Organisation und Architektur

von Rechnern
Lecture 02

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Binary Representations

m Base 2 Number Representation
" Represent 15213,,as11101101101101,

= Represent 1.20,,as 1.0011001100110011[0011]...,
" Represent 1.5213 X 10* as 1.1101101101101, X 213

m Electronic Implementation
= Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires
0 d 1 > 0—

—

3.3V
2.8V

0.5V
0.0V

Encoding Byte Values

m Byte = 8 bits
= Binary 00000000, to 11111111,
= Decimal: 0 to 255,
= First digit must not be 0inC
" Hexadecimal 00 to FF¢

= Base 16 number representation

= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F

= Write FA1D37B,;in Cas OxFA1D37B
— Or 0xfald37b

\
&
o o o
0 [0 [0000
1 [1 | 0001
2 | 2 | 0010
3 [3 | 0011
4 | 40100
5 | 5 | 0101
6 | 60110
7 17 [0111
8 | 8 | 1000
o | 9 | 1001
A [10] 1010
B |11] 1011
c [12] 1100
D [13] 1101
E |14] 1110
F 15] 1111

Byte-Oriented Memory Organization

00. QQ.

m Programs Refer to Virtual Addresses
= Conceptually very large array of bytes
= Actually implemented with hierarchy of different memory types
= System provides address space private to particular “process”
= Program being executed
= Program can clobber its own data, but not that of others

m Compiler + Run-Time System Control Allocation
" Where different program objects should be stored
= All allocation within single virtual address space

Machine Words

m Machine Has “Word Size”
= Nominal size of integer-valued data

= Including addresses
= Most current machines use 32 bits (4 bytes) words

= Limits addresses to 4GB

= Becoming too small for memory-intensive applications
" High-end systems use 64 bits (8 bytes) words

= Potential address space = 1.8 X 10%° bytes

= Xx86-64 machines support 48-bit addresses: 256 Terabytes
= Machines support multiple data formats

= Fractions or multiples of word size

= Always integral number of bytes

Word-Oriented Memory

Organization 32-bit 64-bit
g Words Words Bytes Addr.

0000
Addr 0001

m Addresses Specify Byte =
i 0000 0002
Locations Addr 0003
= Address of first byte in word 0000 0004

: Add
= Addresses of successive words _ ' 0005
differ by 4 (32-bit) or 8 (64-bit) 0004 0006
0007
0008
Addr 0009
0008 Addr 0010
= 0011
0008 0012
Addr 0013
0012 0014
0015

Data Representations
m Sizes of C Objects (in Bytes)

= CDataType Typical 32-bit Intel IA32
x86-64

= char 1 1
1

= short 2 2
2

= int 4 4
4

long 4 4
8

long long 8 8
8

= float 4 4
4

= double 8 8
8

long double 8 10/12
10/16

= char* 4 4
8

— Or any other pointer

Byte Ordering

m How should bytes within multi-byte word be ordered in
memory?

m Conventions
" Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address

Byte Ordering Example

m Big Endian
= |Least significant byte has highest address

m Little Endian
= |Least significant byte has lowest address

m Example

= Variable x has 4-byte representation 0x01234567
= Address given by &xis 0x100

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

67 45 23 01

10

SIMPLY EXPLAINED

BIG-ENDIAN

LITTLE-ENDIAN

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
"= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop sebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 00 \00 00 00 cmpl $0x0,0x28 (%ebx)

Deciphering Numbers

= Value: Ox12ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

11

Examining Data Representations

m Code to Print Byte Representation of Data
= (Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show bytes (pointer start, int len)
{

int 1i;

for (i = 0; 1 < len; i++)

printf ("0x%p\t0x%.2x\n",
start+i, start[i]);

printf ("\n") ;

}

Printf directives:
$p: Print pointer
$x: Print Hexadecimal

12

show bytes Execution Example

13

int a = 15213;
printf ("int a

15213;\n") ;

show bytes((pointer) &a, sizeof(int));

Result (Little Endian):

int a = 15213;

Ox11ffffcb8 0x6d
O0x11ffffcb9 O0x3b
Ox1ll1ffffcba 0x00
Ox11ffffcbb 0x00

Representing Integers

Decimal: 15213

m int A = 15213;

Binary: 0011 1011 0110 1101
m int B = -15213;

m long int C = 15213; Hex: 3 B 6 D
IA32, x86-64A Sun A 1A32 86,64 Sun o
6D [
3B |+
00
00

IA32, x86-64 B Sun B

™~

Two’s complement representation

(Covered later)
14

Representing Pointers

m int B = -15213;
E int *P = §&B;

