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The 5-Minute Review Session

1.
2.
3.
4.
5.

c|alu

What are Biichi automata?

How can we check a model for liveness properties?
What is the WCET problem, why is it important?
What are the components of execution time analysis?

How can we measure execution times?
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What's so Difficult About RT-Systems?

» Concurrent control of separate system components
» Reactive behavior

» Guaranteed response times

» Interaction with special purpose hardware

» Maintenance usually
difficult

» Harsh environment

French Guyana, June 4, 1996
$800 million embedded software failure

» Constrained resources

» Often cross-development

» Large and complex e
» Often have to be extremely =

dependable
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Introduction

The more society relinquishes control of its vital functions to
computer systems, the more imperative it becomes that
those systems do not fail.

[Burns and Wellings 2001]

» Dependability (“Zuverlassigkeit”):

> “The trustworthiness of a computer system such that reliance
can justifiably be placed on the service it delivers” [Laprie
1992]

» “The metafunctional attributes of a system that relate to the
quality of service to its users during an extended interval of
time”

» Dependability is often the critical aspect of real-time
systems!
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Introduction

Aim of this lecture
» Raise awareness of programming language issues (C)
> Introduce concepts relating to dependability

» Provide precise, commonly accepted vocabulary (English and

German)
Our baseline here:

» Laprie, J. C. (Ed.), Dependability: Basic Concepts and
Terminology, Springer, 1992, IFIP (International Federation of
Information Processing) Working Group 10.4 on
Fault-Tolerant Computing Terms are defined in English,
French, German, Italian, and Japanese
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Overview
High-Quality C Code
Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Dependability—Basic Terminology
Attributes of Dependability

Impairments to Dependability
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality Software

Recall:
» Embedded RT applications have particularly high demands on
SW quality
» Applications often safety critical
» Post-deployment modifications often difficult
> Need first-time-right development
» C one of the dominating languages in RT /embedded world

» SW written directly in C—or
» C programs synthesized from system model
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality Software

» One aim of this class:
Enable you to write high-quality code in C
» Assumes that you already know basics of C
» Will cover some subtleties of the C language
» Will also cover proper coding practices and processes
» Apart from C ...

» ... much of this applies directly to C++, and also Java
> ...the perspective gained here should be useful for any kind of
SW development activity
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

High-Quality C Code
C is like a sharp knife

> Very versatile—but you have to know what you are doing

» Cannot reduce risks arbitrarily without compromising utility

Process
Awareness,

However, can lower risks significantly by
1. Risk awareness

Proper development process

Analyses

2
3. Conservative coding style
4

Extensive static (compile-time) and
dynamic (run-time) analyses

These precautions are all complementary

» None replaces the others
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Style Guides

v

Larger SW development projects typically enforce
some style guide
» Aims:

» Enhanced readability and maintainability
> Lower defect rates

v

Typically focus on syntactic matters
» “Variable names should be in lower case”

v

However, may also contain semantic rules

» “The goto statement shall not be used”
» Effectively define a subset of the implementation language
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Style Guides

style

MISRA “Guidelines for the Use of the C Language in Vehicle
Based Software”

» Defined by the Motor Industry

Software Reliability Association
» Focuses on embedded/RT applications
» Emphasizes robustness L sy
» Will quote from this throughout class Saliykre
> http://www.misra.org.uk 7
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls—Lexical Pitfalls %

» Individual characters of a program
meaningless in isolation

p_>S = n_yn
» Context matters!

Lexical analyzer

» Part of compiler
» Breaks program into tokens

» Keywords

» Variable names
» Constants

> etc.

» C permits arbitrary whitespace between tokens
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Greedy Lexical Analysis

Question: Should “->" be parsed as one or two tokens? Cﬁuﬂt
Lexical analysis of C

» Proceeds from left to right
> Always takes the longest token possible

» This is the greedy (or maximum munch) rule

a=hb=10;
a==1E What are the values of a and b?

