the corresponding KEP assembler. In the first instant,
the local signal S is declared and initialized. Therefore, its status is absent. The else
branch of the present statement is taken and O2 is emitted. In the second instant, S is
emitted. The loop body terminates and then it is restarted. The local signal declaration
is immediately re-initialized, and the fresh incarnation is absent. The present statement
tests the fresh incarnation and only O2 is emitted.

3.2.5 Handling Delays

It is easy to introduce the basic delay statement: an Esterel await A statement could
be expressed as AWAIT A instruction to let the control pause in current tick, and then
waits for signal A in the following ticks.

A further question is how to handle the Esterel await case statement, which awaits
several delays simultaneously. Of course it is possible to dismantle this statement into
its kernel statement representation, however, this would be fairly inefficient. On the
other hand, we can introduce some instructions, which are similar to the PAR/PARE
instructions, to describe the scope of the case branches. However, those two structures
are different. The PAR/PARE instructions create sub threads of the current thread.
Hence, the control of the thread is also ’branching’. Therefore, the end address of a
branched thread is necessary for controlling the status of the sub thread, e. g., handling
an exception. On the other hand, for the await case statement, the control simply jumps

3.2. DESIGN OF THE ESTEREL-TYPE INSTRUCTIONS 37

% Esterel

await
case A do
ρ1

case immediate B do
ρ2

case C do
ρ3

end await;
%

% KEP Assembler

CAWAITS
CWS: CAWAIT A, ASTART

CAWAITI B, BSTART

CAWAIT C, CSTART

CAWAITE CWS

ASTART: ρ1

GOTO END

BSTART: ρ2

GOTO END

CSTART: ρ3

GOTO END

END: %

Figure 3.15: The KEP instruction for handling multiple signal awaiting.

to the entry point of the corresponding branch, and all of the other branches will be
abandoned. Once the body of a branch terminates, the control will be directed to the
end of the whole block.

Therefore, the KEP CAWAIT instructions define the start address of each branch block
to guide the control entering into a branch body; and the GOTO instructions located at
the end of each case branch will direct the control to the end of the await case block.
Furthermore, the GOTO instruction located at the end of the last case branch block can
be left out. The behavior of the KEP program exactly matches the original semantics.

The Esterel program shown in Figure 3.15 immediately starts ρ2 if the signal B occurs
at start time. Otherwise, the first delay to elapse determines the subsequent behavior:
ρ1 is started if signal A elapses first, ρ2 is started if signal B occurs first, and so on. If
several delays elapse at the same time, the first one in the list takes priority, and others
will not respond. For example, if A and C occur at the same time, the await statement
starts ρ1, and terminates the await case statement when ρ1 terminates.

3.2.6 Summary of Esterel-type Instructions

The KEP assembler language (KASM) contains 20 Esterel-type instructions for repre-
senting 15 Esterel statements directly.

In the KEP assembler, a signal expression (Sexp) can be one of the following:

• S : signal status (present/absent)
For example, a KEP EMIT S instruction equals an Esterel emit S statement.

• PRE(S): previous status of signal
See also Section 3.1.1. For example, a PRESENT PRE(S) THEN instruction equals
an Esterel present pre(S) then statement.

38 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

Mnemonic, Operands Esterel Syntax Notes
PAR Prio, startAddr [, ID] [Fork and join, see also Section 4.2.1.

An optional ID explicitly specifies the ID
of the created thread.

PARE endAddr p || q
JOIN Prio]
PRIO Prio [,ID] Set the priority of the current thread.

[L|T][W]ABORT [n,] S, en-
dAddr

[weak] abort
. . .

when [n] S

The prefix [L|T] denotes the type of
watcher to use, see also Section 4.2.2.

L : Local Watcher

T : Thread Watcher

none : general Watcher

[L|T][W]ABORTI Sexp, en-
dAddr

[weak] abort
. . .

when immediate Sexp

SUSPEND[I] Sexp, endAddr

suspend
. . .

when [immediate] Sexp

EXIT endAddr,startAddr
trap T in

exit T
end trap

Exit from a trap, the startAddr and en-
dAddr specifies trap scope. Unlike GOTO,
check for concurrent EXITs and terminate
enclosing ||.

PAUSE pause Wait for a signal. AWAIT TICK is
equivalent to PAUSE.AWAIT [n,] Sexp await [n] Sexp

AWAIT[I] Sexp await [immediate] Sexp

CAWAITS await
Wait for several signals in parallel.

CAWAIT[I] S, addr
case [immediate] Sexp

do
CAWAITE addr end

SIGNAL[V] S
signal S [:integer] in
. . . end

Initialize a local signal S.

EMIT S [, {#data|reg}] emit S [(val)] Emit (valued) signal S.
SUSTAIN S [, {#data|reg}] sustain S [(val)] Sustain (valued) signal S.
PRESENT S, elseAddr present S then . . . end Jump to elseAddr if S is absent.
NOTHING nothing Do nothing.
HALT halt Halt the program.
GOTO addr loop . . . end loop Jump to addr.
CALL addr

call P
call a procedure,
and return from the procedureRETURN

Table 3.1: Overview of the KEP Esterel-type instruction set architecture. Esterel kernel
statements are shown in bold.

• TICK: always present.

Furthermore, a numeral n can be one of the following:

3.3. FURTHER INSTRUCTIONS 39

% Esterel

...

output O: integer ;

var R: integer in
...

emit O(R);

...

⇒

% KEP Assembler

...

OUTPUTV O

VAR R

...

EMIT O, R

...

Figure 3.16: Translating the Esterel variable declaration to the KEP instructions.

• #data: immediate data
Due to the limitation of the instruction width, the range of the immediate data is
16 bits. The 32-bit data must be loaded into a register or written to the value of
a signal first.

• reg : register contents
It corresponds to the variable of Esterel. Figure 3.16 shows an example to illustrate
the relation of the KEP reg and the Esterel variable.

• ?S : value of a signal
For example, an Esterel R := ?S statement equals a KEP LOAD R, ?S instruction.

• PRE(?S): previous value of a signal
For example, an Esterel R := pre(?S) statement equals a KEP LOAD R, PRE(?S)
instruction.

Table 3.1 illustrates the relationship between Esterel statements and the KEP Esterel-
type instructions.

3.3 Further Instructions

Except for the above mentioned Esterel-type instructions, the KEP employs some other
non-traditional instructions to implement an Esterel module completely. Table 3.2 gives
an overview of these special instructions.

• INPUT[V]|OUTPUT[V] S/SETV S,reg
The INPUT[V]/OUTPUT[V] instructions define the interface of the Esterel module,
and the optional V indicates that this is a valued signal.

To initialize the value of a valued signal, the SETV S, #data|reg instruction is
introduced. It is similar to the EMIT S, #data|reg instruction, but it will not
affect the presence status of the signal.

40 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

Mnemonic, Operands Esterel Syntax Notes

INPUT[V] S input S [:integer;] input definition
OUTPUT[V] S output S [:integer;] output definition

SETV S, #data|reg Set the initial value for a valued signal
S.

EMIT TICKLEN, #data|reg Set the tick length.
LOAD COUNT, n Loading data for Count delays.

LOAD UINT32REG, #data32
Loading a 32-bit immediate data to an
intermediate register.

CLRC/SETC Clear/set carry bit
LOAD reg, n reg := n Load/store register
{SR[C]|SL[C]|NOTR} reg Shift (with carry)/negate
{ADD[C]|SUB[C]|MUL} reg, n +, -, * Add, subtract (with carry), multiply
{ANDR|ORR|NOTR|XORR}
reg, n

and, or, not, xor Logical operations

CMP[S] reg, n
>, <, <=, >=, <>, =

Compare (with signed), branch
conditionally.JW cond, addr

Table 3.2: Overview of the KEP non-Esterel-type instruction set architecture.

Figure 3.17 shows an example of translating the interface definition of an Esterel
module to the KEP assembler.

• LOAD COUNT, n
In the KEP assembler syntax listed in Table 3.1, the count delays are expressed
directly. For example, the Esterel await 2 S statement can be replaced by the KEP
AWAIT 2 S instruction. However, on the machine code level, this instruction will
be divided to two instructions. First the LOAD COUNT, #2 instruction loads the
immediate data 2, and then follows the AWAIT S instruction.

The LOAD COUNT,n is the counter specified instruction, which loads a value to
a counter register for the following instruction (see also Section 4.4). If there is
no counter specified instruction before the preemption or the await instruction,
the corresponding counter value will be initialized as 1. Hence, an Esterel state-
ment which contains the count delays expression will be represented by two KEP
instructions.

• EMIT TICKLEN, #data|reg
The KEP has a special valued signal TICKLEN, which can be set to a certain value
by the assembler program to define an upper bound on the number of instructions
that may be executed within a logical tick. When the program executes an “EMIT
TICKLEN, val” instruction, generally at the beginning of a module, this initializes

the Tick Manager (see Section 4.5). When more than val instructions have been
executed since the last tick delimiting instruction (pause or await), the Tick Manager

3.3. FURTHER INSTRUCTIONS 41

% Esterel

input A;

output B:=5:integer;

...

signal C:=3:integer in
...

end signal ;
...

% KEP Assembler

INPUT A

OUTPUTV B

SETV B, #5

...

SIGNALV C

SETV C, #3

...

Figure 3.17: Translating the Esterel interface declaration to the KEP instructions.

considers this a tick length timing violation. In this case, the current tick length
will be extended automatically until the tick is finished. Furthermore, the timing
violation is signaled to the environment via the TickWarn pin.

• LOAD UINT32REG, #data32
To load an immediate data which exceeds 16-bit (65535), an intermediate register
is used. When the program executes a “LOAD UINT32REG, #data32” instruction,
the immediate data is loaded to the UINT32REG register. Then the content of this
register can be transferred to other registers, or directly participate in calculations
involving other registers.

The KEP ISA also includes some classical arithmetic, logical, and conditional branch
operation instructions. Table 3.2 lists these instructions briefly. See also Appendix A
for more details.

Note that those classical operations are also optimized for the Esterel language. They
provide high efficiency for the signal and data handling. For example, the ?S expres-
sion, which refers to the value of a signal or previous value of a signal, can be used in
the arithmetic operations directly. This simplifies the assembler program, and further
reduces memory usage and speeds up the execution.

Figure 3.18(a) shows the Esterel COUNT module [19]. It counts the number of occur-
rences of the input I seen so far, and broadcasts it as the value of a COUNT signal at
each new I.

To illustrate the compactness of the KEP assembler, consider the Esterel module COUNT,
shown in Figure 3.18(a). This module references the previous value of a valued signal.
To generate the assembler, the translation rules shown in Figure 3.9 are employed.

42 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module COUNT:

input I ;

output COUNT := 0 : integer;

every I do
emit COUNT(pre(?COUNT) + 1)

end every
end module

% KEP Assembler

% module COUNT:

INPUT I

OUTPUTV O

VAR REG0

EMIT TICKLEN, #10

SETV O, #0

AWAIT I

A0: ABORT I, A1

LOAD REG0, #1

ADD REG0, PRE(?COUNT)

EMIT COUNT, REG0

HALT
A1: GOTO A0

(a) (b)

Figure 3.18: Translating the Esterel COUNT module (a) to the KEP assembler program
(b).

3.4 From Esterel to KEP Assembler

A central problem for compiling Esterel onto the KEP is the need to manage thread
priorities during their creation and their further execution. In the KEP setting, this is
not merely a question of efficiency, but a question of correct execution.

The technical details of the KEP compiler are described in the thesis of Marian Boldt [26],
the following provides a brief overview.

3.4.1 Code Generation for the KEP – The Compiler’s Perspec-
tive

Boldt has implemented a compiler for the KEP based on the CEC infrastructure [43, 26].
The priority assigned during the creation of a thread and by a particular PRIO instruction
is fixed. Due to the non-linear control flow, it is still possible that a given statement
may be executed with varying priorities; in principle, the architecture would therefore
allow a fully dynamic scheduling. However, we here assume that the given Esterel
program can be executed with a statically determined schedule, which requires that there
are no cyclic signal dependencies. This is a common restriction, imposed for example
by the Esterel v7 [53] and the CEC [43] compilers. Note that there are also Esterel
programs that are causally correct (constructive [20]), yet cannot be executed with a
static schedule and hence cannot be directly translated into KEP assembler using the
approach presented here. However, these programs can be transformed into equivalent,
acyclic Esterel programs [92], which can then be translated into KEP assembler. Hence,
the actual run-time schedule of a concurrent program running on KEP is static in the

3.4. FROM ESTEREL TO KEP ASSEMBLER 43

sense that if two statements that depend on each other, such as the emission of a certain
signal and a test for the presence of that signal, are executed in the same logical tick,
they are always executed in the same order relative to each other, and the priority of
each statement is known in advance. However, the run-time schedule is dynamic in
the sense that due to the non-linear control flow and the independent advancement
of each program counter, it in general cannot be determined in advance which code
fragments are executed at each tick. This means that the thread interleaving cannot be
implemented with simple jump instructions; a run-time scheduling mechanism is needed
that manages the interleaving according to the priority and actual program counter of
each active thread.

Regarding a general, systematic scheme for assigning thread priorities, we should first
convince ourselves that it is always possible to come up with a set of priorities, which
preserves the semantics of the original program. To that end, recall the restriction we
imposed on the Esterel program regarding the dependency structure: we forbid cyclic
dependencies, there must always exist a static ordering (schedule) of statements, which
can be obtained for example from the Event Graph [39] of the program or from the
Concurrent Control Flow Graph [46].

The next question then is whether our priority control mechanism always allows to
enforce such a schedule. To answer this question, we first consider the start of a logical
tick: as observed above, in this case all threads are activated, and if we want to enforce an
order in which each thread starts to execute, we can do so by placing a PRIO instruction
immediately before the delayed instruction that denotes the start of the tick. In some
cases, this may require expanding the delayed statement until the PAUSE statement
becomes exposed, as has been the case in the EXAMPLE module, where we had to
dismantle the original SUSTAIN R statement.

Next, we consider the situation where the schedule demands a context switch after a tick
has been started. As observed above, a thread can yield to another thread by lowering
its priority below the priority of that other thread. As the program cannot have cyclic
dependencies (scheduling constraints) and schedules are static and finite, we can thus
assign priorities to each code segment, where each statement that must precede another
instruction must have a higher priority than that other instruction. Then each thread
may continuously lower its priority while executing a tick, always yielding to the next
thread on the schedule; if this next thread is not active, it follows the next thread, and
so on, until all threads have finished their tick. Only towards the end of a tick a thread
might have to raise its priority again—not to influence the scheduling of the current tick,
but to get the proper thread ordering at the beginning of the next tick.

Regarding the potential increase in code size due to additional PRIO instruction, a
conservative estimate—that disregards the ordering from the priorities assigned during
thread creation—is that for each dependency in the program, there may be up to two
PRIO instructions needed to enforce it. In practice, the fraction of PRIO instructions of
the overall KEP instructions tends to be below 1% (see also Chapter 5, Tables 5.4 and
5.8).

44 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

3.4.2 EXAMPLE: Code Translation

As an intermediate representation for the compilation of Esterel to KEP assembler,
including the thread priority assignment, we use a directed graph structure called Con-
current KEP Assembler Graph (CKAG). Figure 3.19 illustrates the CKAG of the Esterel
EXAMPLE module.

In this section, we translate the Esterel EXAMPLE module to the KEP assembler by the
above mentioned translation rules, and then we describe the execution flow of the KEP
program to explain how it follows the behavior of the original Esterel program.

Up to now, there is still a large room for the optimization of the KEP compiler. Hence,
for illustrating the ability of the KEP architecture, which is the main purpose of this
thesis, we translate the Esterel program to the KEP assembler manually. Figure 3.20(a)
illustrates the Esterel EXAMPLE module, and the corresponding KEP assembler program
is shown on Figure 3.20(c). Similar as the Esterel module, a KEP program always starts
at the input/output definition. In Figure 3.20(c), line 1 to line 3 defines input signals:
S, I; output signals: O; and two inner signals A and R.

The following EMIT TICKLEN, #20 instruction assigns the tick length of this program
as fixed 20 instruction cycles. Here it is an appropriate value for TICKLEN. Boldt et
al. have also developed an analysis procedure that automatically performs this Worst
Case Reaction Time (WCRT) analysis [86, 28]. This analysis has been integrated into
a compiler that translates Esterel to KEP assembler and automatically sets TICKLEN.

For the program body, the generation of the KEP assembler for the EXAMPLE module
is in general straightforward; as mentioned before, most common Esterel statements
can almost literally be translated into corresponding KEP instructions, and there are
direct equivalence rules for the remaining statements. Here, two dismantling rules, i. e.,
the every translation rule in Figure 3.9 and the sustain translation rule in Figure 3.3,
are employed. Note that the KEP assembler includes the SUSTAIN instruction to emit
a signal in each instant. However, here we focus on how to implement interleaving
correctly. The micro-step of the execution of the SUSTAIN first emits the signal, and
then turns the currently executed thread inactive—before the preemption trigger signal
is detected. Therefore, the SUSTAIN R has to be divided to its equivalent Esterel kernel
statement expression, i. e., the emit R; pause; statements which locate in a loop. Such
that priority setting instructions can be inserted to trigger a context switch.

Now the only non-trivial aspect of code generation is the assignment of priorities when
executing threads concurrently. To understand how these priorities are assigned, we
consider the thread scheduling constraints that must be obeyed to run the EXAMPLE
module faithful to Esterel’s semantics. As we already noted when first considering this
example in Section 3.1.2, the two threads enclosed in the every block can communicate
back and forth via the R and A signals, within a logical tick. In this case, there is
a dependency between the statements that (may) emit these signals (the dependency
sources) and the statements where these signals are tested (the dependency sinks) [56,
33, 125].

3.5. ENCODING KEP INSTRUCTIONS 45

First, let us consider the dependency involving R. It is clear which instruction is the
dependency source: the EMIT RL13 instruction. It is also obvious that the PRESENT
RL22 instruction is the dependency sink. This allows to formulate the first dependency
present in the EXAMPLE module: whenever the EMIT RL13 and the PRESENT RL22

instructions are executed within the same logical tick, the execution of the EMIT must
precede the execution of the PRESENT.

As for the dependency involving A, its dependency source is the EMIT AL23 instruction,
which appears in the second thread. However, it is less obvious which is the dependency
sink, which we have defined as the “statements where these signals are tested.” The
first thread reacts to A when it has entered the weak abort block, in that case A triggers
the abort. Hence, whenever we execute a statement in that block, which in the KEP
assembler is the instruction between the WABORTIL11 and the label A2L18, we should
also watch for the presence of A. However, closer inspection yields that as this is a weak
abort, it suffices to check at the end of each logical tick whether the block is aborted,
that is, whenever we execute a non-instantaneous instruction. In this case, the only
non-instantaneous instruction in the abort block is the PAUSEL16.

In the EXAMPLE, the first thread is started with priority 3, and the second thread is
started with priority 2. If none of the threads would execute any PRIO instruction,
the first thread would always be executed before the second thread. This would be
sufficient to ensure meeting the first dependency; however, the second dependency would
be violated. To remedy this, the first thread must yield to the second thread before it
executes the PAUSEL16 instruction, to give the second thread a chance to test for the
presence of R and to emit an A—and it must regain control again before that PAUSEL16

instruction, to perform the abortion in case A is present. This is achieved by the PRIO
1L14 and the PRIO 3L15 instructions; it is also easy to see that the first dependency is
still met.

3.5 Encoding KEP Instructions

As a trade-off between resource usage, speed, and performance, the KEP employs a
36-bit wide instruction word and a 32-bit data bus. The performance of the KEP is
predictable. All instructions can be executed in a single instruction cycle. A separate
16-bit wide inner data bus gives a range of up to 65535 for directly expressing signal
counts, which indicate how often a signal must occur before for example an abort is
triggered. This should suffice for most reasonable requirements.

To restrict the length of a word to 36 bits, some bits are used to present various fields in
different instructions. In general, the instruction encoding method depends on the form
of the KEP assembler.

The parameters of the KEP instructions include the following:

46 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

• Operation code (Op)
The KEP uses 5 bits for its major operation code field. Depending on instruction
types, additional 6 bits may be used as the extended field of the operation code,
i. e., ExtOp.

However, there are two exceptions for the Op code. The Op could just use 4 bits for
two instruction forms. One is the instruction that handles 32-bit data. To encode
the 32-bit immediate data, the width of the Op code is reduced to 4 bits. A similar
encoding method is also used for the instruction that handles two address code.

• Program address code (Addr)
The program address code takes 16 bits. Hence, the maximum address range
of the current KEP is 65536 instruction words, and the word width is 36 bits.
For an executable KEP program, its address begins from 0, where generally the
EMIT TICKLEN, #data instruction is located, which defines the tick length of this
program.

• Signal code (Signal)
Although the signal code uses 9 bits, it just presents 256 signals because the lowest
bit is used as the pre extended bit of the original signal. For example, assuming
the code of signal A is 000000110b, then the code of pre(A) is 000000111b. In this
way, all of the signals’ current or previous states are mapped to a set of signals
and can be accessed directly. A similar method is used for the values of signals.

From the view of the programmer, the maximum utilizable signal number is 255.
The code 000000000b is used for the special pure signal TICK. Furthermore, the
valued signal TICKLEN uses the same code. Note that since the TICK can only be
tested, and TICKLEN can only be emitted, they will not with conflict each other.

• Register code (Reg)
The register code has 10 bits. Similar to the signal code, the code 0000000000b is
reserved for the counter register, which is used in the counter specified instruction,
i. e., the LOAD COUNT, val . Furthermore, the 0000000001b is also used by the
UINT32REG register, which is used in the 32-bit immediate data specified instruc-

tion, i. e., the LOAD UINT32REG,#data32 . Hence, up to 1022 registers can be
used.

• Thread priority value code (Prio)
The priority value of a thread ranges from 0 to 127, i. e., it takes 7 bits. Value 0
is always assigned to the thread 0 (the initial thread). For any other thread, the
priority value could be from 1 to 127.

• Watcher identification code (WatcherID)
The width of the watcher identification code is 6 bits, i. e., there are up to 64
watchers. Note that the configuration instructions for different watcher types use
different Op codes. Hence, the watcher ids of different watcher types are inde-
pendent, i. e., the 6-bit WatcherID can express 64 Watchers and 64 Local Watchers

3.5. ENCODING KEP INSTRUCTIONS 47

at once. Incidentally, the Thread Watcher is operated by the current executing
thread, it is unnecessary to encode them.

• Thread identification code (ThreadID)
The thread identification code allows instructions to create or modify the priority
value of a specific thread. It is 7 bits wide, hence, the KEP can handle 128 threads
directly. The code of the initial thread is 0000000b.

• Immediate data code (#data, #data32) code
Most of the KEP data operations can directly handle 16-bit data, i. e., immediate
data. However, to deal with data that are larger than 65535, 32-bit data should
be loaded to the UINT32REG register, and then be transferred to any register, or
be calculated with other data, content of a register, and so on.

The various combinations provide a very flexible instruction format of the aforemen-
tioned codes. The KEP instruction encoding is illustrated below, see Appendix A for
more information.

• OP

35 030 21 15

Op ExtOp

e. g., NOTHING, HALT

• OP #data32

35 031

Op #data32

e. g., DEF32 #data32

• OP Addr

35 030 21 15

Op ExtOp Addr

e. g., GOTO Addr

• OP Addr1, Addr2

35 031 15

Op Addr2 Addr1

EXIT EndAddr, StartAddr

48 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

• OP Signal, #data

35 030 21 15

Op Signal ExtOp #data

e. g., EMIT S, #data

• OP Signal, Reg

35 030 21 15 9

Op Signal ExtOp Reg

e. g., EMIT S, #Reg

• OP Signal, Addr

35 030 21 15

Op Signal ExtOp Addr

e. g., CAWAIT S, Addr

• OP Signal, Addr, WatcherID

35 030 21 15

Op Signal WatcherID Addr

e. g., ABORT S, Addr, [WatcherID]

• OP Prio, Addr

35 030 22 15

Op Prio Addr

e. g., PARE endAddr [,Prio]

• OP Prio, Addr, ThreadID

35 030 22 15

Op Prio ThreadID Addr

e. g., PAR Prio, startAddr, [ThreadID]

• OP Prio, ThreadID

35 030 22 15

Op Prio ThreadID

e. g., PRIO Prio [,startAddr]

3.6. SUMMARY 49

• OP Reg, #data

35 030 20 15

Op Reg ExtOp Addr

e. g., ADD Reg, #data

• OP Reg1, Reg2

35 030 20 15 9

Op Reg2 ExtOp Reg1

e. g., SUB Reg1, Reg2

• OP Reg, Signal

35 030 21 20 15 9

Op Signal ExtOp Reg1

e. g., MUL Reg1, ?S

3.6 Summary

The design of the Instruction Set Architecture (ISA) of the KEP reflects a tradeoff be-
tween rich functionality, powerful control flow, and system cost. The most remarkable
property of the KEP ISA is that it is the first instruction set which directly supports
all of the Esterel kernel statements. Hence, all of the Esterel control statements can
be expressed in a very efficient way. Some other frequently used non-kernel Esterel
statements/structures are also directly supported. Besides, the provision of context-
dependent preemption handling instructions allows efficient resource usage without lim-
iting generality. Furthermore, the design also considers the Esterel optimized data path,
which maps Esterel data handling to traditional arithmetic functions. Finally, the KEP
instructions employ various address range definition strategies to define the Esterel con-
trol structures. These strategies make the KEP instructions support arbitrary control
structures nests, which is also a characteristic of the Esterel language.

50 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

% Esterel

module EXAMPLE:

input S, I , H;

output O1, O2;

signal A,R in
every S do

trap T1 in % Thr0

trap T2 in % Thr0

[await I ; % Thr1

weak abort % Thr1

suspend % Thr1

sustain R; % Thr1

when H; % Thr1

when immediate A; % Thr1

emit O1; % Thr1

exit T1; % Thr1

||
await 2 tick ; % Thr2

present R then % Thr2

emit A; % Thr2

end present; % Thr2

exit T2;]; % Thr2

end trap; % Thr0

emit O2; % Thr0

end trap; % Thr0

end every; % Thr0

end signal ;
end module

module: EXAMPLE

[L1,T0,P1/1] AWAIT S

[L2,T0,P1] A2

[L2,T0,P1] ABORT S,A3

[L3,T0,P1] A4

[L3,T0,P1] A5

[L5,T0,P1/1] PAR*

[L6,T1,P1] A6

 1

[L21,T2,P1] A7

 1

[L6,T1,P1] ABORT I,A9

[L7,T1,P1] A10

[L7,T1,P3] PRIO 3

[L8,T1,P1/3] PAUSE

[L9,T1,P1] PRIO 1[L11,T1,P3] A9

I
s

[L34,T0,P1] JOIN 0

T2

e

[L37,T0,P1] A3

S

s

[L10,T1,P1] GOTO A10[L11,T1,P3] WABORTI A,A11

[L12,T1,P3] SUSPEND H,A12

[L13,T1,P3] A13

[L13,T1,P3] EMIT R

[L14,T1,P2] PRIO 2

[L31,T2,P2] PRESENT R,A18

i

[L15,T1,P3] PRIO 3

[L16,T1,P2/3] PAUSE

[L17,T1,P3] GOTO A13[L19,T1,P2] A11

A

w

T2

e

S

s

[L18,T1,P1] A12

[L18,T1,P1] NOTHING

[L19,T1,P2] EMIT O1

[L20,T1,P2] EXIT T1,A4

[L23,T2,P1/2] PAUSE

i

[L21,T2,P1] A14

[L21,T2,P1] LOAD COUNT,#2

[L22,T2,P1] A15

[L22,T2,P2] PRIO 2

[L24,T2,P2] PRESENT TICK,A16

T1

e

S

s

[L25,T2,P2] SUB COUNT,#1

t

[L26,T2,P2] A16

f

[L26,T2,P2] CMPS COUNT,#0

[L27,T2,P2] JW LE,A17

[L28,T2,P2] EXIT AWAIT_DELAY,A14

t

[L29,T2,P1] A17

f

[L31,T2,P2] AWAIT_DELAY[L29,T2,P1] PRIO 1

[L30,T2,P1] GOTO A15

[L32,T2,P2] EMIT A

t

[L33,T2,P2] A18

f
i

[L33,T2,P2] EXIT T2,A5
ii

[L35,T0,P1] T2

T2

e

[L36,T0,P1] T1

T1

e

[L35,T0,P1] EMIT O2

[L36,T0,P1/1] HALT

S
s

[L37,T0,P1] GOTO A2

(a) (b)

Figure 3.19: The EXAMPLE: (a) Esterel; (b)Concurrent KEP Assembler Graph (CKAG),
where rectangles are transient nodes, octagons are delay nodes, and triangles are
fork/join nodes.

3.6. SUMMARY 51

% Esterel
module EXAMPLE:
input S, I , H;
output O1, O2;
signal A,R in
every S do

trap T1 in % Thr0
trap T2 in % Thr0

[await I ; % Thr1
weak abort % Thr1

suspend % Thr1
sustain R; % Thr1

when H; % Thr1
when immediate A;% Thr1
emit O1; % Thr1
exit T1; % Thr1
||

await 2 tick ; % Thr2
present R then % Thr2

emit A; % Thr2
end present; % Thr2
exit T2;]; % Thr2

end trap; % Thr0
emit O2; % Thr0

end trap; % Thr0
end every; % Thr0
end signal ;
end module

% KEP Assembler
% (by compiler)
% module EXAMPLE:

[L01,T0] AWAIT S
[L02,T0] A2: ABORT S,A3
[L03,T0] A4:A5: PAR 1,A6,1
[L04,T0] PAR 1,A7,2
[L05,T0] PARE A8,1
[L06,T1] A6: ABORT I,A9
[L07,T1] A10: PRIO 3
[L08,T1] PAUSE
[L09,T1] PRIO 1
[L10,T1] GOTO A10
[L11,T1] A9: WABORTI A,A11
[L12,T1] SUSPEND H,A12
[L13,T1] A13: EMIT R
[L14,T1] PRIO 2
[L15,T1] PRIO 3
[L16,T1] PAUSE
[L17,T1] GOTO A13
[L18,T1] A12: NOTHING
[L19,T1] A11: EMIT O1
[L20,T1] EXIT T1,A4
[L21,T2] A7:A14:LOAD COUNT,#2
[L22,T2] A15: PRIO 2
[L23,T2] PAUSE
[L24,T2] PRESENT TICK,A16
[L25,T2] SUB COUNT,#1
[L26,T2] A16: CMPS COUNT,#0
[L27,T2] JW LE,A17
[L28,T2] EXIT AWAIT DELAY,A14
[L29,T2] A17: PRIO 1
[L30,T2] GOTO A15
[L31,T2] AWAIT DELAY:

PRESENT R,A18
[L32,T2] EMIT A
[L33,T2] A18: EXIT T2,A5
[L34,T0] A8: JOIN 0
[L35,T0] T2: EMIT O2
[L36,T0] T1: HALT
[L37,T0] A3: GOTO A2

% KEP Assembler
% (manually)
% module EXAMPLE:

[L01] INPUT S, I, H
[L02] OUTPUT O1, O2
[L03] SIGNAL A, R
[L04] EMIT TICKLEN, #20
[L05,T0] AWAIT S
[L06,T0] A0: ABORT S, A1
[L07,T0] T1S: T2S: PAR 3, P1
[L08,T0] PAR 2, P2
[L09,T0] PARE P3
[L10,T1] P1: AWAIT I
[L11,T1] WABORTI A, A2
[L12,T1] SUSPEND H, A4
[L13,T1] A3: EMIT R
[L14,T1] PRIO 1
[L15,T1] PRIO 3
[L16,T1] PAUSE
[L17,T1] GOTO A3
[L18,T1] A4: A2: EMIT O1
[L19,T1] EXIT T1E,T1S
[L20,T2] P2: LOAD COUNT, #2
[L21,T2] AWAIT TICK
[L22,T2] PRESENT R, A5
[L23,T2] EMIT A
[L24,T2] A5: EXIT T2E,T2S
[L25,T0] P3: JOIN 0
[L26,T0] T2E: EMIT O2
[L27,T0] T1E: HALT
[L28,T0] A1: GOTO A0

(a) (b) (c)

Figure 3.20: Translating the Esterel EXAMPLE module (a) to the KEP assembler pro-
gram (b) by KEP compiler, or manually (c).

52 CHAPTER 3. THE KEP INSTRUCTION SET ARCHITECTURE

Chapter 4

The KEP Architecture

Chapter 3 has presented the KEP instruction set architecture. Obviously, such an ISA
facilitates the handling of Esterel statements/structures. However, it raises the following
question: how can the KEP implement the behavior of these instructions? And how does
the KEP deal with them in a way that exactly follows the original Esterel semantics?

In this chapter, we present the KEP’s multi-threaded reactive architecture. First, an
overview of the KEP architecture is given in Section 4.1. The Reactive Core of the KEP,
which deals with all of the KEP’s Esterel-type instructions, is introduced in Section
4.2. The Esterel signal, which is used to communicate with the environment and within
the program, is handled by the Interface Block of the KEP, see Section 4.3. Section
4.4 illustrates the Data Handling block, and the Tick Manager of the KEP is discussed
in Section 4.5. Finally, an example presents the cooperation of the KEP blocks in
Section 4.6.

4.1 The KEP Architecture Overview

The top-level I/O signals of the KEP are illustrated in Figure 4.1. The Sinout signals
indicate the presence of input/output signals, and the SDir is used by the environment to
select the read or write signal status. To access the value of a valued signal, the environ-
ment controls the SDataID and the SDataWR pin, then the content can be read/written
through the SData bus. In the KEP, every signal can be a valued signal.

ROMData and ROMAddr are data and address buses for the instruction memory. An
external clock must be connected to the OscClk pin; we use Tosc to denote the rate of
that clock. The InstrClk indicates the instruction clock; each instruction cycle lasts three
OscClk cycles. The Tick pin indicates the logical tick of Esterel, and the TickWarn pin
is set high when a timing violation is detected, see also Section 4.5.

53

54 CHAPTER 4. THE KEP ARCHITECTURE

Figure 4.1: The interface connections of the KEP.

To reset the KEP, the Reset pin should be connected to high (’1’) for at least one
oscillator clock cycle. During this period, the Reset Event is automatically generated,
and all outputs and inner signals will be set to ’0’ (absent).

