Embedded Real-Time Systems—Lecture 16

Prof. Dr. Reinhard von Hanxleden
Christian-Albrechts Universitat Kiel

Department of Computer Science
Real-Time Systems and Embedded Systems Group

28 June 2011
Last compiled: July 4, 2011, 18:29 hrs

Introduction to
Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 1

The 5-Minute Review Session

1.
2.
3.
4.
5.

c|alu

What are Biichi automata?

How can we check a model for liveness properties?
What is the WCET problem, why is it important?
What are the components of execution time analysis?

How can we measure execution times?

Embedded Real-Time Systems SS 2011, Lecture 16

Slide 2

What's so Difficult About RT-Systems?

» Concurrent control of separate system components
» Reactive behavior

» Guaranteed response times

» Interaction with special purpose hardware

» Maintenance usually
difficult

» Harsh environment

French Guyana, June 4, 1996
$800 million embedded software failure

» Constrained resources

» Often cross-development

» Large and complex e
» Often have to be extremely =

dependable

C|AlU Embedded Real-Time Systems SS 2011, Lecture 16 Slide 3

Introduction

The more society relinquishes control of its vital functions to
computer systems, the more imperative it becomes that
those systems do not fail.

[Burns and Wellings 2001]

» Dependability (“Zuverlassigkeit”):

> “The trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers” [Laprie
1992]

» “The metafunctional attributes of a system that relate to the
quality of service to its users during an extended interval of
time”

» Dependability is often the critical aspect of real-time
systems!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16

Slide 4

Introduction

Aim of this lecture
» Raise awareness of programming language issues (C)
> Introduce concepts relating to dependability

» Provide precise, commonly accepted vocabulary (English and

German)
Our baseline here:

» Laprie, J. C. (Ed.), Dependability: Basic Concepts and
Terminology, Springer, 1992, IFIP (International Federation of
Information Processing) Working Group 10.4 on
Fault-Tolerant Computing Terms are defined in English,
French, German, Italian, and Japanese

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16

Slide 5

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Overview
High-Quality C Code
Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Dependability—Basic Terminology
Attributes of Dependability

Impairments to Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16

Slide 6

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality Software

Recall:
» Embedded RT applications have particularly high demands on
SW quality
» Applications often safety critical
» Post-deployment modifications often difficult
> Need first-time-right development
» C one of the dominating languages in RT /embedded world

» SW written directly in C—or
» C programs synthesized from system model

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16

Slide 7

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality Software

» One aim of this class:
Enable you to write high-quality code in C
» Assumes that you already know basics of C
» Will cover some subtleties of the C language
» Will also cover proper coding practices and processes
» Apart from C ...

» ... much of this applies directly to C++, and also Java
> ...the perspective gained here should be useful for any kind of
SW development activity

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 8

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality C Code
C is like a sharp knife

> Very versatile—but you have to know what you are doing

» Cannot reduce risks arbitrarily without compromising utility

Process
Awareness,

However, can lower risks significantly by
1. Risk awareness

Proper development process

Analyses

2
3. Conservative coding style
4

Extensive static (compile-time) and
dynamic (run-time) analyses

These precautions are all complementary

» None replaces the others

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 9

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Style Guides

v

Larger SW development projects typically enforce
some style guide
» Aims:

» Enhanced readability and maintainability
> Lower defect rates

v

Typically focus on syntactic matters
» “Variable names should be in lower case”

v

However, may also contain semantic rules

» “The goto statement shall not be used”
» Effectively define a subset of the implementation language

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 10

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Style Guides

style

MISRA “Guidelines for the Use of the C Language in Vehicle
Based Software”

» Defined by the Motor Industry

Software Reliability Association
» Focuses on embedded/RT applications
» Emphasizes robustness L sy
» Will quote from this throughout class Saliykre
> http://www.misra.org.uk 7

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 11

http://www.misra.org.uk

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls—Lexical Pitfalls %

» Individual characters of a program
meaningless in isolation

p_>S = n_yn
» Context matters!

Lexical analyzer

» Part of compiler
» Breaks program into tokens

» Keywords

» Variable names
» Constants

> etc.