‘ y = x/*p /% p points at divisor */; '

What is the problem?
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls—Lexical Pitfalls

The probably most prominent C trap: %}:

if (x = y)
printf ("x,equals y\n");

if (¢ =4 |l ¢ == \t’|| ¢ == ’\n’)
c = getc(f);
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 35 (required):

Assignment operators shall not
be used in expressions which
return Boolean values.
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Static Code Analysis

v

One analysis tool: The compiler Analyses

v

To generate code, compiler must check at least
» Syntax
» Types (depending on language)
» Presence of referenced functions/methods etc.

v

Some compilers (esp. in embedded world) restrict themselves
to that

v

Others (such as gcc) can perform much more detailed
analyses—if we ask them to do so!
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High-Quality C Code

Static Code Analysis

Style Guides

Lexical pitfalls of C

Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

One aid towards robust
code:

» Harnessing the
analyses
capabilities of
the compiler

gcc

clalu

» Setting "-Wall"
flag requests most

h

#include <stdio.h>
int main () {

}

)

h

x-equals-y.c: In function ‘main’:
x-equals-y.c:7: warning: suggest
parentheses around assignment
used as truth value

cat x-equals-y.c rhg%;lJ\
L[~

int x=1, y=2;
if (x=y) printf("x_equals y\n");
return 0O;

gcc x-equals-y.c

gcc -Wall x-equals-y.c

(but not all)
available analyses
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls [I—Operators

Scenario 1:
» Consider the following:
if (flags & FLAG) ...
» Want to make comparison to 0 explicit:
if (flags & FLAG !=10) ...
» Qoops - the latter actually means
if (flags & (FLAG 1= 0)) ...
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls [I—Operators

Scenario 2:
» Suppose you want to combine low-order bits of low and
high-order bits of hi:
r = hi<<4 + low;
» However, addition binds more tightly than shifting—the above
actually means
r=hi << (4 + low);
» Correct alternatives:
r = (hi<<4) + low;
r = hi<<4 | low;
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 47 (advisory):

No dependence should be
placed on C's operator
precedence rules in expressions.
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Operator Precedence

Operator Associativity
O[]->. x++ x- left
I~ 4 4x -—-x + - * & sizeof right
Unary (type) right
*/ % left
Arithmetic + - left
< >> left
_ <<=>>= left
Shift == 1= left
& left
. A left
Relational | Toft
&& left
: [ left
Logical > gt
assignments right
, left
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Java Operator Precedence

Awareness

Operator Associativity
O[] x++ x- left
'~ 4% X + - right
Unary new (type) right
* /%
Arithmetic + - left
< >> >>> left
Shift < <|: > >= instanceof left
==I= left
& left
Relational A left
\ left
Logical && left
I left
I& right
assignments right
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Operator Precedence

Awareness,

e

Watch operator
precedences!

Key points:
» Logical operators have lower
precedence than relational operators

» Shift operators bind more tightly than
relational operators, but less tightly
than the arithmetic operators
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 34 (required):

The operands of a logical &&
or || shall be primary
expressions.

Primary expression:

» Single identifiers, constants, parenthesized expressions
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

e

C—Order of Evaluation

Precedence

> a + b * cinterpreted asa + (b * c)
Not: (a + b) * ¢

» Overridden by parentheses
Associativity

> a + b + cinterpreted as (a + b) + ¢
Not: a + (b + ¢)

» Overridden by parentheses
Order of evaluation
» x = (i++, i) interpreted as i++; x = i
Not: x = i; i++
> if (cnt != 0 && sum/cnt < limit) does not cause “divide by zero”
> Relevant in the presence of side effects
> Parentheses do not matter!
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C—Order of Evaluation

» Undefined results for
» x = b[i] + i++;
> x = fli++, i++);
> push(pop()—pop());
> i=4+i+ 1
» Only &&;, ||, 7:, and , specify order of evaluation
» && and || evaluate left op first, right iff necessary
» a ? b: cevaluates a first, then either b or ¢
> a, b evaluates a and discards its value, then b
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

e

C—Order of Evaluation

// Example 1 // Example 2
i=0; i=0;
while (i < n) while (i < n)
y[il = x[i++]; yli++] = x[il;
// Example 3 // Example 4
i=0; for (i = 0; i < nj; i++)
while (i < n) { y[il = x[i];
y[il = x[i];
i++;
}
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 33 (required):