The architecture of the KEP is inspired by the three layers that constitute a reactive
program [23], i. e.:

1. An interface with the environment, which handles input reception and output
production.

2. A reactive kernel, which decides what computations and what outputs must be
generated when it reacts to inputs.

3. A data handling layer, which performs classical computations.

We use the above-mentioned layers as KEP’s architectural levels. In the KEP, a Reactive
Core accomplishes the tasks of the reactive kernel. The functions of the interface layer
are mapped to the Interface Block. And the classical computations are performed by the
Data Handling Block, which also employs optimized data path for the efficient execution
of the Esterel program. All of these blocks are semi-custom (scalable).

Figure 4.2 shows an overview of the KEP architecture. Light gray blocks indicate the
reactive core of the KEP; the interface block is marked as dark gray; and the traditional
ALU (Arithmetic Logical Unit) part of a processor is compose by translucent blocks.
Besides, there are some other special peripheral elements. For example, the Tick Man-
ager, described further in Section 4.5, provides the fixed length for a logical tick and also
detects tick length timing violations.

4.2. THE REACTIVE CORE 55

Figure 4.2: Overview of the architecture of the KEP.

4.2 The Reactive Core

The Reactive Core is the core of the reactive processor. The implementation of Esterel’s
reactive statements relies on the cooperation of KEP’s Reactive Block, Thread Block, and
Decoder & Controller, which together form the Reactive Core.

The main difficulty of the Reactive Core design is how to implement the Esterel preemp-
tion and concurrency. Our strategy is based on the following Esterel essentials:

• Regarding the preemption handling mechanism, a preemption block must respond
to its trigger signal while the program counter (PC) is within its body. The KEP
provides a configurable module, which watches a certain address range and outputs
its control signals. The watched address range corresponds to a preemption body.
Concurrent threads in a preemption (or nested preemption) body can be handled
properly; since executions of these threads are sequential, each thread can be
controlled by the preemption once the thread is fetched.

• In Esterel, threads fork on a || parallel statement, and terminate when all their
branches have terminated. Therefore, Esterel threads can be simulated by multi-
threaded structures. The fork point corresponds to the thread configuration in-
structions, and the thread waits for the termination of all branched threads at
the join point. The program counter is watched to determine the termination of

56 CHAPTER 4. THE KEP ARCHITECTURE

branched threads. An advantage of this approach compared to the sequential pro-
cessor implementation is that the dynamic scheduling strategy avoids the recording
and testing of thread states, which is required for multi-way branch in the sequen-
tial processor implementation. The context switch is provided by the processor
hardware, which eliminates overhead and effectively results in a zero-cycle context
switch [42].

4.2.1 The Thread Block

The KEP employs a multi-threaded architecture, where each thread has an independent
program counter (PC) and threads are scheduled according to their activation status
and a dynamically changing priority. Hence, an Esterel thread can be mapped to a KEP
thread directly.

Figure 4.3: Architecture of the Thread Block.

Figure 4.3 shows the architecture of the Thread Block, which is responsible for managing
the threads. For each instruction cycle, it decides which thread to execute next, based on
the current status of each thread. As mentioned before, context switches do not cost any
extra clock cycles, and the lean design of the Thread Block still permits a comparatively
high instruction frequency.

A KEP thread goes through three phases, i. e., creation, execution, and termination,
which are controlled by the Thread Block.

• Thread Creation
A complete thread creation requires on two PAR instructions, or a PAR and a
PARE instruction. When a PAR instruction creates a thread, the start address

4.2. THE REACTIVE CORE 57

parameter of this thread will be stored as the ThreadCurAddr. Note that the
start address of the next concurrent thread is located behind this thread, so the
ThreadCurAddr of the next thread is also stored as the ThreadEndAddr of this
thread. Furthermore, the current ThreadID is also restored to identify the parent
of a thread. Therewith, the PARE instruction ends the configuration of the last
concurrent thread. The value of the parent thread address register points to the
end of the last incoming thread, where the JOIN instruction is located, which waits
for all its branch threads to terminate.

In addition to the ThreadCurAddr and ThreadEndAddr, the Thread Block uses two
status flags to keep track of each thread’s status. The ThreadEnable flag indicates
whether the thread is still running (enabled) or already terminated (disabled),
and the ThreadActive flag indicates whether the thread should still be scheduled
within the current logical tick (is active) or not (inactive). After a thread is
created, those two flags are both set to ’1’, which means the thread is ready to be
scheduled. However, the Scheduler will not become active until all of the thread
configurations are finished. After the PARE instruction is executed, the activated
threads can be invoked by the priority-based preemptive scheduling mechanism.

Figure 4.4 shows the procedure for creating a KEP thread.

• Thread execution
The execution status of a thread is illustrated in Figure 4.5, using the SyncChart
formalism [2]. At the beginning of each instruction cycle, the Scheduler inspects
all active threads. If there are multiple active threads, the Scheduler executes the
thread with the highest priority; if several active threads have the highest priority,
the Scheduler executes the thread that has the highest id. To reduce its path
length, the Scheduler employs a tree structure [113, 59]. If a thread is scheduled,
its ThreadCurAddr parameter, i. e., the value of its sub program counter, will be
mapped as the value of the program counter of the processor. The Thread Block
is responsible for managing threads, as illustrated in Figure 4.6.

Once a non-instantaneous instruction is executed, such as an AWAIT or a HALT, the
ThreadActive flag will be set to ’0’, meaning that this thread will not be scheduled
any more in the current tick. If all threads are inactive, the current tick is finished.
At the start of the next tick, the ThreadActive flags of all enabled threads will again
be set to ’1’. Figure 4.7 indicates above mentioned processes.

• Thread termination
A thread termination could be caused by three reasons.

1. The thread finishes all statements in its body, in which case the expected fetch
address will equal the ThreadEndAddr associated with that thread (normal
termination).

2. The expected fetch address is greater than the ThreadEndAddr, for example in
such cases when the thread is aborted by an enclosing abortion or exceptions

58 CHAPTER 4. THE KEP ARCHITECTURE

% Definition of Parameters
% Instr

% Currently executed instruction.

% Instr.Op

% Operation code of the current instruction.

% Instr.Addr

% Address code of the current instruction.

% Instr.Prio

% Priority code of the current instruction.

% Instr.ThreadID

% Thread ID number code of the current instruction.

% LastInstr

% The previous executed instruction.

% ThreadScheduler.Enable

% The Scheduler of the Thread Block will

% be disabled when the status of this parameter is false.

% ThreadConfigureBegin

% It is true when the current executed instruction

% is the first PAR instruction of a PAR/PARE group.

% For the Thread Block
if Instr.Op = PAR then

% Whenever the PAR instruction is executed

ThreadScheduler.Enable = false

% Forbidding the scheduling during the creation of threads.

if LastOp = PAR then
% If the current executed PAR instruction is not the first

% PAR instruction of a PAR/PARE group.

ThreadLastInstr.ThreadID.ThreadEndAddr = Instr.Addr

% The end address of the last branch thread is configured as

% the start address of the current created branch thread

end if
ThreadInstr.ThreadID.ThreadCurAddr = Instr.Addr

% The Program Counter (PC) of the current created branch thread is configured

% as the Instr.Addr, which points to the beginning of this branch thread.

ThreadInstr.ThreadID.P riority = Instr.Prio

% Configuring the priority value of this branch thread.

ThreadInstr.ThreadID.ParentThread = ThreadID

% Currently executed thread is the parent thread of

% the currently created branch thread.

ThreadInstr.ThreadID.Enable = true

ThreadInstr.ThreadID.Active = true

% The statuses of a created thread are set as enabled and active.

LastInstr = Instr

% Recording the corresponding information for the next PAR/PARE instruction.

elsif Instr.Op = PARE then
% The end of the PAR/PARE group.

ThreadLastInstr.ThreadID.ThreadEndAddr = Instr.CurAddr

ThreadThreadID.CurAddr = Instr.Addr

% Setting the Program Counter (PC) of the current executed thread

% to point to the join point of these incoming sub threads.

if Instr.Prio > 0 then
% The priority of the current executed thread will be configured

% when the PARE instruction carries a non-zero priority value; or else,

% it will be kept.

ThreadThreadID.P riority = Instr.Prio

end if
ThreadScheduler.Enable = true

% Enabling the scheduling when the creation of branch threads is finished.

end if

Figure 4.4: Algorithm for creating KEP threads.

4.2. THE REACTIVE CORE 59

Figure 4.5: Execution status of a single thread.

Figure 4.6: The status of the whole program, as managed by the Thread Block.

% Definition of Parameters
% T ick.Start

% The moment when the status of the Tick signal

% changes from inactive to active.

% T ick.F inish

% It denotes whether all of threads are inactive

% or not. Note due to the fix tick length feature

% of the KEP, the Tick signal may not be

% set as inactive immediately when this event

% happens, because the KEP may idle for some

% instruction cycles to meet the TICKLEN

% constrain. See also Section 4.5.

% PC

% Program Counter. The PC value also equals

% the value of ROMAddr.

% ThreadID

% The ID of the current executed thread. It

% is generated by the Scheduler.

% NThread

% The total thread number of this processor.

% For the Thread Block
if T ick.Start = true then

% All enabled threads will be set as active

% when a new tick starts.

forall n ∈ NThread do

Threadn.Active = Threadn.Enable

end
end if

if ThreadScheduler.Enable = true

% Mapping the sub PC of the selected executed

% thread as the PC of the processor.

PC = ThreadThreadID.ThreadCurAddr

end if

T ick.F inish = true

forall n ∈ NThread do

if Threadn.Active = true

% The T ick.F inish is false when any

% thread is set as active.

T ick.F inish = false

end if
end

Figure 4.7: Algorithm for running threads.

60 CHAPTER 4. THE KEP ARCHITECTURE

(sudden termination). In this scenario, the TerminationType parameter of this
thread will be set to sudden to indicate that the thread is terminated by an
abortion/exception.

3. A thread could be terminated by its parent thread at the join point. This
mechanism is employed for handling Esterel exceptions efficiently, see also
Section 4.2.2.

An exception to this mechanism is that the program invokes a function, i. e.,
executes a CALL instruction and does not return. Since the program of the function
could be located at any place of the memory (outside of the address range of the
current thread), any expected address is allowed and will not cause the termination
of the thread.

At the join point, the parent thread will evaluate the status of all its child threads.
If any child thread is enabled, the parent will still wait unless an exception termi-
nates the child threads. Else, the control will go through if all its sub threads are
terminated normally, or respond an abortion/exception if any of its sub threads
are preempted.

Figures 4.8 and 4.9 illustrate the procedure of managing thread status of the KEP.

The Thread Block and other blocks tightly interact with each other through several
control signals to ensure the proper handling of arbitrary preemption and concurrency
control flow. See the following Section 4.2.2.

4.2.2 The Reactive Block

The Reactive Block contains a Preemption Element, which has a configurable number of
Watcher modules that are responsible for implementing the preemption operations. The
Reactive Block also contains the AWAIT Element, which implements signal awaiting, and
the PRESENT Element, which tests signal presence.

Handling Signal Tests

The implementation of the PRESENT statement depends on the PRESENT Element
shown in Figure 4.10. The basic form of the Esterel PRESENT statement checks for one
signal expression and performs binary branching. We map the signal code (SignalCode)1

of the instruction to the selected-signal-coder port of the PRESENT Element. The status
of the selected signal is immediately presented on a signal which is named rdPRESENT.

Considering the process of instruction execution, the selected signal’s code is directly
mapped to the selected-signal-code port when the KEP fetches a PRESENT instruction.

1To avoid confusion, from now on the code of a parameter will be named as parameterCode explicitly.
For example, the Signal encode, which is named as Signal in Section 3.5, will be called as SignalCode.

4.2. THE REACTIVE CORE 61

% Definition of Parameters
% DecoderAddr

% The desired program address generated by the Decoder & Controller. It is

% transferred to the Thread Block for further being judged to achieve the PC.

% T ickF lag

% It comes from the Decoder & Controller, denoting that the current executed

% instruction causes a delay when it equals false.

% CallF lag

% It denotes whether the KEP is executing a procedure or not. The status

% of the current executed thread will be kept when this signal is true.

% StackAddr

% It stores the address where the KEP calls the procedure.

% ChildThreadInactive, ChildThreadDisable

% These two signals indicate the status of all child threads of the current

% executed thread. At the join point, if all child threads are inactive or

% disable, the ChildThreadInactive or the ChildThreadDisable will be set

% as true. They are utilized by the Decoder & Controller.

% ChildThreadSuddenTermination

% Similar as above, if any child thread is terminated by an abotion/exception,

% this signal will be set as true.

% For the Thread Block
% Handling the statuses of threads

if CallF lag = false then
% When the KEP is not executing a procedure

if DecoderAddr > ThreadThreadID.EndAddr then
% The target address exceeds the address range of the current executed

% thread, which implies an abortion or an exception is active,

ThreadThreadID.Enable = false

ThreadThreadID.Active = false

% The thread is terminated immediately.

ThreadThreadID.T erminationType = sudden

% Denoting the thread is terminated by an abortion or an exception.

elsif DecoderAddr = ThreadThreadID.EndAddr then
% The target address equals the address range of the current executed

% thread, which implies the execution of this thread is finished.

ThreadThreadID.Enable = false

ThreadThreadID.Active = false

% The thread is terminated immediately.

ThreadThreadID.T erminationType = normal

% Denoting the thread is terminated normally.

elsif T ickF lag = false then
% A delay instruction (e. g., AWAIT) is executed

ThreadThreadID.Active = false

% The thread is set as inactive in this tick.

else
ThreadThreadID.ThreadCurAddr = DecoderAddr

% The execution of this thread will be continue.

end if
else

% When the KEP is executing a procedure

ThreadThreadID.ThreadCurAddr = DecoderAddr

end if

Figure 4.8: Algorithm for managing thread status (1).

62 CHAPTER 4. THE KEP ARCHITECTURE

% For the Decoder & Controller
if Instr.Op = CALL then
CallF lag = true

StackAddr = PC + 1

% Setting the CallF lag when the KEP

% calls a function, and pushing the

% address of the next instruction

% for future returning.

DecoderAddr = Instr.Addr

% Going to the beginning of

% the procedure program.

end if
if Instr.Op = RETURN then
CallF lag = false

% Clearing the CallF lag when

% the procedure program returns.

DecoderAddr = StackAddr

% Returning where the main program

% calls the procedure.

end if

% For the Thread Block
% Scanning all incoming threads at the join point

ChildThreadDisable = true

ChildThreadInactive = true

SuddenTermination = false

forall n ∈ Nthread do

if (Threadn.ParentThread = ThreadID)

% This thread is a child thread of the current

% executed thread.

if (Threadn.Enable = true) then
ChildThreadDisable = false

% Setting ChildThreadDisable as false if

% any of its branch threads does not terminate.

end if
if (Threadn.Active = true) then
ChildThreadInactive = false

% Setting ChildThreadInactive as false if

% any of its branch threads does not inactive.

end if
if Threadn.T erminationType = sudden then
ChildThreadSuddenTermination = true

% Setting SuddenTermination as true if

% any of its branch threads was terminated by

% an abortion/exception.

end if
end

Figure 4.9: Algorithm for managing thread status (2).

Figure 4.10: Architecture of the Present Element.

When the Decoder & Controller executes the instruction, it just needs to test the rdPRE-
SENT signal to decide whether to branch or not. This feature is also used to implement
some other instructions, i. e., AWAITI S (await immediate S). See also Section 4.2.2.

Figure 4.11 shows the behavior of the PRESENT Element.

Handling Delay

The AWAIT Cell is the basic component for handling delay instructions. Except for the
creation/termination of an Esterel thread, every Esterel thread will start its execution
from a delay instruction and finally be blocked by the same or another delay instruction.

4.2. THE REACTIVE CORE 63

% Definition of Parameters
% UniSignal

% It is the Unicode Signal. In the KEP, all

% the input/output and inner signals are

% recoded into a Unicode Signals bus, which

% can be accessed by inner blocks and

% elements directly.

% Instr.SignalCode

% The signal code of any corresponding

% instruction. e. g., the PRESENT S,

% AWAIT S, etc.

% For the Present Element
% Mapping the status of the selected signal

% to the rdPRESENT port.

rdPRESENT = UniSignal(Instr.SignalCode)

% For the Decoder & Controller
if Instr.Op = PRESENT then

% Executing the PRESENT instruction

if rdPRESENT = true then
% When the signal to be tested is present

DecoderAddr = PC + 1

% Going through

else
% When the signal to be tested is absent

DecoderAddr = Instr.Addr

% Going to the address of the else branch.

end if
end if
T ickF lag = true

% The PRESENT instruction will not

% cause a delay

Figure 4.11: Algorithm for handling signal test.

Hence, one AWAIT Cell per thread suffices. The AWAIT Cell can be indexed by the ID
of the currently executed thread.

When the Reactive Core executes an AWAIT or PAUSE instruction for the first time, it
configures the AWAIT Cell of the AWAIT Element via inner buses. At the end of the
current tick, the Decoder & Controller waits for the terminating signal from the AWAIT
Element. If the Reactive Core responds to an active abortion before the current AWAIT
instruction terminates, the AWAIT instruction will be cancelled.

However, how does the Reactive Core ‘know’ whether the currently fetched delay instruc-
tion is executed to configure the AWAIT Element or test a sensitive signal to terminate?
Considering the KEP ISA, a thread will be blocked by a delay statement, and may
terminate in later instants. Hence, the address of the delay statement can be used to
decide the execution method of the delay statement.

When the Reactive Core executes an AWAIT or PAUSE instruction, it compares the
current address and the stored address of the delay statement of the current thread.
The difference of these values implies how the current execution should configure the
AWAIT Element. So the information of this delay instruction, e. g., its address and the
counter value, will be written to the corresponding AWAIT Cell. On the contrary, if these
values are the same, the execution will test the signal and then decide whether the delay
should be terminated or not.

The AWAIT Cell contains two parameter registers. One register stores the counter value,
and the other stores the address of the last executed delay instruction. Note that the
sensitive signal code is contained in the code of the instruction, which can be decoded
when the instruction is fetched. Hence, it is unnecessary to recode it. If the watched
signal is ’1’, the counter value will be decremented. When the counter value equals zero,
the AWAIT Element sets the rdAWAIT signal to ’1’ to indicate the termination of AWAIT.

64 CHAPTER 4. THE KEP ARCHITECTURE

When a delay instruction terminates, the Reactive Core will initialize the corresponding
AWAIT Cell, i. e., write the address register of the current AWAIT Cell as ”0”, for the ex-
ecution of the next delay instruction. The behavior is similar when the delay instruction
is cancelled.

% Esterel

loop
trap T in
[pause;

exit T;

||
await 2 tick ;

emit O;

];

end trap;

end loop;

% KEP Assembler

[L00,T0] EMIT TICKLEN,#10

[L01,T0] A0: TS: PAR 1, P1

[L02,T0] PAR 1, P2

[L03,T0] PARE P3

[L04,T0] P1: PAUSE
[L05,T0] EXIT TE, TS

[L06,T0] P2: LOAD COUNT, #2

[L07,T0] AWAIT TICK

[L08,T0] EMIT O

[L09,T0] P3: JOIN
[L10,T0] TE: GOTO A0

(a) (b)

Figure 4.12: Executing an AWAIT instruction twice in a tick.

There are some further conditions, as illustrated by the example in Figure 4.12. In
this module, thread 2 configures its AWAIT Cell via AWAIT TICKL07 at the first tick. In
the second tick, thread 1 throws an exception. At the join point, thread 1 and 2 are
both terminated. The loop causes control to re-enter both threads again. Note that
the address of the delay statement, which is stored in the AWAIT Cell of thread 2, is
not initialized. The Reactive Core could now wrongly assume that the signal be tested.
However, this is not the case, as the await 2 tick statement is just re-entered, and it is
not an immediate AWAIT. Obviously, a similar problem could also happen for example
when a processor is reset during its execution and then enters the program again.

To avoid these problems, the KEP initializes the corresponding AWAIT Cell when a
thread is created or the processor is reset. Figure 4.13 shows the process of the Decoder
& Controller which handles the AWAIT instruction. Figure 4.14 illustrates the mechanism
of the AWAIT Element. The architecture of the AWAIT Element is shown in Figure 4.15.
In a previous version of the KEP, the Tick signal is sampled for deciding how to handle
a fetched AWAIT instruction [88], i. e., to configure the AWAIT Cell or count down its
counter. In the current KEP version, this is unnecessary because the choice is made
according to the address information of the AWAIT instruction.

The implementation of parallel await statements, i. e., the Esterel await case statements,
does not depend on some special components (as had been the case in the previous KEP
versions [88, 89] and other reactive processors [38]). Instead, the Decoder & Controller
can handle this structure in an efficient way.

4.2. THE REACTIVE CORE 65

% Definition of Parameters
% wrAWAIT , rdAWAIT

% The AWAIT Element uses rdAWAIT signal to denote the termination of

% a delay instruction. And the Decoder & Controller employs the wrAWAIT

% signal to tell the AWAIT Element to configure the AWAIT Element.

% PreemptionElement.Type, PreemptionElement.Addr

% The triggered preemption status of the Preemption Element. It can be ”strong”

% (strong abortion), ”weak” (weak abortion), ”suspension” (suspension),

% or ”none” (no triggered preemption). The target address of the triggered

% abortion is expressed by the PreemptionElement.Addr.

% For the Decoder & Controller
...

if rdAWAIT = true then
% The current executed delay instruction is terminated.

DecoderAddr = PC + 1

% The control goes through.

T ickF lag = true

elsif (Instr.Op = AWAITI) or (Instr.Op = AWAIT) or (Instr.Op = HALT) then
% Executing a delay instruction

if Instr.Op = AWAITI and rdPRESENT = true then
% Executing an immediate delay and the signal is present.

DecoderAddr = PC + 1

% The delay instruction should be terminated immediately.

T ickF lag = true

else
if PreemptionElement.Type = weak then

% The control responds to the triggered weak abortion.

DecoderAddr = PreemptionElement.Addr

% Going to the target address of the active abortion.

T ickF lag = true

else
DecoderAddr = PC

% The controller is blocked by the delay instruction.

if Instr.Op != HALT then
% Configuring the corresponding AWAIT Cell

rdAWAIT = true

end if
T ickF lag = false

% Causing the delay (inactive) of the current execution thread.

end if
end if

end if

Figure 4.13: Algorithm for handling the delay instructions (Decoder & Controller).

As described in Section 3.2.5, for the KEP, the await case statements are expressed as
a group of CAWAIT instructions, which are started by the CAWAITS and ended by the
CAWAITE. When the group of CAWAIT instructions starts, the CAWAITS instruction
sets a CAWAITStartFlag flag to true. The Decoder & Controller will go through the
following CAWAIT statements. If it encounters a CAWAITI instruction and the sensitive
signal is present, it will jump to the corresponding case block. Or else, at the end
of the tick, it will halt at the CAWAITE instruction, and in the next tick, the control

66 CHAPTER 4. THE KEP ARCHITECTURE

% Definition of Parameters
% Processor.Reset

% The reset event of the processor.

% AWAITCell.Addr

% The address of the last executed

% delay instruction.

% AWAITCell.Count

% The count value of the current executed

% delay instruction.

% CountSpec

% The count value which is transferred

% from the Data Handling Block.

% wrPAR

% The signal which denotes whether a PAR

% instruction is executed or not.

% ParInstr.ThreadID

% The ID of the thread which is created

% via the PAR instruction.

% For the AWAIT Element
if Processor.Reset = true then

% Whenever the processor is reset.

forall n ∈ AWAITCellNT hread
do

AWAITCelln.Addr = 0

% Initializing all of AWAIT Cells

end
end if

if wrPAR = true then
% Whenever a thread is created.

AWAITCellParInstr.ThreadID.Addr = 0

% Initializing the corresponding AWAIT Cell

end if

if wrAWAIT = true then
if PC != AWAITCellThreadID.Addr then

% Executing a delay instruction: configuring

AWAITCellThreadID.Addr = PC

AWAITCellThreadID.Count = CountSpec

% Configuring the corresponding AWAIT Cell

end if
end if

% For the AWAIT Element
if PC = AWAITCellThreadID.Addr then

% Executing a delay instruction: counting down

if (PreemptionElement.Type = weak) \...
or (PreemptionElement.Type = None) then

% An active weak abortion or no preemption

if rdPRESENT = true then
% The sensitive signal is present

if AWAITCellThreadID.Count = 1 then
% The counter value should be zero now.

rdAWAIT = true

% The delay is terminated.

AWAITCellThreadID.Addr = 0

% Initializing the AWAIT Cell

else
% The counter value should not be zero.

AWAITCellThreadID.Count = \...
AWAITCellThreadID.Count − 1

% Counting down

rdAWAIT = false

% The delay is not terminated.

end if
end if

elsif PreemptionElement.Type = \...
strong then

% The active strong abortion kills the delay

% instruction immediately

AWAITCellThreadID.Addr = 0

% Initializing the AWAIT Cell

rdAWAIT = false

% The delay is not terminated.

else
% The active suspension keeps the state

% of the program. The Await Cell

% does nothing.

rdAWAIT = false

% The delay is not terminated.

end if
end if

Figure 4.14: Algorithm for handling the delay instructions (AWAIT Element).

will start from the CAWAITE instruction, and move back to the first CAWAIT/CAWAITI
instruction of this block. Then, it will check the present status of sensitive signal of all
CAWAIT/CAWAITI instructions, and respond to the first triggered one. Hence, due to
the handling of CAWAIT instructions enclosed by CAWAITS/CAWAITE instructions, the
interleaving between different CAWAIT instruction groups is not allowed. Note that this
does not restrict which programs we accept—as shown in Figure 4.16, concurrent await
case statements can be eliminated in a semantics-preserving way. Figure 4.17 illustrates
the behavior of the CAWAIT instructions.

4.2. THE REACTIVE CORE 67

Figure 4.15: Architecture of the AWAIT Element.

% Esterel

await
case A do
ρ1

case immediate B do
ρ2

case C do
ρ3

end await;
||
await

case E do
ρ4

case F do
ρ5

end await;

% Esterel

await
case A do
ρ1

case immediate B do
ρ2

case C do
ρ3

end await;
||
trap T in

loop
pause;

present E then
ρ4

exit T;

else
present F then
ρ5

exit T;

end;

end;

end loop;

end trap;

(a) (b)

Figure 4.16: Translation of concurrent Esterel await case statements (a) into to an
equivalent Esterel program without concurrent await case statements (b).

Handling Preemption

One of the main challenges of designing the Reactive Block is how to deal with the Esterel
preemption. In the KEP, the Reactive Block has a Preemption Element, which contains

68 CHAPTER 4. THE KEP ARCHITECTURE

% For the Decoder & Controller
if Instr.Op = CAWAITS then

% Entering the CAWAIT instruction group

CAWAITStartF lag = true

% Setting the CAWAITStartF lag to

% denote this tick is the entering instant

% for the CAWAIT instruction group.

CAWAITF lag = true

end if

if Instr.Op = CAWAITE then
if CAWAITF lag = true then

% Execution reaches the end

DecodeAddr = DecodeAddr

% Staying at the CAWAITE instruction.

T ickF lag = false

% The current executed thread should be

% set as inactive.

CAWAITF lag = false

CAWAITStartF lag = false

% Clearing corresponding status flags

else
% Implying the control starts from CAWAITE

% in a later instant (not the entering tick).

DecodeAddr = Instr.Addr

% Going to the first CAWAIT instruction of

% this CAWAIT instruction group.

CAWAITF lag = true

% Setting the corresponding status flag

T ickF lag = true

end if
end if

% For the Decoder & Controller
if Instr.Op = CAWAIT or \...
Instr.Op = CAWAITI then

if rdPRESENT = true then
% The sensitive signal is present.

if Instr.Op = CAWAITI then
% Immediate delay should be responded to

DecodeAddr = Instr.Addr

% Going to the corresponding

% CAWAIT branch

CAWAITStartF lag = false

CAWAITF lag = false

% Clearing corresponding status flags

T ickF lag = true

else
if CAWAITStartF lag = false then

% It is not the entering tick.

DecodeAddr = Instr.Addr

% Going to the corresponding

% CAWAIT branch

T ickF lag = true

else
% Standard delay should not be

% responded to in the entering tick.

DecodeAddr = DecodeAddr + 1

% Going through

T ickF lag = true

end if
end if

else
% The sensitive signal is absent.

DecodeAddr = DecodeAddr + 1

% Going through

T ickF lag = true

end if
end if

Figure 4.17: Algorithm for handling the parallel await.

a configurable number of Watcher modules that are responsible for implementing the
preemption operations.

According to the Esterel semantics, a preemption (abortion or suspension) is enabled
when control is in its body, and disabled when control is outside of its body. When a
preemption is enabled, the corresponding trigger signal is watched and the module can
react to the presence of it (is active). Otherwise, the signal does not cause preemption.
As mentioned in Section 3.2.2, we call this scheme Inside/Outside Preemption Range
Watching (IOPRW).

A Watcher, shown in Figure 4.18, contains two functions to implement the IOPRW, i. e.,
the Enable Watcher and the Trigger Watcher.

4.2. THE REACTIVE CORE 69

Enable Watcher watches the program counter (PC) and compares it with the corre-
sponding preemption’s start and end addresses. Based on that, it decides whether
this preemption should be in the enabled state or in the disabled state. If the
watched signal is present on the Tick rising edge and the Watcher is in the en-
abled state, the Watcher triggers a corresponding action, unless it is overridden by
another Watcher with higher priority, e. g., an enclosing nesting activates a sus-
pension and freezes the state of its body. Once the Watcher changes its state from
disabled to enabled, which means that the PC re-enters the watching range, the
SignalCount will be reloaded into the counter.

Trigger Watcher depends on the configuration of the Watcher. For an abortion, it
watches the trigger signal; if the signal occurs, the Watcher goes into the triggered
state and counts down the signal count; then, depending on whether the trigger
signal count specified by the abortion statement has already been reached or not,
the Watcher decides whether it should go into the terminated state, which would
kill the abort body, or not. For a suspension, the Watcher watches the trigger
signal and decides whether the suspension body ought to go into the suspended
state or not. Once an abortion is terminated or a suspension is activated, a TW
event will be emitted.

Every Watcher contains 5 reconfigurable parameters, i. e., StartAddr, EndAddr, Signal-
Code, SignalCount, and PreemptionFlag. The Watcher is configured by the corresponding
preemption instruction and then it runs autonomously. StartAddr and EndAddr assign
the watching range of the Watcher. SignalCoder indicates which signal ought to be
watched. If the watched signal is valid and Watcher is in the enabled state, the value
of SignalCount is decreased. The Watcher emits a TW event to the environment when
the counter value equals zero. The PreemptionFlag, which indicates the preemption type
and EndAddr registers can be accessed by other KEP components.

When a preemption instruction is executed, the EndAddr, SignalCode, and Preemption-
Flag parameters are given by the preemption instruction code directly, and the cur-
rent PC will be stored as the StartAddr. The SignalCount value is gotten from the
CountSpec port. Furthermore, the Watcher identification (WatcherID) specifies which
Watcher should be configured for the current preemption instruction.

For the immediate strong preemption, the Decoder & Controller will check the status
of the sensitive signal before writing parameters to the corresponding watcher. If the
signal is present, the control will respond to the preemption immediately. For example,
an immediate strong abortion will cause the control jump to the end of abortion scope
directly, and the watcher will not be configured.

Once an indexed Watcher receives an active wrPreemption signal, it will decode the
parameters it needs from the current instruction code and some other signal ports.

Each Watcher contains a Downable flag to indicate whether its SignalCount can count
down in this tick or not. For the non-immediate preemption (standard or count de-
lays), this flag will be cleared to avoid the immediate triggering of the Watcher. For

70 CHAPTER 4. THE KEP ARCHITECTURE

Figure 4.18: Architecture of the Watcher.

the immediate preemption, this flag is set to allow the Watcher to receive control. At
the beginning of the next tick, the Downable flags of all Watchers will be set. Once
the SignalCount of a Watcher is decremented, this flag will be cleared again to avoid
that multiple signal emissions would be considered as multiple signal presences. Figure
4.19 shows the procedure for configuring a Watcher. The PreemptionInstr.Configure
parameter denotes what kinds of watcher should be configured. The value of it can be
Watcher, LWatcher, and TWatcher.

Due to the independence of all Watchers, multiple Watchers in a Preemption Element can
run in parallel. Each Watcher works independently, according to the configured param-
eters. The distributed Watchers structure makes the architecture of ABORT Element
clear, concise and scalable.

Figure 4.20 shows the architecture of a Reactive Block including three Watcher modules.
The Priority Controller checks the TW and PreemptionFlag signals, and uses certain rules
to judge which Watcher’s output signals should be mapped to the Reactive Core via
MUXs that are controlled by the Priority Controller.

Considering the priority of a nested preemption, if a strong abortion is triggered, its
body will be killed immediately, i. e., the program segment which is located inside of the
Watcher will be not executed. The control jumps to the end of the abortion scope. If
a suspension is triggered, its body will be frozen immediately, in other words, its inner
program segment will also not be executed. This feature results from the chain structure
of the Watchers. The Watcher which is located at the higher level corresponds to the
outer preemption. If it is triggered, it will disable all lower ones via the PriorityControl
signal. Or else, if a weak abortion is triggered, lower Watchers can still be triggered.

Hence, for a strong abortion nest, the Priority Controller will check the statuses of the
Watchers from outer to inner. Once there is a triggered Watcher, the Priority Controller

4.2. THE REACTIVE CORE 71

% Definition of Parameters
% PreemptionInstr.Type

% Refers to parameters of PreemptionElement.Type.

% The PreemptionInstr.Type can be ”strong”, ”weak”, or ”suspension”.

% PreemptionInstr.ImmediateF lag

% It indicates whether this instruction expresses an immediate preemption or not.

% wrPreemption

% This signal denotes whether a watcher should be configured or not.

% For the Decoder & Controller
if Instr.Op = PreemptionInstr then

% Executing a preemption instruction

if (PreemptionInstr.ImmediateF lag = true) \...
and (rdPRESENT = true) and PreemptionInstr.Type != weak then

if PreemptionInstr.Type = strong then
% For a triggered immediate strong abortion

DecodeAddr = Instr.Addr

% The control jumps to the end of abortion scope directly

wrPreemption = false

T ickF lag = true

elsif PreemptionInstr.Type = suspend

% For a triggered immediate suspension

DecodeAddr = PC

% The control stops at the current address

wrPreemption = false

T ickF lag = false

% Setting the current executed thread as inactive.

end if
else

% Configuring the watcher and going through

DecodeAddr = PC + 1

wrPreemption = true

T ickF lag = true

end if
end if

% For the Preemption Element
if (wrPreemption = true and PreemptionInstr.Configure = Watcher) then

% Writing parameters to the Watchern
WatcherInstr.WatcherID.StartAddr = PC

WatcherInstr.WatcherID.EndAddr = Instr.Addr

% Configuring watching address range of the Watcher

WatcherInstr.WatcherID.SignalCount = CountSpec

WatcherInstr.WatcherID.SignalCode = Instr.SignalCode

% Configuring the value of the count delay and the sensitive signal.