» C permits arbitrary whitespace between tokens

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 12

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Greedy Lexical Analysis

Question: Should “->" be parsed as one or two tokens? Cﬁuﬂt
Lexical analysis of C

» Proceeds from left to right
> Always takes the longest token possible

» This is the greedy (or maximum munch) rule

a=hb=10;
a==1E What are the values of a and b?

‘ y = x/*p /% p points at divisor */; '

What is the problem?

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 13

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls—Lexical Pitfalls

The probably most prominent C trap: %}:

if (x = y)
printf ("x,equals y\n");

if (¢ =4 |l ¢ == \t’|| ¢ == ’\n’)
c = getc(f);

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 14

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 35 (required):

Assignment operators shall not
be used in expressions which
return Boolean values.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 15

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Static Code Analysis

v

One analysis tool: The compiler Analyses

v

To generate code, compiler must check at least
» Syntax
» Types (depending on language)
» Presence of referenced functions/methods etc.

v

Some compilers (esp. in embedded world) restrict themselves
to that

v

Others (such as gcc) can perform much more detailed
analyses—if we ask them to do so!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 16

High-Quality C Code

Static Code Analysis

Style Guides

Lexical pitfalls of C

Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

One aid towards robust
code:

» Harnessing the
analyses
capabilities of
the compiler

gcc

clalu

» Setting "-Wall"
flag requests most

h

#include <stdio.h>
int main () {

}

)

h

x-equals-y.c: In function ‘main’:
x-equals-y.c:7: warning: suggest
parentheses around assignment
used as truth value

cat x-equals-y.c rhg%;lJ\
L[~

int x=1, y=2;
if (x=y) printf("x_equals y\n");
return 0O;

gcc x-equals-y.c

gcc -Wall x-equals-y.c

(but not all)
available analyses

Embedded Real-Time Systems

SS 2011, Lecture 16 Slide 17

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls [I—Operators

Scenario 1:
» Consider the following:
if (flags & FLAG) ...
» Want to make comparison to 0 explicit:
if (flags & FLAG !=10) ...
» Qoops - the latter actually means
if (flags & (FLAG 1= 0)) ...

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 18

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls [I—Operators

Scenario 2:
» Suppose you want to combine low-order bits of low and
high-order bits of hi:
r = hi<<4 + low;
» However, addition binds more tightly than shifting—the above
actually means
r=hi << (4 + low);
» Correct alternatives:
r = (hi<<4) + low;
r = hi<<4 | low;

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 19

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 47 (advisory):

No dependence should be
placed on C's operator
precedence rules in expressions.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 20

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Operator Precedence

Operator Associativity
O[]->. x++ x- left
I~ 4 4x -—-x + - * & sizeof right
Unary (type) right
*/ % left
Arithmetic + - left
< >> left
_ <<=>>= left
Shift == 1= left
& left
. A left
Relational | Toft
&& left
: [left
Logical > gt
assignments right
, left

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 21

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Java Operator Precedence

Awareness

Operator Associativity
O[] x++ x- left
'~ 4% X + - right
Unary new (type) right
* /%
Arithmetic + - left
< >> >>> left
Shift < <|: > >= instanceof left
==I= left
& left
Relational A left
\ left
Logical && left
I left
I& right
assignments right

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 22

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Operator Precedence

Awareness,

e

Watch operator
precedences!

Key points:
» Logical operators have lower
precedence than relational operators

» Shift operators bind more tightly than
relational operators, but less tightly
than the arithmetic operators

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 23

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 34 (required):

The operands of a logical &&
or || shall be primary
expressions.

Primary expression:

» Single identifiers, constants, parenthesized expressions

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 24

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

e

C—Order of Evaluation

Precedence

> a + b * cinterpreted asa + (b * c)
Not: (a + b) * ¢

» Overridden by parentheses
Associativity

> a + b + cinterpreted as (a + b) + ¢
Not: a + (b + ¢)

» Overridden by parentheses
Order of evaluation
» x = (i++, i) interpreted as i++; x = i
Not: x = i; i++
> if (cnt != 0 && sum/cnt < limit) does not cause “divide by zero”
> Relevant in the presence of side effects
> Parentheses do not matter!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 25

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C—Order of Evaluation

» Undefined results for
» x = b[i] + i++;
> x = fli++, i++);
> push(pop()—pop());
> i=4+i+ 1
» Only &&;, ||, 7:, and , specify order of evaluation
» && and || evaluate left op first, right iff necessary
» a ? b: cevaluates a first, then either b or ¢
> a, b evaluates a and discards its value, then b