The right hand operand of
a && or || shall not
contain side effects.
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High-Quality C Code Style Guides
Lexical pitfalls of C

Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

MISRA C

MISRA Rule 46 (required):

The value of an expression
shall be the same under any
order of evaluation that the
standard permits.
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Related issue: number of times a subexpression is evaluated

C—Order of Evaluation

#define MAX(a, b) {((a) > (b)) ? (a) : (b)}

z = MAX(i++, j);

Arguments to macros should
not contain side effects.
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

» Language issues addressed so far:
> Lexical pitfalls
» Precedence
» Order of evaluation
> What we did about it so far:
» Use style guides
» (Enforce style guides)
» Ask compiler to generate warnings

Awareness
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

» So, the good news so far:

» C by now well understood
> gcc is getting smarter & smarter
» ...and programmers worth their salt take advantage of this
» But what about
» Memory leaks
» Dereferencing bad pointers
Dead code
Modifying loop variables
Use before definition
etc. etc.?

» Good compilers may detect these — but:

» Typically limited to simple cases
» Do not know programmer’s intent

v

v VvYyy
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

C Traps and Pitfalls I

Further means that are critical for solid sw development (and that
university-educated computer scientists are often ignorant about):
1. Use of additional static checking tools (not only the compiler)
» The classic: 1lint
» Can incorporate this into sw development process with minimal
effort (e.g., make it part of compilation in Makefile)
2. Clarifying programmer’s intent through program annotations
> “Yes, | really want to modify the loop variable here”
» Example: Splint (was: Iclint) - More on this in the following
3. Use of dynamic checking tools

> In particular, memory issues often difficult to address statically
» The classic: purify
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Introduction to LCLint/Splint
all

Bugs Detected

none

Low Effort Required Unfathomable

David Evans 2001
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Requirements

» No interaction required — as easy to use as a compiler

» Fast checking — as fast as a compiler
» Gradual Learning/Effort Curve

> Little needed to start
» Clear payoff relative to user effort
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Approach

» Programmers add annotations (formal specifications)
» Simple and precise
» Describe programmers intent:
- Types, memory management, data hiding, aliasing,
modification, null-ity, etc.
» LCLint detects inconsistencies between annotations and code
» Simple (fast!) dataflow analyses
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Checking Examples

» Encapsulation — abstract types (representation exposure),
global variables, documented modifications

» Memory management — leaks, dead references

> De-referencing null pointers, dangerous aliasing, undefined
behavior (order of modifications, etc.)
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High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

The Road To Robust C

Formal Werific ation
Tools

Buffer sizes ‘=— Extensible Checking

Alissing
T T Function Interfaces
Checked Macros
T Memory Management

Defmition
Annotations T

Hull Armotations

Stricter

Type-Checking Abstract Types

Fraction of Emors D etected

T Weak Checking

Typical C
Compilers

Amount of Effort Reguired
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www.splint.org

High-Quality C Code Style Guides
Lexical pitfalls of C
Static Code Analysis

Operators - Precedence, associativity, order of evaluation
Static Analyses—Lint and Friends

Summary

» Style guides and a good understanding of the used
programming language help to develop reliable, maintainable
software

> A first step towards understanding C is to understand the
rules for lexical analysis

» One important static analysis tool is the compiler. However,
there are other, dedicated static analysis tools (Iclint, purify,
...) that have much more capabilities.
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Dependability—Basic Terminology

Overview

High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability
Impairments to Dependability

Means for Dependability
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Dependability—Basic Terminology

Basic Terminology

v

System (“black box" view):

» Entity interacting or interfering with other entities
(systems)—the environment

v

System function:
» What the system /s intended for

v

System behavior:
» What the system does

v

System user:
» That part of the environment that interacts with system
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Dependability—Basic Terminology