WatcherInstr.WatcherID.P reemptionF lag = PreemptionInstr.Type

% Configuring the preemption type

WatcherInstr.WatcherID.Downable = PreemptionInstr.ImmediateF lag

% Denoting whether the count could be counted down immediately or not

% (for immediate weak abortion)

end if

Figure 4.19: Algorithm for configuring watchers.

72 CHAPTER 4. THE KEP ARCHITECTURE

Figure 4.20: Architecture of a Reactive Block with three Watchers.

will respond to it immediately and ignore remaining Watchers. For the weak abortion
nest, the Priority Controller will check triggered Watchers from innermost to outermost,
and respond to the first triggered weak abortion.

Note that a suspension could also be nested in a weak abortion. The Priority Controller
follows the order of handling weak abortion nests. If both of them are triggered, the first
triggered weak abortion will be responded to. If there is no triggered weak abortion,
the Priority Controller will map the triggered suspension as the preemption type of the
Preemption Element.

To illustrate its operation, consider the Esterel module NESTED in Figure 4.21(a), which
is an example of a nested preemption. Figure 4.21(b) shows the corresponding KEP
assembler program of the NESTED module, and a possible execution trace is given in
Figure 4.22.

After starting, this Esterel module watches C and A as the abortion trigger signals, and
B as the suspension trigger signal. The execution stays on the delay statement, which is
located inside the preemptions, to wait for signal D. Those three preemptive statements
constitute a mixed preemption nest, and the priority of the outer preemptive statement
is higher than that of the inner one.

When the KEP executes NESTED, first the watchers Watcher0, Watcher1 and Watcher2
are configured via three preemption instructions in line L01 – L03. The PC stays at
AWAIT DL04 until any of the signals A, B, C, or D occur. Since this address is within
each of the watcher’s watching range, all of the watchers are enabled now.

4.2. THE REACTIVE CORE 73

% Esterel

module NESTED:

input A,B,C,D;

output E,F,G,H;

weak abort
suspend

abort
await D;

emit E;

when C;

emit F;

await D;

emit E;

when B;

await D;

emit G;

when A;

emit H;

halt ;

end module

% KEP Assembler

% module NESTED

INPUT A,B,C,D

OUTPUT E,F,G,H

[L00,T0] EMIT TICKLEN, \#20

[L01,T0] WABORT A,A2
[L02,T0] SUSPEND B,A1
[L03,T0] ABORT C,A0
[L04,T0] AWAIT D

[L05,T0] EMIT E

[L06,T0] A0: EMIT F

[L07,T0] AWAIT D

[L08,T0] EMIT E

[L09,T0] A1: AWAIT D

[L10,T0] EMIT G

[L11,T0] A2: EMIT H

[L12,T0] HALT

(a) (b)

Figure 4.21: NESTED: the Esterel module illustrating the preemption statements (a),
the KEP assembler program (b).

Tick -

B

C

C

D

F

A

D

E

H

Figure 4.22: A possible execution trace of the NESTED module.

If B and C occur simultaneously, TW1 and TW2 are set at the same time. The Preemp-
tionFlag1 indicates a suspension, and PreemptionFlag2 indicates strong abortion. The
Priority Controller processes TW events based on rules about priorities and preemption
types of Watchers according to the Esterel semantics. In this case, the suspension trig-
gered by B has higher priority. The Priority Controller maps Watcher1’s outputs to the
Reactive Block’s output, so the Preemption Element’s TP, which means Trigger Pre-
emption, is ’1’ for denoting an active preemption, and the PreemptionFlag indicates a
suspension. The generated control signals will be broadcast to all of the lower priority

74 CHAPTER 4. THE KEP ARCHITECTURE

watchers and other relevant elements. Watcher2 receives the output of the Priority Con-
troller, and since the current active preemption is a suspension, Watcher2 will keep its
state, which means that the counter of this watcher will not be decremented. A decoder
analyzes the TP and PreemptionFlag signals, and decodes them to three signals of the
Reactive Block, i. e., rdAbort, weakFlag and rdSuspend, which denote the current active
preemption for the Decoder & Controller. The Decoder & Controller checks the active
event type of the Preemption Element (which is composed of the rdAbort, the weakFlag,
and the rdSuspend signals), the status of the rdAWAIT, and so on, simultaneously. Since
the active preemption is a suspension, the KEP keeps its state until the current tick is
finished.

Assuming now that the signals C and D occur simultaneously in the next instant,
Watcher2 takes priority. The outputs of Watcher2 are mapped to that of the Preemption
Element, so the Reactive Block’s rdAbort is ’1’ to denote that there is an active abortion.
The returnAddr points the next instruction address behind the body of abortion C, i. e.,
L06, and the weakFlag is ’0’ to indicate a strong abortion type. Since the sensitive sig-
nal of the AWAIT DL04 statement is present, the AWAIT Element sets rdAWAIT to ’1’
to denote that the AWAIT instruction is terminated. The Decoder & Controller checks
the rdAbort, weakFlag and rdAWAIT signals and responds to the strong abortion. The
returnAddr is mapped to the PC via the Address Multiplexer. The KEP jumps out of the
abortion D’s body and executes “EMIT FL06” and “AWAIT DL07”. Now the Watcher2 is
disabled because the PC is out of its watching range, but the Watcher0 and Watcher1
are still enabled.

When signals A and D occur simultaneously in the following instant, weak abortion A
takes priority. The Priority Controller maps Watcher0’s outputs to that of the Preemption
Element, so the Reactive Block’s rdAbort is set to ’1’ for denoting an active abortion, the
returnAddress points to L11—the next instruction address behind the body of abortion
A, and the weakFlag is ’1’ to indicate a weak abortion type. At the same time, the
AWAIT Element sets rdAWAIT to ’1’ to denote that the AWAIT is terminated. Since the
active abortion is a weak abortion, the KEP will respond to the terminated AWAIT DL07

instruction first. The EMIT EL08 is executed and then the AWAIT DL09 is fetched. Since
it is a non-instantaneous statement, the Reactive Core will ignore it—i. e., not configure
the AWAIT Element—and instead respond to the weak abortion. The returnAddress is
mapped to the PC, and then control jumps to A2L11. The KEP executes EMIT HL11 and
HALTL12.

The above mentioned process illustrates the mechanism of the KEP Preemption Element.
In short, the Watcher is the basic cell which is designed as an all-purpose preemption
handling component. A Watcher chain permits arbitrary nesting of preemptions, and
also the combination with the concurrency operator. However, it is questionable whether
the unrestricted use of such an elaborate architecture is the most effective for a real
Esterel application, which commonly does not contain deep preemption nests but instead
typically uses parallel or sequential preemptions. Hence, in practice this architecture

4.2. THE REACTIVE CORE 75

often turns out to be more general than necessary, and hence wasteful of hardware
resources.

Therefore, two subclasses of the Watcher have been proposed to refine the Preemp-
tion Element. The innermost preemption handling component is the Thread Watcher
(TWatcher), which belongs to a thread privately, and is used to handle a preemption
which neither nests concurrent threads nor nests other preemptions. It is the least
powerful, but also the cheapest variant. An intermediate variant is the Local Watcher
(LWatcher). It offers a group of parallel preemption handling components, which can
cross threads, nest Thread Watchers, but cannot nest each other or nest the Watcher.

Figure 4.23: Architecture of the Thread Watcher (TWatcher).

The architecture of the Thread Watcher is illustrated in Figure 4.23. It is similar to a
Watcher, however, it employs a register file to record parameters of the preemptions.
The register file is indexed by the ThreadID signal, which comes from the Thread Block
and identifies the currently executing thread. When the instruction for configuring
the TWatcher is executed, the Reactive Core selects the corresponding register via the
ThreadID and writes parameters into it. Note that only one thread is executed at
a time in a multi-threaded processor. Hence, when this thread is executed again, the
TWatcher will work as a single Watcher.

The principle of the Thread Watcher is also used for the Local Watcher (LWatcher).
However, the index method is different. To the LWatcher, the index value is generated
by the comparison of the current PC and configured start address of the LWatchers.
Then the end address of the indexed LWatcher will be compared with the PC. If the

76 CHAPTER 4. THE KEP ARCHITECTURE

PC is located in the range of the indexed LWatcher, the LWatcher will be enabled. The
LWatcher index strategy costs n address comparators for n LWatchers. For comparison,
the Watcher needs 2n address comparators for n Watchers.

Figure 4.24: Architecture of the Local Watcher (LWatcher).

Due to the LWatchers characteristics, only one (or none) LWatcher can be selected (en-
abled) at once. Hence, the LWatcher can also be regarded as a single Watcher. Figure
4.24 shows the architecture of the Local Watcher. The process of indexing the LWatcher
and LWatcher can be found in Figure 4.25.

As mentioned in Section 3.2.2, the KEP employs different instructions to configure
various watchers, see also the Watcher chain in Figure 4.20. If the lower two Watchers
are replaced by the LWatchers and TWatchers, the depth of the preemption nest is still
three levels, and the process of handling preemption is similar. However, the capability
of the Preemption Element for handling parallel preemptions is obviously enhanced by
slightly increasing resource usage. To make a tradeoff between the Preemption Element’s
resources usage and its capabilities, the abilities of handling suspension of the LWatcher
and the TWatcher are reduced.

Figure 4.26 illustrates the process of triggering Watchers, and the triggering process of
the LWatcher and the TWatcher is shown in Figure 4.27.

As mentioned before, the Watcher Priority Controller handles all triggered watchers, and
decides to which watcher the parameters should be mapped as the output of the Preemp-
tion Element. This mechanism is provided by the ”if-elsif” statements in VHDL [83]. Fig-
ure 4.28 illustrates the model of Watcher Priority Controller, which handles two Watchers,
the Local Watcher, and the Thread Watcher.

4.2. THE REACTIVE CORE 77

% For the Preemption Element
% Indexing the Local Watcher

% (by the comparison between the PC and the address range of Local Watchers)

for n = NLWatcher −1 to 0 do

if (PC > LWatchern.StartAddr) then
LWatcherID = n

% Getting the ID of the LWatcher which could be enabled

% (note address ranges of Local Watchers are exclusive)

end if
end

if PC < LWatcherLWatcherID.EndAddr then
LWatcher.EW = true

% Ensuring this LWatcher is enabled.

else
% The PC is out of the watching address range of this LWatcher

LWatcher.EW = false

end if

% Mapping parameters of the enabled LWatcher for the process

% of triggering Local Watcher

if LWatcher.EW = true

LWatcher.SignalCount = LWatcherLWatcherID.SignalCount

LWatcher.SignalCode = LWatcherLWatcherID.SignalCode

LWatcher.PreemptionF lag = LWatcherLWatcherID.P reemptionF lag

end if

% For the Preemption Element
% Indexing the Thread Watcher

% (by the ThreadID)

TWatcher.StartAddr = TWatcherThreadID.StartAddr

TWatcher.EndAddr = TWatcherThreadID.EndAddr

TWatcher.SignalCount = TWatcherThreadID.SignalCount

TWatcher.SignalCode = TWatcherThreadID.SignalCode

TWatcher.PreemptionF lag = TWatcherThreadID.P reemptionF lag

Figure 4.25: Algorithm for indexing the LWatcher and the TWatcher.

Handling Exceptions

In the KEP, a trap is initialized when its exception is thrown, i. e., the execution of
the EXIT makes a pair of startAddr/endAddr record the address of this trap scope. Be-
sides, the ParentThread parameter of the current thread, which comes from the Thread
Block, is also stored. Once another EXIT instruction is executed, its parameters are also
recorded. An exitFlag will be set to active (’1’) when any exception is active. Once the
control of the processor (PC) reaches the end of the trap scope, the parameters of this
trap will be cleared.

If the scope of the trap T crosses several threads and one of them executes an EXIT
instruction, a sequence of processes will ensure the correctness of the KEP exception
implementation. First, the thread which executes this instruction will be set to the
disabled status, because it tries to access an address which is out of the thread range.

78 CHAPTER 4. THE KEP ARCHITECTURE

% For the Preemption Element
% Judging the Enabled status (EW) of Watchers

forall n ∈ NWatcher do

if (PC > Watchern.StartAddr and PC < Watchern.EndAddr) then
% The PC is located inside of the watching range

Watchern.EW = true

% The Enabled status (EW) of this Watcher is true

else
Watchern.EW = false

end if
end

% Judging the Triggered status (TW) of Watchers

PriorityController = false

SuspensionF lag = false

% Initializing statuses of the Preemption Element

for n = 0 to NWatcher −1 do

% From the outer Watcher to inner one step by step

Watchern.TW = false

% Initializing the trigger status of the Watcher

if Watchern.EW = true then
% When the Watcher is enabled

if PriorityController = false then
% There is no outer triggered strong preemption.

if UniSignal(Watchern.SignalCode) = true then
% The sensitive signal is present

if Watchern.Downable = true then
% The count value of this Watcher could be counted down

if Watchern.P reemptionF lag = Suspend then
% No count delay for suspension (Esterel semantic)

Watchern.TW = true

% Watcher Triggered

SuspensionF lag = true

% Denoting a triggered suspension for lower priority Watchers

else
Watchern.SignalCount = Watchern.SignalCount − 1

% Counting down the count value of this Watcher

Watchern.Downable = false

% This Watcher cannot be counted down again in this tick.

end if
end if
if Watchern.SignalCount = 0 then

% Watcher Triggered

Watchern.TW = true

% Denoting a triggered preemption

end if
if Watchern.TW = true then

if Watchern.T ype = strong or Watchern.T ype = suspension then
PriorityController = true

% Lower priority Watchers are controlled by the strong preemption.

end if
end if

end if
end if

end if
end if

end

Figure 4.26: Algorithm for triggering Watchers.

4.2. THE REACTIVE CORE 79

% For the Preemption Element
if (PC > TWatcher.StartAddr and PC < TWatcher.EndAddr) then
TWatcher.EW = true

% The PC is located inside of the watching range

else
TWatcher.EW = false

end if

% Judging the Triggered status (TW) of the Local Watcher

if PriorityController = false and LWatcher.EW = true then
% There is no higher priority triggered strong preemption

% and the LWatcher is enabled.

LWatcher.TW = false

% Initializing the trigger status of the LWatcher

if UniSignal(LWatcher.SignalCode) = true then
% The sensitive signal is present

if LWatcherLWatcherID.Downable = true then
% The count value of this LWatcher could be counted down

LWatcher.SignalCount = LWatcher.SignalCount − 1

LWatcherLWatcherID.SignalCount = LWatcher.SignalCount

% Counting down, and writing back to the corresponding LWatcher.

LWatcherLWatcherID.Downable = false

end if
if LWatcher.SignalCount = 0 then

% LWatcher Triggered

LWatcher.TW = true

% Denoting a triggered preemption

if LWatcher.Type = strong then
PriorityController = true

% Lower priority watcher (TWatcher) is controlled by the strong preemption.

end if
end if

end if
end if

% Judging the Triggered status (TW) of the Thread Watcher

if PriorityController = false and TWatcher.EW = true then
% There is no higher priority triggered strong preemption

% and the TWatcher is enabled.

TWatcher.TW = false

% Initializing the trigger status of the LWatcher

if UniSignal(TWatcher.SignalCode) = true then
% The sensitive signal is present

if TWatcherThreadID.Downable = true then
% The count value of this TWatcher could be counted down

TWatcher.SignalCount = TWatcher.SignalCount − 1

TWatcherThreadID.SignalCount = TWatcher.SignalCount

% Counting down, and writing back to the corresponding TWatcher.

TWatcherThreadID.Downable = false

end if
if TWatcher.SignalCount = 0 then

% TWatcher Triggered

TWatcher.TW = true

% Denoting a triggered preemption

end if
end if

end if

Figure 4.27: Algorithm for triggering the LWatcher and the TWatcher.

80 CHAPTER 4. THE KEP ARCHITECTURE

% For the Preemption Element
% Judging the final result of the Preemption Element

if Watcher0.TW = true and Watcher0.P reemptionF lag = strong then
% The strong abortion takes priority

PreemptionElement.Addr = Watcher0.EndAddr

PreemptionElement.Type = strong

elsif Watcher1.TW = true and Watcher1.P reemptionF lag = strong then
% The strong abortion takes priority

PreemptionElement.Addr = Watcher1.EndAddr

PreemptionElement.Type = strong

elsif LWatcher.TW = true and LWatcher.PreemptionF lag = strong then
% The strong abortion takes priority

PreemptionElement.Addr = LWatcher.EndAddr

PreemptionElement.Type = strong

elsif TWatcher.TW = true and TWatcher.PreemptionF lag = strong then
% The strong abortion takes priority

PreemptionElement.Addr = TWatcher.EndAddr

PreemptionElement.Type = strong

elsif TWatcher.TW = true and TWatcher.PreemptionF lag = weak then
% The inner weak abortion should first be responded to

PreemptionElement.Addr = TWatcher.EndAddr

PreemptionElement.Type = weak

elsif LWatcher.TW = true and LWatcher.PreemptionF lag = weak then
% The inner weak abortion should first be responded to

PreemptionElement.Addr = LWatcher.EndAddr

PreemptionElement.Type = weak

elsif Watcher1.TW = true and LWatcher.PreemptionF lag = weak then
% The inner weak abortion should first be responded to

PreemptionElement.Addr = Watcher1.EndAddr

PreemptionElement.Type = weak

elsif Watcher0.TW = true and LWatcher.PreemptionF lag = weak then
if SuspensionF lag = true then

% Note for a ”weak abortion–suspension” nest, if both of them are triggered,

% the body of the suspension will be freezed. Then the control will jump

% to the end of the weak abortion scope, i. e., responds to the weak

% abortion like a strong abortion.

PreemptionElement.Type = suspension

else
% The weak abortion should be responded to

PreemptionElement.Type = weak

end if
PreemptionElement.Addr = Watcher0.EndAddr

else
% Excepting for all above mentioned conditions

if SuspensionF lag = true then
PreemptionElement.Type = suspension

% The suspension should be responded to.

else
PreemptionElement.Type = none

% No any active preemption.

end if
PreemptionElement.Addr = 0

end if

Figure 4.28: Algorithm for handling all watchers.

4.2. THE REACTIVE CORE 81

However, other concurrent threads will receive the control one last time and then also
be disabled.

There is another possible state, e. g., some concurrent threads were executed before
executing the EXIT in this tick and were set to the inactive status. Hence, they cannot
directly respond to the exception because they will not awaken in the current instant.
To handle this problem, the Thread Manager will judge the status of the exitFlag at the
join point. If there is an active exception, all concurrent threads which wait at this join
point will be disabled, and then control will not execute the following instruction but
respond to the exception.

As for trap nests, the question is how to distinguish which one ought to take priority. A
simple idea is that the outer trap, which has the larger address range, will override the
inner one. Unfortunately, this strategy is too simple to satisfy all cases.

Two examples are shown in Figure 4.29. The Trap1 and Trap2 modules are similar. The
initial thread defines trap TP1 and then branches thread 1 and thread 2 as two parallels.
Thread 2 defines trap TP2 when it starts, and then forks thread 3 and thread 4.

For either module, thread 3 will exit TP2 trap in the second tick, just after it terminates
the pause statement and emits the S2 signal. The difference of those two modules is that
thread 1 of Trap2 module executes an exit TP1L04 statement to exit trap TP1, just after
it emits S1 signal; however, this exception is thrown by thread 4 in the Trap1 module.

Obviously, trap TP1 and trap TP2 are nested, and either of the two modules will throw
those two exception in the second tick. However, due to the difference of two modules,
their behaviors are different.

For the Trap1 module, after the initial tick, the control of its threads stays on three
pauseL02,L05,L08 statements. In the second tick, thread 1 terminates the pauseL02 statement
and emits the S1 signal. Simultaneously, thread 3 emits the S2 signal and throws the
exception of the TP2 trap; and thread 4 also emits S3 signal and executes exit TP1L10

statement to exit the TP1 trap. Hence, the outer trap TP1 takes priority. The control
moves to the end of the scope of the corresponding trap TP1 declaration. During the
above mentioned process, signal S1, S2, and S3 are emitted.

In the Trap2 module, the thread 1 throws the TP1 exception after emitting the S1 signal.
At the same time, thread 3 executes the exit TP2L08 statement to exit the TP2 trap.
In this case, thread 2 is first weakly aborted, hence, control advances to the end of the
scope of the TP2 trap, and then all of the instantaneous statements will be executed.
That means the S signal will be set to presence via the emit SL13 statement. Then the
control responds to the exception of the T1 trap. During this period, signals S, S1, S2,
and S3 are emitted.

Hence, although the nest structure is same in either case, the different way of threads
throwing exceptions causes the different results.

The KEP uses some elaborate rules to accomplish this task. If the PC is located inside of
the scope of a trap, the corresponding exception will be active. When several exceptions

82 CHAPTER 4. THE KEP ARCHITECTURE

module Trap1:

output R,S,T;

output S1,S2,S3;

[L01,T0] trap TP1 in
[L02,T1] [pause;

[L03,T1] emit S1;

% exit TP1;

||
[L04,T2] trap TP2 in
[L05,T3] [pause;

[L06,T3] emit S2;

[L07,T3] exit TP2;

||
[L08,T4] pause;

[L09,T4] emit S3;

[L10,T4] exit TP1;

];

[L11,T2] emit R

[L12,T2] end trap;

[L13,T2] emit S];

[L14,T0] emit T

[L15,T0] end trap;

[L16,T0] halt ;

end module

Tick -

S1
S2
S3

module Trap2:

output R,S,T;

output S1,S2,S3;

[L01,T0] trap TP1 in
[L02,T1] [pause;

[L03,T1] emit S1;

[L04,T1] exit TP1;

||
[L05,T2] trap TP2 in
[L06,T3] [pause;

[L07,T3] emit S2;

[L08,T3] exit TP2;

||
[L09,T4] pause;

[L10,T4] emit S3;

%exit TP1;

];

[L11,T2] emit R

[L12,T2] end trap;

[L13,T2] emit S];

[L14,T0] emit T

[L15,T0] end trap;

[L16,T0] halt ;

end module

Tick -

S
S1
S2
S3

(a) (b)

Figure 4.29: Esterel modules illustrating the trap nest, and possible execution trace. T0
denotes the initial thread, T1 is thread 1, etc.

are all active, the KEP will compare their ParentThread to estimate whether they
belong to a group of “concurrent” threads. If they have a same parent thread, the outer
trap will cancel the inner one. Or else, the control will respond the inner one at first.

The inherited strategy is used when a trap crosses several threads. At the join point, if
a thread finds there is an active exception which is emitted by its child thread, it will
inherit this exception by modifying the ParentThread of this exception as its parent
thread.

Figure 4.30 shows KEP assembler programs for the Trap1 and Trap2 modules. For the
KEP program of the Trap1 module, all of these threads have the same priority values as 1,

4.2. THE REACTIVE CORE 83

% KEP Assembler

% module Trap1:

OUTPUT R,S,T

OUTPUT S1,S2,S3

EMIT TICKLEN,#15

[L01,T0] TP1S: PAR 1,P1

[L02,T0] PAR 1,P2

[L03,T0] PARE P3

[L04,T1] P1: PAUSE
[L05,T1] EMIT S1

[L06,T2] P2: TP2S: PAR 1,P4

[L07,T2] PAR 1,P5

[L08,T2] PARE P6

[L09,T3] P4: PAUSE
[L10,T3] EMIT S2

[L11,T3] EXIT T2PE,TP2S

[L12,T4] P5: PAUSE
[L13,T4] EMIT S3

[L14,T4] EXIT T1PE,TP1S

[L15,T2] P6: JOIN
[L16,T2] EMIT R

[L17,T2] TP2E: EMIT S

[L18,T0] P3: JOIN
[L19,T0] EMIT T

[L20,T0] TP1E: HALT

% KEP Assembler

% module Trap2:

OUTPUT R,S,T

OUTPUT S1,S2,S3

EMIT TICKLEN,#15

[L01,T0] TP1S: PAR 2,P1

[L02,T0] PAR 1,P2

[L03,T0] PARE P3

[L04,T1] P1: PAUSE
[L05,T1] EMIT S1

[L06,T2] EXIT T1PE,TP1S

[L07,T2] P2: TP2S: PAR 1,P4

[L08,T2] PAR 1,P5

[L09,T2] PARE P6

[L10,T3] P4: PAUSE
[L11,T3] EMIT S2

[L12,T3] EXIT T2PE,TP2S

[L13,T4] P5: PAUSE
[L14,T4] EMIT S3

[L15,T2] P6: JOIN
[L16,T2] EMIT R

[L17,T2] TP2E: EMIT S

[L18,T0] P3: JOIN
[L19,T0] EMIT T

[L20,T0] TP1E: HALT

(a) (b)

Figure 4.30: The KEP programs corresponding to the Trap1 and Trap2 modules (Fig-
ure 4.29).

except that the priority of the initial thread (thread 0) is always zero. In the second tick,
the control starts from the PAUSEL12 instruction of thread 4 due to the scheduling rule
that was mentioned in Section 4.2.1. After the signal S3 is emitted by EMIT S3L13, the
EXIT TP1E,TP1SL14 will throw an exception TP1. The first TRAP Register records the
related information, i. e., the start address TP1S, the end address TP1E, and the parent
thread of the current thread, i. e., the thread 2. Thread 4 is terminated immediately,
and thread 3 is arranged to be executed. Similar to the above mentioned process, it
emits S2 and throws another exception TP1, which ranges from TP2S to TP2E, and the
ParentThread is thread 2 too. Hence, this exception is erased at once because the TP1
trap takes priority. With that, thread 2 responds the TP1 exception at the join point
JOINL15, and modifies the ParentThread parameter as thread 0—the parent thread of
thread 2. Since the target address TP1E of the exception exceeds the range of thread 2,
thread 2 is terminated immediately at the join point. Thread 1 emits the signal S1 and
then is terminated normally. Thread 0 responds to the active TP1 exception by jumping
to TP1E, and then halts. Therefore, signals S1, S2, and S3 are emitted in this tick.

The process of the second tick of the KEP program of Trap2 module is different. To
make it easier to understand, we use the similar execution order of exceptions as that

84 CHAPTER 4. THE KEP ARCHITECTURE

of the Trap1 program. Hence the priority of thread 1 is assigned to 2. So in the
second tick, the control starts from the PAUSEL04 instruction of thread 1, emits the
signal S1, and then throws the TP1 exception. However, the ParentThread parameter
should be recorded as thread 0. Then, thread 3 emits the signal S2 and executes EXIT
TP2E,TP2SL12 after thread 4 emits the signal S3 and terminates normally. The join
point of thread 3 and thread 4 is the JOINL15 instruction of thread 2. This join point
is located in either traps address ranges. Hence two exceptions are active at the same
time. Note their ParentThread parameters are different, so these two exceptions will
be active simultaneously. The control will respond to the inner one at first by jumping
to the TP2E. As the control reaches the scope of the TP2 trap, the TP2 exception is
terminated and its parameters will be cleared. However, the TP1 exception is still active.
Before this thread is terminated, the instantaneous instruction EMIT SL17 is executed.
Now thread 0 will be scheduled and it will respond to exception TP1. Hence, signals S,
S1, S2, and S3 are all emitted in this tick.

Figures 4.31 and 4.32 show the exception handling strategy of the KEP. The EmptyTrapPoint
parameter indicates an empty Trap Register which can be written, and the ClearTrap
parameter marks which Trap Register should be cleared. Finally, the Trap.Active pa-
rameter denotes whether there is an active exception or not, and the target address of
the active exception is mapped to Trap.Addr.

For the Decoder & Controller of the KEP, the strategy of handling an active exception
is similar to that of handling an active weak abortion. But how to respond when an
exception and a weak abortion are both active? Due to the triggering mechanism of the
exception and abortion, if they are active simultaneously, they are nested. Hence, the
response depends on their address ranges — the inner one will be handled first.

There is another interesting situation which could make this mechanism fail. Considering
the example in Figure 4.33(b), which is the corresponding KEP assembler program of
the Esterel program shown in Figure 4.33(a), due to the scheduling method of the KEP,
in the initial tick, the thread 3 emits the signal X and then is inactive. The thread 1
throws an exception, which terminates the thread 1 and thread 2 at their join point,
i. e., the JOINL11 instruction of the thread 0. Note the thread 3, which is nested in the
thread 2, is inactive and will not be scheduled in this tick. Hence it will not receive this
exception and respond to it. In the next tick, the un-terminated thread 3 will be active
and emits signal X again. This result is unexpected.

Of course, in this case, the solution could be very simple: modify the priority of the
thread 1 to 2 to let the exception be thrown at first. Therefore, all other threads could
respond to this exception. However, it could be difficult to arrange the priority of a
thread when the thread nest structure is complex and multiple exceptions could be
thrown. The KEP employs a special hardware mechanism, which is named Join Review,
to solve this problem.

The process of the Join Review consists of two steps. During the execution period of
a tick, all of the threads which stay at the join point will be recorded. If an exception
is thrown and it terminates some other threads, a flag will be set to trigger the Join

4.2. THE REACTIVE CORE 85

% For the Trap Element
if Instr.Op = EXIT then

% Executing the EXIT instruction

TrapEmptyTrapPoint.StartAddr = ExitInstr.StartAddr

TrapEmptyTrapPoint.EndAddr = ExitInstr.EndAddr

TrapEmptyTrapPoint.ParentThread = ThreadThreadID.ParentThread

% Writing parameters to the Trap Registers

end if

for n = 0 to NTrapNum −1 do

if Trapn.ParentThread = ThreadID

% When the control arrives the corresponding parent thread.

Trapn.ParentThread = ThreadThreadID.ParentThread

% Replacing the ParentThread parameter (inherited strategy)

end if

if (PC > Trapn.StartAddr) and (PC < Trapn.EndAddr) then
% Judging the active status of Traps

Trapn.Active = true

end if

if PC = Trapn.EndAddr or ClearTrapn = true then
% When control arrives the scope of a Trap or a Trap is judged to be cleared

Trapn.StartAddr = 0

Trapn.EndAddr = 0

% Erasing the Trap.

end if

if Trapn.EndAddr = 0 then
% When a Trap is not occupied

EmptyTrapPoint = n

% Setting the EmptyTrapPoint as to point to an empty Trap

end if
end

Figure 4.31: Algorithm for setting and clearing an exception.

Review. If the flag is true after the initial thread is inactivated, the KEP will check
all recorded threads again. A thread which takes lower ID will be checked first. If the
parent thread is terminated, all of its child threads are also terminated. Note that since
the ID of a child thread must be larger than that of its parent thread, this process will
terminate all levels of child threads of a terminated thread step by step.

For the example in Figure 4.33(b), the KEP will record thread 2 as the thread which
waits at the join point. Note the exception kills thread 2 at the JOINL11, hence, the
Join Review mechanism is triggered. When the initial thread is inactive, the KEP will
drive the control jump to the JOINL10. At this point, the disabled status of thread 2
will cause the termination of thread 3. Hence, no signal will be output in the next tick.
The execution traces in Figure 4.33(c) show the additional process of the Join Review
mechanism.

86 CHAPTER 4. THE KEP ARCHITECTURE

% For the Trap Element
% Judging which exception should be covered for concurrency exceptions

tmpEndAddr = 0

tmpn = 0

tmpInitF lag = 1

for n = 0 to NTrap −1 do

% Initializing parameters for the following process

if Trapn.Active = true then
if tmpParentThread = Trapn.ParentThread or tmpInitF lag = 1 then

% Current active exception and the previous selected one are

% concurrency exceptions

if (tmpEndAddr > Threadn.EndAddr) and tmpInitF lag = 0 then
% The previous selected exception is the outer one

ClearTrapn = true

% Setting the clear flag of the current exception as true

else
% The current exception is the outer one

if tmpInitF lag = 0 then
ClearTraptmpn = true

% Setting the clear flag of the previous selected exception as true

end if
tmpInitF lag = 0

tmpEndAddr = Trapn.EndAddr

tmpn = n

tmpParentThread = Trapn.ParentThread

% Setting the current exception as the selected one

end if
end if

end

% Judging which exception should take priority for non-concurrency exceptions

tmpEndAddr = 0

tmpn = 0

tmpInitF lag = 1

for n = 0 to NTrap −1 do

% Initializing parameters for the following process

if Trapn.Active = true then
if tmpEndAddr > Threadn.EndAddr or tmpInitF lag = 1 then

% The previous selected exception is the outer one,

tmpInitF lag = 0

tmpEndAddr = Trapn.EndAddr

tmpn = n

tmpParentThread = Trapn.ParentThread

% The inner exception will be selected and responded to first

end if
end if

end

if tmpEndAddr > 0 then
% There is an active exception

Trap.Addr = tmpEndAddr

Trap.Active = true

% Mapping parameters of the active exception to ports of the Trap Element

else
Trap.Addr = 0

Trap.Active = false

end if

Figure 4.32: Algorithm for covering and handling exceptions.

4.2. THE REACTIVE CORE 87

% Esterel

module JOINREVIEW:

output X;

trap T1 in
[

exit T1;

||
[

sustain X;

||
nothing;

];

];

end trap;

halt ;

% KEP Assembler

% module JOINREVIEW:

OUTPUT X

[L00,T0] EMIT TICKLEN,#20

[L01,T0] T1S: PAR 1,P1

[L02,T0] PAR 1,P2

[L03,T0] PARE P3

[L04,T1] P1: EXIT T1E,T1S

[L05,T2] P2: PAR 1,P4

[L06,T2] PAR 1,P5

[L07,T2] PARE P6

[L08,T3] P4: SUSTAIN X

[L09,T4] P5: NOTHING
[L10,T2] P6: JOIN
[L11,T0] P3: JOIN
[L12,T0] T1E: HALT

% Without Join Review

− Tick 1 −
! reset ;

% In:

% Out: X

[L01,T0] [L02,T0] [L03,T0]

[L05,T2] [L06,T2] [L07,T2]

[L09,T4] [L08,T3] [L10,T2]

[L04,T1] [L11,T0] [L12,T0]

− Tick 2 −
% In:

% Out: X

[L08,T3] [L12,T0]

% With Join Review

− Tick 1 −
! reset ;

% In:

% Out: X

[L01,T0] [L02,T0] [L03,T0]

[L05,T2] [L06,T2] [L07,T2]

[L09,T4] [L08,T3] [L10,T2]

[L04,T1] [L11,T0] [L12,T0]

[L10,T2]

− Tick 2 −
% In:

% Out:

[L12,T0]

(a) (b) (c)

Figure 4.33: Algorithm for Join Review mechanism for handling exception.