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 26

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

e

C—Order of Evaluation

// Example 1 // Example 2
i=0; i=0;
while (i < n) while (i < n)
y[il = x[i++]; yli++] = x[il;
// Example 3 // Example 4
i=0; for (i = 0; i < nj; i++)
while (i < n) { y[il = x[i];
y[il = x[i];
i++;
}

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 27

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 33 (required):

The right hand operand of
a && or || shall not
contain side effects.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 28

High-Quality C Code Style Guides
Lexical pitfalls of C

Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 46 (required):

The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 29

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Related issue: number of times a subexpression is evaluated

C—Order of Evaluation

#define MAX(a, b) {((a) > (b)) ? (a) : (b)}

z = MAX(i++, j);

Arguments to macros should
not contain side effects.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 30

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

» Language issues addressed so far:
> Lexical pitfalls
» Precedence
» Order of evaluation
> What we did about it so far:
» Use style guides
» (Enforce style guides)
» Ask compiler to generate warnings

Awareness

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 31

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

» So, the good news so far:

» C by now well understood
> gcc is getting smarter & smarter
» ...and programmers worth their salt take advantage of this
» But what about
» Memory leaks
» Dereferencing bad pointers
Dead code
Modifying loop variables
Use before definition
etc. etc.?

» Good compilers may detect these — but:

» Typically limited to simple cases
» Do not know programmer’s intent

v

v VvYyy

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 32

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

Further means that are critical for solid sw development (and that
university-educated computer scientists are often ignorant about):
1. Use of additional static checking tools (not only the compiler)
» The classic: 1lint
» Can incorporate this into sw development process with minimal
effort (e.g., make it part of compilation in Makefile)
2. Clarifying programmer’s intent through program annotations
> “Yes, | really want to modify the loop variable here”
» Example: Splint (was: Iclint) - More on this in the following
3. Use of dynamic checking tools

> In particular, memory issues often difficult to address statically
» The classic: purify

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 33

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Introduction to LCLint/Splint
all

Bugs Detected

none

Low Effort Required Unfathomable

David Evans 2001
C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 34

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Requirements

» No interaction required — as easy to use as a compiler

» Fast checking — as fast as a compiler
» Gradual Learning/Effort Curve

> Little needed to start
» Clear payoff relative to user effort

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 35

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Approach

» Programmers add annotations (formal specifications)
» Simple and precise
» Describe programmers intent:
- Types, memory management, data hiding, aliasing,
modification, null-ity, etc.
» LCLint detects inconsistencies between annotations and code
» Simple (fast!) dataflow analyses

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 36

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Checking Examples

» Encapsulation — abstract types (representation exposure),
global variables, documented modifications

» Memory management — leaks, dead references

> De-referencing null pointers, dangerous aliasing, undefined
behavior (order of modifications, etc.)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 37

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

The Road To Robust C

Formal Werific ation
Tools

Buffer sizes ‘=— Extensible Checking

Alissing
T T Function Interfaces
Checked Macros
T Memory Management

Defmition
Annotations T

Hull Armotations

Stricter

Type-Checking Abstract Types

Fraction of Emors D etected

T Weak Checking

Typical C
Compilers

Amount of Effort Reguired

e Systems SS 2011, Lecture 16 Slide 38

www.splint.org

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Summary

» Style guides and a good understanding of the used
programming language help to develop reliable, maintainable
software

> A first step towards understanding C is to understand the
rules for lexical analysis

» One important static analysis tool is the compiler. However,
there are other, dedicated static analysis tools (Iclint, purify,
...) that have much more capabilities.