Basic Terminology

> Service of a system:
» System behavior as perceived by its user(s)
» An (application dependent) abstraction of the system's
behavior
» Timeliness properties are of special interest to dependability
> Real-time function or service:

» Function or service required to be fulfilled or delivered within
finite time intervals dictated by the environment

» Real-time system:

» System fulfilling at least one RT function or delivering at least
one RT service
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Dependability—Basic Terminology

Basic Terminology

» System (“white box" view):

» Set of components bound together to interact
» Component:

> Another system
» Atomic system:

» Internal structure inexistent/irrelevant
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Dependability—Basic Terminology

Basic Terminology

» System structure (classical definition):
» What a system is
» Considers fixed structure
» Discounts dependability impairments
» System structure (our definition):
» What makes it do what it does
» Allows for structural changes
» State:

» Condition of being with respect to a set of circumstances
> Applies to behavior and structure
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Dependability—Basic Terminology

Basic Terminology

» Specification:
> An agreed description of the system’s expected function
and/or service
» Also describes admissible conditions (environment, exposure
time, performance, etc.)
» Describes what should be fulfilled /delivered

» For safety/security related systems:

» Also describes what should not happen

» May in turn lead to specifying additional functions/services
that system should fulfill/deliver to reduce likelihood of what
should not happen (e.g., user authentication)
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Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Overview

High-Quality C Code
Dependability—Basic Terminology

Attributes of Dependability
Safety
Reliability
Maintainability
Availability
Security

Impairments to Dependability

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 46



Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Dependability Requirements

» Dependability (“Zuverldssigkeit') may be viewed to different
properties
> Leads to the attributes of dependability:
» Safety (“Sicherheit")
» Reliability (“Funktionsfahigkeit”,
“Uber/ebenswahrschein/ichkeit”)
» Maintainability (“/nstandhaltbarkeit”)
» Availability (“Verfiigbarkeit")
» Security (“Vertraulichkeit”, “Daten-Sicherheit”)
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Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Safety

Safety: Dependability wrt the non-occurrence of catastrophic
failures
Typical:

> Need ultra-high reliability

» No single component failure may lead to critical system failure
(e.g., required by TUV)

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 48



Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Reliability
Reliability of system: Dependability wrt continuity of service

Given: System operational at time t
Then: Reliability is probability R(T) that system will provide
specified service (does not fail) throughout an interval [t, t 4+ T]

R(T)=eNT)

» Failure rate:
Expected number \(T) of system failures for a time interval T

» Mean Time to Failure (MTTF):
If failure rate constant, with A\(T) = A.T: MTTF = )\%

» Ultrahigh reliability: typically MTTF > 10° hrs
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Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Maintainability
Maintainability: Ease of performing maintenance actions
Given: System with benign failure at time t
Then: Maintainability is probability M(T) that system is repaired
within [t,t + T]

M(T)=1—e#T)

» Repair rate:
Expected number p(T) of system repairs for interval T

» Mean Time to Repair (MTTR):
If repair rate constant, with u(T) = pucT: MTTR = i

» There is often a conflict between reliability and maintainability
Example: Hardware modularisation
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Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Availability
Availability:
» Dependability wrt readiness for usage
» Probability A that a system will provide specified service

» Measure of correct service delivery wrt alternation of correct
and incorrect service

Mean Time Between Failures (M TBF)

MTBF = MTTF + MTTR|

For systems with constant A and pu:

A= MTTF/MTBF

Can increase A by increasing MTTF or by decreasing MTTR—or
both
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Safety
Reliability
Attributes of Dependability Maintainability

Availability
Security

Downtime

Availability corresponds to certain downtime

Availability Downtime/year Example Component
90% >1 month Unattended PC

99% ~ 4days Maintained PC

99,9% ~ 9 hrs Cluster

99,99% ~ 1 hr Multicomputer

99,999% ~ 5 mins Embedded System (PC hw)
99,9999% ~ 30 secs ES (special hw)

[Verissimo and Rodrigues 2001]
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Safety

Reliability
Attributes of Dependability Maintainability
Availability
Security
Security
» Security:

» Dependability wrt prevention of unauthorized access and/or
handling of information