4.2.3 Decoder & Controller

Similar to some other decoder blocks of processors, the Decoder & Controller block of
the KEP accomplishes the fetch, execution, and idle functions as the execution steps of
a processor. Furthermore, the structure of it also includes verbose “case branches” to
handle various instructions and conditions. This thesis will not discuss those traditional
implementations, which could be found in the standard literature [67, 4].

However, the Decoder & Controller block of the KEP has some novel features to meet
the requirements of a reactive processor. In the previous sections, some functions of
the Decoder & Controller were introduced. Some further features are explained in this
section.

Before the Decoder & Controller executes an instruction, it will respond to some high
priority events. First, due to the mechanism of the Thread Block of the KEP, a child
thread should have higher or the same priority as its parent. However, for some program
structures, it might be inefficient for the compiler to arrange the appropriate priority

88 CHAPTER 4. THE KEP ARCHITECTURE

value to satisfy this requirement. Hence, the KEP provides a mechanism to allow the
priority of the parent thread to be higher than that of its child threads: when a thread
executes a JOIN instruction (to check the status of its child threads) and at least one of
its child threads is still active, the Decoder & Controller will inform the Thread Block to
set the status of this thread as inactive. It does not mean that this thread will not be
scheduled in this tick anymore. If any of its child threads’ status changes from active to
inactive/disabled, this thread will be woken up – its status will be set to active again.

% Esterel

module Wakeup:

output X;

[

nothing;

||
[

emit X;

||
nothing;

];

];

halt ;

% KEP Assembler

% module Wakeup:

OUTPUT X

[L00,T0] EMIT TICKLEN,#20

[L01,T0] PAR 1,P1

[L02,T0] PAR 2,P2

[L03,T0] PARE P3

[L04,T1] P1: NOTHING
[L05,T2] P2: PAR 1,P4

[L06,T2] PAR 1,P5

[L07,T2] PARE P6

[L08,T3] P4: EMIT X

[L09,T4] P5: NOTHING
[L10,T2] P6: JOIN
[L11,T0] P3: JOIN
[L12,T0] HALT

− Tick 1 −
! reset ;

% In:

% Out: X

[L01,T0] [L02,T0] [L03,T0]

[L05,T2] [L06,T2] [L07,T2]

[L10,T2] [L09,T4] [L10,T2]

[L08,T3] [L10,T2] [L04,T1]

[L11,T0] [L11,T0]

(a) (b) (c)

Figure 4.34: The example of waking up a thread.

An example in Figure 4.34(b) illustrates such a process. The priority of thread 2 is
assigned to 2, which is the highest priority of all threads. Hence, after thread 2 has
created its child threads, i. e., thread 3 and thread 4, it is scheduled, and the JOINL10

instruction is executed. Since thread 3 and thread 4 are both active, thread 2 will become
inactive. Then thread 4 executes NOTHINGL09 and terminates. This termination changes
the status of thread 2 to be active. Hence, thread 2 is scheduled again. This process
will continue until all its child threads are inactive or terminated. Figure 4.34(c) shows
the execution trace of this program.

The Decoder & Controller handles other active preemptions in a certain order. Figure
4.35 shows a partial model of the Decoder & Controller, see [83] for details. Figure
4.36 describes the architecture of the Reactive Core of the KEP, which combines the
aforementioned reactive blocks.

4.3. THE INTERFACE BLOCK 89

% For the Decoder & Controller
...

% Execution stage

if PreemptionElement.Type = suspension or \...
(Instr.Op = JOIN and ChildThreadInactive = false) then

% When a suspension is active or a child thread of current thread is active

DecoderAddr = PC

TickF lag = false

% The thread will be set as inactive

elsif PreemptionElement.Type = strong then
% When a strong abortion is active

DecoderAddr = PreemptionElement.Addr

T ickF lag = true

% Responding to the preemption immediately

elsif rdAwait = true then
% When a delay statement is terminated

DecoderAddr = PC + 1

T ickF lag = true

% Going through

else
% A verbose case branches for executing various instructions

...

end if

Figure 4.35: Algorithm for the Decoder & Controller.

4.3 The Interface Block

The Interface Block is created as an interface layer of the reactive system. It supports
the pre operation (introduced in Esterel V5.91), which allows to access the previous
status and value of a signal, directly in hardware. There are two basic pre modes. One
is the pre(S), which indicates the previous status of signal S, i. e., its presence status in
the previous instant. The other is pre(?S), which references the value of signal S in the
previous instant. Figure 4.37 shows the architecture of an Interface Block.

In an earlier version [89, 88, 86], the KEP specified the number of the input and output
signals, and connected a pair of input and output signals as an inner signal. Obviously,
this architecture is easy to be handled, but is inefficient and inflexible. Hence, the KEP
version 3a (KEP3a) [85] uses a Sinout port to present the input/output and inner signals
together, i. e., each bit of the Sinout port can be used as any kind of Esterel signal.

At the beginning of a tick, the KEP clears a signal status register (SinoutReg), and then
stores the status of signals from the environment via the Sinout port. Hence, the status
of input signals is sampled. During the period of a tick, the KEP could set or clear any
bit of the SinoutReg to accomplish the function of signal emission or clearance (for inner
signals). When the tick is finished, the content of the signal is mapped to Sinout, and
the environment can access the status of any signal. Finally, before the next tick starts,
the content of the SinoutReg will be loaded to the preSinoutReg as the pervious status
of signals for corresponding pre operations in the oncoming tick.

90 CHAPTER 4. THE KEP ARCHITECTURE

�
�
�
��

�
�
�
�
�
	
�

�
��
��
�
�
�
��
	

�
��
�
�
�

�
�

��
�

��
�
�
��

�
�
�

�
�
�
�
��
�

�
�
��

�
��

��
�
�
��

�
�
�

�
�
�
�
��
�

�

��
�
�
��

�
��
�
��
��

�
�
�
��
�
��
�
�

�
�
��
�
��
�

�
��
��
�
�
�
�

�
�

�
	
�

�

�
	
�

�
	
�

��
�

�
��
�

�

��
�
�
��

�
�
�

�
�
��
�
�

�
��
��
�
�
�
�

�

�
�
�
�
�

�
�
�
!
"�
#

� $
� �
	
�

�
	
�

��
�

�
�
��
�

�
��

�
��
	
�
�

�
��

�
��
	
�

�

�
�

�
�
�
�
��
%
�
�

�
&
��
�
�
�
�'
"�
#

� $
�

�
	
�

�
	
�

��
�

��
�
(
	
��

�
�
�
�
�
��
�

��
�
�
)
�
�

�

������ ���%���*�

%����
����

�

)
��
�
�
��
�+
!
"�
#

�
��

�
��
	
�
�

,

��
	
�
�
-�
��

�
�

�
�
�
�
�
�
�

�
��
��
�
�
�
��
	

�
��
�
�
�

)
��
�
��

)
��
�
��

�
�
�
	
�
�
��
�
�
�

�
��
�
�
��
�

�
�
�
�
�
�
��
%
�
�

�
	
�

�
	
�

��
�

�
	
�
�

�
��
�
%

�
��
%
.

�
��
�
��
&
��
�
�

�
&
��
�
�

�
�
��
�
�
�

�
&
��
�
�

�

�
�
�
�
�

�
�
�
�
�
�
��
�

�
&
��
�
�

�
��
	

� /

��
�
�
%

�
�
%
�
��
�

�
�
�
�
�
�
��
�

.
�

�
�
��

�

�
�

�
0
�
�

�
&
��
�
�
�

�
�
��

�

�
&
��
�
�

�
	
�
�

�

�
&
��
�
�

�
��
��
)

�

�

1

�
&
��
�
�
�
�'
"�
#

�
�
�
!
"�
#

�
&
��
�
�
�
�
��
2
�

�
��
�
%

�
��
%
.

�
�
��

�

�
�
�
�
��
�

�
	
�
�

)
��
�
�
�
�

�
�
�

�
��
��
�
�
�
�

�

�
�
�
�
�� $

�
&
��
�
��

�

/

$

�

�
�
�
�
�

� �
	
�
�

�
3�
��
��
�

��

Figure 4.36: Architecture of the Reactive Core of the KEP.

4.3. THE INTERFACE BLOCK 91

Figure 4.37: Architecture of an Interface Block.

As mentioned before, the UniSignal is the only signal bus of the KEP, and all input/out-
put and inner signals are mapped to UniSignal. Figure 4.38(a) shows the interface defini-
tion of an example, and the corresponding signal codes are illustrated in Figure 4.38(b).
The model of the UniSignal is visualized int Figure 4.39.

To satisfy the requirements of the implementation of Esterel control structures, e. g.,
the watchers running concurrently, the bits of SinoutReg should be accessed in parallel.
However, considering operations which are related to the carried data of a signal, it is
unnecessary to fetch carried data of signals in parallel. Hence, carried data of signals
are stored in a static random access memory (constituted by block RAM [72]) and can
be accessed sequentially. Of course, the use of block RAM is an efficient way, but it
raises the question how to handle the previous value of a signal, i. e., pre(?S), since the
method of handling statuses of signals could not be used.

The implementation of the Esterel pre(?S) benefits from one property of the signal values.
Unlike the status of a signal, which will be cleared at the start of a tick [19], the value of
a signal is kept until the next emission occurs. Hence, the pre(?S) could be implemented
by sequential processes, too.

To illustrate the mechanism of the pre(?S) implementation, assume there is a valued
signal A. In the KEP, a register SDatRegA records the signal’s value, and another register
preSDatRegA is employed to record the previous value of a signal. Furthermore, a flag

92 CHAPTER 4. THE KEP ARCHITECTURE

INPUT A, B

OUTPUT C

SIGNAL X

Signal UniSignal
d8 − d1 d0

TICKLEN 00000000 0
TICK 00000000 0
A 00000001 0
B 00000010 0
C 00000011 0
X 00000100 0

PRE(A) 00000001 1
PRE(B) 00000010 1
PRE(C) 00000011 1
PRE(X) 00000100 1

(a) (b)

Figure 4.38: The signal definition of an module (a), and the corresponding UniSignal
codes of the signals (b).

% For the Interface Block
UniSignal0 = true

UniSignal1 = T ick.Pre

forall n ∈ NSignalNum do

% the SinoutReg and preSinoutReg signal are interlaced

UniSignal2n = SinoutRegn

UniSignal2n+1 = preSinoutRegn

end

Figure 4.39: Algorithm for building the UniSignal.

SDatRegFlagA is used to denote whether this signal has been emitted in the current tick
or not.

Assume an EMIT A,#5 instruction was executed in a previous tick. Hence, the content
of the SDatRegA is 5. When an instruction references ?A or PRE(?A), the content of
the SDatRegA will be accessed. However, if another emission instruction, for example
EMIT A,#3, emits the signal A with value 3, the previous value 5 will be stored in the
preSDatRegA register, and the new value 3 will be saved in the SDatRegA register. At
the same time, the SDatRegFlagA is also set to denote A was emitted in this tick. Now,
if an instruction tries to get the value of ?A, the content of SDatRegA register (i. e., 3)
will be fetched; or else, if an instruction tries to get the value of PRE(?A), the content
of the preSDatRegA register (i. e., 5) will be accessed. Those processes are distinguished
by the status of SDatRegFlagA. Furthermore, if an instruction emits signal A in this tick

4.3. THE INTERFACE BLOCK 93

again (e. g., for combined valued signals) [19], the content of SDatRegA register will be
modified but the preSDatRegA register is not written.

To make the environment access the carried value, a port of the dual-port SRAM can
be used by some outside circuit when a tick ends. Hence, the environment can read and
write the value of corresponding signals when the Tick signal of the KEP is low, see also
Chapter 5.

Figures 4.40 and 4.41 illustrate the behavior of the Interface Block.

% Definition of Parameters
% Sinout

% The input/output port of the KEP. It also contains the inner signals.

% SinoutReg

% A register to store the status of the input/output and inner signals.

% SinoutRegF lag

% Denoting whether a signal was emitted in the current tick or not.

% For the Interface Block
if T ick.Start then

% When a new tick starts

preSinoutReg = SinoutReg

% Loading the previous status of signals to the preSinoutReg register

SinoutReg = false

SinoutRegF lag = false

% Clearing the signal and corresponding flags

SinoutReg = Sinout

% Reading the status of input signals from the environment

end if

if T ick.F inish then
% When a tick finishes

Sinout = SinoutReg

% Putting the status of signals to the environment

end if

Figure 4.40: Algorithm for handling interface signals when a tick starts/finishes.

Esterel allows two variants of the valued signals. For simple valued signals, only one
statement can emit the signal in an instant. For combined valued signals, multiple
emitters are allowed. At the hardware level of the KEP, nothing can block a signal
being emitted for multiple times in a tick. Hence, combined signals can be implemented
simply by several KEP instructions. For example, Figure 4.42 illustrates a general
translation method for a combined valued signal X: every X emission statement will be
replaced by a sequence of instructions, and a temporary register X REG is introduced.
Whenever an X should be emitted, the KEP tests the status of signal X at first. If this
signal is absent, the KEP will emit it with new value specified in the instruction; or
else, the KEP will combine the value of signal X with the new value together into the
temporary register, and then emits signal X with the content of the register.

94 CHAPTER 4. THE KEP ARCHITECTURE

% Definition of Parameters
% Instr.ExtOp.Reg

% Extended operation code to denote whether the instruction is handling

% a register in the Data Handling Block or not.

% Instr.SignalCode.Pre

% The ”PRE” flag of the signal code. See also Section 3.5.

% SDatReg

% The carried data of a signal.

% preSDatReg

% The previous carried data of a signal.

% RegIn

% It comes from the Data Handling Block and presents the content of a register.

% RegOut

% It puts the carried data of a signal to the Data Handling Block.

% For the Interface Block
if Instr.Op = EMIT or Instr.Op = SUSTAIN or Instr.Op = SETV then

% Executing the signal emission or initializing instruction

if Instr.Op != SETV then
% Executing the signal emission instruction

SinoutRegInstr.SignalCode = true

% Setting the presence of the signal as true

if SinoutRegF lagInstr.SignalCode = false then
% If it is the first emission of this signal in the current tick

SinoutRegF lagInstr.SignalCode = true

preSDatRegInstr.SignalCode = SDatRegInstr.SignalCode

% The previous value of the signal will be pushed to the

% corresponding preSDatReg register

end if
end if
% Writing the carried data of the signal

if Instr.ExtOp.Reg = true

% The data comes from a register (e. g., EMIT A,Reg0)

SDatRegInstr.SignalCode = RegIn

else
% The data comes from the immediate data (e. g., EMIT A,#5)

SDatRegInstr.SignalCode = Instr.data

end if
elsif Instr.Op = SIGNAL then

% Handling the local signal

SinoutRegInstr.SignalCode = false

preSinoutRegInstr.SignalCode = false

% Clearing previous/current status of the signal

end if

% Put the carried data of a signal to the RegOut port

if Op.SignalCode.Pre = true then
% An instruction tries to fetch the pervious value (e. g., LOAD Reg0,PRE(?S))

if SinoutRegF lagInstr.SignalCode = false then
RegOut = SDatRegInstr.SignalCode

else
RegOut = preSDatRegInstr.SignalCode

end if
else
RegOut = SDatRegInstr.SignalCode

end if

Figure 4.41: Algorithm for executing the signal emission instruction.

4.4. THE DATA HANDLING BLOCK 95

% Esterel

output X := 0 : combine integer with +;

[

emit X(5);

||
emit X(3);

]

% KEP Assembler

OUTPUTV X

VAR X REG

PAR 1,P1

PAR 1,P2

PARE P3

P1: PRESENT X, P1A

LOAD X REG,?X

ADD X REG, #3

GOTO P1B

P1A: LOAD X REG, #3

P1B: EMIT X, X REG

P2: PRESENT X, P2A

LOAD X REG,?X

ADD X REG, #5

GOTO P2B

P2A: LOAD X REG, #5

P2B: EMIT X, X REG

P3: JOIN

(a) (b)

Figure 4.42: Translating the Esterel combined valued signal (a) to the corresponding
assembler code for KEP (b).

4.4 The Data Handling Block

The basic function of the Data Handling Block is very similar to the Arithmetic Logic
Unit (ALU) of a processor. It performs all arithmetic computations, such as addition
and multiplication, and all comparison operations. The implementation of the ALU is
not a topic in this thesis. However, some features are also provided by the Data Handling
Block and provide high-efficiency for the Esterel optimized signal and data handling.
For example, the RegIn and RegOut ports, mentioned in Section 4.3, provide channels
for communicating the Data Handling Block and the Interface Block.

Data Handling Block also provides the count value for the delay. Whenever a LOAD
COUNT,n instruction is executed, the value of n will be presented on the CountSpec.

However, assigning the count value for every instruction which has the delay expression
is inefficient. Most of the delay/preemption instructions of an Esterel program just
contain standard delays. Hence, the assigned data on the CountSpec will be kept for one
instruction cycle to let the next instruction read it. Then the immediate data 1 will be
presented on the CountSpec as the default data. In other words, for the standard delay
expression, it is unnecessary to add a LOAD COUNT, n instruction to assign a count
value.

96 CHAPTER 4. THE KEP ARCHITECTURE

4.5 The Tick Manager and Energy Saving

One of the distinguishing features of the Kiel Esterel Processor is the Tick Manager,
by which the KEP can autonomously ensure that logical ticks are computed at a fixed
frequency. Furthermore, the Tick Manager internally monitors timing violations. The
Tick Manager is activated by setting the pre-defined valued signal TICKLEN to a certain
value, typically at the beginning of the program. For the REINC example shown in
Figure 3.14(b), the statement “EMIT TICKLEN, #15” defines the length of a logical
tick to be fifteen instruction cycles. Hence, if a tick is finished in less than TICKLEN
instruction cycles, KEP idles for the remaining cycles before starting the next tick. If,
on the other hand, a tick is not finished within TICKLEN cycles, this is considered a tick
length timing violation [108]. As already described in Section 4.1, such timing violations
are signaled to the environment via a special signal, TickWarn, with a dedicated output
pin; this signal remains present until the next reset of the processor. As the KEP
instruction cycles require a fixed number of clock cycles, providing a value for TICKLEN
alleviates the need for the environment to provide a timer that starts the ticks in regular
intervals. Furthermore, the self-monitoring makes it easy for the environment to detect
any timing violations. The Worst Case Reaction Time (WCRT) analysis presented in
[86, 28, 27] arms to determine a conservative, yet tight value for TICKLEN.

- � Tosc

� -Ttick
� -Tmin

� -Tmax

Tick

@
@I

Sample Inputs
�
��
@
@I

Sample Outputs
�
��

Figure 4.43: A waveform of the Tick signal and derived values.

To understand how a given value for TICKLEN translates to concrete reaction times,
we now consider the KEP instruction timing and signal sampling. Let Tosc be the
basic clock rate supplied to the processor (via the Oscclk pin). The KEP signals the
passage of logical ticks to the environment via a Tick signal, with a corresponding output
pin. As illustrated in Figure 4.43, the KEP samples its inputs at rising edges of Tick.
Furthermore, the KEP holds all outputs generated during a tick until the end of the tick,
so the falling edges of Tick indicate when the environment should sample the outputs
generated by the KEP. After the falling edge, Tick remains low for a gap of width Tosc
before it rises again.

Let Treact be the time from the occurrence of an input signal (or combination thereof)
until the generation of a corresponding output signal (or combination thereof). Assuming

4.5. THE TICK MANAGER AND ENERGY SAVING 97

that the environment may generate inputs at arbitrary times and that the KEP is
computing reactions on its own, regular schedule, Treact may vary within an interval:

Tmin ≤ Treact < Tmax. (4.1)

Here, the lower bound Tmin is determined by the time it takes to actually compute a
reaction, i. e., the length of a tick—which is the time from a rising edge of Tick to a
falling edge of Tick. This reflects the case where an input is sampled immediately when
it is generated; i. e., an input happens to occur just when the KEP starts to compute a
reaction. Let Vticklen be the maximal number of instructions that must be executed to
compute a tick. Each KEP instruction takes three clock cycles. When a tick is finished,
the Tick signal will be set to low for one instruction cycle. Hence, the lower bound on
the reaction time can be computed as follows:

Tmin = (3Vticklen + 1)× Tosc. (4.2)

The upper bound Tmax reflects the case when an input occurs just after inputs have been
sampled, in which case the sampling of this input is delayed by the length to compute
a tick, given by Tmin, plus the gap Tosc. We denote the interval from one rising edge of
Tick to the next rising edge by Ttick and obtain:

Ttick = Tmin + Tosc, (4.3)

Tmax = Tmin + Ttick(= (6Vticklen + 3)× Tosc). (4.4)

For example, we obtain for a clock rate of Tosc = 50ns and Vticklen = 8 the following
range for the reaction times:

1.3µs ≤ Treact < 2.55µs. (4.5)

Figure 4.44 illustrates the KEP timing behavior for a small example. For the mod-
ule OVERRUN in Figure 4.44(a) and some given input scenario (input signal D always
absent), the KEP produces the timing shown in Figure 4.44(b). In this example, the
program is running on a KEP implemented on a Memec V2MB1000 Development Board
at a rate of Tosc = 41.67ns, the waveform was recorded by an Agilent 1683A Logic An-
alyzer. In OVERRUN, the first EMIT statement sets TICKLEN to three; in other words,
the module claims that Vticklen, the maximal number of instructions executed within a
tick, is at most three. If TICKLEN is larger than Vticklen, it means that the ticks are
longer than necessary to finish the computations before the next tick starts; if TICKLEN
is smaller than Vticklen it means that we run the risk of timing violations.

Setting TICKLEN to some value activates the Tick Manager. This from then on will
on the one hand ensure that ticks which complete in less than, for example, three
instructions will be padded until they are three instruction cycles long. On the other
hand it will signal a timing violation if a tick is not completed within three instructions.
In the example, the first logical tick lasts three instruction cycles. In the second tick,

98 CHAPTER 4. THE KEP ARCHITECTURE

% KEP Assembler

% module OVERRUN

INPUT D

OUTPUT A,B,C

EMIT TICKLEN, #3

EMIT A

EMIT B

PAUSE
EMIT A

EMIT B

EMIT C

AWAIT D

(a) (b)

Figure 4.44: An example KEP assembler code illustrating the Tick Manager (a), and a
resulting timing diagram (b).

the controller has to execute five instructions until the AWAIT statement is executed.
Hence, the TickWarn signal will be set high when the fourth instruction cycle is executed
to indicate the tick length timing violation.

The goal of the WCRT analysis is to automatically deduce a value for TICKLEN that
is just large enough to never induce a timing violation; ideally, we achieve TICKLEN =
Vticklen.

For controller programming, the main goal of Esterel, the control signals tend to be more
often absent than present [19]. The condition of all signals being absent is called a blank
event. For a reactive processor, very few instruction cycles are required for executing a
blank event. To utilize this advantage of the KEP, when less than TICKLEN instructions
have been executed and there are no instructions needed for the current tick, i. e., all
threads are in inactive status, an IDLE signal will be broadcast to gate the clock of other
elements for power reduction [8, 9, 97, 70].

4.6 Putting It All Altogether

To study how the KEP combines concurrency and preemption, it is instructive to work
through the example code in Figure 4.45(a) (quoted from Figures 3.20(c) and 3.8(b)),
and Figure 4.45(a) gives the trace of execution.

After starting the module, the initial thread (thread 0) is enabled and active. The EMIT
TICKLEN,#20L00 instruction sets the length of a logical tick to twenty instruction cycles.

The AWAIT SL01 configures the AWAIT Cell of thread 0, then this delay instruction clears

4.6. PUTTING IT ALL ALTOGETHER 99

% KEP Assembler

% module EXAMPLE:

INPUT S, I, H

OUTPUT O1, O2

SIGNAL A, R

[L00,T0] EMIT TICKLEN, #20

[L01,T0] AWAIT S

[L02,T0] A0: ABORT S, A1

[L03,T0] TP1S: TP2S: PAR 3, P1

[L04,T0] PAR 2, P2

[L05,T0] PARE P3

[L06,T1] P1: AWAIT I

[L07,T1] WABORTI A, A2

[L08,T1] SUSPEND H, A4

[L09,T1] A3: EMIT R

[L10,T1] PRIO 1

[L11,T1] PRIO 3

[L12,T1] PAUSE
[L13,T1] GOTO A3

[L14,T1] A4: A2: EMIT O1

[L15,T1] EXIT TP1E,TP1S

[L16,T2] P2: LOAD COUNT, #2

[L17,T2] AWAIT TICK

[L18,T2] PRESENT R, A5

[L19,T2] EMIT A

[L20,T2] A5: EXIT TP2E,TP2S

[L21,T0] P3: JOIN 0

[L22,T0] TP2E: EMIT O2

[L23,T0] TP1E: HALT
[L24,T0] A1: GOTO A0

Tick -
S I

R

H

O2

S I

R R
A
O1

% Execution trace

− Tick 1 −
! reset ;

% In:

% Out:

[L00,T0] [L01,T0]

− Tick 2 −
% In: S

% Out:

[L01,T0] [L02,T0] [L03,T0] [L04,T0] [L05,T0]

[L06,T1] [L16,T2] [L17,T2] [L21,T0]

− Tick 3 −
% In: I

% Out: R

[L06,T1] [L07,T1] [L08,T1] [L09,T1] [L10,T1]

[L17,T2] [L11,T1] [L12,T1] [L21,T0]

− Tick 4 −
% In: H

% Out: O2

[L12,T1] [L17,T2] [L18,T2] [L20,T2] [L21,T0]

[L22,T0] [L23,T0]

− Tick 5 −
% In: S

% Out:

[L23,T0] [L24,T0] [L02,T0] [L03,T0] [L04,T0]

[L05,T0] [L06,T1] [L16,T2] [L17,T2] [L21,T0]

− Tick 6 −
% In: I

% Out: R

[L06,T1] [L07,T1] [L08,T1] [L09,T1] [L10,T1]

[L17,T2] [L11,T1] [L12,T1] [L21,T0]

− Tick 7 −
% In:

% Out: R A O1

[L12,T1] [L13,T1] [L09,T1] [L10,T1] [L17,T2]

[L18,T2] [L19,T2] [L20,T2] [L11,T1] [L12,T1]

[L14,T1] [L15,T1] [L21,T0] [L23,T0]

(a) (b)

Figure 4.45: Execution the EXAMPLE program.

the TickFlag false to denote that this thread should be inactive. Although none of the
threads are active, there is only one instruction cycle spent since the tick has started.
Hence, this tick should be automatically extended until the remaining nine instruction
cycles have passed after the IDLE signal is emitted to idle function blocks of the KEP
to save energy.

100 CHAPTER 4. THE KEP ARCHITECTURE

For the example input trace, in the second tick, when the KEP fetches the AWAIT SL01,
the signal code of this instruction (Instr.SignalCode) makes the status of the S to
be mapped to the rdPRESENT signal. Hence, the presence of rdPRESENT terminates
AWAIT SL01. Next, the ABORT S, A1L02 configures the Watcher0 to watch the signal S.
The StartAddr of the Watcher0 (abbreviated as W0.StartAddr below) is A0L02, and the
W0.EndAddr is A1L24. Due to the nature of this instruction, the preemption type of the
Watcher0 (W0.PreemptionFlag) is strong.

The following PAR/PARE instructions create two new threads. Thread 1 gets the initial
priority 3. The local program counter (ThreadCurAddr1) of thread 1 points to the upper
bound of the thread scope (P1L06). The lower bound of this thread (P2L16) is stored in
the corresponding ThreadEndAddr1 register. Similarly, thread 2 gets the lower priority
2, and its range is from P2L16 to P3L21. Note that the created sub threads will not be
scheduled until the PAREL05 instruction ends the configuration of the last concurrent
thread. Furthermore, the PARE P3L05 instruction also makes the ThreadCurAddr0 point
to JOIN 0L21. Now all active threads, i. e., threads 0, 1, and 2, are handled by the
Scheduler. Since thread 1 has the highest priority, it is scheduled first.

For thread 1, the non-instantaneous statement AWAIT IL06 causes it to become inac-
tive, hence thread 2 is scheduled. At first, the counter specification instruction LOAD
COUNT,#2L16 loads the counter value for the next instruction, and then the AWAIT
TICKL17 configures the AWAIT Cell of thread 2 with the delay count 2, and then causes
this thread to become inactive. The last active thread, i. e., thread 0, executes the
JOINL21 instruction to check the statuses of its incoming branched threads. Since those
two threads are still enabled, the JOINL21 will not be terminated. Therefore, thread 0
turns to inactive, and the current tick is finished because all of threads are inactive.

When the third tick starts, all enabled threads are activated again. The Scheduler
again starts with thread 1. The presence of signal I terminates AWAIT IL06. Next, the
WABORTI A, A2L07 makes the Watcher1 immediately watch the signal A; and SUSPEND
H,A4L08 configures the third watcher, i. e., the Watcher2, to be sensitive to signal H.
Then the signal R is set by the EMIT RL09 instruction. The execution continues and
the priority setting instruction PRIO 1L10 changes the priority of this thread (thread 1)
to 1. Note that at this point the priority of thread 2 is 2, which is larger than that of
thread 1, hence, the Scheduler pauses the execution of thread 1 and switches to thread
2. However, the address of the PRIO 3L11 – the next instruction of the PRIO 1L10–will
be stored at the ThreadCurAddr1, and the status of thread 1, i. e., active and enabled, is
still kept.

When thread 2 turned to inactive in the previous tick, its ThreadCurAddr pointed to
the AWAIT TICKL17. Hence, this instruction is executed. Remember that the count
value of this AWAIT Cell was configured as 2 by the LOAD COUNT, #2L16. At this
time, the count value is decremented to 1. Since it does not equal zero, thread 2 will be
inactive again. Hence, thread 1 resumes from the PRIO 3L17 instruction, which ensures
that thread 1 is scheduled before thread 2 in the subsequent tick, before it becomes
deactivated by PAUSEL18.

4.6. PUTTING IT ALL ALTOGETHER 101

In the fourth instant, the presence of signal H triggers the Watcher2. Hence, the Pre-
emption Element informs the Decoder & Controller that there is an active suspension. It
causes the Decoder & Controller further to indicate to the Thread Block that the current
thread should be inactive. These processes follow the description of those blocks, which
are shown in Figure 4.26, 4.28, and 4.35.

Hence thread 1 is inactive but still enabled. Thread 2 terminates the AWAIT TICKL17

because two ticks are escaped. The following signal test instruction PRESENT R,A5L18

branches to A5 since signal R is not emitted. Then the EXIT TP2E,TP2SL20 instruction
configures the trap-handler cell Trap0. The target address of the EXIT (TP2EL22) is
transferred to the Thread Block as the preferred address of the Decoder & Controller via
the DecoderAddr port. However, it is greater than the end address of the current thread
(P3L21), hence, thread 2 is disabled by such a cross-boundary operation. Now only thread
0 is active, it executes the JOINL21 instruction to test status of its sub threads. All child
threads at the join point are terminated because there is an active exception. i. e., at
the join point, thread 1 is killed. Now all of the incoming branch threads are disabled,
the control responds to the exception by jumping to TP2EL22. Since the control arrives
at the end of the Trap0 scope, contents of the Trap0 are immediately cleared. Then the
O2 signal is emitted, and the control is halted by the HALTL23 instruction.

At the next tick, the disabled thread 1 and 2 will not be scheduled, and control starts
from the terminated HALTL23 instruction. As S is present, the Watcher0 is triggered.
Since this is a strong abortion, the controller responds to it immediately. The W0.EndAddr
(A1L24) is obtained as the program counter of the KEP. The control jumps to GOTO
A0L24 and then continues as in the second tick again.

Similarly, in the seventh instant, the PRIO 1L10 instruction causes the thread to be
paused, thread 2 resumes from AWAIT TICKL17 and executes PRESENT R,A5L18 to test
the presence of signal R. Since the signal R was emitted by thread 1, the PRESENT
instruction will not cause the branch, and EMIT AL19 is executed. Note that the Watcher1
will not be triggered because the program counter (PC) of the KEP is outside of the
watching scope of Watcher1. Next, the EXIT TP2E,TP2SL20 configures the Trap0 and
terminates thread 2. Hence, the control is handed over to thread 1 again. Note that the
program counter is in the watching range of the Watcher1, which is triggered by A. As
this is a weak abort, the abort body is still executed until a delay type instruction is
reached. Now the Trap0 is still active. However, as mentioned in Section 4.2.2, the weak
abort will get the priority because its body is nested in that trap. That is, the PRIO 3L11

is executed, then the PAUSEL12 is fetched. Since it is a non-instantaneous statement,
it will be ignored, and control leaves the abortion block. Therefore, after the signal
O1 is emitted, the EXIT TP1E,TP1SL15 instruction, which corresponds to the exception
TP1, configures the Trap1. Note that exceptions TP1 and TP2 are thrown by thread 1
and thread 2, which have the same parent thread. Hence, the Trap0—the inner one—is
cleared immediately, following the rule mentioned in Figure 4.32. Hence, at the join
point, only the second exception exists. The control responds to the exception, jumps to

102 CHAPTER 4. THE KEP ARCHITECTURE

TP1EL23 and then halts. To conclude, the result of the KEP assembler program exactly
corresponds to the expected result of the Esterel module.

4.7 Summary

This chapter has presented the architecture of the KEP. It provides a complete, se-
mantically accurate implementation of all of the Esterel primitives, which include delay,
concurrency, preemption, and exception.

A key concept realized in this architecture is that it offers concurrency orthogonally
to the other reactive control flow behaviors, rather than providing concurrency on top
of reactive behavior as is done in the multiprocessing approach. This is achieved by
combining a single, sequential processing engine with separate control flow units for
concurrency, preemption, signal testing, etc., which freely interact with each other ac-
cording to the Esterel semantics.

Unlike patched processor solution, the KEP is a real reactive processor, which has a reac-
tive kernel and adapted semi-custom (scalable) peripheral elements. It follows the exact
definition of Esterel, processes valued signal and counter directly, and has configurable
peripheral elements for making a processor series.

Chapter 5

Experimental Results

This chapter first describes the design flow of the KEP implementation of Esterel mod-
ules and the KEP Evaluation Platform, in Section 5.1. Then a comparison between the
KEP and other execution platforms, such as the MicroBlaze, is given in Section 5.2.
Section 5.3 represents the detailed experimental results for the KEP.