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 39

Dependability—Basic Terminology

Overview

High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability
Impairments to Dependability

Means for Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 40

Dependability—Basic Terminology

Basic Terminology

v

System (“black box" view):

» Entity interacting or interfering with other entities
(systems)—the environment

v

System function:
» What the system /s intended for

v

System behavior:
» What the system does

v

System user:
» That part of the environment that interacts with system

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 41

Dependability—Basic Terminology

Basic Terminology

> Service of a system:
» System behavior as perceived by its user(s)
» An (application dependent) abstraction of the system's
behavior
» Timeliness properties are of special interest to dependability
> Real-time function or service:

» Function or service required to be fulfilled or delivered within
finite time intervals dictated by the environment

» Real-time system:

» System fulfilling at least one RT function or delivering at least
one RT service

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 42

Dependability—Basic Terminology

Basic Terminology

» System (“white box" view):

» Set of components bound together to interact
» Component:

> Another system
» Atomic system:

» Internal structure inexistent/irrelevant

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 43

Dependability—Basic Terminology

Basic Terminology

» System structure (classical definition):
» What a system is
» Considers fixed structure
» Discounts dependability impairments
» System structure (our definition):
» What makes it do what it does
» Allows for structural changes
» State:

» Condition of being with respect to a set of circumstances
> Applies to behavior and structure

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 44

Dependability—Basic Terminology

Basic Terminology

» Specification:
> An agreed description of the system’s expected function
and/or service
» Also describes admissible conditions (environment, exposure
time, performance, etc.)
» Describes what should be fulfilled /delivered

» For safety/security related systems:

» Also describes what should not happen

» May in turn lead to specifying additional functions/services
that system should fulfill/deliver to reduce likelihood of what
should not happen (e.g., user authentication)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 45

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Overview

High-Quality C Code
Dependability—Basic Terminology

Attributes of Dependability
Safety
Reliability
Maintainability
Availability
Security

Impairments to Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 46

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Dependability Requirements

» Dependability (“Zuverldssigkeit') may be viewed to different
properties
> Leads to the attributes of dependability:
» Safety (“Sicherheit")
» Reliability (“Funktionsfahigkeit”,
“Uber/ebenswahrschein/ichkeit”)
» Maintainability (“/nstandhaltbarkeit”)
» Availability (“Verfiigbarkeit")
» Security (“Vertraulichkeit”, “Daten-Sicherheit”)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 47

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Safety

Safety: Dependability wrt the non-occurrence of catastrophic
failures
Typical:

> Need ultra-high reliability

» No single component failure may lead to critical system failure
(e.g., required by TUV)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 48

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Reliability
Reliability of system: Dependability wrt continuity of service

Given: System operational at time t
Then: Reliability is probability R(T) that system will provide
specified service (does not fail) throughout an interval [t, t 4+ T]

R(T)=eNT)

» Failure rate:
Expected number \(T) of system failures for a time interval T

» Mean Time to Failure (MTTF):
If failure rate constant, with A\(T) = A.T: MTTF =)\%

» Ultrahigh reliability: typically MTTF > 10° hrs

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 49

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Maintainability
Maintainability: Ease of performing maintenance actions
Given: System with benign failure at time t
Then: Maintainability is probability M(T) that system is repaired
within [t,t + T]

M(T)=1—e#T)

» Repair rate:
Expected number p(T) of system repairs for interval T

» Mean Time to Repair (MTTR):
If repair rate constant, with u(T) = pucT: MTTR = i

» There is often a conflict between reliability and maintainability
Example: Hardware modularisation

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 50

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Availability
Availability:
» Dependability wrt readiness for usage
» Probability A that a system will provide specified service

» Measure of correct service delivery wrt alternation of correct
and incorrect service

Mean Time Between Failures (M TBF)

MTBF = MTTF + MTTR|

For systems with constant A and pu:

A= MTTF/MTBF

Can increase A by increasing MTTF or by decreasing MTTR—or
both

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 51

Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Downtime

Availability corresponds to certain downtime

Availability Downtime/year Example Component
90% >1 month Unattended PC

99% ~ 4days Maintained PC

99,9% ~ 9 hrs Cluster

99,99% ~ 1 hr Multicomputer

99,999% ~ 5 mins Embedded System (PC hw)
99,9999% ~ 30 secs ES (special hw)

[Verissimo and Rodrigues 2001]

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 52

Safety

Reliability
Attributes of Dependability Maintainability
Availability
Security
Security
» Security:

» Dependability wrt prevention of unauthorized access and/or
handling of information

» Security is a combination of

» Confidentiality: Prevention of unauthorized disclosure of
information

» Integrity: Prevention of unauthorized
amendment/alteration/deletion of information

» Information availability: the prevention of unauthorized
withholding of information