» Security is a combination of

» Confidentiality: Prevention of unauthorized disclosure of
information

» Integrity: Prevention of unauthorized
amendment/alteration/deletion of information

» Information availability: the prevention of unauthorized
withholding of information

» Traditionally an issue for database/transaction systems

» Increasingly relevant for embedded systems as well (message
interception /alteration, property protection)

» Difficult to quantify
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Overview

High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability

Impairments to Dependability
Fault, error, failure
Origins of failure
Another system classification
Example of a fail-safe system: VOTRICS

Means for Dependability
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault, Error, Failure

» Failure (“Ausfall"):

» Deviation of actual service (external state) from specification
» Control surface on wing moves erroneously
» Airbag does not ignite
» Error (“Fehlzustand”):
» Unintended (internal) system state liable to lead to subsequent
failure
» Short circuit (excessive current, low voltage)
» Variable out of range
» Fault (“Fehler”):
» Adjudged or hypothesized cause of an error
» Broken isolator, software bug
» Specification fault
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault Pathology

> A fault is active when it produces an error
» Can be internal fault which was dormant and has been
activated by computation process
» Can be external fault
» Errors may be
> latent: not yet recognized as error
> detected
» Errors may
» disappear before detection
> propagate
> Failures occur when an error passes through system-user interface and
affects service
» A component failure results in a fault for
» The system containing the failed component
» Other components interacting with the failed component
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Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Sequencing of Fault, Error, Failure

c|alu

Subsystem under consideration: A

Cause of Error: Deviation from
Fault intended service:
> Failyre

Subsystem under consideration: B

Deviation from Subsystem B
intended service: Cause of Error:
. Failure Unintended state: |, Fault
Error
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Fault Classification

Faults
1

{ Accidental ) @enomenological ( System ) ( Phase.of ) 7( Permanent)
Cause Boundaries Creation
S

» Can classify commonly used fault types according to this
scheme

» “intrusions,” “malicious logic,” “physical faults” etc.

» See [Laprie 1992] for more details
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Errors

Recall: Error is liable to lead to subsequent failure
Whether or not error actually leads to failure depends on
» System composition
» In particular, (intentional or unintentional) redundancy
» System activity
» Error may be overwritten before creating damage
> Definition of failure from user’s viewpoint
» “It's not a bug, it's a featurel"

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 59



Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Classification of Failures

» A system generally does not always fail in the same way
> Failure modes:

» The ways a system can fail
» Can be characterized according to different view points

Failure

\
I I |
C Domain ) C Perception ) (Consequence9 ( Oftenness )
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Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Failure Domain

Failure

( Domain ) ( Perception ) (Conseq‘uencea ( Ofter;ness )

Timing

Constraint
Failure
Value
Failure

» Arbitrary failures:
» Combinations of value and timing domain failures
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Perception

Failure
Comme ) Grrmvin) (Gomners) (omme)

In system with more than one user:

» Consistent failures:
» Perceptions of the users are the same
» Inconsistent failures:

» Perceptions are different
» Also referred to as two-faced failures, malicious failures, or
Byzantine failures

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 62



Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Effect

Failure
[

( Dor‘nain ) (Percelption) @onsequence.9 ( Oftenness)
» Benign failure mode:

» Uncritical failures

» Malign (critical) failure mode:

» “Cost” of failure exceeds utility of system during normal
operation by orders of magnitude
» Airbags, airtraffic control, nuclear power plants, ...
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Failure Oftenness

Failure
|

[ I I ]
( Domain ) ( Perception ) (Consequences) ( Oftenness )

Single

Permanent

Transient

Intermittent
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Permanent Failures

A typical VLSI device failure rate develops according to the
“bathtub pattern”:

> A relatively high failure rate for the first few hundred hours of
operation (burn-in)

» After that, stabilization at about 10-100 FIT (= Failures per
10° hrs, so 1 FIT corresponds to MTTF of about 115 Kyrs)

» At some point, an increased failure rate again (aging)

Failure

rate L /
>t
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Preventive Maintenance