5.1 The KEP Evaluation Platform

To validate the correctness of the KEP and its compiler and to evaluate its performance,
we employ an evaluation platform whose structure is shown in Figure 5.1. The user
interacts via a host work station with an FPGA Board, which contains the KEP as well
as some testing infrastructures.

FPGA BoardUser
strl2kasm

.log

.eso

.kokasm2ko

.strl

Output

.esi InputTickGen

ProtocolGen

Host
.kasm

EStudio

T
es

t D
ri

ve
r

KEP Assembler

Processor
Kiel Esterel

Environment

Figure 5.1: Structure of the KEP evaluation platform.

The implementation of an Esterel module on the KEP consists of several steps, which
include compilation, implementation, and validation.

103

104 CHAPTER 5. EXPERIMENTAL RESULTS

5.1.1 Compilation

Currently, the compiling process of the KEP is accomplished by two compilers: an Esterel
module is compiled to a KEP assembler (.kasm) program by the KEP (Esterel) compiler
(strl2kasm), and then the KEP Assembler Compiler (kasm2ko) compiles the assembler to
the binary executable object code (.ko) of the KEP. Figure 5.2(a) illustrates the Esterel
EXAMPLE module (cited from Figure 3.8(a)), the KEP assembler program generated
by strl2kasm is shown in Figure 5.2(b), and Figure 5.2(c) shows the corresponding KEP
machine code listing.

The strl2kasm compiler is based on the CEC compiler 0.3 (CEC) infrastructure [43].

The KEP Assembler Compiler (kasm2ko) in turn consists of two parts, the KEP Machine
Code Generator (kasm2klst), and the KEP Object Code Generator (klst2ko). The KEP
Machine Code Generator is responsible for refining the preemption instructions, to make
optimal use of the different watcher types (see Section 4.2.2). The KEP Machine Code
Generator will analyze the nesting relation of each preemption, and map the preemption
to subclasses of the Watcher to be executed, i. e., replace original [W]ABORT[I] instruc-
tions with refined T|L[W]ABORT[I] instructions. For this function, the compiler scans all
abortion instructions in the program twice. At the first scanning, the compiler scans all
abortion instructions. For each [W]ABORT[I] instruction, if there is neither a PAR/PARE
instruction nor preemption instruction in its address range, it will be replaced with the
T[W]ABORT[I], which denotes this abortion should be mapped to a TWatcher. For the
second scanning, the remaining [W]ABORT[I] instructions will be analyzed again. If
there is no [W]ABORT[I] instruction in its address range, it will be replaced with the
L[W]ABORT[I]. Considering the address ranges of the nested abortions, this replacement
strategy provides address ranges of L[W]ABORT[I]s that are exclusive.

5.1.2 Implementation

Currently, the KEP is written in VHDL [83]. Those VHDL programs are synthesized
and implemented by the Xilinx ISE version 6.3.3, and all options use default values.
Then the FPGA programming file can be downloaded to the corresponding FPGA chip.
The content of the instruction memory, i. e., the object code of a KEP program, can be
written into the instruction memory and further downloaded to the FPGA together, or
can be updated later.

The blocks of the KEP are scalable, so they can be reduced or extended for making
a processor series. To generate the different configurations of the KEP, a program is
developed to generate appropriate VHDL codes with given parameters. This program
is integrated in the KEP assembler compiler. For details on its options, see Appendix
B.1.

In addition to this, some additional hardware/software was also developed for the eval-
uation platform. On the host side, the KEP evaluation program, developed with Visual
Basic 6.0, provides a graphical tool for running and debugging a KEP program. On the

5.1. THE KEP EVALUATION PLATFORM 105

% Esterel
module EXAMPLE:
input S, I , H;
output O1, O2;
signal A,R in
every S do

trap T1 in
trap T2 in

[await I ;
weak abort

suspend
sustain R;

when H;
when immediate A;
emit O1;
exit T1;
||

await 2 tick ;
present R then

emit A;
end present;
exit T2;];

end trap;
emit O2;

end trap;
end every;
end signal
end module

(a)
% Esterel LOC: 26
% Esterel LOC (expanded): 26
% Esterel LOC (expanded+kepdismantled): 49
%%% Esterel Module: EXAMPLE

%%%−−−−−I/O SIGNALS−−−−−
INPUT S,I,H
OUTPUT O1,O2
%%%−−−−−TOP LOCAL SIGNALS−−−−−
SIGNAL A,R
%%%−−−−−REGISTERS−−−−−
VAR COUNT
%%%−−−−−INTERFACE STATEMENTS−−−−−
EMIT TICKLEN,#21

[L01,T0] AWAIT S
[L02,T0,P1] A2: ABORT S,A3
[L03,T0,P1] A4:A5: PAR 1,A6,1
[L04,T0,P1] PAR 1,A7,2
[L05,T0,P1/1] PARE A8,1
[L06,T1,P1] A6: ABORT I,A9
[L07,T1,P3] A10: PRIO 3
[L08,T1,P1/3] PAUSE
[L09,T1,P1] PRIO 1
[L10,T1,P1] GOTO A10
[L11,T1,P3] A9: WABORTI A,A11
[L12,T1,P3] SUSPEND H,A12
[L13,T1,P3] A13: EMIT R
[L14,T1,P2] PRIO 2
[L15,T1,P3] PRIO 3
[L16,T1,P2/3] PAUSE
[L17,T1,P3] GOTO A13
[L18,T1,P1] A12: NOTHING
[L19,T1,P2] A11: EMIT O1
[L20,T1,P2] EXIT T1,A4
[L21,T2,P1] A7:A14: LOAD COUNT,#2
[L22,T2,P2] A15: PRIO 2
[L23,T2,P1/2] PAUSE
[L24,T2,P2] PRESENT TICK,A16
[L25,T2,P2] SUB COUNT,#1
[L26,T2,P2] A16: CMPS COUNT,#0
[L27,T2,P2] JW LE,A17
[L28,T2,P2] EXIT AWAIT DELAY,A14
[L29,T2,P1] A17: PRIO 1
[L30,T2,P1] GOTO A15
[L31,T2,P2] AWAIT DELAY: PRESENT R,A18
[L32,T2,P2] EMIT A
[L33,T2,P2] A18: EXIT T2,A5
[L34,T0,P1] A8: JOIN 0
[L35,T0,P1] T2: EMIT O2
[L36,T0] T1: HALT
[L37,T0,P1] A3: GOTO A2

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Generated by KEP4 Assembler Compiler Version 4.20
% Original file : EXAMPLE.opt.kep.kasm
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Esterel LOC: 26
% Esterel LOC (expanded): 26
% Esterel LOC (expanded+kepdismantled): 49
%%% Esterel Module: EXAMPLE
%%%−−−−−I/O SIGNALS−−−−−
INPUT S I H
OUTPUT O1 O2
VAR COUNT
% Signal codes
% Input ports (include local signals)
% [000000010] I/O(#1) S
% [000000100] I/O(#2) I
% [000000110] I/O(#3) H
% [000001100] I/O(#6) A %signal
% [000001110] I/O(#7) R %signal
% Output ports (include local signals)
% [000001000] I/O(#4) O1
% [000001010] I/O(#5) O2
% [000001100] I/O(#6) A %signal
% [000001110] I/O(#7) R %signal
% Variable
% [0000000010] (1) COUNT
%
% Summary:
% Input signals : 3 (Pure: 3, Valued: 0)
% Output signals : 2 (Pure: 2, Valued: 0)
% Local signals : 2 (Pure: 2, Valued: 0)
% Variables : 1
% RAM Usage (in byte): 4
% Code size (in byte): 171
% Code size (in word): 38
% Watchers needed: 3
% LWatchers needed: 0
% Preemption by TWatcher: 1
% Watcher Num if no L|TWatcher: 4
% Threads needed: 2
%
% Instruction code:
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Addr {Hex code} Label: Mnemonic
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[00000] {40000003F} EMIT TICKLEN, #21 %T0 P1
[00001] {080800000} AWAIT S %T0
[00002] {100800025} A2: ABORT S, A3 %T0 P1
[00003] {480810006} A4: A5: PAR 1, A6 (, 1) %T0 P1
[00004] {480820015} PAR 1, A7 (, 2) %T0 P1
[00005] {480800022} PARE A8, 1 %T0 P1/1
[00006] {70100000B} A6: TABORT I, A9 %T1 P3
[00007] {481800000} A10: PRIO 3 %T1 P3
[00008] {080000000} PAUSE %T1 P1/3
[00009] {480800000} PRIO 1 %T1 P1
[00010] {000010007} GOTO A10 %T1 P1
[00011] {283010013} A9: WABORTI A, A11 %T1 P2
[00012] {301820012} SUSPEND H, A12 %T1 P3
[00013] {403800000} A13: EMIT R %T1 P3
[00014] {481000000} PRIO 2 %T1 P2
[00015] {481800000} PRIO 3 %T1 P3
[00016] {080000000} PAUSE %T1 P2/3
[00017] {00001000D} GOTO A13 %T1 P3
[00018] {000000000} A12: NOTHING %T1 P1
[00019] {402000000} A11: EMIT O1 %T1 P2
[00020] {D00030024} EXIT T1, A4 %T1 P2
[00021] {A00400002} A7: A14: LOAD COUNT, #2 %T2 P1
[00022] {481000000} A15: PRIO 2 %T2 P2
[00023] {080000000} PAUSE %T2 P1/2
[00024] {00004001A} PRESENT TICK, A16 %T2 P2
[00025] {A80480001} SUB COUNT, #1 %T2 P2
[00026] {B80480000} A16: CMPS COUNT, #0 %T2 P2
[00027] {80005001D} JW LE, A17 %T2 P2
[00028] {D0015001F} EXIT AWAIT DELAY, A14 %T2 P2
[00029] {480800000} A17: PRIO 1 %T2 P1
[00030] {000010016} GOTO A15 %T2 P1
[00031] {003840021} AWAIT DELAY: PRESENT R, A18 %T2 P2
[00032] {403000000} EMIT A %T2 P2
[00033] {D00030023} A18: EXIT T2, A5 %T2 P2
[00034] {000200000} A8: JOIN 0 %T0 P1
[00035] {402800000} T2: EMIT O2 %T0 P1
[00036] {080010000} T1: HALT %T0
[00037] {000010002} A3: GOTO A2 %T0 P1
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b) (c)

Figure 5.2: The EXAMPLE Esterel program: (a) Esterel; (b) KEP Assembler; (c) KEP
Machine Code Listing.

106 CHAPTER 5. EXPERIMENTAL RESULTS

FPGA board, to test and control the KEP, the TestDriver communicates with the host
via the KEP evaluation program. It receives the commands and data from the host,
completes the action according to the request, then returns the result to the host, see
also Appendix B.2.

Due to the cooperation of the KEP evaluation program and the TestDriver, the user can
easily generate the input event, send the tick, view the output event, and so on, via a
GUI. Appendix B.3 gives more information.

5.1.3 Validation

An Esterel module, which is translated into KEP object code, is also used to generate the
coverage scenario (with state and transition coverage) via Esterel Studio V5.0 (EStudio)
to validate the correctness of the KEP and its compiler. The result is expressed as
an Esterel Simulator Input (.esi) file, which defines sequential input events for the test
module. We also employ EStudio to simulate this scenario and obtain the output trace
(.eso) file.

The KEP validation method is evaluation-based [91, 29, 6]. First the executable code is
loaded to the KEP instruction memory, and the KEP is reset. For every tick, the KEP
evaluation program reads the input information from the input trace file (.esi), encodes
the information and then transmits it to the TestDriver. The TestDriver decodes the
information and sets the corresponding input signal to high if it should be present.
If the signal is a valued signal, its carried value, which is stored in the block RAM
of the Interface Block, is also modified. After all input signals are set as requested, the
TestDriver releases the block of the clock of the KEP. Hence, the KEP runs immediately,
and the Tick signal rises to denote that the KEP enters a logic tick period. During this
period, the TestDriver records the program counter of the KEP via the instruction
address bus, counts the number of instruction cycles, and watches the Tick signal of
the KEP. Once the Tick signal falls, the TestDriver blocks the oscillator clock of the
KEP to freeze it. A message will be sent to the host to notify that the current tick is
finished. The TestDriver will capture the status of pins and transmits them back. The
host receives the outputs and compares them with the EStudio’s eso file for validation.
Some other information, e. g., the elapsed instruction cycle, etc., is also transferred to
be further analyzed. The above mentioned processes will be repeated until the KEP
evaluation program reaches the end of the input trace file. To test a batch of Esterel
modules automatically, a Linux bash shell program is employed as batch program to
handle all above mentioned processes together.

5.2 Comparison with Other Execution Platforms

To quantitatively compare the data handling abilities between the Esterel processor
and other implementations, we use the CURVE module (contained in the mca200 test

5.2. COMPARISON WITH OTHER EXECUTION PLATFORMS 107

KEP KEP Hardware Hardware MCS51(1) MicroBlaze(2)

(16-bit) (32-bit) (32-bit) (16-bit) (8-bit) (32-bit)
Slices 870 1253 755 484 - 953

Code size (words) 191 191 - - 1070(3) 436
Code size (bytes) 859 859 - - 1636 1744

RAM Usage (words) 12 12 - - 31 19
RAM Usage (bytes) 24 48 - - 31 76

(1) Compiled by Keil C51 compiler V6.12. The level 8 (default) optimization is used.
(2) Compiled by gcc (for MicroBlaze) version 2.95.3-4. The level 2 (default) optimization is used.
(3) The lengths of MCS51’s instructions is various; here, a word represents a complete assembler line.

Table 5.1: The code size and RAM usage (in word) comparison of the CURVE imple-
mentation between KEP, MCS51, and MicroBlaze.

bench [35]) as an example, since it is a typical module that includes varied data handling
statements. Table 5.1 compares the resource usages of the KEP with different hard-
and software implementations. For the hardware implementations, we synthesize the
module to VHDL with the Esterel V7 compiler, because other hardware compilers cannot
support valued signals. The V7 compiler does not provide a data ranging function, i. e.,
an integer type valued input signal will always occupy a 32-bit bus to represent the
carried value1. As an optimization, we manually resize all of the valued signals and
variables to 16-bit width, since that range is sufficient for this Esterel module. Then
those VHDL programs are implemented by the ISEV6.3.03, and the speed (default)
optimization is used. For the software implementation, we use the CEC V0.3 compiler to
synthesize the module to a C program, which is then compiled onto the 32-bit MicroBlaze
soft processor core, and the MCS51, which is a classical widely used 8-bit processor.

As to be expected, the logic usage of the 32-bit KEP is more than that of the traditional
32-bit processor MicroBlaze. This result could be ascribed to the complex architecture
of the Reactive Core of the KEP. However, considering the KEP is a multi-threaded archi-
tecture and it contains various components for handling all Esterel primitive statements
directly, such a cost seems acceptable.

As mentioned in Section 2.3, the RePIC/EMPEROR are typical prototypes of the
patched processor/multi-processing architecture for handling the Esterel program di-
rectly. Table 5.2 compares different KEP variants which offer similar functions to
them, and they can be compared with RePIC/EMPEROR directly. Regarding the
logic cell count, one should note that the RePIC is implemented on an ALTERA’
EP20K200EFC484-2 FPGA chip. Hence, the Xilinx’s XC2S200-6FG456 FPGA chip
is chosen for the KEP’s implementation. The basic units of those two chips have similar
structures, functions, and speeds. Therefore, we can assume that logic cell counts are
comparable.

1In the latest version (EStudio V5.4), the V7 compiler provides a data ranging function.

108 CHAPTER 5. EXPERIMENTAL RESULTS

KEP-a KEP-b KEP-c KEP-d KEP-e RePIC EMPEROR
(8-bit) (8-bit) (8-bit) (16-bit) (32-bit) (8-bit) (8-bit)

Input/Output 241 48 48 48 48 12/122 24/243

Thread Number 24 2 32 2 2 1 2
Preemption Nest 4 6 6 6 6 4 4+4

Counter Value Range 1 1 1 1 1 1 1
Register Number 64 128 128 128 128 64 64+64

Logic Cells 1796 2048 4820 2484 3588 2068 4761
Max Osc Freq (MHz) 52.90 46.61 46.48 46.61 46.61 40.27 35.38

Instruction Freq (MHz) 17.63 15.54 15.49 15.54 15.54 10.1 8.84

(1) To the KEP, each interface signal could be used as input or output arbitrarily, and every signal
could carry the data (valued signal).
(2) Includes one valued signal.
(3) Includes two valued signal.
(4) Due to the multi-threaded architecture, the KEP cannot provide a one thread version.

Table 5.2: Performance comparison between the KEP3 and EMPEROR.

Furthermore, every RePIC can handle an abortion nest of depth 4, but due to the
architecture of EMPEROR, those abort handling elements cannot nest between different
processors directly. Hence the EMPEROR2 contains eight abort handling elements, but
can only deal with abortion nests of depth four. As an approximation, we compare this
with the KEP3-E that offers a preemption nesting depth of six.

The RePIC uses four clock cycles to execute an instruction cycle, but the KEP uses only
three clock cycles. When running on the same clock frequency, the KEP’s instruction
cycle period is just 75% of that of the RePIC’s. Furthermore, the KEP typically takes
significantly less instructions to implement the same behavior [89, 88, 87].

As a result, for the similar processor configuration as the EMPEROR, the KEP3-b uses
57% less resources and achieves a 1.7 times instruction clock speedup. The resource usage
of the EMPEROR is higher than the 32-bit KEP-e which supports similar functions.
Furthermore, the KEP-c occupies almost the same resources as that of the EMPEROR,
however, it contains 36 threads: 18 times than that of the EMPEROR.

To further assess the resource efficiency of the multi-threaded approach, we have gen-
erated different KEP versions with a maximal thread number varying between 2 and
120. Since there are many different ways to calculate the hardware resouces utilized in
a design, we choose both the slice2 and equivalent gate count as metrics for hardware
usage [96]. All versions are configured with 2 Watchers, 8 Local Watchers, and 48 valued
I/O signals. The clock rate does not vary significantly, it is around 60 MHz; one in-
struction takes three clock cycles. Table 5.3 shows the corresponding resources usages.
The hardware usage increases only 4x as the concurrency increases 60x when measured
in slices, and even just 1.4x when measured in equivalent gates. The implementation

2One slice equals two logic cells.

5.3. EVALUATION RESULTS 109

Max. threads 2 10 20 40 60 80 100 120
Slices 1295 1566 1871 2369 3235 4035 4569 5233

Gates (k) 295 299 311 328 346 373 389 406

Table 5.3: Extending a KEP to different threads.

is based on the Xilinx 3S1500-4fg676 FPGA. For comparison, the MicroBlaze with the
same memory size (BRAM) employs 309k gates.

5.3 Evaluation Results

The KEP evaluation suite currently contains more than 400 Esterel examples. To eval-
uate the performance of the KEP, we have present eleven standard test cases [18, 6, 35].
These benchmarks are typical Esterel applications, which not only contain reactive state-
ments, but also include arithmetic and logical data handling. However, we leave out
programs that make use of the pre operator, since the CEC compiler currently does not
support it [43].

• abcd, abcdef, eight but
The abcd is a four-button user interface that locks out other buttons while one is
pressed [45]. Here it is also extended to 6-button (abcdef) and 8-button (eight but)
modules.

• Chan Prot
The Chan Prot is a rendezvous channel protocol used in the Communicating Re-
active Processes concurrency model [11]. The channel protocol communicates via
asynchronous FIFOs with two independent programs that request for rendezvous,
and these requests may also be withdrawn at any time [117].

• reactor ctrl
The reactor ctrl describes a simplified model of the reactor safety guard, which
push in the rods when the reactor is overheating.

• runner
The runner is an example from the Esterel tutorial [18], and it provides a process
of morning exercise and alerts when exceptions happen.

• example
The example [90] mixes nests of threads and preemptions.

• ww button
The ww button is a part of the model of a wrist watch. This module performs

110 CHAPTER 5. EXPERIMENTAL RESULTS

Esterel KEP
Module LOC Threads LOC CKAG
Name Count Max Max Dep. Max PRIO

depth conc. (word) count priority instr’s
abcd 160 4 2 4 164 36 3 30

abcdef 236 6 2 6 244 90 3 48
eight but 312 8 2 8 324 168 3 66
chan prot 42 5 3 4 62 4 2 10
reactor ctrl 27 3 2 3 34 5 1 0

runner 31 2 2 2 27 0 1 0
example 20 2 2 2 28 2 3 6

ww button 76 13 3 4 95 0 1 0
greycounter 143 17 3 13 343 53 6 58

tcint 355 39 5 17 379 65 3 20
mca200 3090 59 5 49 8650 129 11 190

Table 5.4: Concurrency analysis of benchmarks.

mode handling and dynamic button renaming. It only handles pure signals, so
that there are only input/output declarations [12].

• greycounter
It represents a four-bit grey-code counter with an alarm [112].

• tcint
The tcint is a medium-size Esterel program, which implements a TurboChannel
bus interface [112].

• mca200
The mca200 is an industry size model which models a shock absorber. It is one of
the largest examples that are publicly available [39, 50].

To compare the performance of the KEP (including its compiler) with another platform,
we chose the MicroBlaze 32-bit soft COTS RISC processor core as a reference. The Mi-
croBlaze embedded soft core is a RISC processor which is optimized for implementation
in Xilinx FPGAs. We use the CEC compiler 0.3 [43], the Esterel Compiler V5.92 [52],
and the Esterel Compiler V7 to synthesize Esterel modules to C programs, which are
then compiled onto the MicroBlaze via the gcc version 2.95.3-4, using the default level
2 optimization.

5.3. EVALUATION RESULTS 111

KEP MicroBlaze
Module Compiling Compiling
Name time (sec) time (sec)

V5 V7 CEC
abcd 0.15 0.12 0.09 0.30

abcdef 0.21 0.71 0.46 0.96
eight but 0.26 0.99 0.54 1.25
chan prot 0.07 0.35 0.35 0.43
reactor ctrl 0.06 0.29 0.31 0.36

runner 0.05 0.30 0.34 0.40
example 0.05 0.28 0.31 0.31

ww button 0.10 0.44 0.40 0.64
greycounter 0.34 0.57 0.43 0.75

tcint 0.34 0.41 0.52 1.11
mca200 11.25 69.81 12.99 7.37

Table 5.5: Comparison of compilation time of the benchmarks.

Analysis of the Concurrency

To characterize each benchmark with respect to its use of concurrency constructs, Table
5.4 lists the counts and depths of them. For the KEP, the table shows the number of
dependencies found, the used number of priority levels (the KEP provides up to 255), and
the number of used PRIO instructions. One can find that in most cases, the maximum
priority used is three or less, indicating relatively few priority changes per tick. For
example, eight buttons has 168 dependencies, but the maximum priority used is 3. On
the other hand, greycounter, with 53 dependencies, requires a maximum priority of 6.

The main mission of the KEP compiler is to assign appropriate priorities of threads to
ensure those threads can be executed in a proper order. Since the architecture of the
KEP can handle Esterel structures directly, the compilation of those control structures
is a straightforward mapping strategy. This keeps the compilation cost of the KEP
compilers low. Table 5.5 shows the comparison of compilation time, from Esterel code
to machine code. In most used benchmarks, compilation time is significantly less than
a second, and quite competitive with any of the compilers for the MicroBlaze.

Analysis of the Preemption Character

Table 5.6 gives an overview of the Esterel preemption structure of those benchmarks.
Typically, the preemption constructs tend to be sequential or concurrent rather than
being nested. For example, the mca200 employs 64 preemption statements, however, the
maximum depth of the preemption nest is just 4. To assess the usefulness of providing

112 CHAPTER 5. EXPERIMENTAL RESULTS

Esterel KEP
Module Preemptions Preemption handled by
Name Count Max Only Local Thread

depth Watcher Watcher Watcher Watcher
abcd 20 2 7 0 3 11

abcdef 30 2 11 0 5 17
eight but 40 2 15 0 7 23
chan prot 6 1 2 0 0 4
reactor ctrl 5 1 3 0 0 4

runner 9 3 6 2 1 3
example 4 2 2 0 1 2

ww button 27 2 15 0 5 10
greycounter 19 2 9 0 4 15

tcint 18 2 7 0 1 10
mca200 64 4 61 2 14 48

Table 5.6: Preemption character analysis of benchmarks.

different types of watchers, as has been described in Section 4.2.2, Table 5.6 also lists how
many Watchers are necessary if there are no other watcher types (the reuse of Watchers
are also considered), and how many watchers of each type are required. As it turns
out, most of the preemptions can be handled by the cheapest Watcher type, the Thread
Watcher.

Based on the watcher requirements in Table 5.6, we configured the Reactive Core with
different parameters, and then synthesized these Reactive Cores to study the difference
of preemption mapping strategies. In most cases, the refined watcher strategy wins in
the maximum frequency speedup and economical hardware usage, and its benefits are
more distinct for large scale modules. For the industry size module, i. e., the mca200
benchmark, this strategy reduces hardware usage by 36%, and raises the maximum
frequency also by 36%. Another benefit of the refined preemption handling architecture
is that it keeps the performance stable. The extension of the Reactive Core from the
simplest one to the largest and the most complex preemption structure slows down the
maximum frequency about 19% (from 112MHz to 90MHz). However, even a 40% decease
of the maximum frequency (from 112MHz to 66MHz) can occur, if there are no refined
watcher types.

Analysis of Context Switches

Table 5.8 illustrates the analysis of the context switch (CS) activities in the benchmarks,
for some specific test traces. For example, in the ww button benchmark, a total of 292

5.3. EVALUATION RESULTS 113

Preemption handled
Module Only by Watcher by various watchers
Name HW Freq. HW Freq. HW Freq.

(Slices) (MHz) (Slices) (MHz) Reduce (%) Speedup (%)
abcd 376 88.04 332 105.80 12 20

abcdef 506 84.33 370 103.70 27 23
eight but 623 83.06 418 100.87 33 21
chan prot 254 111.73 270 111.73 -6 0
reactor ctrl 276 107.68 259 111.37 6 3

runner 354 99.44 320 97.44 10 -2
example 249 111.73 283 109.49 -14 -2

ww button 629 82.71 383 100.87 39 22
greycounter 470 87.64 412 106.17 12 21

tcint 433 90.49 422 99.89 3 10
mca200 1253 66.49 798 90.20 36 36

Table 5.7: Effects on the Reactive Core’s cost/performance of the various watchers ar-
chitecture.

Instr’s CSs CSs at same PRIOs CSs due to
Module total total priority total PRIO
Name abs. abs. ratio abs. rel. abs. rel. abs. rel. rel.

[1] [2] [1]/[2] [3] [3]/[2] [4] [4]/[1] [5] [5]/[2][5]/[4]
abcd 16513 3787 4.36 1521 0.40 3082 0.19 1243 0.33 0.40

abcdef 29531 7246 4.08 3302 0.46 6043 0.20 2519 0.35 0.42
eight but 39048 10073 3.88 5356 0.53 8292 0.21 3698 0.37 0.45
chan prot 5119 1740 2.94 707 0.41 990 0.19 438 0.25 0.44
reactor ctrl 151 48 3.15 29 0.60 0 0 0 0 -

runner 5052 704 7.18 307 0.44 0 0 0 0 -
example 208 60 3.47 2 0.30 26 0.13 9 0.15 0.35

ww button 292 156 1.87 92 0.59 0 0 0 0 -
greycounter160052 34560 4.63 14043 0.41 26507 0.17 12725 0.37 0.48

tcint 80689 33610 2.4 16769 0.50 5116 0.06 2129 0.06 0.42
mca200 982417256988 3.82 125055 0.49 242457 0.25 105258 0.41 0.43

Table 5.8: Analysis of context switches (CSs), in absolute numbers and relative. Minimal
and maximal relative values are shown bold.

114 CHAPTER 5. EXPERIMENTAL RESULTS

Esterel MicroBlaze KEP
Module LOC Code+Data (b) Code (w) Code+Data (b)
Name V5 V7 CEC abs. rel. abs. rel.

[1] [2] (best) [3] [3]/[1] [4] [4]/[2]
abcd 160 6680 7928 7212 164 1.03 738 0.11

abcdef 236 9352 9624 9220 244 1.03 1098 0.12
eight but 312 12016 11276 11948 324 1.04 1458 0.13
chan prot 42 3808 6204 3364 62 1.48 279 0.08
reactor ctrl 27 2668 5504 2460 34 1.26 153 0.06

runner 31 3140 5940 2824 27 0.87 121 0.04
example 20 2480 5196 2344 28 1.4 126 0.05

ww button 76 6112 7384 5980 95 1.25 427 0.07
greycounter 143 7612 7936 8688 343 2.4 1549 0.2

tcint 355 14860 11376 15340 379 1.07 1707 0.15
mca200 3090 104536 77112 52998 8650 2.8 39717 0.75

Table 5.9: Memory usage comparison between KEP and MicroBlaze implementations.
“(b)” refers to measurements in bytes, “(w)” to words.

instructions are executed, there is a CS at about every other instruction, whereas for the
runner benchmark, there is a CS roughly every seven instructions. This indicates that
the fast, light-weight CS mechanism of the KEP is a key to performed once for executing
these types of reactive programs. Overall, between 30 and 60% of the CSs took place at
the same priority, that is, because threads became inactive and another thread at the
same priority took over. Some benchmarks did not require any PRIO instructions, for
others they constituted up to 25% of the instructions executed. Up to 37% of CSs were
due to PRIO instructions. Finally, for those benchmarks that include PRIO statements,
less than half of the PRIO instructions actually result in a CS, indicating that a static
schedule would have been comparatively inefficient.

Comparison of the Memory Usage

Table 5.9 compares executable code size and RAM usage between the KEP and the
MicroBlaze implementations. To assess the size of the KEP code related to the Esterel
source, we compare the code size in words with the Esterel Lines of Code (LOC, before
dismantling, without comments), and notice that the KEP code is very compact, with a
word count close to the Esterel source. For comparison with the MicroBlaze, we compare
the size of Code + Data, in bytes, and notice that the KEP code is typically an order
of magnitude smaller than the MicroBlaze code. The KEP implementation results on
average in an 83% reduction of memory usage (codes and RAM size) when compared
with the best result of the MicroBlaze implementation. As for the mca200, the memory

5.3. EVALUATION RESULTS 115

MicroBlaze KEP
Module WCRT ACRT WCRT ACRT
Name V5 V7 CEC V5 V7 CEC abs. rel. abs. rel.

[1] (best) [2] (best) [3] [3]/[1] [4] [4]/[2]
abcd 1559 954 1476 1464 828 1057 135 0.14 84 0.11

abcdef 2281 1462 1714 2155 1297 1491 201 0.14 117 0.09
eight but 3001 1953 2259 2833 1730 1931 267 0.14 153 0.09
chan prot 754 375 623 683 324 435 117 0.31 54 0.17
reactor ctrl 487 230 397 456 214 266 51 0.22 39 0.18

runner 566 289 657 512 277 419 30 0.10 6 0.02
example 467 169 439 404 153 228 42 0.25 24 0.16

ww button 1185 578 979 1148 570 798 48 0.08 36 0.06
greycounter 1965 1013 2376 1851 928 1736 528 0.52 375 0.40

tcint 3580 1878 2350 3488 1797 2121 408 0.22 252 0.14
mca200 75488 29078 12497 73824 24056 11479 2862 0.23 1107 0.10

Table 5.10: The worst-/average-case reaction times (in clock cycles) for the KEP and
MicroBlaze implementations, in absolute and relative values.

reduction of the KEP implementation is not so dramatic as that of other cases. The
reason is that the mca200 contains lots of data handling—which is not a very strong
point of the KEP.

Comparison of the Execution Time

The improvement in execution time of the KEP implementation is shown in Table 5.10.
Comparing with the best result of the MicroBlaze implementations, the KEP typically
obtains more than 4x speedup for the WCRT, and more than 5x for the Average Case
Reation Time (ACRT). Note that for a fair comparison, the time is measured based on
the system clock. If the comparison is based on the instruction cycles, the KEP will
achieve 12x speedup for the WCRT and more than 15x for the ACRT.

The MicroBlaze uses several levels of memory [73]. Here we employed an FPGA chip
which has a large scale on-chip memory to implement the MicroBlaze system. Hence, all
of the MicroBlaze programs could be loaded into the on-chip memory to make sure that
the memory access time is minimal. The MicroBlaze implementation benefits from this,
because if the implementation is based on an FPGA which has smaller scale on-chip
memory, the KEP program is likely to fit into the on-chip memory.

116 CHAPTER 5. EXPERIMENTAL RESULTS

MicroBlaze KEP Ratio
Module (82mW@50MHz) (mW) (KEP to MB)
Name Blank Peak Blank Peak Blank
abcd 69 13 8 0.16 0.12

abcdef 74 13 7 0.16 0.09
eight but 74 13 7 0.16 0.09
chan prot 70 28 12 0.34 0.17
reactor ctrl 76 20 13 0.24 0.17

runner 78 14 2 0.17 0.03
example 77 25 9 0.30 0.12

ww button 81 13 4 0.16 0.05
greycounter 78 44 33 0.54 0.42

Table 5.11: The energy consumption comparison between KEP and MicroBlaze imple-
mentations.

Power Usage

To compare the energy consumptions, we choose the Xilinx 3S200-4ft256 as FPGA
platform. This requires an additional 37mW as quiescent power for the chip itself. The
MicroBlaze system is assumed to run at 50MHz, and the peak power of the MicroBlaze
is calculated by the frequency and the hardware resources of the MicroBlaze system via
Xilinx WebPower Version 8.1.01 [69]. Based on the findings presented in Table 5.10,
we calculate the minimal clock frequencies of the KEP to achieve the same WCRT of
corresponding MicroBlaze system for each benchmark, then calculate the peak power of
the KEP implementation.

For most blank events, the action of an Esterel module is very simple–it tests the presence
of awaited signals, and then finishes this tick because those await statements are not
terminated. For the KEP, since the elapsed instruction cycle count—for those actions
is far from the assigned tick length, the system will turn to the idle state for saving
power. Although the MicroBlaze has no low-power operating mode that can be used
to conserve processor energy [74] (e. g., like the wait-state of the PowerPC405 [71]), we
still assume it can use some additional circuit to manage its power usage by blocking its
clock to satisfy the fixed tick length feature. Note that the real tick length for a blank
event depends on the state of the program of the previous tick. The average power
usage of blank events is also estimated by an extended esi file, which inserts a blank
event between every two original ticks.

Table 5.11 shows that the KEP reduces energy usage on average by 75%. The reduction
becomes even more significant if all environment inputs are absent, a rather frequent
case. Energy consumptions of the MicroBlaze system are similar for different events.