» Traditionally an issue for database/transaction systems

» Increasingly relevant for embedded systems as well (message
interception /alteration, property protection)

» Difficult to quantify

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 53

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Overview

High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability

Impairments to Dependability
Fault, error, failure
Origins of failure
Another system classification
Example of a fail-safe system: VOTRICS

Means for Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 54

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault, Error, Failure

» Failure (“Ausfall"):

» Deviation of actual service (external state) from specification
» Control surface on wing moves erroneously
» Airbag does not ignite
» Error (“Fehlzustand”):
» Unintended (internal) system state liable to lead to subsequent
failure
» Short circuit (excessive current, low voltage)
» Variable out of range
» Fault (“Fehler”):
» Adjudged or hypothesized cause of an error
» Broken isolator, software bug
» Specification fault

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 55

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault Pathology

> A fault is active when it produces an error
» Can be internal fault which was dormant and has been
activated by computation process
» Can be external fault
» Errors may be
> latent: not yet recognized as error
> detected
» Errors may
» disappear before detection
> propagate
> Failures occur when an error passes through system-user interface and
affects service
» A component failure results in a fault for
» The system containing the failed component
» Other components interacting with the failed component

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 56

Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Sequencing of Fault, Error, Failure

c|alu

Subsystem under consideration: A

Cause of Error: Deviation from
Fault intended service:
> Failyre

Subsystem under consideration: B

Deviation from Subsystem B
intended service: Cause of Error:
. Failure Unintended state: |, Fault
Error

Embedded Real-Time Systems SS 2011, Lecture 16

Slide 57

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault Classification

Faults
1

{ Accidental) @enomenological (System) (Phase.of) 7(Permanent)
Cause Boundaries Creation
S

» Can classify commonly used fault types according to this
scheme

» “intrusions,” “malicious logic,” “physical faults” etc.

» See [Laprie 1992] for more details

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 58

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Errors

Recall: Error is liable to lead to subsequent failure
Whether or not error actually leads to failure depends on
» System composition
» In particular, (intentional or unintentional) redundancy
» System activity
» Error may be overwritten before creating damage
> Definition of failure from user’s viewpoint
» “It's not a bug, it's a featurel"

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 59

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Classification of Failures

» A system generally does not always fail in the same way
> Failure modes:

» The ways a system can fail
» Can be characterized according to different view points

Failure

\
I I |
C Domain) C Perception) (Consequence9 (Oftenness)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 60

Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Failure Domain

Failure

(Domain) (Perception) (Conseq‘uencea (Ofter;ness)

Timing

Constraint
Failure
Value
Failure

» Arbitrary failures:
» Combinations of value and timing domain failures

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 61

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Perception

Failure
Comme) Grrmvin) (Gomners) (omme)

In system with more than one user:

» Consistent failures:
» Perceptions of the users are the same
» Inconsistent failures:

» Perceptions are different
» Also referred to as two-faced failures, malicious failures, or
Byzantine failures

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 62

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Effect

Failure
[

(Dor‘nain) (Percelption) @onsequence.9 (Oftenness)
» Benign failure mode:

» Uncritical failures

» Malign (critical) failure mode:

» “Cost” of failure exceeds utility of system during normal
operation by orders of magnitude
» Airbags, airtraffic control, nuclear power plants, ...

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 63

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Oftenness

Failure
|

[I I]
(Domain) (Perception) (Consequences) (Oftenness)

Single

Permanent

Transient

Intermittent

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 64

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Permanent Failures

A typical VLSI device failure rate develops according to the
“bathtub pattern”:

> A relatively high failure rate for the first few hundred hours of
operation (burn-in)

» After that, stabilization at about 10-100 FIT (= Failures per
10° hrs, so 1 FIT corresponds to MTTF of about 115 Kyrs)

» At some point, an increased failure rate again (aging)

Failure

rate L /
>t

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 65

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Preventive Maintenance

» Failure rate of a VLSI chip

» Depends mainly on physical parameters (pins, packaging)
» Not very sensitive to the number of transistors

» Preventive maintenance

» Exchange of components before they fail
» Limits effects of aging

» If there is no aging, then there is no point in preventive
maintenance!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 66