Sun P IA32 P x86-64 P

EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

15

Representing Strings

m Strings in C char S[6] = "15213";
= Represented by array of characters
" Each character encoded in ASCII format Linux/Alpha s Sun s
= Standard 7-bit encoding of character set 31 |« S 31
= Character “0” has code 0x30 35 | | 35
— Digitj has code 0x30+i 32 | " 32
= String should be null-terminated 31 | | 31
= Final character =0 33 f° 133
00 | " 00

m Compatibility
= Byte ordering not an issue

16

Boolean Algebra

m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode “True” as 1 and “False” as O

And

Not

17

m A&B =1 when both A=1 and
B=1 &|0 1

O(0 O

110 1

m ~A=1when A=0

—

Or

m AIB =1 when either A=1 or

B=1

0 1

0
1

0 1
1 1

Exclusive-Or (Xor)

m AAB =1 when either A=1 or
B=1, but not both

A\

0

0
1

0
1

1
1
0

Application of Boolean Algebra

m Applied to Digital Systems by Claude Shannon
= 1937 MIT Master’s Thesis

= Reason about networks of relay switches
= Encode closed switch as 1, open switch as O

= Connection when
A ~B
O—< > © A&~BI|~A&B
~A _ B

~A&B = AB

18

General Boolean Algebras

m Operate on Bit Vectors
= QOperations applied bitwise

01101001 01101001 01101001

& 01010101] 01010101 4 01010101

01000001 01111101 00111100

~ 01010101

10101010

m All of the Properties of Boolean Algebra Apply

19

Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

" a=1ifj €A
01101001
6543210

01010101
6543210
m Operations
= & Intersection
= Union
= A Symmetric difference
o~ Complement

20

{0,3,56}

{0,2,4,6}

01000001
01111101
00111100
10101010

{0,6}
{0,2,3,4,5,6}
{2,3,4,5}
{1,3,5,7}

Bit-Level Operations in C

m Operations &, |, ~, M Available in C
= Apply to any “integral” data type
= long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

m Examples (Char data type)

" ~(0x41 - 0xBE
~01000001, = 10111110,
= ~0x00 - OxFF

~00000000, = 11111111,
" 0x69 & 0x55 =2 0x41

01101001, & 01010101, - 01000001,
" 0x69 | 0x55 =2 0x7D

01101001, | 01010101, - 01111101,
21

Contrast: Logic Operations in C

m Contrast to Logical Operators
= && |, !
= View 0 as “False”
= Anything nonzero as “True”
= Always returnOor 1

m Examples (char data type)
= 10x41 = 0x00
= 10x00 = 0x01
= 110x41 > 0x01

0x69 && 0x55 = 0x01
0x69 || 0x55 = 0x01

" p && *p (avoids null pointer access)

22

Shift Operations

|
23

Left Shift: x <<y

= Shift bit-vector x left y positions
— Throw away extra bits on left
= Fill with 0’s on right

Right Shift: X >> vy

= Shift bit-vector x right v positions
= Throw away extra bits on right
= Logical shift
= Fill with 0’s on left
= Arithmetic shift
= Replicate most significant bit on right
= For unsigned values, use logical shift

® Forsigned values, it is implementation-defined whether

arithmetic or logical shift is used!

= Note: Java distinguishes signed (>>) and unsigned (>>>)

right shift — but has no unsigned integers

= At assembler level, logical/arithmetic shift are different

operations (x86: SHR vs. SAR)

Undefined Behavior if Shift Amount < 0 or = Word Size

Argument x| 01100010

<< 3 00010000
Log.>> 2 | 00011000
Arith. >> 2| 00011000
Argument x| 10100010

<< 3 00010000
Log.>> 2 | 00101000
Arith. >> 2| 11101000

24

Cool Stuff with Xor (Code example)

= Bitwise Xor is form of ‘{’Oid funny (ink %, IRt %)
ad.dltlon kx = kx A ky; Ty
= With extra property *y = kx A ky; /* #2 */
that every value is its *x = *x A *y; /* #3 */
own additive inverse }
ANA=0
*x *y
Begin |A B
1 A”B B
2 A"B (A°B)~B = A
3 (A°B)~A = B A
End B A

Main Points

m It's All About Bits & Bytes

" Numbers
" Programs
B Text

m Different Machines Follow Different Conventions
= Word size
= Byte ordering
" Representations
m Boolean Algebra is Mathematical Basis
= Basic form encodes “false” as 0, “true” as 1

= General form like bit-level operations in C
= Good for representing & manipulating sets

25

