Organisation und Architektur

von Rechnern
Lecture 03

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Last Time: Bits & Bytes

Bits, Bytes, Words

Decimal, binary, hexadecimal representation
Virtual memory space, addressing, byte ordering
Boolean algebra

Bit versus logical operations in C

Today: Integers

Representation: unsigned and signed
Conversion, casting

N

|

m Expanding, truncating

m Addition, negation, multiplication, shifting
H

Summary

Integer C Puzzles

" Taken from old exams

= Assume 32-bit word size, two’s complement integers

® For each of the following C expressions, either:

= Argue that is true for all argument values

= Give example where not true

Initialization

int x = foo();
inty = bar();
unsigned ux = x;

unsigned uy = y;

Q

Q

Q

x<0

ux>=0
X&7==

ux >-1

X>y
X¥x>=0
x>0&&y>0
x>=0

x<=0

I

I

J

((x*2) < 0)

(x<<30) <0

X<-y

X+y>0

x<=0

x>=0

Encoding Integers

Unsigned Two’s Complement
w—1 , w—2 _
B2U(X) S 2! B2T(X) = —x,:2" "+ S x-2
=0 1=0
short int x = 15213; \
short int y = -15213; Sign
Bit
m Cshort 2 bytes long
Decimal Hex Binary
x 15213| 3B 6D| 00111011 01101101
g ~15213| c4 93] 11000100 10010011
m Sign Bit

" For 2’s complement, most significant bit indicates sign

= 0 for nonnegative

= 1 for negative

Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
3 1 3 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
c -32768 0 0 1 -32768
Sum 15213 -15213

Numeric Ranges

m Unsigned Values

m Two’s Complement Values

| 1 —
UMin 0 * TMin = -1
000..0 100...0
[] w _
UMax 2" = TMax = 2%i-1
111.1 011..1
m Other Values
" Minus 1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768 80 00| 10000000 000O0OOOO
-1 -1 FF FF| 11111111 11111111
0 0| 00 00| 00000000 0OOOOOOOO

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

m Observations

| TMin | =
= Asymmetric range

= UMax

TMax + 1

m CProgramming

2 * TMax + 1

= Hinclude <limits.h>

= Declares constants, e.g.,
= ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Unsigned & Sighed Numeric Values

X B2U(X B2T(X
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7/
1000 3 —3
1001 9 —7
1010 10 —6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1

m Equivalence
= Same encodings for nonnegative
values
m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding
m => Can Invert Mappings
= U2B(x) = B2U1(x)
= Bit pattern for unsigned
integer
= T2B(x) = B2T(x)
= Bit pattern for two’s comp
integer

Today: Integers

Conversion, casting

10

Mapping Between Signed & Unsigned

Two’s Complement

X

Unsigned
Ux

> T2B

T2U

—

B2U

X

Maintain Same Bit Pattern

U2T

*LU2B

X

> B2T

Maintain Same Bit Pattern

Unsigned

> UX

Two’s Complement

> X

m Mappings been unsigned and two’s complement numbers:

keep bit representations and reinterpret

11

Mapping Sighed <= Unsigned

12

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

Unsigned

o

0111

1000

1001

1010

1011

1100

1101

1110

1111

WO oI | d[[WI[IN R

=
(@)

=
=

=
N

=
w

[
19

[
o

Mapping Sighed <= Unsigned

13

Bits

0000

Signed

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

I.

WO oI | d[[WI[IN R

+16

Unsigned

o

=
(@)

=
=

=
N

=
w

[
19

[
o

Relation between Sighed & Unsigned

Two’s Complement — Unsigned
X *| T2B > B2U > UX
X
Maintain Same Bit Pattern
w—1 0
ux |+I|+|+ o + [+
x [I+[+) ++
X x=0

Large negative weight

becomes

Large positive weight

14

ux

lx+2" x<0

Conversion Visualized

m 2’s Comp. — Unsigned
= Ordering Inversion UMax
UMax -1

= Negative — Big Positive

/~® T™Max +1

TMax @ ® TVMax

2’s Complement

@ @
Range _2 .J/ 0 =
-2

15 _ TMin

Unsigned
Range

Signed vs. Unsignhed in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259U

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

" Implicit casting also occurs via assignments and procedure calls
tx = ux;
uy = ty;
16

Casting Surprises

m Expression Evaluation

" If mix unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=
= Examples for W=32: TMIN =-2,147,483,648,

m Constant, Constant,
0 ouU
-1 0
-1 OouU
2147483647 -2147483647-1
2147483647U -2147483647-1
-1 -2
(unsigned)-1 -2
2147483647 2147483648U
172147483647 (int) 2147483648U

) >=

Relation

<

v A V V A V V

TMAX = 2,147,483,647

Evaluation

unsigned
signed
unsigned
signed
unsigned
signed
unsigned
unsigned

signed

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, len);

return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find

vulnerabilities in programs
18

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, MSIZE) ;
printf (“$s\n”, mybuf) ;

19

MaIICIOus Usage /* Declaration of library function memcpy */

void *memcpy (void *dest, void *src, size t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel (void *user dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user dest, kbuf, 1len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy from kernel (mybuf, -MSIZE) ;

20

Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted
m Can have unexpected effects: adding or subtracting 2%

m Expression containing sighed and unsigned int
" intis cast to unsigned!!