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Transient Failures

» Transient chip failure rate
» Can be 10-100 000 x permanent failure rate
» Depends on physical environment
» Most common causes are
» Electromagnetic interferences (EMI)
» Power supply glitches
» High-energy particles (e.g., a-particles)
» Example from radar monitoring [Gebman et al. 1988]:
» Malfunctions noticed every 6 flight hrs
» Maintenance request every 31 hrs
» Only every 3" failure could be reproduced!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 67

Fault, error, failure
Origins of failure

. - Another system classification
Impairments to Dependability Example of a fail-safe system: VOTRICS

Failure Classification—Summary

Failure

! L 1
Q’erc;ptio@ @nsequenc}s (Oftenness)

ConsisteD Benign)
- Inconsistent |
Commission; @yzanti@ @astroph} Permanent

Domain

Timing

Single

=
—/

Constraint
Failure

m
S

Value
Failure

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 68

Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Origins of Failure

> Rule of thumb (JPL data):
» 1 major fault every 3 pages of requirements
» 1 major fault every 21 pages of code

» Fault statistics for some NASA space projects:

» Coding faults: 6% of overall faults (!!!)
» Function faults: 71% (due to requirements/design problems)
> Interface faults: 23% (due to poor comm. between teams)

» Observation:

» Most severe faults are introduced early but are detected
late! (often during system integration)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 69

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Origins of Failure

Results of one study on large information systems (Tandem):

» >40% of failures due to human operator faults

» 25% caused by software faults
» Large contribution by environmental factors

» Power outages
» Fires, floods

» Smallest contributor: (random) hardware faults

One of the lessons:

» Need not only hw fault tolerance, but also sw fault
tolerance!

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 70

Fault, error, failure
Origins of failure

Another system classification
Example of a fail-safe system: VOTRICS

Impairments to Dependability

Another System Classification

c|alu

Given: consistent failure perception

Fail silent: System produces either correct results (both in
value and time domains) or no results at all

Fail crash: Fail-silent system that stops operating after the
first failure

Fail stop: Fail-crash system that makes its failure known to
other systems

Fail (un-)controlled: System that fails in a(n) (un-)controlled
manner

Fail-never: System that always provides correct services in
both the timing and value domains

Fail-safe: System that maintains its integrity in the presence
of faults

Embedded Real-Time Systems SS 2011, Lecture 16

Slide 71

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Example of a Fail-Safe System: VOTRICS

» Train Signalling System developed by Alcatel

» An industrial example of applying design diversity in a
safety-critical RT environment
» Objective of train signalling system:

» Collect data about the state of the tracks in a train
station—current position and movements of trains, position of
points

» Set signals and shift points such that trains can move safely
through the station according to a given time table

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 72

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

VOTRICS cont.

c|alu

» VOTRICS is partitioned into two independent subsystems

» First system:
» Accepts commands from operators

vV vy vy

Collects data from tracks

Calculates intended positions of signals and points
Uses a standard programming paradigm

Uses a Triple-Mode Redundancy (TMR) architecture to
tolerate single HW fault

Embedded Real-Time Systems SS 2011, Lecture 16

Slide 73

Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

VOTRICS cont.

» The second system, the “safety bag":
» Monitors safety of the state of the station
» Has access to RT data base and intended outputs of 1t system
» Dynamically evaluates safety predicates derived from the “rule
book” of the railway authority
Based on expert-system technology
Also implemented on TMR HW architecture

v

v

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 74

Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

VOTRICS cont.

v

The two systems exhibit a substantial degree of independence

v

Used different specifications as starting point
» Operational requirements vs. safety rules

v

Used different implementation approach
» Standard programming vs. expert system

v

System has been operational in different railway stations for a
number of years, no unsafe state has been detected

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 75

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Overview
High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability
Impairments to Dependability

Means for Dependability
Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting
Interdependencies

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 76

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Means for dependability

Dependability Procurement
> Provide system with ability to deliver service complying with
specification
» Fault prevention
» Prevent faults creeping into a system before it goes operational
» Fault tolerance
» Provide specified service even in presence of faults

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 77

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Means for Dependability

Dependability Validation

v

Reach confidence in a system

v

Attempts to produce systems with well-defined failure modes
Fault removal

v

» Reduce presence (number, seriousness) of faults

v

Fault forecasting

» Estimate present number, future incidence, and consequences
of faults

Combination of fault removal and fault prevention also referred to
as fault avoidance

