
GAS/Gnu Format - X86 Assembler Reference Card

movl Src, Dest Move 4-byte word to Destination
Source $Value, moves Value to Destination Immediate

%Register, moves Value of Register to Destination
(%Register), moves Value at Memory Address of %Register to Destination *

Destination %Register, moves the Source into the %Register
(%Register), moves the Source to Memory Address in Register *

Memory/Memory Operation with single Instruction not possible

* Memory Addresses are calculated like leal, see leal for more Information

leal Src,Dest Compute Memory Address without doing Memory referencing
Source Addressmode Expression,

D(Rb,Ri,S) calculated as Dest = D + Rb + S*Ri where as Rb and Ri are
Registers and all parameters are optional

Destination %Register, saves the calculated Address to Register

Two Operand Instructions

addl Src,Dest Adds two 4-byte words and stores it at Destination, Dest = Dest + Src

subl Src,Dest Subtracts two 4-byte words and stores it at Destination, Dest = Dest - Src

imull Src,Dest Multiplies two 4-byte words and stores it at Destination, Dest = Dest * Src

sall Src,Dest Shifts Source by Destination left, Dest = Dest << Src Also called shll

sarl Src,Dest Shifts Source by Destination arithmetic right, Dest = Dest >> Src

shrl Src,Dest Shifts Source by Destination logical right, Dest = Dest >> Src

xorl Src,Dest Computes bitwise XOR of Source and Destination, Dest = Dest ^ Src

andl Src,Dest Computes bitwise AND of Source and Destination, Dest = Dest & Src

orl Src,Dest Computes bitwise OR of Source and Destination, Dest = Dest | Src

One Operand Instructions

incl Dest Increments Destination by 1, Dest = Dest + 1

decl Dest Decrements Destination by 1, Dest = Dest - 1

negl Dest Negates Destination, Dest = - Dest

notl Dest Negates Destination bitwise, Dest = ~ Dest

Condition Codes:

Set by arithmetic operations and compare instructions, CF set if carry out from most significant bit, ZF set if

result is Zero, SF set if result is negative, OF set if two’s complement overflow,
Not set by leal!

cmpl b, a compares b with a like computing a-b without setting Destination.

testl b, a computing a&b without setting Destination

Jumps relative to setted Condition Codes

jmp Address Jumps to Address

je / jne Address Jumps to Address when ZF is set / is not set, means b and a are Equal / Zero

js Address Jumps to Address when SF is set / is not set

jg Address Jumps to Address when ~(SF^OF)&~ZF is true, means b Greater a (Signed)

jge Address Jumps to Address when ~(SF^OF) is true, means b Greater or Equal a (Signed)

jl Address Jumps to Address when (SF^OF) is true, means b Less a (Signed)

jle Address Jumps to Address when (SF^OF)|ZF is true, means b Less or Equal a (Signed)

ja Address Jumps to Address when ~CF&~ZF is true, means b Above a (unsigned)

jb Address Jumps to Address when CF is true, means b Below a (unsigned)