» Failure rate of a VLSI chip

» Depends mainly on physical parameters (pins, packaging)
» Not very sensitive to the number of transistors

» Preventive maintenance

» Exchange of components before they fail
» Limits effects of aging

» If there is no aging, then there is no point in preventive
maintenance!
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Transient Failures

» Transient chip failure rate
» Can be 10-100 000 x permanent failure rate
» Depends on physical environment
» Most common causes are
» Electromagnetic interferences (EMI)
» Power supply glitches
» High-energy particles (e.g., a-particles)
» Example from radar monitoring [Gebman et al. 1988]:
» Malfunctions noticed every 6 flight hrs
» Maintenance request every 31 hrs
» Only every 3" failure could be reproduced!
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Fault, error, failure
Origins of failure

. - Another system classification
Impairments to Dependability Example of a fail-safe system: VOTRICS

Failure Classification—Summary

Failure

! L 1
Q’erc;ptio@ @nsequenc}s (Oftenness)

ConsisteD Benign)
- Inconsistent |
Commission; @yzanti@ @astroph} Permanent

Domain

Timing

Single

=
—/

Constraint
Failure

m
S

Value
Failure
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Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

Origins of Failure

> Rule of thumb (JPL data):
» 1 major fault every 3 pages of requirements
» 1 major fault every 21 pages of code

» Fault statistics for some NASA space projects:

» Coding faults: 6% of overall faults (!!!)
» Function faults: 71% (due to requirements/design problems)
> Interface faults: 23% (due to poor comm. between teams)

» Observation:

» Most severe faults are introduced early but are detected
late! (often during system integration)
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Origins of Failure

Results of one study on large information systems (Tandem):

» >40% of failures due to human operator faults

» 25% caused by software faults
» Large contribution by environmental factors

» Power outages
» Fires, floods

» Smallest contributor: (random) hardware faults

One of the lessons:

» Need not only hw fault tolerance, but also sw fault
tolerance!
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Fault, error, failure
Origins of failure

Another system classification
Example of a fail-safe system: VOTRICS

Impairments to Dependability

Another System Classification

c|alu

Given: consistent failure perception

Fail silent: System produces either correct results (both in
value and time domains) or no results at all

Fail crash: Fail-silent system that stops operating after the
first failure

Fail stop: Fail-crash system that makes its failure known to
other systems

Fail (un-)controlled: System that fails in a(n) (un-)controlled
manner

Fail-never: System that always provides correct services in
both the timing and value domains

Fail-safe: System that maintains its integrity in the presence
of faults
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

Example of a Fail-Safe System: VOTRICS

» Train Signalling System developed by Alcatel

» An industrial example of applying design diversity in a
safety-critical RT environment
» Objective of train signalling system:

» Collect data about the state of the tracks in a train
station—current position and movements of trains, position of
points

» Set signals and shift points such that trains can move safely
through the station according to a given time table
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Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

VOTRICS cont.

c|alu

» VOTRICS is partitioned into two independent subsystems

» First system:
» Accepts commands from operators

vV vy vy

Collects data from tracks

Calculates intended positions of signals and points
Uses a standard programming paradigm

Uses a Triple-Mode Redundancy (TMR) architecture to
tolerate single HW fault
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Fault, error, failure
Origins of failure

Another system classification

Impairments to Dependability Example of a fail-safe system: VOTRICS

VOTRICS cont.

» The second system, the “safety bag":
» Monitors safety of the state of the station
» Has access to RT data base and intended outputs of 1t system
» Dynamically evaluates safety predicates derived from the “rule
book” of the railway authority
Based on expert-system technology
Also implemented on TMR HW architecture

v

v

C|A [u Embedded Real-Time Systems SS 2011, Lecture 16 Slide 74



Fault, error, failure

Origins of failure

Another system classification

Example of a fail-safe system: VOTRICS

Impairments to Dependability

VOTRICS cont.

v

The two systems exhibit a substantial degree of independence

v

Used different specifications as starting point
» Operational requirements vs. safety rules

v

Used different implementation approach
» Standard programming vs. expert system

v

System has been operational in different railway stations for a
number of years, no unsafe state has been detected
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Overview
High-Quality C Code
Dependability—Basic Terminology
Attributes of Dependability
Impairments to Dependability