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 78

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Dependencies Between Dependability Means

In general, none of these goals can be achieved perfectly
» All boil down to human activities
» Hence, require combined utilization

» Example: Need for fault-tolerance despite fault avoidance
strategies in design process
But also: to build dependable systems, tools to develop these
systems must be dependable as well
» Example: Certified code generators
» Example: In 1979, an error discovered in program used to
design nuclear reactors (supposedly guaranteeing the

attainment of earthquake safety standards) resulted in
shutting down of 5 nuclear plants [Leveson 1986]

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 79

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Dependencies Between Dependability Means

c|alu

Interdependencies between fault removal and fault forecasting
motivate their combination into dependability validation

Note, however: fault removal also consists of what is
classically referred to as verification
“V & V" [Boehm 1979]:
» Verification: Building the system right
» Validation: Building the right system
Need validation of the validation

» Coverage: Measures representativeness of the situations to
which the system is submitted during its validation compared
to the actual situations it will be confronted with during its
operational life

Embedded Real-Time Systems SS 2011, Lecture 16

Slide 80

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies

Means for Dependability

Summary—The Dependability Tree

Attributes Impairments Means
——
Availability Faults Procurement Validation
— Reliability = — Errors Fault . Fault
Prevention Removal
Fault Avoidance
— Safety “— Failures
Fault L4 Fault
Tolerance Forecasting
—_ Security Laprie 1992

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 81

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Der Zuverlassigkeitsbaum

Zuverlassigkeit

KenngréRen Beeintréch; Mittel
tigungen
— 1
s : Fehler- o
— Verfligbarkeit — Verfahren Validation
ursachen
| Funktions- [Fehl- Fehler- t Fehler-
fahigkeit zustande verhinderung J beseitigung
Fehlervermeidung
— Sicherheit — Ausfélle
Fehler- [l s Fehler-
toleranz vorhersage
Vertrau-
lichkeit Laprie 1992

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 82

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies

Means for Dependability

To Go Further (1)

Advice on C
» Andrew Koenig, C Traps and Pitfalls, Addison Wesley, 1989
» Les Hatton, Safer C—Development of High-Integrity &
Safety-Critical Systems, McGraw-Hill, 1995 (currently out of
print)
MISRA C

» http://www.misra.org.uk

> Nigel Jones, Introduction to MISRA C, Embedded Systems
Programming, Jul 1, 2002 (10:07 AM)

> http://www.embedded.com/columns/
technicalinsights/172301672

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 83

http://www.misra.org.uk
http://www.embedded.com/columns/technicalinsights/172301672
http://www.embedded.com/columns/technicalinsights/172301672

Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

To Go Further (2)

> Laprie, J. C. (Ed.), Dependability: Basic Concepts and Terminology,
Springer, 1992 (Working Group 10.4 on Fault-Tolerant Computing
of the International Federation of Information Processing)

» Windows-Help on this, courtesy of Jean Claude Laprie
(LAAS-CNRS) and Giinter Heiner, Jorg Donandt et al.
(DaimlerChrysler Berlin), can be found at
http://rtsys.informatik.uni-kiel.de/teaching/
open-srcs/LaprieDependabilityTerminology.hlp

[Marwedel 2008], Chapter 6.7

[Verissimo and Rodrigues 2001], Chapter 6
[Kopetz 1997], Chapter 6

[Burns and Wellings 2001], Chapter 5

v

v

v

v

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 84

http://rtsys.informatik.uni-kiel.de/teaching/open-srcs/LaprieDependabilityTerminology.hlp
http://rtsys.informatik.uni-kiel.de/teaching/open-srcs/LaprieDependabilityTerminology.hlp

	High-Quality C Code
	Style Guides
	Lexical pitfalls of C
	Static Code Analysis
	Operators - Precedence, associativity, order of evaluation
	Static Analyses—Lint and Friends

	Dependability—Basic Terminology
	Attributes of Dependability
	Safety
	Reliability
	Maintainability
	Availability
	Security

	Impairments to Dependability
	Fault, error, failure
	Origins of failure
	Another system classification
	Example of a fail-safe system: VOTRICS

	Means for Dependability
	Dependability procurement—fault prevention/tolerance
	Dependability validation—fault removal/forecasting
	Interdependencies