21

Today: Integers

Expanding, truncating

22

Sigh Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:

" X = Xyq s Xyt s Xuyet » Xy 1+-0 Xg
L]
k copies of MSB < w
o 00
X ' () ()
<€ ><€
23 k w

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213(FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type

m C automatically performs sign extension

24

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)

Unsigned: zeros added
Signed: sign extension
Both yield expected result

m Truncating (e.g., unsigned to unsigned short)

25

Unsigned/signed: bits are truncated

Result reinterpreted

Unsigned: mod operation

Signed: similar to mod

For small numbers yields expected behaviour

Today: Integers

Addition, negation, multiplication, shifting

26

Negation: Complement & Increment

m Claim: Following Holds for 2’s Complement

~x + 1 == -x

m Complement
" QObservation: ~x + x == 1111..111 == -1

x 11/0]0{1]1{1]0f1
+ ~x |0]1]1]0]0]|0f1]0

-1 1411331173311

m Complete Proof?

27

Complement & Increment Examples

x=15213
Decimal| Hex Binary

X 15213| 3B 6D| 00111011 01101101

~X -15214| C4 92 11000100 10010010

~x+1 -15213| C4 93| 11000100 10010011

Y -15213| C4 93| 11000100 10010011
x=0

Decimal Hex Binary

0 0 00 00| 00000000 00O0OOO0O0OO

~0 -1 FF FF| 11111111 11111111

~0+1 0 00 00| 00000000 00OOO0O0OO

28

Unsigned Addition

Operands: w bits U ve e

4+ VvV eo o0
True Sum: w+1 bits U4+ —
Discard Carry: w bits UAddW(u , V) °o0

m Standard Addition Function

" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = (u+v) mod2%¥

w
UAdd, (1,v) = g w+v nw+v<?2

[u+v—2w w+vz2dW

29

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

30

Visualizing Unsigned Addition

m Wraps Around

" |f true sum = 2%

® At most once

True Sum

2W+1“

2W

0

31

Overflow

Modular Sum

Overflow

\

UAdd,(u , v)

Mathematical Properties

m Modular Addition Forms an Abelian Group
" Closed under addition
0 <UAdd (u,v) = 2¥-1
= Commutative
UAdd, (u,v) = UAdd, (v, u)
= Associative
UAdd,(t, UAdd (u, v)) = UAdd, (UAdd (¢, u), v)
0 is additive identity
UAdd, (u,0) = u
= Every element has additive inverse

= Let UComp,, (u) = (2% —u) mod 2%
UAdd,(u, UComp,,(u)) = O

32

Two’s Complement Addition

Operands: w bits u LA
+ v o 00

True Sum: w+1 bits
u-+v XK
Discard Carry: w bits TAdd, (u ,v) XK

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
= Will give ==

33

TAdd Overflow

m Functionality
" True sum requires w+1
bits
" Drop off MSB

" Treat remaining bits as
2’s comp. integer

34

0 111..

0 100...

0 000...

1011...

1 000...

True Sum
2W_1 —
PosO
> TAdd Result
2wl -+ T 011.1
0O T T 000..0
—2w-l-1 T = 100..0
ow L NegOver

Visualizing 2’s Complement Addition

m Values

= 4-bit two’s comp.
= Range from -8 to +7

m Wraps Around

35

" |fsum =21
= Becomes negative
= At most once

" |f sum < =21
= Becomes positive
= At most once

NegOver

u 6 _ PosOver

Characterizing TAdd

Positive Overflow

m Functionality TAdd(u, v)
= True sum requires w+1 bits >0 \
= Drop off MSB Vv
= Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

w+v+ 2v u+v<TMin, (NegOver)

TAdd,(w,v) = ju+v TMin, =u+v=TMax,

—

u+v— 2% TMax, <i+v (posover)

36

Mathematical Properties of TAdd

m Isomorphic Group to unsigneds with UAdd
" TAdd,(u,v)= U2T(UAdd (T2U(u), T2U(v)))
= Since both have identical bit patterns

m Two’s Complement Under TAdd Also Forms an Abelian Group

" Closed, Commutative, Associative, O is additive identity
= Every element has additive inverse