Means for Dependability
Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting
Interdependencies
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Means for dependability

Dependability Procurement
> Provide system with ability to deliver service complying with
specification
» Fault prevention
» Prevent faults creeping into a system before it goes operational
» Fault tolerance
» Provide specified service even in presence of faults
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Means for Dependability

Dependability Validation

v

Reach confidence in a system

v

Attempts to produce systems with well-defined failure modes
Fault removal

v

» Reduce presence (number, seriousness) of faults

v

Fault forecasting

» Estimate present number, future incidence, and consequences
of faults

Combination of fault removal and fault prevention also referred to
as fault avoidance
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Dependencies Between Dependability Means

In general, none of these goals can be achieved perfectly
» All boil down to human activities
» Hence, require combined utilization

» Example: Need for fault-tolerance despite fault avoidance
strategies in design process
But also: to build dependable systems, tools to develop these
systems must be dependable as well
» Example: Certified code generators
» Example: In 1979, an error discovered in program used to
design nuclear reactors (supposedly guaranteeing the

attainment of earthquake safety standards) resulted in
shutting down of 5 nuclear plants [Leveson 1986]
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Dependencies Between Dependability Means

c|alu

Interdependencies between fault removal and fault forecasting
motivate their combination into dependability validation

Note, however: fault removal also consists of what is
classically referred to as verification
“V & V" [Boehm 1979]:
» Verification: Building the system right
» Validation: Building the right system
Need validation of the validation

» Coverage: Measures representativeness of the situations to
which the system is submitted during its validation compared
to the actual situations it will be confronted with during its
operational life
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies

Means for Dependability

Summary—The Dependability Tree

Attributes Impairments Means
——
Availability Faults Procurement Validation
— Reliability = —  Errors Fault . Fault
Prevention Removal
Fault Avoidance
—  Safety “—  Failures
Fault L4 Fault
Tolerance Forecasting
—\_ Security Laprie 1992
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

Der Zuverlassigkeitsbaum

Zuverlassigkeit

KenngréRen Beeintréch; Mittel
tigungen
— 1
s : Fehler- o
— Verfligbarkeit — Verfahren Validation
ursachen
| Funktions- [ Fehl- Fehler- t Fehler-
fahigkeit zustande verhinderung J beseitigung
Fehlervermeidung
—  Sicherheit —  Ausfélle
Fehler- [l s Fehler-
toleranz vorhersage
Vertrau-
lichkeit Laprie 1992
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies

Means for Dependability

To Go Further (1)

Advice on C
» Andrew Koenig, C Traps and Pitfalls, Addison Wesley, 1989
» Les Hatton, Safer C—Development of High-Integrity &
Safety-Critical Systems, McGraw-Hill, 1995 (currently out of
print)
MISRA C

» http://www.misra.org.uk

> Nigel Jones, Introduction to MISRA C, Embedded Systems
Programming, Jul 1, 2002 (10:07 AM)

> http://www.embedded.com/columns/
technicalinsights/172301672
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Dependability procurement—fault prevention/tolerance
Dependability validation—fault removal/forecasting

Interdependencies
Means for Dependability

To Go Further (2)

> Laprie, J. C. (Ed.), Dependability: Basic Concepts and Terminology,
Springer, 1992 (Working Group 10.4 on Fault-Tolerant Computing
of the International Federation of Information Processing)

» Windows-Help on this, courtesy of Jean Claude Laprie
(LAAS-CNRS) and Giinter Heiner, Jorg Donandt et al.
(DaimlerChrysler Berlin), can be found at
http://rtsys.informatik.uni-kiel.de/teaching/
open-srcs/LaprieDependabilityTerminology.hlp

[Marwedel 2008], Chapter 6.7

[Verissimo and Rodrigues 2001], Chapter 6
[Kopetz 1997], Chapter 6

[Burns and Wellings 2001], Chapter 5

v

v

v

v
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