5.4. SUMMARY 117

However, the reactive architecture makes the power usage of the KEP 52% lower than
its peak power. Hence, in this case, the KEP achieves 86% power savings.

5.4 Summary

This chapter presented the whole reactive processing design flow, and illustrated the
evaluation platform of the KEP. Compared with other Esterel implementations, the
KEP represents a good tradeoff between hardware (logic area) usage, memory usage,
system flexibility, WCRT, and energy usage.

Since an Esterel program is implemented in software on a COTS processor in general,
we compared the KEP implementation with the MicroBlaze implementation, which are
both implemented on Xilinx FPGA. Although the MicroBlaze has been optimized for the
Xilinx FPGA, the KEP still wins in terms of memory usage, execution period (WCRT
and ACRT), energy consumption, etc.

To allow an efficient execution of concurrent Esterel programs, the KEP offers a very
light-weight thread model. Furthermore, its preemption handling model is also optimized
for the preemption structure of actual Esterel modules. Those novel methods provide
an efficient solution for the direct handling of Esterel programs, and improve on other
reactive processors in several areas, such as hardware cost and scalability.

118 CHAPTER 5. EXPERIMENTAL RESULTS

Chapter 6

Conclusion and Outlook

Employing a reactive processor to execute Esterel programs is an efficient, predictable
alternative to traditional hardware or software platforms. In this chapter we first sum-
marize the features of the KEP, and discuss its pros and cons. In Section 6.2, some
suggestions are presented for further research.

6.1 Conclusion

This thesis presents the KEP, a concurrent, configurable Esterel processor. It employs a
multi-threaded reactive architecture which consists of a reactive core and an optimized
data path for the direct execution of Esterel programs.

The KEP ISA is complete in that it allows a direct mapping of all Esterel statements
onto KEP assembler. It supports Esterel’s concurrency operator || in a very precise,
direct and efficient way. It also supports full Esterel preemptions, i. e., the delayed and
immediate strong/weak abortion and suspension. All of other Esterel kernel statements,
e. g., the Esterel exception, delay, and signal emission, are also implemented directly
and semantically accurate by the KEP. Furthermore, valued signals and signal counters,
local signal declarations, and the pre operator are also supported directly. One of the
strengths of Esterel is the clean orthogonalization of the different reactive control flow
constructs, which allows to combine them in an arbitrary fashion; this is fully supported
by the KEP.

The KEP not only supports common Esterel statements directly, but also takes into
consideration the statement context. In particular, it provides preemption instructions
that map onto different types of hardware units depending on whether preemptions are
nested or not and whether they include single threads or multiple threads. Providing
such a refined ISA further minimizes hardware usage while preserving the generality of
the language.

119

120 CHAPTER 6. CONCLUSION AND OUTLOOK

The KEP uses a priority-based scheduler, which makes threads responsible for managing
their own priorities. This scheme allows to keep the scheduler very light-weight. In
the KEP, scheduling and context switching do not cost extra instruction cycles, only
changing a thread’s priority costs an instruction. The presented priority assignment
algorithm [84, 85] for the KEP makes use of a special concurrent control flow graph and
has a complexity that is linear in the size of that graph, which in practice tends to be
linear in the size of the program.

The KEP architecture is highly configurable and represents a whole family of proces-
sors. Hence, although each KEP has a specific maximal nesting depth of preemption
constructs and a maximal number of threads, this number is configurable for a particular
KEP.

The performance of the KEP is predictable. All instructions can be executed in a single
instruction cycle. The predictability of the KEP also lends itself to an automated Worst
Case Reaction Time analysis. To validate and evaluate the KEP, a evaluation platform
was built. The user interacts via a Host work station with an FPGA Board, which
contains the KEP as well as some testing infrastructure. Up to now, more than 400 test
cases show the correctness and efficiency of the KEP implementation.

A frequently asked question is why a reactive processor should be used for handling
Esterel programs, and what benefits can be taken from it. The answer is: the KEP
makes a better trade-off between flexibility, speed, Esterel compliance, etc., than other
implementations. As the experimental comparison with a 32-bit commercial RISC pro-
cessor indicates, the KEP has advantages in terms of memory use, execution speed,
and energy consumption due to its Esterel optimized control and data path. Of course,
the KEP solution has its price: more logic area than a traditional processor, e. g., the
MicroBlaze, is needed. However, if we ignore the fact of that the KEP can be further
optimized [101], the number of gates is not the most important issue for lots of applica-
tion. Predictable WCRT, system-level power management, the memory usage—which
further influence system performance and power—are all open problems to current em-
bedded systems [122, 123, 94]. The multi-threaded reactive architecture of the KEP
could provide a new impulse here.

One might argue that the multiprocessing approach has an efficiency advantage over
a multi-threading approach, which still relies on sequential execution. In principle, it
is possible that a multiprocessing architecture could achieve a speedup over a single-
processor solution. However, even ignoring the limitations of the multiprocessing ap-
proach with respect to the ability to combine concurrency and preemption, one should
note that threads in Esterel programs typically interact rather tightly, with signals com-
municating back and forth within a logical tick, imposing strong synchronization require-
ments. Unlike classical parallel programming, where an originally sequential algorithm is
divided into coarse-grained code fragments that can be executed in parallel to achieve a
speedup over a single processor implementation, the concurrent programming in Esterel
mainly serves to separate concerns [34], not to improve efficiency. Quoting Girault [60]:
“The source program is parallel and not sequential like in a classical programming lan-

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH 121

guage . . . But this parallelism of expression is used by the programmer to conceive
his/her application in terms of parallel modules cooperating to achieve the desired be-
havior. It is therefore not related to the parallelism of execution, which is due to the fact
that the target architecture is distributed.” We suspect that for the type of concurrency
found in synchronous languages such as Esterel, a sequential, multi-threaded architec-
ture may very well lead to higher efficiency than a multiprocessing approach, due to the
tight link between independent threads that allows very efficient synchronization among
the threads. However, substantiating this would require a further systematic comparison
of these approaches.

6.2 Recommendations for Further Research

This thesis introduced a multi-threaded reactive processor architecture as a novel Esterel
implementation. We presented the implementation model of the KEP components, and
also validated the correctness of them via the evaluation. However, the KEP is still an
initial prototype. Hence, some function circuits could be further optimized or refined via
advanced design methods [113, 25]. Furthermore, there is still some room to optimize
or to enhance the KEP architecture and its compiler:

• Reconfigurable logic block
Regarding further improvements of the KEP, a co-design approach is developed to
accelerate reactive processing by using external logic blocks. Here a reconfigurable
logic block allows the efficient detection of compound events, such as waiting for
the simultaneous occurrence of two signals [76, 64, 121]. This goal is partially
achieved [58].

• Mapping control and data handling to different address spaces
The KEP uses absolute addresses to indicate the memory location of its program.
However, it is not an efficient way for handling Esterel control structures. An
alternative would be to separate the memory into a control-handling-program area
and a data-handling-program area. Considering a program which contains some
data handing processes, those processes could be moved to the data-handling-
program area, with only the remaining parts participating in the address range
checking (e. g., the IOPRW mechanism mentioned in Section 3.2.2) of the KEP.
This strategy could reduce the logic area and speed up the maximum frequency of
the KEP, and also extend the address management ability of the KEP.

• Instruction set optimization
The current KEP instruction set architecture has evolved from its previous ver-
sions [118]. Some details should be refined. For example, the number of signals
(255) could be a limitation to handle some large scale module. On the other hand,
the maximum priority (127) seems unproblematic.

122 CHAPTER 6. CONCLUSION AND OUTLOOK

Beyond those technical details, there is a more general issue. Up to now, we have
implemented all Esterel kernel statements and some specific derived statements.
The selection of the implemented Esterel-type statements is based on our experi-
ence, which is a common strategy for the ASIP design. However, we are interested
in building an automated instruction selection strategy [120, 1, 36, 61], which would
increase application performance while area constraints are still satisfied. Further-
more, some other Esterel statements and structures, e. g., weak suspension [116],
could also be implemented.

• Optimized and adapted compilation
The KEP compiler translates the Esterel control statement to the KEP instruc-
tions word for word. As the results show in Section 5.3, this strategy keeps the
compilation time low. However, for most modules, this straightforward method
is not the most efficient. For example, in the tcint module, the weak abortion is
expressed in primitive form [19], which is composed of two threads and a trap. For
the KEP, the weak abortion could be implemented by a watcher directly. A man-
ually optimized version of this module reduces thread numbers by 31% (from 39
to 27) and instruction memory usage by 14% (from 379 to 325 instruction words).

This raises another interesting topic. Since an Esterel control statement could
be replaced by the combination of other statements, the KEP compiler should
“know” how to choose the right statement(s) to implement an Esterel statement.
Furthermore, an adaptive compilation strategy should be considered [40]. For
example, the compiler could implement a weak abortion by a watcher when watcher
resources remain, or else, the compiler could translate the weak abortion to the
trap+threads expressions. On the other hand, the compiler could also generate
a new version of the KEP to fit the application [1, 36, 109, 5]. One could also
envision a scheme to configure the KEP according to a desired WCRT or ACRT
for a specific program.

• KEP in Esterel
We are planing to implement the KEP in Esterel. Beyond the general interest
in such an implementation—for example, as a good case study and benchmark of
Esterel itself—the most significance of this design would be that it could provide
a virtual machine that mediates in real time the interaction between software
processes and physical processes, see also [68, 98].

• Multi-processor architecture
Finally, we are also investigating to combine the KEP with a DSP as a multi-
processor architecture [66, 81, 94, 82]. The KEP is designed to implement the
Esterel control structures in a direct way. The data handling ability is not its
strong point. A KEP+DSP hybrid system could integrate the advantage of either
processor, and could also be a perfect implementation platform for the next gener-
ation Esterel language—the Esterel V7, which inherits the original Esterel control
structures but enhances data processing functions [116].

6.2. RECOMMENDATIONS FOR FURTHER RESEARCH 123

As indicated above, there are still lots of research topics for the KEP architecture. We
wish these possibilities can be explored in the near future. We also hope anyone who
is interested in architecture feels free to discuss with us if they have any questions. We
look forward to hear from you.

124 CHAPTER 6. CONCLUSION AND OUTLOOK

Appendix A

KEP Instruction Set

A.1 Esterel-type Instructions

A.1.1 Preemption

• [W]ABORT[I]

Assembly syntax:

ABORT S, endAddr (,WatcherID)

ABORTI S, endAddr (,WatcherID)

WABORT S, endAddr (,WatcherID)

WABORTI S, endAddr (,WatcherID)

S The name of the signal.

endAddr The address behind the end of the abortion body; see Figure 3.11.

WatcherID The Watcher identification. It could be assigned by the Esterel to
KASM compiler (strl2kasm); or else, if it is not given, this parameter will be
generated by the KEP Assembler Compiler (kasm2klst) automatically.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00ooo sssssssss wwwwww AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode = ABORT: ooo=010; ABORTI: ooo=011; WABORT: ooo=100;
WABORTI: ooo=101.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The index number of the Watcher, the KEP supports up to 64 Watchers.

[15:00] The address behind the end of the abortion body.

125

126 APPENDIX A. KEP INSTRUCTION SET

Note: as mentioned in Section 3.3, the count delay expression of an abortion
instruction like ABORT n, S, endAddr (,WatcherID) will be divided automatically
to two instructions. Furthermore, as in the original semantics of Esterel, the delay
expression cannot be used for an immediate delay, i. e., an ABORTI n, S, endAddr
(,WatcherID) instruction is forbidden. However, if the user puts them together, for
example, a LOAD COUNT,#3 instruction, which is followed by an ABORTI S, A0,
the KEP will ignore the counter specified instruction. In other words, the LOAD
COUNT,#3 instruction will do nothing.

• SUSPEND[I]

Assembly syntax:

SUSPEND S, endAddr (,WatcherID)

SUSPENDI S, endAddr (,WatcherID)

S The name of the signal.

endAddr The address behind the end of the suspension body; see Figure 3.11.

WatcherID The Watcher identification. It could be assigned by the Esterel to
KASM compiler (strl2kasm); or else, if it is not given, this parameter will be
generated by the KEP Assembler Compiler (kasm2klst) automatically.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 0011o sssssssss wwwwww AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode=SUSPEND when o=0; or SUSPENDI o=1.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The index number of the Watcher, the KEP supports up to 64 Watchers.

[15:00] The address behind the end of the abortion body.

Note: following the original semantics of the Esterel, the count delay expression
cannot be used for the suspension, i. e., an SUSPEND[I] n, S, endAddr (,WatcherID)
instruction is unallowed. However, if the user puts them together, for example,
a LOAD COUNT,#3 instruction, which is followed by an SUSPEND[I] S, A0, the
KEP will ignore the counter specified instruction.

• L[W]ABORT[I]

Assembly syntax:

LABORT S, endAddr (,WatcherID)

LABORTI S, endAddr (,WatcherID)

LWABORT S, endAddr (,WatcherID)

LWABORTI S, endAddr (,WatcherID)

A.1. ESTEREL-TYPE INSTRUCTIONS 127

S The name of the signal.

endAddr The address behind the end of the abortion body; see Figure 3.11.

LWatcherID The LWatcher identification. It could be assigned by the Esterel to
KASM compiler (strl2kasm); or else, if it is not given, this parameter will be
generated by the KEP Assembler Compiler (kasm2klst) automatically.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01ooo sssssssss wwwwww AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode = LABORT: ooo=010; LABORTI: ooo=011; LWABORT: ooo=100;
LWABORTI: ooo=101.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The index number of the Local Watcher, the KEP supports up to 64 Local
Watchers.

[15:00] The address behind the end of the abortion body.

Note: the count delay expression for this instruction is similar as that of the
[W]ABORT[I] instruction.

• T[W]ABORT[I]

Assembly syntax:

TABORT S, endAddr

TABORTI S, endAddr

TWABORT S, endAddr

TWABORTI S, endAddr

S The name of the signal.

endAddr The address behind the end of the abortion body; see Figure 3.11.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01110 sssssssss 0000oo AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode = T[W]ABORT[I]

[30:22] The signal’s unicode value. See also Section 4.3.

[17:16] The extended operation code. It indicates TABORT: oo=00; TABORTI:
oo=01; TWABORT: oo=10; TWABORTI: oo=11.

[15:00] The address behind the end of the abortion body.

128 APPENDIX A. KEP INSTRUCTION SET

Note: unlike other preemption instructions, this instruction has no WatcherID
parameter because it is indexed by the ID of current executed thread, see Section
4.2.2. The count delay expression for this instruction is similar as that of the
[W]ABORT[I] instruction.

A.1.2 Exception

• EXIT

Assembly syntax:

EXIT endAddr, startAddr

endAddr The target address of this exception, i. e., the address behind the end of
the corresponding trap body; see Figure 3.13.

startAddr The start address of the corresponding trap body; see Figure 3.13.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 1101a aaaaaaaaa aaaaaa AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:32] Opcode = EXIT

[30:22] The address of the start of the corresponding trap body.

[15:00] The address behind the end of the corresponding trap body.

A.1.3 Concurrency

• PAR

Assembly syntax:

PAR Prio, startAddr [,ThreadID]

Prio The initial priority value of the created sub thread.

startAddr The start address of the body of the created sub thread; see Figure 3.10.

ThreadID The identification of the created sub thread. It could be assigned by
the Esterel to KASM compiler (strl2kasm); or else, if it is not given, this
parameter will be generated by the KEP Assembler Compiler (kasm2klst)
automatically.

d35 − d31 d30 − d23 d22 − d16 d15 − d00

Instr. Encoding 01001 PPPPPPPP IIIIIII AAAAAAAAAAAAAAAA

Instruction Encoding:

A.1. ESTEREL-TYPE INSTRUCTIONS 129

[35:31] Opcode=PAR/PARE/PRIO. Note that the PAR, PARE, and PRIO instruc-
tions share the same opcode, they are distinguished by the encoding of others
fields of instruction.

[30:23] The priority of the created sub thread. See also Section 4.2.1.

[22:16] The identification of the created thread by this instruction. See also Sec-
tion 4.2.1.

[15:00] The start address of the created sub thread.

• PARE

Assembly syntax:

PARE endAddr, [,Prio]

endAddr The end address of created sub threads body.

Prio The priority value of the current executed thread, i. e., the parent thread
of those created sub threads. It could be assigned by the Esterel to KASM
compiler (strl2kasm); or else, if it is not given, this parameter will be generated
by the KEP Assembler Compiler (kasm2klst) automatically as zero. If it
equals zero, the thread priority will not be modified, i. e., it keeps its current
priority value.

d35 − d31 d30 − d23 d22 − d16 d15 − d00

Instr. Encoding 01001 PPPPPPPP 0000000 AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode=PAR/PARE/PRIO.

[30:23] The priority value of the created sub thread. See also Section 4.2.1.

[22:16] The extended operation code. “0000000” indicates PAR. Note that for
PAR and PRIO, this range is occupied by the thread ID. The created sub
thread (for PAR) cannot be the thread 0; and it is also impossible to modify
the priority value of the thread 0. Hence, for these two instructions, this
range will not be zero.

[15:00] The end address of created sub threads body, i. e., the address behind the
end of the last sub thread body.

• JOIN

Assembly syntax:

JOIN [Prio]

Prio The priority value of the current executed thread, i. e., the parent thread
of those created sub threads. It could be assigned by the Esterel to KASM
compiler (strl2kasm); or else, if it is not given, this parameter will be generated

130 APPENDIX A. KEP INSTRUCTION SET

by the KEP Assembler Compiler (kasm2klst) automatically as zero. If it
equals zero, the thread priority will not be modified, i. e., it keeps its current
priority value. One should note that the assignment of the priority will not
happen until all of child threads of the current executed thread terminated.
In other words, when the JOIN instruction terminates, the non-zero priority
value will be assigned to the current executed thread before the execution
continues.

d35 − d31 d30 − d23 d22 − d16 d15 − d00

Instr. Encoding 00000 PPPPPPPP 0100000 0000000000000000

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[30:23] The priority value of the current execute thread.

[22:16] The extended operation code. ”0100000” indicates JOIN.

• PRIO

Assembly syntax:

PRIO Prio [,ThreadID]

Prio The priority value. If the ThreadID equals zero, this value will be assigned to
the current executed thread; or else, it will be assigned to the corresponding
thread which specified by the ThreadID parameter.

ThreadID The thread identification which will be assigned the new priority value.
It could be assigned by the Esterel to KASM compiler (strl2kasm); or else,
if it is not given, this parameter will be generated by the KEP Assembler
Compiler (kasm2klst) automatically. The default value is zero, which implies
this instruction just modifies the current executed thread.

d35 − d31 d30 − d23 d22 − d16 d15 − d00

Instr. Encoding 01001 PPPPPPPP IIIIIII 0000000000000000

Instruction Encoding:

[35:31] Opcode=PAR/PARE/PRIO.

[30:23] The priority value.

[22:16] The identification of the target thread.

A.1.4 Delay

• AWAIT[I]/PAUSE/HALT

Assembly syntax:

A.1. ESTEREL-TYPE INSTRUCTIONS 131

AWAIT S

AWAITI S

PAUSE

S The name of the signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00001 sssssssss 0000o0 0000000000000000

Encoding:

[35:31] Opcode=AWAIT[I]/PAUSE/HALT/CAWAIT[S|I|E]

[30:22] The signal’s unicode value. Since the PAUSE equals AWAIT TICK, for the
PAUSE instruction, these bits are 000000000. See also Section 4.3.

[21:16] The extended operation code. 000000 indicates AWAIT; and 000010 indi-
cates AWAITI.

Note: as mentioned in Section 3.3, the count delay expression of an abortion
instruction like AWAIT n, S will be divided to two instructions automatically.
Furthermore, as the original semantics of Esterel, the delay expression cannot be
used for an immediate delay, i. e., an AWAITI n, S instruction is not allowed. If
the user puts them together, for example, a LOAD COUNT,#3 instruction which
followed by an AWAITI S, the KEP will ignore the counter specified instruction.
In other words, the LOAD COUNT,#3 instruction will do nothing.

• HALT

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00001 000000000 000001 0000000000000000

Encoding:

[35:31] Opcode=AWAIT[I]/PAUSE/HALT/CAWAIT[S|I|E]

[21:16] The extended operation code. 000001 indicates HALT.

• CAWAITS

Assembly syntax:

CAWAITS

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00001 000000000 110011 0000000000000000

Encoding:

[35:31] Opcode=AWAIT[I]/PAUSE/HALT/CAWAIT[S|I|E]

[21:16] The extended operation code. 110011 indicates CAWAITS.

132 APPENDIX A. KEP INSTRUCTION SET

• CAWAITS[I]

Assembly syntax:

CAWAIT S

CAWAITI S

S The name of the signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00001 sssssssss 1100o0 0000000000000000

Encoding:

[35:31] Opcode=AWAIT[I]/PAUSE/HALT/CAWAIT[S|I|E]

[21:16] The extended operation code. 110000 indicates CAWAIT; and 110010 in-
dicates CAWAITI.

• CAWAITE addr

addr The address of the first CAWAIT[I] instruction of corresponding await case
branches. See also Figure 3.15.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00001 000000000 110001 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=AWAIT[I]/PAUSE/HALT/CAWAIT[S|I|E]

[21:16] The extended operation code. 110001 indicates CAWAITE.

[15:00] The address of the first CAWAIT[I] instruction of this CAWAITS/CAWAIT[I]/CAWAIT[E]
instruction group. See also Figure 3.15.

Note: unlike the AWAIT[I] instruction, the CAWAIT[I] does not support count
delays. However, the user can use an inner signal and an additional thread to
model the same behavior. See also Figure A.1.

A.1.5 Signal Emission and Testing

• SETV

Assembly syntax:

– SETV S, #data

S The name of the valued signal.

#data The operating 16-bit data.

A.1. ESTEREL-TYPE INSTRUCTIONS 133

% Esterel

await
case A do
ρ1

case 4 B do
ρ2

end await;
%

signal X in
[await

case A do
ρ1

case X do
ρ2

end await;
||

await 4 B;

emit X;

];

end signal ;
%

% KEP Assembler

SIGNAL X

PAR 1,P1

PAR 1,P2

PARE P3

P1: CAWAITS
CWS: CAWAIT A, ASTART

CAWAIT X, BSTART

CAWAITE CWS

ASTART: ρ1

GOTO END

BSTART: ρ3

GOTO END

P2: LOAD COUNT, #4

AWAIT B

EMIT X

P3: JOIN
END: %

(a) (b) (c)

Figure A.1: Translating an Esterel CountAwaitCase module (a) to its equivalent form
(b), and the corresponding assembler code for KEP (c).

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 100000 nnnnnnnnnnnnnnnn

Instruction Encoding:

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and immediate data.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 100000 indicates SETV.

[15:00] The 16-bit operating data.

– SETV S, reg

S The name of the valued signal.

reg The name of the target register.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10010 sssssssss 100000 000000rrrrrrrrrr

Instruction Encoding:

[35:31] Operation code. 10010 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and the content of a register.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 100000 indicates SETV.

[09:00] The index value of the source register.

134 APPENDIX A. KEP INSTRUCTION SET

• EMIT

Assembly syntax:

– EMIT S

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 000000 0000000000000000

Instruction Encoding:

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000000 indicates EMIT.

– EMIT S, #data

S The name of the valued signal.

#data The operating 16-bit data.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 000000 nnnnnnnnnnnnnnnn

Instruction Encoding:

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and immediate data.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000000 indicates EMIT.

[15:00] The 16-bit operating data.

– EMIT S, reg

S The name of the valued signal.

reg The name of the target register.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10010 sssssssss 000000 000000rrrrrrrrrr

Instruction Encoding:

[35:31] Operation code. 10010 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and the content of a register.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000000 indicates EMIT.

[09:00] The index value of the source register.

• SUSTAIN

Assembly syntax:

– SUSTAIN S

A.1. ESTEREL-TYPE INSTRUCTIONS 135

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 010000 0000000000000000

Instruction Encoding:

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 010000 indicates SUSTAIN.

– SUSTAIN S, #data

S The name of the valued signal.

#data The operating 16-bit data.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 010000 nnnnnnnnnnnnnnnn

Instruction Encoding:

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and immediate data.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 010000 indicates SUSTAIN.

[15:00] The 16-bit operating data.

– SUSTAIN S, reg

S The name of the valued signal.

reg The name of the target register.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10010 sssssssss 010000 000000rrrrrrrrrr

Instruction Encoding:

[35:31] Operation code. 10010 indicates SETV/EMIT/SUSTAIN/SIGNAL, an
instruction with a signal and the content of a register.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 010000 indicates SUSTAIN.

[09:00] The index value of the source register.

• SIGNAL

Assembly syntax:

SIGNAL S

S The name of the signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 01000 sssssssss 110000 0000000000000000

Instruction Encoding:

136 APPENDIX A. KEP INSTRUCTION SET

[35:31] Operation code. 01000 indicates SETV/EMIT/SUSTAIN/SIGNAL.

[30:22] The (local) signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 110000 indicates SIGNAL.

• PRESENT

Assembly syntax:

PRESENT S,elseAddr

S The name of the signal.

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00000 sssssssss 000100 AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000100 indicates PRESENT.

[15:00] The address behind the end of the presentation body. If Signal S is pre-
sented at the current cycle, the KEP will execute the following instruction,
or else it will jump to this indicated address.

A.1.6 Others

• NOTHING

Assembly syntax:

NOTHING

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00000 000000000 000000 0000000000000000

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[21:16] The extended operation code. 000000 indicates NOTHING.

• GOTO

Assembly syntax:

GOTO addr

addr The target address

A.1. ESTEREL-TYPE INSTRUCTIONS 137

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00000 000000000 000001 AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[21:16] The extended operation code. 000001 indicates GOTO.

[15:00] The target address. The KEP will go to this indicated address.

• CALL

Assembly syntax:

CALL addr

addr The start address of the subroutine.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00000 000000000 000010 AAAAAAAAAAAAAAAA

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[21:16] The extended operation code. 000010 indicates CALL.

[15:00] The start address of the subroutine. When a procedure calls a subroutine,
the address behind current instruction will be pushed. Subsequently a jump
to addr is preformed.

• RETURN

Assembly syntax:

RETURN

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 00000 000000000 000011 0000000000000000

Instruction Encoding:

[35:31] Opcode=NOTHING/GOTO/CALL/RETURN/PRESENT/JOIN.

[21:16] The extended operation code. 000011 indicates RETURN. Return to the
procedure from a subroutine. The pushed address will be popped as the
target address.

138 APPENDIX A. KEP INSTRUCTION SET

A.2 Classical Instructions

A.2.1 Program and Machine Control

• CMP[S]

Assembly syntax:

– CMP[S] reg,#data

reg The name of the target register.

data The operating data.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10111 RRRRRRRRRR 0o000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=CMP

[30:21] The index value of the target register.

[20:16] The extended operation code. 00000 indicates CMP reg,#data, and
01000 indicates CMPS reg,#data. It means that the contents of the regis-
ter reg will be compared with the value of the data. The result will affect
the zero and carry bits. If the contents of the register reg equals to the
value of the data, the zero bit will be set to ’1’, and the carry bit will be
set to ’0’. If the contents of the register reg is less than the value of the
data, the carry bit will be set to ’1’, and the zero bit will be set to ’0’.
If the contents of the register reg is greater than the value of the data,
the carry and equal bits will be set to ’0’. The difference of the CMP and
CMPS is that for the CMPS instruction the highest bit of the contents of
the register reg is considered as a sign bit.

[15:00] The value of the operating data.

– CMP[S] reg,REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10111 RRRRRRRRRR 0o001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=CMP

[30:21] The index value of the target register.

[20:16] The extended operation code. 00001 indicates CMP reg,REG , and
01001 indicates CMPS reg,REG . It means that the contents of the register
reg will be compared with the contents of the register REG . The result
will affect the zero and carry bits.

A.2. CLASSICAL INSTRUCTIONS 139

[09:00] The index value of the target register.

– CMP reg, ?S |PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10111 sssssssss 00o010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=CMP

[30:22] The index value of the target register.

[21:16] The extended operation code. 000010 indicates CMP reg,?S |PRE(?S),
and 001010 indicates CMPS reg,?S |PRE(?S). It means that the contents
of the register reg will be compared with the carried data of the valued
signal S . The result will affect the zero and carry bits.

[09:00] The index value of the target register.

• JW

Assembly syntax:

– JW Z,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000000 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

[21:16] Jump when not zero. Set to ”000000” when JW Z,elseaddr . It means
that the KEP will test the zero bit. If the zero bit is ’1’ (true), the KEP
will execute the following instruction, or else it will go to the branching
address. The status of the zero bit depends on the last data, which was
written into the register file.

[15:00] The branching address.

– JW L,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000001 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

140 APPENDIX A. KEP INSTRUCTION SET

[21:16] Jump when not less. Set to “000001” when JW L,elseaddr . It means
that the KEP will test the carry bit. If the carry bit is ’1’ (true), the KEP
will execute the following instruction, or else it will jump to the branching
address. The status of the carry bit depends on the last statement which
can affect the carry bit, e. g., SUBC, ADDC, or CMP, etc. It also can be
expressed as JC elseaddr .

[15:00] The branching address.

– JW G,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000011 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

[21:16] Jump when not greater. Set to “000011” when JW G,elseaddr . It
means that the KEP will test the carry and zero bits. This instruction
should be used right after a CMP instruction. If the result of the com-
parison is greater than, the KEP will execute the following instruction,
or else it will jump to the branching address.

[15:00] The branching address.

– JW GE,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000100 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

[21:16] Jump when not greater/equal. Set to “000100” when JW GE,elseaddr .
It means that the KEP will test the carry and zero bits. This instruc-
tion should be used right after a CMP instruction. If the result of the
comparison is greater than or equal, the KEP will execute the following
instruction, or else it will jump to the branching address.

[15:00] The branching address.

– JW LE,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000101 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

A.2. CLASSICAL INSTRUCTIONS 141

[21:16] Jump when not less/equal. Set to “000101” when JW LE,elseaddr . It
means that the KEP will test the carry and zero bits. This instruction
should be used right after a CMP instruction. If the result of the compar-
ison is less than or equal, the KEP will execute the following instruction,
or else it will jump to the branching address.

[15:00] The branching address.

– JW EE,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000110 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

[21:16] Jump when not equal. Set to “000110” when JW EE,elseaddr . It
means that the KEP will test the zero bit. This instruction should be
used right after a CMP instruction. If the result of the comparison is
equal, the KEP will execute the following instruction, or else it will jump
to the branching address.

[15:00] The branching address.

– JW NE,elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000111 AAAAAAAAAAAAAAAA

Encoding:

[35:31] Opcode=JW/JNC

[21:16] Jump when equal. Set to “000111” when JW NE,elseaddr . It means
that the KEP will test the zero bit. This instruction should be used right
after a CMP instruction. If the result of the comparison is not equal, the
KEP will execute the following instruction, or else it will jump to the
branching address.

[15:00] The branching address.

• JNC

Assembly syntax:

JNC elseaddr

elseaddr The branching address.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10000 000000000 000010 AAAAAAAAAAAAAAAA

Encoding:

142 APPENDIX A. KEP INSTRUCTION SET

[35:31] Opcode=JW/JNC

[21:16] Jump when carry bit is false. Set to ”000010” when JNC elseaddr . It
means that the KEP will test the carry bit. If the carry bit is ’0’ (false),
the KEP will execute the following instruction, or else it will jump to the
branching address. This instruction and JW L,elseaddr are contrary terms.
Note the JW L,elseaddr can also be expressed as JC elseaddr .

[15:00] The branching address.

A.2.2 Boolean Variable Manipulation

• CLRC

Assembly syntax:

CLRC

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10001 000000000 000000 0000000000000000

Encoding:

[35:31] Opcode=CLRC/SETC/SR[C]/SL[C]/NOTR

[21:16] The extended operation code 000000 indicates CLRC. It means that the
carry bit will be cleared.

• SETC

Assembly syntax:

SETC

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10001 000000000 000001 0000000000000000

Encoding:

[35:31] Opcode=CLRC/SETC/SR[C]/SL[C]/NOTR

[21:16] The extended operation code. 000001 indicates SETC. It means that the
carry bit will be set to ’1’.

• SR[C]

Assembly syntax:

SR reg

SRC reg

reg The name of the register.

A.2. CLASSICAL INSTRUCTIONS 143

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10001 000000000 00001o 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=CLRC/SETC/SR[C]/SL[C]/NOTR

[21:16] The extended operation code. 000010 indicates SR; and 000011 indicates
SRC. It means that the contents of the register reg will be right shifted. The
highest bit will be replaced by ’0’ for SR; or it will be replaced by the status
of the carry bit for SRC.

[09:00] The index value of the target register.

• SL[C]

Assembly syntax:

SL reg

SLC reg

reg The name of the register.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10001 000000000 0001oo 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=CLRC/SETC/SR[C]/SL[C]/NOTR

[21:16] The extended operation code. 000101 indicates SL; and 000110 indicates
SLC. It means that the contents of the register reg will be left shifted. The
lowest bit will be replaced by ’0’ for SL; or it will be replaced by the status
of the carry bit for SLC.

[09:00] The index value of the target register.

• NOTR

Assembly syntax:

NOTR reg

reg The name of the register.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10001 000000000 000111 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=CLRC/SETC/SR[C]/SL[C]/NOTR

[21:16] The extended operation code. 000111 indicates NOTR. It means that the
contents of the register reg will be complemented.

[09:00] The index value of the target register.

144 APPENDIX A. KEP INSTRUCTION SET

A.2.3 Data Transfer

• LOAD

Assembly syntax:

– LOAD REG, #data

REG The name of the target register.

data The data to be loaded into the register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10100 RRRRRRRRRR 00000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=LOAD

[30:21] The index value of the target register.

[20:16] The extended operation code. 00000 indicates LOAD REG, #data.
It means that the contents of the register REG will be replaced by the
value of data.

[15:00] The value of the data.

– LOAD reg, REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10100 RRRRRRRRRR 00001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=LOAD

[30:21] The index value of the source register.

[20:16] The extended operation code. 00001 indicates LOAD reg, REG . It
means that the contents of the register reg will be replaced by the contents
of the register REG .

[09:00] The index value of the target register.

– LOAD reg, ?S |PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10100 sssssssss 000010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=LOAD

[30:22] The signal’s unicode value. See also Section 4.3.

A.2. CLASSICAL INSTRUCTIONS 145

[21:16] The extended operation code. 000010 indicates LOAD reg, ?S |PRE(?S).
It means that the contents of the register reg will be replaced by the car-
ried data of the valued signal S (for ?S); or it will be replaced by the
carried data of the valued signal S in the previous tick (for PRE(?S)).

[09:00] The index value of the target register.

• DEF32

Assembly syntax:

DEF32 #data32

data32 The 32-bit data to be loaded.

d35 − d32 d31 − d22 d21 − d16 d15 − d00

Instr. Encoding 1100 nnnnnnnnnn nnnnnn nnnnnnnnnnnnnnnn

Encoding:

[35:32] Opcode=DEF32. This instruction loads a 32-bit data to a special register
named UINT32REG. The user can access this register to operate this data.
See also Section 3.5.

[31:00] The value of the 32-bit data.

A.2.4 Arithmetic Operations

• ADD[C]

Assembly syntax:

– ADD REG, #data

– ADDC REG, #data

REG The name of the target register.

data The data to be added into the register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 00o00 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the target register.

[20:16] The extended operation code. 00000 indicates ADD REG, #data,
and 00100 indicates ADDC REG, #data. It means that the contents of
the register REG (and the value of the carry bit for ADDC) will be added
with the value of the data, and the sum will be stored in the register
REG .

146 APPENDIX A. KEP INSTRUCTION SET

[15:00] The value of the data.

– ADD[C] reg, REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 00o01 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the source register.

[20:16] The extended operation code. 00001 indicates ADD reg, REG , and
00101 indicates ADDC reg, REG . It means that the contents of the register
REG (and the value of the carry bit for ADDC) will be added with the
contents of the register reg , and the sum will be stored in the register
reg .

[09:00] The index value of the target (augend/sum) register.

– ADD[C] reg, ?S |PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10101 sssssssss 000o10 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000010 indicates ADD reg, ?S |PRE(?S),
and 000110 indicates ADDC reg, ?S |PRE(?S). It means that the contents
of the register reg will be added with the carried data (for ?S) or the
carried data in the previous tick (for PRE(?S)) of the valued signal S
(and the value of the carry bit for ADDC), and the sum will be stored in
the register reg .

[09:00] The index value of the target register.

• SUB[C]

Assembly syntax:

– SUB REG, #data

– SUBC REG, #data

reg The name of the target (minuend/difference) register.

data The value of subtrahend.

A.2. CLASSICAL INSTRUCTIONS 147

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 01o00 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the target (minuend/difference) register.

[20:16] The extended operation code. 01000 indicates SUB REG, #data,
and 01100 indicates SUBC REG, #data. It means that the value of the
data (and the value of the carry bit for SUBC) will be subtracted from
the contents of the register REG , and the difference will be stored in the
register REG .

[15:00] The value of the data.

– SUB[C] reg, REG

reg The name of the target (minuend/difference) register.

REG The name of the source (subtrahend) register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 01o01 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the source (subtrahend) register.

[20:16] The extended operation code. 01001 indicates ADD reg, REG , and
01101 indicates SUBC reg, REG . It means that the contents of the register
REG (and the value of the carry bit for SUBC) will be subtracted from
the contents of the register reg , and the difference will be stored in the
register reg .

[09:00] The index value of the target (minuend/difference) register.

– SUB[C] reg, ?S |PRE(?S)

reg The name of the target (minuend/difference) register.

S The name of the valued signal (subtrahend).

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10101 sssssssss 001o10 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 001010 indicates SUB reg, ?S |PRE(?S),
and 001110 indicates SUBC reg, ?S |PRE(?S). It means that the carried
data (for ?S) or the carried data in the previous tick (for PRE(?S)) of
the valued signal S (and the value of the carry bit for SUBC) will be
subtracted from the contents of the register reg , and the difference will
be stored in the register reg .

148 APPENDIX A. KEP INSTRUCTION SET

[09:00] The index value of the target (minuend/difference) register.

• MUL

Assembly syntax:

– MUL REG, #data

reg The name of the target (multiplicand/product) register.

data The value of multiplier.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 10000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the target (multiplicand/product) register.

[20:16] The extended operation code. 10000 indicates MUL reg, #data. It
means that the contents of the register REG will be multiplied by the
value of the data, and the product will be stored in the register REG .

[15:00] The value of the data.

– MUL reg, REG

reg The name of the target (multiplicand/product) register.

REG The name of the source (multiplier) register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10101 RRRRRRRRRR 10001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:21] The index value of the source (multiplier) register.

[20:16] The extended operation code. 10001 indicates MUL reg, REG . It
means that the contents of the register reg will be multiplied by the
contents of the register REG , and the product will be stored in the register
reg .

[09:00] The index value of the target (multiplicand/product) register.

– MUL reg, ?S |PRE(?S)

reg The name of the target (multiplicand/product) register.

S The name of the valued signal (multiplier).

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10101 sssssssss 010010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ADD[C]/SUB[C]/MUL

[30:22] The signal’s unicode value. See also Section 4.3.

A.2. CLASSICAL INSTRUCTIONS 149

[21:16] The extended operation code. 010010 indicates MUL reg, ?S |PRE(?S).
It means that the carried data (for ?S) or the carried data in the previ-
ous tick (for PRE(?S)) of the valued signal S will be multiplied by the
contents of the register reg , and the product will be stored in the register
reg .

[09:00] The index value of the target (multiplicand/product) register.

A.2.5 Logical Operations

• ANDR

Assembly syntax:

– ANDR REG, #data

REG The name of the target register.

data The operating data.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 00000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the target register.

[20:16] The extended operation code. 00000 indicates ANDR reg, #data. It
means that the contents of the register REG will be ANDed with the
value of the data, and the result will be stored in the register REG .

[15:00] The value of the operating data.

– ANDR reg, REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 00001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the source register.

[20:16] The extended operation code. 00001 indicates ANDR reg, REG . It
means that the contents of the register reg will be ANDed with the
contents of the register REG , and the result will be stored in the register
reg .

[09:00] The index value of the target register.

– ANDR reg, ?S |PRE(?S)

150 APPENDIX A. KEP INSTRUCTION SET

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10110 sssssssss 000010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 000010 indicates ANDR reg, ?S |PRE(?S).
It means that the contents of the register reg will be ANDed with the car-
ried data (for ?S) or the carried data in the previous tick (for PRE(?S))
of the valued signal S , and the result will be stored in the register reg .

[09:00] The index value of the target register.

• ORR

Assembly syntax:

– ORR REG, #data

REG The name of the target register.

data The operating data.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 01000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the target register.

[20:16] The extended operation code. 01000 indicates ORR reg, #data. It
means that the contents of the register REG will be ORed with the value
of the data, and the result will be stored in the register REG .

[15:00] The value of the operating data.

– ORR reg, REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 01001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the source register.

[20:16] The extended operation code. 01001 indicates ORR reg, REG . It
means that the contents of the register reg will be ORed with the contents
of the register REG , and the result will be stored in the register reg .

A.2. CLASSICAL INSTRUCTIONS 151

[09:00] The index value of the target register.

– ORR reg, ?S |PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10110 sssssssss 001010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 001010 indicates ORR reg, ?S |PRE(?S).
It means that the contents of the register reg will be ORed with the car-
ried data (for ?S) or the carried data in the previous tick (for PRE(?S))
of the valued signal S , and the result will be stored in the register reg .

[09:00] The index value of the target register.

• XORR

Assembly syntax:

– XORR REG, #data

REG The name of the target register.

data The operating data.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 10000 nnnnnnnnnnnnnnnn

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the target register.

[20:16] The extended operation code. 10000 indicates XORR reg, #data. It
means that the contents of the register REG will be XORed with the
value of the data, and the result will be stored in the register REG .

[15:00] The value of the operating data.

– XORR reg, REG

reg The name of the target register.

REG The name of the source register.

d35 − d31 d30 − d21 d20 − d16 d15 − d00

Instr. Encoding 10110 RRRRRRRRRR 10001 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:21] The index value of the source register.

152 APPENDIX A. KEP INSTRUCTION SET

[20:16] The extended operation code. 10001 indicates XORR reg, REG . It
means that the contents of the register reg will be XORed with the con-
tents of the register REG , and the result will be stored in the register
reg .

[09:00] The index value of the target register.

– XORR reg, ?S |PRE(?S)

reg The name of the target register.

S The name of the valued signal.

d35 − d31 d30 − d22 d21 − d16 d15 − d00

Instr. Encoding 10110 sssssssss 010010 000000rrrrrrrrrr

Encoding:

[35:31] Opcode=ANDR/ORR/XORR

[30:22] The signal’s unicode value. See also Section 4.3.

[21:16] The extended operation code. 010010 indicates XORR reg, ?S |PRE(?S).
It means that the contents of the register reg will be XORed with the car-
ried data (for ?S) or the carried data in the previous tick (for PRE(?S))
of the valued signal S , and the result will be stored in the register reg .

[09:00] The index value of the target register.

Appendix B

An Introduction to the KEP
Evaluation Platform

B.1 Function Description of the KEP Assembler Com-

piler

B.1.1 Options of the KEP Assembler Compiler

The KEP Assembler Compiler compiles a KEP assembler file into executable codes. The
command for invoking the KEP compiler is:

kasm2klst [-d DebugLevel] -i filename

Options

• -d DebugLevel
Specifies what file will be generated. When the DebugLevel is

– 1
The compiler will just generate the list file (.lst). The executable codes of the
corresponding program is contained in the list file.

– 2
The compiler will generate the list file (.lst) and corresponding VHDL codes
of the KEP’s blocks. The parameters of these blocks depend on the values in
the KEP configuration file (kep.cfg). See also Section B.1.2.

• -i filename
Specifies the (input) KEP assembler language file.

153

154APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

B.1.2 The KEP Configuration File

The KEP configuration file defines some parameters to specify the generated VHDL
code of the KEP blocks. This file is named kep.cfg and is at the same location as the
KEP assembler compiler. If this file does not exist, the KEP assembler compiler will
generate an initial template, the user can modify parameters in the template.

Following parameters can be assigned by the user:

I/O Signals
Specifies the amount of input, output, and inner signals. The maximum number
is 127.

Datapath Width (bit)
Specifies the width of the data path of the KEP. It can be configured as 8, 16 or
32. The width of the data path will effect all data handling elements, e. g., the
Data Handling Block, the carried data width of valued signals which handled by
the Interface Block.

Watcher Number
Specifies the amount of the general Watcher. The maximum number is 64.

Watcher Counter Width (bit)
Configures the maximum number of the count delay that can be handled by the
Watcher directly. The range of this parameter is from 1 to 16 (16 bits maximum).

LWatcher Number
Specifies the number of general Local Watchers. The maximum number is 64.

LWatcher Counter Width (bit)
Configures the maximum count delay that can be handled by the Local Watcher
directly. The range of this parameter is from 1 to 16 (65535 maximum).

TWatcher Counter Width (bit)
Configures the maximum count delay that can be handled by the Thread Watcher
directly. The range of this parameter is from 1 to 16 (65535 maximum).

Counter Width (bit)
Configures the maximum count delay that can be handled by the AWAIT Element
directly. The range of this parameter is from 1 to 16 (65535 maximum).

Thread Number
Specifies the amount of the threads, not including the initial thread (the thread
0). The range of the thread number is from 2 to 126.

Thread Priority Width
Configures the bit width of the thread priority. The range of this parameter is
from 1 to 8, i. e., the maximum priority of a thread can be up to 255.

B.1. FUNCTION DESCRIPTION OF THE KEP ASSEMBLER COMPILER 155

Register Number
Specifies the maximum amount of KEP’s registers. The register number ranges
from 1 to 1024.

Tick Length
Specifies the maximum amount of KEP’s tick length, see also Section 4.5. The
tick length ranges from 1 to 21845 (i. e., 65535/3).

Instruction Memory Size
Specifies the size of the instruction memory. The unit is the instruction word, i. e.,
36-bit. The address range of the instruction memory is from 512 (9-bit) to 65536
(16-bit) words.

Furthermore, the user can also decide which block should be generated by the KEP
assembler compiler. This feature benefits for the VHDL synthesis – the corresponding
VHDL synthesis tool can just re-synthesize modified blocks. Hence, the speed of the
synthesis process can be improved. The following options can be assigned as YES or NO
to enable or disable the generation of a block.

Generate blkcorev4
Switches whether the Decoder & Controller block should be re-generated or not. In
most of conditions, this block is unnecessary to be re-generated.

Generate blkinterface
Switches whether the Interface Block should be re-generated or not. It should be
set to YES whenever the amount of signals or the data path width is changed.

Generate blkreactive
Switches whether the Reactive Block should be re-generated or not. It should be
set to YES whenever any parameter of reactive element, e. g., Watcher number,
counter width of AWAIT Element, or the thread number, is changed.

Generate blkthread
Switches whether the Thread Block should be re-generated or not. It should be set
to YES whenever any thread related parameter is changed. Furthermore, when the
tick length is modified, the Thread Block, which includes the code of Tick Manager,
should also be updated.

Generate blkreg
Switches whether the Data Handling Block should be re-generated or not. It should
be set to YES whenever any data related parameter is changed, e. g., to define the
new register number or data path width.

Generate KEPV4
Since all KEP blocks should be integrated and work together, a block which is
named KEPV4 connects all others function blocks, instruction memory. To avoid
some unwanted mistakes, we recommend it should always be set to YES.

156APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

In addition, to let the user know the basic requirement for an application, a kep.cfga file
will be created whenever the compiler compiles an assembler file. The KEP Assembler
Compiler will analyze the program and output the kep.cfga, which has the same format
as the kep.cfg but sets parameters for minimum hardware usage for this specific program.

B.1.3 The Further Configuration

The configurability of the KEP goes beyond the above mentioned parameters. The user
can modify some constants of the assembler compiler program for further improvements.
The following descriptions illustrates some parameters that can be modified.

pre support
The pre expression can be directly supported by the KEP. However, this function
is unnecessary in lots of applications. A boolean presupport parameter can be set
to true or false to decide whether the hardware circuit for handling previous status
and value of a signal should be created.

Allow lower priority parent thread
As mentioned in Section 4.2.3, the KEP provides a mechanism to allow the pri-
ority of the parent thread to be higher than that of its child threads. However,
this mechanism is useless if the Esterel to KEP Assembler Compiler ensures this
situation will not happen – which is the case under most conditions. Hence, the
boolean parameter LowerPrioParentThreadSupport can be set to false to cancel this
mechanism in order to reduce hardware usage.

Trap Number
Due to the exception handling mechanism of the KEP, several exceptions can be
triggered simultaneously. The TrapNum parameter defines the maximum number
of simultaneous running exceptions.

Show binary code
If the ShowBinCode is true, the binary code of instructions of a program will ap-
pear in the list file; or else, the list file will just contain the hexadecimal code of
instructions.

The maximum length for recording the execution trace in a tick
During every tick, the TestDriver of the KEP Evaluation Platform will record the
execution trace of the KEP. These information can be sent to the HOST for further
analysis. The MaxTickLengthRecWidth parameter defines the maximum number of
the recorded execution steps. The default value is 10 (10-bit), which means 1023
execution steps can be traced in maximum.

Debug mode
Generally, the KEP debugging depends on the HOST and TestDriver of the KEP
Evaluation Platform by an evaluation strategy, see also Section 5.1.3. However,

B.2. FUNCTION DESCRIPTION OF THE TESTDRIVER 157

the KEP also allows simulation strategy to debug its circuit by ModelSim. The
SimDebugMethod parameter can be assigned as 0 to create the KEP Evaluation
Platform; or else it will be switched to ModelSim simulation mode when it equals
1. In the ModelSim simulation mode, a 40-bit debug port will be created, and
one can map any control signal of the KEP to this port for monitoring. In this
mode, the instruction memory size cannot exceed 512 instruction words, and the
execution code of the program will be initialized into the instruction memory.

B.2 Function Description of the TestDriver

The TestDriver is a part of the KEP Evaluation Platform on the FPGA board. After
the program file (bit file) of the FPGA is downloaded into the chip, the TestDriver com-
municates with the HOST via the KEP evaluation program. It receives the commands
and data from the HOST, tests and controls the KEP, completes the action according
to the request, then returns the result to the HOST.

Consider a very simple KEP program, ABRO. We first compile it into executable code.
Figure B.1 shows the KEP Machine Code Listing of this program. Following descriptions
illustrate the functions of the TestDriver. The “->” means the HOST sends data to the
TestDriver, and the “<-” means the TestDriver sends data to the HOST.

Verifying the communication
It verifies the communication between the TestDriver and the HOST:

−> ”V”

<− ”0123456789ABCDEFX” % The ’0’ will be sent first .

Getting the information of the on-board KEP
The TestDriver sends the information of the on-board KEP, which is controlled
by the TestDriver to the HOST as a string, and then sends an “X” to denote this
action is over. The information of the corresponding KEP is composed by 31 chars
and depends on the configuration of the on-board KEP, see also Section B.1.2. The
highest (31st) char codes a hex data to imply some further configuration of the
KEP, see also Section B.1.3. Table B.1 illustrates the code format of this char.

Table B.2 illustrates the code format of the information string.

As described in Table B.2, the protocol is the following:

−> ”N”

<− ”02001E1404040C040408041F407D00AX”

% The ’0’ will be sent first .

Writing the instruction memory
The TestDriver receives chars from the HOST, and decodes them to a binary code
and then writes them to the instruction memory. A 56-bit word is used to describe

158APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

% −−−
% Generated by KEP4 Assembler Compiler Version 4.16

% Original file : abro.kasm

% −−−
INPUT A B R

OUTPUT O

% Signal codes

% Input ports (include local signals)

% [000000010] I/O(#1) A

% [000000100] I/O(#2) B

% [000000110] I/O(#3) R

% Output ports (include local signals)

% [000001000] I/O(#4) O

% Variable

% Summary:

% Input signals : 3 (Pure: 3, Valued: 0)

% Output signals : 1 (Pure: 1, Valued: 0)

% Local signals : 0 (Pure: 0, Valued: 0)

% Variables : 0

%

% RAM Usage (in byte): 0

% Code size (in byte): 54

% Code size (in word): 12

%

% Watchers needed: 0

% LWatchers needed: 1

% Preemption by TWatcher: 0

%

% Watcher Num if no L|TWatcher: 1

%

% Threads needed: 2

%

% Instruction code:

% −−−
% Addr {Hex code} Label: Mnemonic

% −−−
[0000] {40000001E} EMIT TICKLEN, #10 %T0

[0001] {081800000} AWAIT R %T0

[0002] {60180000B} A0: LWABORT R, A1 %T0

[0003] {481010006} PAR 2, P1 (, 1) %T0

[0004] {481020007} PAR 2, P2 (, 2) %T0

[0005] {480000008} PARE P3, 0 %T0

[0006] {080800000} P1: AWAIT A %T1

[0007] {081000000} P2: AWAIT B %T2

[0008] {000200000} P3: JOIN 0 %T0

[0009] {402000000} EMIT O %T0

[0010] {080010000} HALT %T0

[0011] {000010002} A1: GOTO A0 %T0

% −−−

Figure B.1: The ABRO KEP Machine Code Listing.

B.2. FUNCTION DESCRIPTION OF THE TESTDRIVER 159

Bit Notes Value
0 1

4th KEP described language VHDL Esterel
3rd Reserved
2nd Reserved
1st pre support No Yes

Table B.1: The code format of the 31st char of the information string.

Information Num of Configuration Corresponding
string chars parameter Hex codes
31st 1 KEP Type; e. g., KEP without pre support 0

30th - 29th 2 Data path width; e. g., 32-bit 20
28th - 26th 3 Signal number; e. g., 30 signals in total 01E
25th - 24th 2 Thread number; e. g., 20 thread in total 14
23rd - 22nd 2 Watcher number; e. g., 4 Watcher 04
21st - 20th 2 Watcher counter width; e. g., 4-bit 04
19th - 18th 2 LWatcher number; e. g., 12 Local Watcher 0C
17th - 16th 2 LWatcher counter width; e. g., 4-bit 04
15th - 14th 2 TWatcher counter width; e. g., 4-bit 04
13th - 12th 2 Delay counter width; e. g., 8-bit 08
11th - 10th 2 Prio value width; e. g., 4-bit 04
9th - 7th 3 Register number; e. g., 500 1F4
6th - 3rd 4 Tick length; e. g., 2000 07D0
2nd - 1st 2 Instruction memory address width; e. g., 10-bit 0A

Table B.2: The code format of the information string of the on-board KEP.

the content of an instruction memory cell. The first char encodes 4 bits as the
control signal for writing them to the memory, which are followed by 4 chars (16
bits) to describe the address of this instruction. Then the code of the instruction
(36 bits) will be translated. The protocol is the following:

−> ”W”

−> ”6000040000001E” % Sent the instruction code at the first time

% The ’6’ will be sent first .

−> ”7000040000001E” % Sent the instruction code twice

% If they are not equal (except for the control char

% <−”X”

−> ”60001081800000” % AWAIT R (0x081800000) at 0001 address

−> ”70001081800000”

...

−> ”60010080010000” % HALT (0x080010000) at 0010 address

−> ”70010080010000”

−> ”60011000010002” % GOTO A0 (0x000010002) at 0011 address

−> ”70011000010002”

−> ”X” % End writing

160APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

The HOST will transfer every instruction code twice. At first, the control char is
“6”, and it will be changed to “7” the second time. The TestDriver will compare
the remaining received data. If they are different, the TestDriver will report the
error message by sending an “X” to the HOST.

Resetting the KEP
The TestDriver sets the Reset pin of the KEP and drives the clock of the KEP for
some cycles, then sends an ”X” to the HOST. However, the TestDriver will not
release the Reset pin until the TestDriver receives a ”T” char for starting a tick.
The protocol is the following:

−> ”R” % Entering this function

<− ”X”

Getting the status of input signals
The TestDriver receives chars from the HOST, and decodes them to a binary code
and then maps these binary code to the Sinout port of the KEP. For example,
assume the input signal B and R is present. The signal B is the 2nd signal of the
Sinout port, and the signal R is the 3rd one. Hence, the status of input signals will
be encoded as “110b”, i. e., “0x6” in hexadecimal. The HOST will send an “I” as
the command to let the TestDriver enter this function. After the encode of the
status of input signals is sent, an “X” will make the TestDriver exit this function.
The protocol is the following:

−> ”I” % Entering this function

−> ”6”

−> ”X”

Note the lower char of the input signal status code will be transferred at first. For
example, if the code is “0x5A3”, then the “3” will be transferred at first, and the
“5” will be sent finally.

Running a Tick
The TestDriver drives the clock signal of the KEP, stores the execution trace by
saving the instruction memory address for every instruction cycle, watches the
status of the Tick signal, and stops driving the clock signal when the Tick signal
is down. Then the TestDriver sends the “X” to the HOST to denote this action is
over. The protocol is the following:

−> ”T” % Entering this function

<− ”X”

Sending the status of output signals
The TestDriver sends the status of the Sinout to the HOST. The form is similar
as that of the input signals mentioned above. For example, assume the O signal
is present, the code of output signal will equal “0x8” because the 4th bit of the
Sinout port is set as ’1’. Furthermore, the inner signal of the KEP will be regarded

B.2. FUNCTION DESCRIPTION OF THE TESTDRIVER 161

as an output signal, and its status will also be encoded and sent to the HOST.
The protocol is the following:

−> ”O” % Entering this function

<− ”8”

<− ”X”

Sending the valid tick length
The TestDriver transfers the information of valid tick length to the HOST. As
mentioned in Section 4.5, although the KEP employs a specified fixed number
of instruction cycles as its tick length, the actual executed number of instruction
cycles of a tick can be different in every tick. It will be encoded and received by
the HOST for further analysis. Assume a program executes 10 instruction cycles
in a tick, the code of the valid tick length should be “000A”, hexadecimal (always
16-bit). Note that the lower char of the tick length code will be transferred first.
For example, if the code is “000A”, then the “A” will be transferred first, and the
“0” will be sent finally. The protocol is the following:

−> ”L” % Entering this function

<− ”A000”

<− ”X”

Sending the execution trace
The TestDriver sends the address of executed instructions of the last tick to the
HOST. The width of the address code is 16 bits (LSB). For example, assume the
KEP just executed two instructions in the last tick, and the order is first [0183]
and then [0184]. Hence, the execution trace will be encoded as “38104801” – note
the lower char will be transferred first. The protocol is the following:

−> ”M” % Entering this function

<− ”38104810”

<− ”X”

Choosing a valued signal
The TestDriver receives the index code of a signal from the HOST, and decodes
and writes it to the corresponding port to index a valued signal. This function is
started by a “D” char and finished by an “X” char. For example, if the HOST
wants to read/write the carried data of the “0x1A” signal, the “A1” will be sent
to the TestDriver – the lower char will be transferred first. The protocol is the
following:

−> ”D” % Entering this function

<− ”A1”

<− ”X”

Getting the carried data of a valued signal
After the target valued signal was indexed by the choosing a valued signal func-
tion, the TestDriver could receive the content for this valued signal (32 bits) from

162APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

the HOST. For example, if the content of the “0x1A” signal should be set to
“00ABCD53”, the TestDriver will receive “35DCBA00” from the HOST and write
it to the corresponding signal. The protocol is the following:

−> ”G” % Entering this function

−> ”35DCBA00”

−> ”X”

Sending the carried data of a valued signal
After the target valued signal was indexed by the choosing a valued signal func-
tion, the TestDriver could send the content (carried data) of the indexed valued
signal (32 bits) to the HOST. For example, if the content of the “0x1A” signal is
“00ABCD53”, the TestDriver will send “35DCBA00” to the HOST.

−> ”P” % Entering this function

<− ”35DCBA00”

<− ”X”

B.3 Function Description of the KEP Evaluation Pro-

gram

The KEP Evaluation Program is the main tool to evaluate and debug the KEP programs.
Again we use ABRO as a running example.

B.3.1 Starting an Evaluation

To invoke the graphical KEP Evaluation Program, the following shell command should
be executed:

KEPEvalBench.exe

The KEP Evaluation Program starts by displaying a window, as shown on Figure B.2.
The left five icons from left to right correspond to these functions: load list file, verify
communication, get information of the on-board KEP, write code into instruction mem-
ory, reset the KEP, and run a tick. The remaining five icons are used for validation.
From left to right: load esi file, start validation, stop validation, save trace file, and
compare the trace file with the eso which generated by the EStudio.

After a list file is loaded, input signals of this KEP program appear in the Input (signal)
Window, and the output and inner signals are shown in the Output/Signal (signal)
Window. The program, which contains address, hex code, and assembler instructions, is
shown in the Program Window. The user can download executable codes of this program
into the instruction memory of the KEP. Before the download process starts, the KEP
Evaluation Program will check the configuration parameters of the on-board KEP and
compare them with the required hardware resources to execute the current assembler

B.3. FUNCTION DESCRIPTION OF THE KEP EVALUATION PROGRAM 163

Figure B.2: The KEP Evaluation Program.

program. If the on-board KEP cannot handle this program, an error message appears
to warn the user. The System Message Window, which is located at the bottom right of
the panel, reports the corresponding information.

B.3.2 Debugging a Program

The KEP Evaluation Program allows the user to build his or her inputs, drive the KEP,
and view the result of the program.

To build the input, one should set the status of input signals. In the Input Window,
each item is labeled with the name of the signal. A little checkbox on the left of each
item can be used to set the status. If the signal is a valued signal, it could be clicked
with the right mouse button to popup a dialog box, where the user can write the value.

After the input event is built, the user can trigger the reaction by clicking the run a tick
button. After the execution of this tick is finished, the checkbox of a present output

164APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

Figure B.3: Debugging a Program.

signal will be marked. The Tick Length Windows will show the information for the valid
tick length. Corresponding information of the valid tick length and signal trace of every
tick are also shown in the Information Window, as shown in Figure B.3.

To follow the execution trace of a tick, one can click the Begin button in the Debug
Command Panel, which is below the Program Window, to put the control to the first
executed instruction in this tick. Then the Next and Last buttons allow the control
following the execution trace of current tick step by step. If an instruction has been
executed in this tick, it will be marked by a different color. A pink instruction implies
the control reached it; a blue instruction means the control has not reached it yet; and a
red instruction indicates where the control is currently. Clicking a blue instruction sets
a breakpoint indicated by a yellow background. The GoBreak button runs the program
until reaching the break point.

The Tick Length Window will show some further information about instruction cycles.
For example, in Figure B.3, the Tick Length Window notes that control rests at the 2nd
instruction of this tick; and the maximum encountered number of instructions per tick
is five. Note that this should never exceed the analyzed WCRT.

B.3. FUNCTION DESCRIPTION OF THE KEP EVALUATION PROGRAM 165

B.3.3 Validating a Program

To validate a KEP program, the user should first load the corresponding Esterel Sim-
ulator Input (.esi) file, and then start the validation. The KEP Evaluation Program
will read the input trace, build the input event, send the tick, and get the result. The
process will continue until all input traces in the .esi file are finished. One can save the
execution trace (input and output of every tick) as a .keso file – which is compatible
with the Esterel Simulator Output trace (.eso) file. The user can compare these two
file – the .keso and the .eso to ensure the execution traces are exactly the same. The
corresponding information appears in the Information Window.

To validate a batch of programs efficiently, the KEP Evaluation Program also provides
a command line interface:

• KEPEvalBench.exe -A filename
Execute the whole process of validation automatically: load the program, write
the instruction memory, read the .esi file, send the ticks, and compare the results.
The corresponding trace files of filename.lst a should be named filename.esi and
filename.eso. The execution of these process will be reported in a EXEPROC.LOG
file, and the result of the comparison is given in a CMP filename.LOG file. If the
validation fails, an EVALERR.LOG file is generated to report the error.

• KEPEvalBench.exe -T filename
Similar as the -A option. Furthermore, a filename.ktr file will be created, which
contains the instruction execution trace of every tick.

• KEPEvalBench.exe -M filename
Similar as the -A option. However, it targets a MicroBlaze platform as alternative
the reference for the KEP.

• KEPEvalBench.exe -V
Verify the communication between the TestDriver and the HOST. If the verification
fails, an EVALERR.LOG file will be generated to report the error.

• KEPEvalBench.exe -N
Get the information of the on-board KEP. A KEPINF.LOG file will be generated
to report the information in detail.

• KEPEvalBench.exe -R
Reset the KEP. If the process fails, an EVALERR.LOG file will be generated to
report the error.

• KEPEvalBench.exe -D filename
Write the executable code of the filename.lst program into the instruction memory
of the KEP. If the process fails, an EVALERR.LOG file will be generated to report
the error.

166APPENDIX B. AN INTRODUCTION TO THE KEP EVALUATION PLATFORM

• KEPEvalBench.exe -S filename
Evaluate the filename.lst. It loads the corresponding filename.esi file, runs the
KEP, and saves the result into the filename.keso file.

• KEPEvalBench.exe -C filename
Compare the filename.keso with the filename.eso. The result is given in a
CMP filename.LOG file. If they do not match, an EVALERR.LOG file is generated

to report the error.

For the evaluation of a KEP program (-A or -S option), the KEP Evaluation Program
will also write the information of the program and its execution to an autotestreport.tex
file if the evaluation is successful. This file will be further compiled to a report after all
programs are validated.

Bibliography

[1] Alauddin Alomary, Takeharu Nakata, Yoshimichi Honma, Masaharu Imai, and
Nobuyuki Hikichi. An ASIP instruction set optimization algorithm with functional
module sharing constraint. In ICCAD ’93: Proceedings of the 1993 IEEE/ACM
international conference on Computer-aided design, pages 526–532, Los Alamitos,
CA, USA, 1993. IEEE Computer Society Press. 20, 122

[2] Charles André. SyncCharts: A Visual Representation of Reactive Behaviors. Tech-
nical Report RR 95–52, rev. RR (96–56), I3S, Sophia-Antipolis, France, Rev. April
1996. http://www.i3s.unice.fr/~andre/CAPublis/SYNCCHARTS/SyncCharts.

pdf. 57

[3] L. Arditi, A. Bouali, H. Boufaied, G. Clave, M. Hadj-Chaib, and R. de Simone.
Using Esterel and formal methods to increase the confidence in the functional
validation of a commercial DSP. In Proceedings of the 4th International ERCIM
Workshop on Formal Methods for Industrial Critical Systems (FMICS’99), June
1999. http://citeseer.ist.psu.edu/arditi99using.html. 2

[4] Peter J. Ashenden. The VHDL cookbook, July 1990. http://tams-www.

informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf. 87

[5] Peter M. Athanas and Harvey F. Silverman. Processor reconfiguration through
instruction-set metamorphosis. Computer, 26(3):11–18, 1993. http://dx.doi.

org/10.1109/2.204677. 122

[6] Felice Balarin, Paolo Giusto, Attila Jurecska, Claudio Passerone, Ellen M. Sen-
tovich, Bassam Tabbara, Massimiliano Chiodo, Harry Hsieh, Luciono Lavagno,
Alberto Sangiovanni-Vincentelli, and Kei Suzuki. Hardware-Software Co-Design
of Embedded Systems, The POLIS Approach. Kluwer Academic Publishers, April
1997. 8, 10, 106, 109

[7] Massimo Baleani, Frank Gennari, Yunjian Jiang, Yatish Patel, Robert K. Bray-
ton, and Alberto Sangiovanni-Vincentelli. HW/SW partitioning and code gen-
eration of embedded control applications on a reconfigurable architecture plat-
form. In CODES’02: Proceedings of the Tenth International Symposium On Hard-
ware/Software Codesign, pages 151–156, New York, NY, USA, 2002. ACM Press.
http://doi.acm.org/10.1145/774789.774820. 8, 9

167

http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://www.i3s.unice.fr/~andre/CA Publis/SYNCCHARTS/SyncCharts.pdf
http://citeseer.ist.psu.edu/arditi99using.html
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf
http://tams-www.informatik.uni-hamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf
http://dx.doi.org/10.1109/2.204677
http://dx.doi.org/10.1109/2.204677
http://doi.acm.org/10.1145/774789.774820

168 BIBLIOGRAPHY

[8] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design
techniques for system-level dynamic power management. In Readings in hard-
ware/software co-design, pages 231–248. Kluwer Academic Publishers, Norwell,
MA, USA, 2002. 98

[9] Luca Benini and Giovanni De Micheli. Automatic synthesis of low-power gated-
clock finite-state machines. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems., 15:630 – 643, June 1996. 98

[10] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The Synchronous Languages Twelve Years Later.
In Proceedings of the IEEE, Special Issue on Embedded Systems, volume 91, pages
64–83, January 2003. 2, 9, 10

[11] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating reactive pro-
cesses. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 85–98, Charleston,
South Carolina, 1993. 2, 20, 109

[12] Gérard Berry. Programming a digital watch in Esterel v3. Technical Report
RR-1032, INRIA, 1988. http://citeseer.ist.psu.edu/berry91programming.

html. 110

[13] Gérard Berry. A hardware implementation of pure ESTEREL. Technical Report
de recherche 1479, INRIA, 1991. 20

[14] Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal So-
ciety of London, 339:87–104, 1992. 7, 9

[15] Gérard Berry. Preemption in concurrent systems. In Proceedings of the 13th Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
pages 72–93, London, UK, 1993. Springer-Verlag. 25, 27

[16] Gérard Berry. The semantics of pure Esterel. In Proceedings of the Markto-
berdorf Intl. Summer School on Program Design Calculi, Lecture Notes in Com-
puter Science (LNCS). Springer-Verlag, 1993. http://citeseer.ist.psu.edu/

berry93semantics.html. 20

[17] Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999. ftp:
//ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps. 10, 11, 20

[18] Gérard Berry. The Esterel v5 Language Primer, 1999. ftp://ftp-sop.inria.

fr/meije/esterel/papers/primer.ps. 1, 3, 22, 25, 109

[19] Gérard Berry. The Esterel v5 Language Primer, Version v5 91. Centre de
Mathématiques Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis,
2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf. 2, 4, 7, 20,
22, 23, 34, 41, 91, 93, 98, 122

http://citeseer.ist.psu.edu/berry91programming.html
http://citeseer.ist.psu.edu/berry91programming.html
http://citeseer.ist.psu.edu/berry93semantics.html
http://citeseer.ist.psu.edu/berry93semantics.html
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf

BIBLIOGRAPHY 169

[20] Gérard Berry. The Foundations of Esterel. Proof, Language and Interaction:
Essays in Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and M.
Tofte. 42

[21] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Programming
Language and its Mathematical Semantics. In Seminar on Concurrency, Carnegie-
Mellon University, volume 197 of Lecture Notes in Computer Science (LNCS),
pages 389–448. Springer-Verlag, 1984. 2

[22] Gérard Berry and Georges Gonthier. Incremental development of an HDLC entity
in Esterel. Computer Networks and ISDN Systems., 22(1):35–49, 1991. 2

[23] Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming Lan-
guage: Design, Semantics, Implementation. Science of Computer Programming,
19(2):87–152, 1992. http://citeseer.nj.nec.com/berry92esterel.html. 2, 3,
8, 9, 20, 54

[24] Gérard Berry and Ellen M. Sentovich. An implementation of constructive syn-
chronous programs in polis. Formal Methods in System Design, 17(2):135–161,
2000. http://dx.doi.org/10.1023/A:1008796718837. 8

[25] Kevin Bixler and David Dye. Physical synthesis and optimization with ISE soft-
ware. Xcell Journal, 2005. 121

[26] Marian Boldt. A compiler for the Kiel Esterel Processor. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, November 2007.
To appear. 5, 13, 42

[27] Marian Boldt. Worst-case reaction time analysis for the KEP3. Study thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, May
2007. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mabo-st.pdf. 5, 13, 96

[28] Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case reaction
time analysis of concurrent reactive programs. In Proceedings of the Workshop on
Model-driven High-level Programming of Embedded Systems (SLA++P07), Braga,
Portugal, March 2007. 5, 13, 44, 96

[29] Amar Bouali. XEVE: An Esterel verification environment. In Proceedings of the
10th Internation Conference Computer-Aided Verification (CAV’98), volume 1427.
Lecture Notes in Computer Science (LNCS), 1998. 106

[30] Hedi Boufaied, Arnaud Cavanie, Bernard Dion, Sylvan Dissoubray, Laurent Arditi,
Gaël Clave, and Charles Andre. An experiment in using Esterel studio for modeling
the control of mobile communication architectures. In Proceedings of the Sophia-
Antipolis forum on MicroElectronics (SAME) congress, Sophia Antipolis, October
1999. 2

http://citeseer.nj.nec.com/berry92esterel.html
http://dx.doi.org/10.1023/A:1008796718837
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf

170 BIBLIOGRAPHY

[31] Klaus Buchenrieder, Andreas Pyttel, and Christian Veith. Mapping statechart
models onto an FPGA-based ASIP architecture. In EURO-DAC ’96/EURO-
VHDL ’96: Proceedings of the conference on European design automation, pages
184–189, Los Alamitos, CA, USA, 1996. IEEE Computer Society Press. 8

[32] Annette Bunker, Ganesh Gopalakrishnan, and Sally A. Mckee. Formal hardware
specification languages for protocol compliance verification. ACM Transactions
on Design Automation of Electronic Systems, 9(1):1–32, 2004. http://doi.acm.

org/10.1145/966137.966138. 7

[33] Robert Cartwright and Matthias Felleisen. The semantics of program dependence.
In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Program-
ming language design and implementation, pages 13–27, New York, NY, USA,
1989. ACM Press. http://doi.acm.org/10.1145/73141.74820. 44

[34] Paul Caspi, Alain Girault, and Daniel Pilaud. Automatic distribution of reactive
systems for asynchronous networks of processors. IEEE Transactions on Software
Engineering, 25(3), 1999. 120

[35] Estbench Esterel Benchmark Suite. http://www1.cs.columbia.edu/~sedwards/
software/estbench-1.0.tar.gz. 107, 109

[36] Newton Cheung, Jorg Henkel, and Sri Parameswaran. Rapid configuration and
instruction selection for an ASIP: A case study. In Proceedings of Design, Au-
tomation and Test in Europe (DATE ’03), pages 802–807, Los Alamitos, CA,
USA, 2003. IEEE Computer Society. 122

[37] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Luciano
Lavagno, and Alberto Sangiovanni-Vincentelli. A formal methodology for hard-
ware/software codesign of embedded systems. IEEE Micro, August 1994. http:

//citeseer.ist.psu.edu/chiodo94formal.html. 8

[38] C.M.Edmund Chow, Joyce S.Y.Tong, M.W.Sajeewa Dayaratne, Partha S Roop,
and Zoran Salcic. RePIC - A New Processor Architecture Supporting Direct Esterel
Execution. School of Engineering Report No. 612, University of Auckland, 2004.
7, 12, 64

[39] Etienne Closse, Michel Poize, Jacques Pulou, Patrick Venier, and Daniel Weil.
SAXO-RT: Interpreting Esterel semantic on a sequential execution structure. In
Florence Maraninchi, Alain Girault, and Eric Rutten, editors, Electronic Notes in
Theoretical Computer Science. Elsevier, July 2002. http://www.elsevier.com/

gej-ng/31/29/23/117/53/34/65.5.010.pdf. 8, 10, 43, 110

[40] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. ACME: Adaptive compilation
made efficient. In Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference

http://doi.acm.org/10.1145/966137.966138
http://doi.acm.org/10.1145/966137.966138
http://doi.acm.org/10.1145/73141.74820
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://citeseer.ist.psu.edu/chiodo94formal.html
http://citeseer.ist.psu.edu/chiodo94formal.html
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf
http://www.elsevier.com/gej-ng/31/29/23/117/53/34/65.5.010.pdf

BIBLIOGRAPHY 171

on Languages, Compilers, and Tools for Embedded Systems (LCTES), pages 69–
77, New York, NY, USA, 2005. ACM Press. http://www.cs.rice.edu/~harv/

lctes05.pdf. 122

[41] M. W. Sajeewa Dayaratne, Partha S. Roop, and Zoran Salcic. Direct Execution of
Esterel Using Reactive Microprocessors. In Proceedings of Synchronous Languages,
Applications, and Programming (SLAP), April 2005. 12, 14

[42] Alexander G. Dean. Efficient real-time fine-grained concurrency on low-cost mi-
crocontrollers. IEEE Micro, 24(4):10–22, 2004. http://dx.doi.org/10.1109/

MM.2004.27. 56

[43] Stephen A. Edwards. CEC: The Columbia Esterel Compiler. http://www1.cs.

columbia.edu/~sedwards/cec/. 42, 104, 109, 110

[44] Stephen A. Edwards. An Esterel compiler for a synchronous/reactive develop-
ment system. Technical Report UCB/ERL M94/43, EECS Department, University
of California, Berkeley, 1994. http://www.eecs.berkeley.edu/Pubs/TechRpts/
1994/2572.html. 8, 9

[45] Stephen A. Edwards. Compiling Esterel into Sequential Code. In Pro-
ceedings of the 7th International Workshop on Hardware/Software Codesign
(CODES 99), May 1999. http://www1.cs.columbia.edu/~sedwards/papers/

edwards1999compiling.pdf. 109

[46] Stephen A. Edwards. An Esterel compiler for large control-dominated systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
21(2), February 2002. 8, 10, 43

[47] Stephen A. Edwards. High-Level Synthesis from the Synchronous Language Es-
terel. Proceedings of the International Workshop of Logic and Synthesis (IWLS),
June 2002. 7, 9

[48] Stephen A. Edwards. Tutorial: Compiling concurrent languages for sequential pro-
cessors. ACM Transactions on Design Automation of Electronic Systems, 8(2):141–
187, April 2003. 9, 10

[49] Stephen A. Edwards, Nicholas Halbwachs, Reinhard von Hanxleden, and Thomas
Stauner. 04491 executive summary – synchronous programming - synchron’04.
In Stephen A. Edwards, Nicolas Halbwachs, Reinhard v. Hanxleden, and Thomas
Stauner, editors, Synchronous Programming - SYNCHRON’04, number 04491 in
Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum (IBFI), Schloss Dagstuhl, Germany, 2005. http://drops.dagstuhl.de/

opus/volltexte/2005/195. 1, 2

[50] Stephen A. Edwards, Vimal Kapadia, and Michael Halas. Compiling Esterel into
static discrete-event code. In International Workshop on Synchronous Languages,

http://www.cs.rice.edu/~harv/lctes05.pdf
http://www.cs.rice.edu/~harv/lctes05.pdf
http://dx.doi.org/10.1109/MM.2004.27
http://dx.doi.org/10.1109/MM.2004.27
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2572.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2572.html
http://www1.cs.columbia.edu/~sedwards/papers/edwards1999compiling.pdf
http://www1.cs.columbia.edu/~sedwards/papers/edwards1999compiling.pdf
http://drops.dagstuhl.de/opus/volltexte/2005/195
http://drops.dagstuhl.de/opus/volltexte/2005/195

172 BIBLIOGRAPHY

Applications, and Programming (SLAP’04), Barcelona, Spain, March 2004. 8, 10,
110

[51] Stephen A. Edwards and Jia Zeng. Code generation in the columbia esterel com-
piler. EURASIP Journal on Embedded Systems, pages Article ID 52651, 31 pages,
2007. http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/52651.
10

[52] Esterel Technologies. Free Software Esterel Compiler. http://www.

esterel-technologies.com/technology/free-software/esterel-compiler.

html. 110

[53] Esterel Technologies. Company homepage. http://www.esterel-technologies.
com. 42

[54] Esterel.org. Esterel history. http://www-sop.inria.fr/esterel.org/Html/

History/History.htm. 9

[55] Jean-Daniel Fekete and Martin Richard. Esterel meets Java: Building reactive
synchronous programs in Java. Technical report, École des Mines de Nantes,
December 1998. http://www.lri.fr/~fekete/ps/EmeetsJ.pdf. 2

[56] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319–349, 1987. http://doi.acm.org/10.1145/24039.24041.
44

[57] Sascha Gädtke. Hardware/Software Co-Design für einen Reaktiven Prozessor.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, May 2007. 5, 13

[58] Sascha Gädtke, Xin Li, Marian Boldt, and Reinhard von Hanxleden. HW/SW Co-
Design for a Reactive Processor. In Proceedings of the Student Poster Session at
the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’06), Ottawa, Canada, June 2006. With accompanying
poster. 5, 13, 121

[59] Philippe Garrault and Brian Philofsky. HDL coding practices to accelerate de-
sign performance. Xilinx white paper wp231, Xilinx Inc, January 2006. http:

//direct.xilinx.com/bvdocs/whitepapers/wp231.pdf. 57

[60] Alain Girault. A survey of automatic distribution method for synchronous pro-
grams. In F. Maraninchi, M. Pouzet, and V. Roy, editors, International Work-
shop on Synchronous Languages, Applications and Programs (SLAP’05), Elec-
tronic Notes in Theoretical Computer Science, Edinburgh, UK, April 2005. Elsevier
Science. http://www.inrialpes.fr/pop-art/people/girault/Publications/

Slap05. 120

http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/52651
http://www.esterel-technologies.com/technology/free-software/esterel-compiler.html
http://www.esterel-technologies.com/technology/free-software/esterel-compiler.html
http://www.esterel-technologies.com/technology/free-software/esterel-compiler.html
http://www.esterel-technologies.com
http://www.esterel-technologies.com
http://www-sop.inria.fr/esterel.org/Html/History/History.htm
http://www-sop.inria.fr/esterel.org/Html/History/History.htm
http://www.lri.fr/~fekete/ps/EmeetsJ.pdf
http://doi.acm.org/10.1145/24039.24041
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/lctes06-sga-poster.pdf
http://direct.xilinx.com/bvdocs/whitepapers/wp231.pdf
http://direct.xilinx.com/bvdocs/whitepapers/wp231.pdf
http://www.inrialpes.fr/pop-art/people/girault/Publications/Slap05
http://www.inrialpes.fr/pop-art/people/girault/Publications/Slap05

BIBLIOGRAPHY 173

[61] Bita Gorjiara and Daniel D. Gajski. Custom processor design using NISC: A case-
study on DCT algorithm. In 3rd Workshop on Embedded Systems for Real-Time
Multimedia, pages 55–60, 2005. 122

[62] Michael Gschwind. Instruction set selection for ASIP design. In Proceedings of
the seventh international workshop on Hardware/software codesign (CODES’99),
pages 7–11, New York, NY, USA, 1999. ACM Press. http://doi.acm.org/10.

1145/301177.301187. 20

[63] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire. Pro-
gramming real time applications with SIGNAL. Proceedings of the IEEE, 79(9),
September 1991. 2

[64] Sumit Gupta, Manev Luthra, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. Hard-
ware and interface synthesis of FPGA blocks using parallelizing code transforma-
tions. In PDCS03: Proceedings of the Parallel and Distributed Computing and
Systems, November 2003. http://citeseer.ist.psu.edu/659443.html. 121

[65] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data-flow programming language LUSTRE. Proceedings of the
IEEE, 79(9):1305–1320, September 1991. http://citeseer.nj.nec.com/

halbwachs91synchronous.html. 2

[66] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with a reconfig-
urable coprocessor. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pages 12–21, Los Alamitos, CA,
1997. IEEE Computer Society Press. citeseer.ist.psu.edu/hauser97garp.

html. 122

[67] Steve Heath. Embedded Systems Design. Butterworth-Heinemann, Newton, MA,
USA, 1997. 87

[68] Thomas A. Henzinger and Christoph M. Kirsch. The embedded machine: Pre-
dictable, portable real-time code. In PLDI ’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and implementation, pages 315–
326, New York, NY, USA, 2002. ACM Press. http://doi.acm.org/10.1145/

512529.512567. 122

[69] Xilinx Inc. Xilinx Spartan-3 web power tool version 8.1.01. http://www.xilinx.
com/cgi-bin/power_tool/power_Spartan3. 116

[70] Xilinx Inc. Low Power Design with CoolRunner-II CPLDs, May 2002. http:

//www.xilinx.com/bvdocs/appnotes/xapp377.pdf. 98

[71] Xilinx Inc. PowerPC Processor Reference Guide, 2003. http://www.xilinx.com/
bvdocs/userguides/ug011.pdf. 116

http://doi.acm.org/10.1145/301177.301187
http://doi.acm.org/10.1145/301177.301187
http://citeseer.ist.psu.edu/659443.html
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://citeseer.nj.nec.com/halbwachs91synchronous.html
citeseer.ist.psu.edu/hauser97garp.html
citeseer.ist.psu.edu/hauser97garp.html
http://doi.acm.org/10.1145/512529.512567
http://doi.acm.org/10.1145/512529.512567
http://www.xilinx.com/cgi-bin/power_tool/power_Spartan3
http://www.xilinx.com/cgi-bin/power_tool/power_Spartan3
http://www.xilinx.com/bvdocs/appnotes/xapp377.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp377.pdf
http://www.xilinx.com/bvdocs/userguides/ug011.pdf
http://www.xilinx.com/bvdocs/userguides/ug011.pdf

174 BIBLIOGRAPHY

[72] Xilinx Inc. Using Block RAM in Spartan-3 FPGAs, 2003. http://www.xilinx.

com/bvdocs/appnotes/xapp463.pdf. 91

[73] Xilinx Inc. Platform Studio User Guide, 2004. http://www.xilinx.com/ise/

embedded/edk_docs.htm. 115

[74] Xilinx Inc. MicroBlaze Processor Reference Guide, 2005. http://www.xilinx.

com/ise/embedded/mb_ref_guide.pdf. 116

[75] Makiko Itoh, Shigeaki Higaki, Yoshinori Takeuchi, Akira Kitajima, Masaharu
Imai, Jun Sato, and Akichika Shiomi. PEAS-III: An ASIP design environment.
In ICCD ’00: Proceedings of the International Conference on Computer Design,
page 430, Los Alamitos, CA, USA, 2000. IEEE Computer Society. 8, 20

[76] Jeffrey A. Jacob and Paul Chow. Memory interfacing and instruction specification
for reconfigurable processors. In FPGA ’99: Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field programmable gate arrays, pages 145–
154, New York, NY, USA, 1999. ACM Press. http://doi.acm.org/10.1145/

296399.296446. 121

[77] Hahnsang Kim and Thierry Turletti. An Esterel-based development environ-
ment for designing software radio applications. Technical report rr. 4256, INRIA,
September 2001. http://citeseer.ist.psu.edu/kim01esterelbased.html. 2

[78] Tim Kogel and Heinrich Meyr. Heterogeneous MP-SoC: the solution to energy-
efficient signal processing. In DAC ’04: Proceedings of the 41th Conference on
Design Automation, pages 686–691, 2004. 13

[79] T. John Koo, Bruno Sinopoli, Alberto Sangiovanni-Vincentelli, and Shankar Sas-
try. A formal approach to reactive system design: Unmanned aerial vehicle flight
management system design example. In Proceedings of the 1999 IEEE Inter-
national Symposium on Computer Aided Control System Design, pages 522–527,
August 1999. 8

[80] Kayhan Küçükçakar. An ASIP design methodology for embedded systems. In
Proceedings of the seventh international workshop on Hardware/software codesign
(CODES’99), pages 17–21, New York, NY, USA, 1999. ACM Press. http://doi.
acm.org/10.1145/301177.301190. 13

[81] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark
Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stan-
ford FLASH Multiprocessor. In ISCA ’94: Proceedings of the 21ST annual in-
ternational symposium on Computer architecture, pages 302–313, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press. http://doi.acm.org/10.1145/

191995.192056. 122

http://www.xilinx.com/bvdocs/appnotes/xapp463.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp463.pdf
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf
http://doi.acm.org/10.1145/296399.296446
http://doi.acm.org/10.1145/296399.296446
http://citeseer.ist.psu.edu/kim01esterelbased.html
http://doi.acm.org/10.1145/301177.301190
http://doi.acm.org/10.1145/301177.301190
http://doi.acm.org/10.1145/191995.192056
http://doi.acm.org/10.1145/191995.192056

BIBLIOGRAPHY 175

[82] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop
Gupta, and John Hennessy. The Dash prototype: Implementation and perfor-
mance. In ISCA ’92: Proceedings of the 19th annual international symposium
on computer architecture, pages 92–103, New York, NY, USA, 1992. ACM Press.
http://doi.acm.org/10.1145/139669.139706. 122

[83] Xin Li. The VHDL code of the Kiel Esterel Processor. https://rtsys.

informatik.uni-kiel.de/svn/kep/KEP/vhdl/. 76, 88, 104

[84] Xin Li, Marian Boldt, and Reinhard von Hanxleden. Compiling Esterel for a
multi-threaded reactive processor. Technical Report 0603, Christian-Albrechts-
Universität Kiel, Department of Computer Science, May 2006. Revised September
2006. 13, 120

[85] Xin Li, Marian Boldt, and Reinhard von Hanxleden. Mapping Esterel onto a multi-
threaded embedded processor. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS’06), San Jose, CA, October 21–25 2006. 5, 13, 89, 120

[86] Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von Hanxle-
den. An Esterel Processor with Full Preemption Support and its Worst Case Reac-
tion Time Analysis. In Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages 225–236, New
York, NY, USA, September 2005. ACM Press. 5, 12, 13, 33, 44, 89, 96

[87] Xin Li and Reinhard von Hanxleden. A concurrent reactive Esterel processor based
on multi-threading. Technical Report 0509, Christian-Albrechts-Universität Kiel,
Department of Computer Science, November 2005. http://www.informatik.

uni-kiel.de/reports/2005/0509.html. 108

[88] Xin Li and Reinhard von Hanxleden. KEP2 (Kiel Esterel Processor 2): The Esterel
Processor. Technical Report 0506, Christian-Albrechts-Universität Kiel, Depart-
ment of Computer Science, April 2005. http://www.informatik.uni-kiel.de/

reports/2005/0506.html. 12, 33, 64, 89, 108

[89] Xin Li and Reinhard von Hanxleden. The Kiel Esterel Processor - a semi-custom,
configurable reactive processor. In Stephen A. Edwards, Nicolas Halbwachs, Rein-
hard v. Hanxleden, and Thomas Stauner, editors, Synchronous Programming -
SYNCHRON’04, number 04491 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/159. 12, 33, 64, 89, 108

[90] Xin Li and Reinhard von Hanxleden. A concurrent reactive Esterel processor
based on multi-threading. In Proceedings of the 21st ACM Symposium on Applied
Computing (SAC’06), Special Track Embedded Systems: Applications, Solutions,
and Techniques, Dijon, France, April 23–27 2006. 9, 13, 109

http://doi.acm.org/10.1145/139669.139706
https://rtsys.informatik.uni-kiel.de/svn/kep/KEP/vhdl/
https://rtsys.informatik.uni-kiel.de/svn/kep/KEP/vhdl/
http://www.informatik.uni-kiel.de/reports/2005/0509.html
http://www.informatik.uni-kiel.de/reports/2005/0509.html
http://www.informatik.uni-kiel.de/reports/2005/0506.html
http://www.informatik.uni-kiel.de/reports/2005/0506.html
http://drops.dagstuhl.de/opus/volltexte/2005/159

176 BIBLIOGRAPHY

[91] Xin Li and Reinhard von Hanxleden. Light-weight, predictable reactive
processing—the kiel esterel processor. In Proceedings of the Design, Automation
and Test in Europe University Booth (DATE’07), Nice, France, April 2007. With
accompanying poster. 106

[92] Jan Lukoschus. Removing Cycles in Esterel Programs. PhD thesis, Christian-
Albrechts-Universität zu Kiel, Faculty of Engineering, July 2006. http://eldiss.
uni-kiel.de/macau/receive/dissertation_diss_2015. 42

[93] Manev Luthra, Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau. In-
terface synthesis using memory mapping for an fpga platform. In ICCD ’03:
Proceedings of the 21st International Conference on Computer Design, page 140,
Washington, DC, USA, 2003. IEEE Computer Society. 8

[94] Philippe Magarshack and Pierre G. Paulin. System-on-chip beyond the nanometer
wall. In DAC ’03: Proceedings of the 40th conference on Design automation, pages
419–424, New York, NY, USA, 2003. ACM Press. http://doi.acm.org/10.1145/
775832.775943. 120, 122

[95] Sumio Morioka. CQPIC: PIC micro computer free soft IP. http://www02.so-net.
ne.jp/~morioka/cqpic.htm. 12

[96] Matthew Ouellette and Dan Connors. Analysis of hardware acceleration in recon-
figurable embedded systems. In IPDPS ’05: Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS’05) - Workshop
3, page 168.1, Washington, DC, USA, 2005. IEEE Computer Society. 108

[97] Massoud Pedram. Power optimization and management in embedded systems. In
ASP-DAC ’01: Proceedings of the 2001 conference on Asia South Pacific design
automation, pages 239–244, New York, NY, USA, 2001. ACM Press. http://doi.
acm.org/10.1145/370155.370333. 98

[98] Becky Plummer, Mukul Khajanchi, and Stephen A. Edwards. An Esterel virtual
machine for embedded systems. In International Workshop on Synchronous Lan-
guages, Applications, and Programming (SLAP’06), Vienna, Austria, March 2006.
122

[99] POLIS: a framework for hardware/software co-design of embedded systems. http:
//embedded.eecs.berkeley.edu/research/hsc/polis_files.html. 8

[100] Dumitru Potop-Butucaru and Robert de Simone. Optimization for faster execution
of Esterel programs, pages 285–315. Kluwer Academic Publishers, Norwell, MA,
USA, 2004. 10

[101] David J. Pursley and Brett L. Cline. A practical approach to hardware and soft-
ware SoC tradeoffs using high-level synthesis for architectural exploration. In
Proceedings of the Global Signal Processing Expo (GSPx) Conference, April 2003.
120

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/date07-xli-poster.pdf
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_2015
http://doi.acm.org/10.1145/775832.775943
http://doi.acm.org/10.1145/775832.775943
http://www02.so-net.ne.jp/~morioka/cqpic.htm
http://www02.so-net.ne.jp/~morioka/cqpic.htm
http://doi.acm.org/10.1145/370155.370333
http://doi.acm.org/10.1145/370155.370333
http://embedded.eecs.berkeley.edu/research/hsc/polis_files.html
http://embedded.eecs.berkeley.edu/research/hsc/polis_files.html

BIBLIOGRAPHY 177

[102] P. S. Roop, Z. Salcic, and M. W. S. Dayaratne. Towards Direct Execution of
Esterel Programs on Reactive Processors. In 4th ACM International Conference
on Embedded Software (EMSOFT 04), Pisa, Italy, September 2004. 2

[103] Z. Salcic, P. S. Roop, M. Biglari-Abhari, and A. Bigdeli. REFLIX: A Processor
Core with Native Support for Control Dominated Embedded Applications. Elsevier
Journal of Microprocessors and Microsystems, 28:13–25, 2004. 12

[104] Zoran A. Salcic, Dong Hui, Partha S. Roop, and Morteza Biglari-Abhari. REMIC:
Design of a reactive embedded microprocessor core. In Proceedings of the 10th
Asia and South Pacific Design Automation Conference (ASP-DAC), pages 977–
981, Shanghai, China, 2005. 12

[105] Zoran A. Salcic, Partha S. Roop, Morteza Biglari-Abhari, and Abbas Bigdeli. RE-
FLIX: A processor core for reactive embedded applications. In Manfred Glesner,
Peter Zipf, and Michel Renovell, editors, Proceedings of the 12th International Con-
ference on Filed Programmable Logic and Applications (FPL-02), volume 2438 of
Lecture Notes in Computer Science, pages 945–945, Montpellier, France, Septem-
ber 2002. Springer. 9, 12

[106] Klaus Schneider, Jens Brandt, and Tobias Schuele. A verified compiler for syn-
chronous programs with local declarations. In Synchronous Languages, Appli-
cations and Programming (SLAP), Electronic Notes in Theoretical Computer
Science, Barcelona, Spain, 2004. http://citeseer.ist.psu.edu/article/

schneider04verified.html. 11, 12

[107] Dongwan Shin and Daniel Gajski. Interface synthesis from protocol specification.
Technical Report CECS-02-13, University of California, Irvine, April 2002. 8

[108] R. K. Shyamasundar and J. V. Aghav. Validating real-time constraints in embed-
ded systems. In PRDC ’01: Proceedings of the 2001 Pacific Rim International
Symposium on Dependable Computing, page 347, Washington, DC, USA, 2001.
IEEE Computer Society. 96

[109] Christian Siemers and Harald Richter. Reconfigurable Microprocessor and Micro-
controller - Architectures and Classification. In Proceedings Embedded World 2004
Conference, pages 271–287, Nuremberg, Germany, February 2004. 122

[110] Cristian Soviani and Stephen A. Edwards. Challenges in synthesizing fast control-
dominated circuits. In International Workshop on Logic and Synthesis (IWLS),
Lake Arrowhead, California, June 2005. 7

[111] Cristian Soviani, Jia Zeng, and Stephen A. Edwards. Improved controller synthesis
from Esterel. Technical Report CUCS-015-04, Columbia University, 2004. 7

[112] Cristian Soviani, Jia Zeng, and Stephen A. Edwards. Sequential challenges in
synthesizing Esterel. Technical Report CUCS-051-04, Columbia University, 2004.
110

http://citeseer.ist.psu.edu/article/schneider04verified.html
http://citeseer.ist.psu.edu/article/schneider04verified.html

178 BIBLIOGRAPHY

[113] Synopsys Inc. Guide to HDL Coding Styles for Synthesis, 2005. 57, 121

[114] Olivier Tardieu and Robert de Simone. Instantaneous termination in pure Esterel.
In Static Analysis Symposium, San Diego, California, June 2003. 11

[115] Olivier Tardieu and Robert de Simone. Curing schizophrenia by program rewriting
in Esterel. In Proceedings of the Second ACM-IEEE International Conference on
Formal Methods and Models for Codesign, San Diego, CA, USA, 2004. 12

[116] Esterel Technologies. The Esterel v7 Reference Manual Version v7 30
C initial IEEE standardization proposal, November 2005. http://www.

esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf. 7,
122

[117] Hervé Touati and Gérard Berry. Optimized controller synthesis using Esterel. In
International Workshop on Logic Synthesis (IWLS’93), 1993. http://citeseer.
ist.psu.edu/160147.html. 7, 109

[118] Reinhard von Hanxleden and Xin Li. The Kiel Esterel Processor Homepage. http:
//www.informatik.uni-kiel.de/rtsys/kep/. 121

[119] Reinhard von Hanxleden, Xin Li, Partha Roop, Zoran Salcic, and Li Hsien Yoong.
Reactive processing for reactive systems. ERCIM News, 66:28–29, October 2006.
http://www.ercim.org/publication/Ercim_News/EN67.pdf. 12

[120] Michael J. Wirthlin and Brad L. Hutchings. A dynamic instruction set computer.
In FCCM ’95: Proceedings of the IEEE Symposium on FPGA’s for Custom Com-
puting Machines, pages 99–107, Washington, DC, USA, 1995. IEEE Computer
Society. 122

[121] Ralph D. Wittig and Paul Chow. OneChip: An FPGA processor with reconfig-
urable logic. In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Symposium on
FPGAs for Custom Computing Machines, pages 126–135, Los Alamitos, CA, 1996.
IEEE Computer Society Press. citeseer.ist.psu.edu/wittig95onechip.html.
121

[122] Wayne Wolf. A decade of hardware/software codesign. Computer, 36(4):38–43,
2003. 120

[123] Wayne Wolf. The future of multiprocessor systems-on-chips. In DAC ’04: Pro-
ceedings of the 41th conference on Design automation, New York, NY, USA, 2004.
ACM Press. 120

[124] Li Hsien Yoong, Partha Roop, Zoran Salcic, and Flavius Gruian. Compiling Esterel
for distributed execution. In International Workshop on Synchronous Languages,
Applications, and Programming (SLAP’06), Vienna, Austria, March 2006. 14

http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf
http://www.esterel-technologies.com/files/Esterel-Language-v7-Ref-Man.pdf
http://citeseer.ist.psu.edu/160147.html
http://citeseer.ist.psu.edu/160147.html
http://www.informatik.uni-kiel.de/rtsys/kep/
http://www.informatik.uni-kiel.de/rtsys/kep/
http://www.ercim.org/publication/Ercim_News/EN67.pdf
citeseer.ist.psu.edu/wittig95onechip.html

BIBLIOGRAPHY 179

[125] Jia Zeng, Cristian Soviani, and Stephen A. Edwards. Generating Fast Code from
Concurrent Program Dependence Graphs. In Proceedings of Languages, Compilers,
and Tools for Embedded Systems (LCTES), June 2004. 44

	Contents
	List of Figures
	List of Tables
	1 Introduction and Motivation
	1.1 Introduction
	1.2 Motivation
	1.3 Research Contribution
	1.4 Thesis Organization

	2 Background and Related Work
	2.1 Implementation Technologies
	2.2 Compilation Approaches
	2.3 Handling Esterel via Reactive Processors

	3 The KEP Instruction Set Architecture
	3.1 The Esterel Language
	3.1.1 Esterel Statements
	3.1.2 An Example Program

	3.2 Design of the Esterel-type Instructions
	3.2.1 Handling Concurrency
	3.2.2 Handling Preemption
	3.2.3 Handling Exceptions
	3.2.4 Handling Signal and Schizophrenia
	3.2.5 Handling Delays
	3.2.6 Summary of Esterel-type Instructions

	3.3 Further Instructions
	3.4 From Esterel to KEP Assembler
	3.4.1 Code Generation for the KEP -- The Compiler's Perspective
	3.4.2 EXAMPLE: Code Translation

	3.5 Encoding KEP Instructions
	3.6 Summary

	4 The KEP Architecture
	4.1 The KEP Architecture Overview
	4.2 The Reactive Core
	4.2.1 The Thread Block
	4.2.2 The Reactive Block
	4.2.3 Decoder & Controller

	4.3 The Interface Block
	4.4 The Data Handling Block
	4.5 The Tick Manager and Energy Saving
	4.6 Putting It All Altogether
	4.7 Summary

	5 Experimental Results
	5.1 The KEP Evaluation Platform
	5.1.1 Compilation
	5.1.2 Implementation
	5.1.3 Validation

	5.2 Comparison with Other Execution Platforms
	5.3 Evaluation Results
	5.4 Summary

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Recommendations for Further Research

	A KEP Instruction Set
	A.1 Esterel-type Instructions
	A.1.1 Preemption
	A.1.2 Exception
	A.1.3 Concurrency
	A.1.4 Delay
	A.1.5 Signal Emission and Testing
	A.1.6 Others

	A.2 Classical Instructions
	A.2.1 Program and Machine Control
	A.2.2 Boolean Variable Manipulation
	A.2.3 Data Transfer
	A.2.4 Arithmetic Operations
	A.2.5 Logical Operations

	B An Introduction to the KEP Evaluation Platform
	B.1 Function Description of the KEP Assembler Compiler
	B.1.1 Options of the KEP Assembler Compiler
	B.1.2 The KEP Configuration File
	B.1.3 The Further Configuration

	B.2 Function Description of the TestDriver
	B.3 Function Description of the KEP Evaluation Program
	B.3.1 Starting an Evaluation
	B.3.2 Debugging a Program
	B.3.3 Validating a Program

	Bibliography