—1 u=TMin,

TComp,(w) = E TMin, u=TMin,

37

Multiplication

m Computing Exact Product of w-bit numbers x, y

= Either signed or unsigned

m Ranges
" Unsigned:0<x*y<(2w—-1)2 = 22w —-2wl +1]
= Up to 2w bits
" Two’s complement min: x * y > (—2w-1)*(2w1-1) = —22w=24 2w-1
= Up to 2w-1 bits
" Two’s complement max: x * y < (—2w1) 2 = 22w=2
= Up to 2w bits, but only for (TMin)?

m Maintaining Exact Results
" Would need to keep expanding word size with each product computed
" Done in software by “arbitrary precision” arithmetic packages

38

Unsigned Multiplication in C

Operands: w bits

True Product: 2*w bitsUt = V ° 00

UMult (u , v)

Discard w bits: w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic
UMult, (u,v)= (u-v) mod 2%

39

Code Security Example #2

m SUN XDR library

= Widely used library for transferring data between machines

" void* copy elements(void *ele src[], int ele cnt, size t ele size); ||

ele src

- L | =

\

dhdhdbal

malloc(ele_cnt * ele_size)

40

XDR Code

void* copy elements(void *ele src[], int ele cnt, size t ele size) ({
/*
* Allocate buffer for ele cnt objects, each of ele size bytes
* and copy from locations designated by ele src
*/
void *result = malloc(ele cnt * ele size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int 1i;
for (i = 0; i < ele cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele src[i], ele _size);
/* Move pointer to next memory region */
next += ele_size;

}

return result;

41

XDR Vulnerability

malloc(ele_cnt * ele_size)

m What if:
" ele cnt =220 41
" ele size = 4096 = 212

= Allocation =77

m How can | make this function secure?

42

Signed Multiplication in C

Operands: w bits

True Product: 2*w bitsU = V 000

TMult, (u ,v)

Discard w bits: w bits

m Standard Multiplication Function
" |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

43

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k
= Both signed and unsigne

Operands: w bits

True Product: w+k Dbits

Discard k bits: w bits

m Examples
" u < 3 ==
" u<< 5 -u<<3

= Compiler generates this code automatically

44

d
l/t (]
* 2k Y O 1Y
u- 2k o Q (1))
UMultW(u R 2k) (X1 O (1 1)
TMult, (u , 2%)
u * 8

== u * 24

" Most machines shift and add faster than multiply

Compiled Multiplication Code

C Function

int mull2 (int x)
{

return x*12;

}

Compiled Arithmetic Operations Explanation
leal (%eax,%eax,2), %eax t <- x+x*2
sall $2, %eax return t << 2;

m C compiler automatically generates shift/add code when
multiplying by constant

45

Unsignhed Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives [u / 2]
= Uses logical shift

k
o 4 u 200 g0e Binary Point
erands:
P | ok [Q[= T0MI0l == 1010
Division: w/2k 101 e 1010 = T
Result: | u/2k| [Q[e TOI0
Division | Computed Hex Binary
x 15213 15213| 3B 6D| 00111011 01101101
x >> 1 7606.5 7606| 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
x >> 8 | 59.4257813 59(00 3B| 00000000 00111011

46

Compiled Unsigned Division Code

C Function

unsigned udiv8 (unsigned x)

{

return x/8;

}

Compiled Arithmetic Operations Explanation
" shrl $3, %eax " # Logical shift

return x >> 3;

m Uses logical shift for unsigned

m For Java Users
= |ogical shift written as >>>

47

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2

" x > kgives | x / 2¢|

= Uses arithmetic shift (in most cases — but the C standard does not
demand this, see previous lecture!)

= Rounds wrong direction whenu < 0

k
X g0¢ 200 Binary Point
Operands:
| 2k O eee [01110] oo
Division: x/ 2k 000 000 000
Result: ROU.IldDOWIl(.X / 2k) 000 YY)
Division | Computed Hex Binary

Y -15213 -15213 C4 93| 11000100 10010011

y > 1 -7606.5 -7607 E2 49| 11100010 01001001

y >> 4 -950.8125 -951 FC 49| 11111100 01001001
29y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
" Want [x / 2k] (Round Toward 0)
= Computeas | (x+2k-1)/ 2|
- InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k

Dividend: eee | 101 e [QIQ
(X X} 001 (X XJ

—

O

u
+2k—1

oo 1T +« [1]1] Binary Point

Divisor | ot [= ToMIel = Tol0 //

‘] il =N

[y /2k] M AN T e T T

4o Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: X
+2k_1 O YY) O 0 1) 1 1

1 000 000

\ v J
Incremented by 1 Binary Point
Divisor: [2k Q] eeo 1011101 e« 010)
|-X/2k -| 1 000 1 1 1 000 .'
1\ J
Y

Incremented by 1

Biasing adds 1 to final result
50

Compiled Signed Division Code

C Function

int idiv8 (int x)

{

return x/8;

}

Compiled Arithmetic Operations

testl %eax, %eax
Js L4

L3:
sarl $3, %eax
ret

L4:
addl $7, %eax
jmp L3

51

Explanation

if x < 0

X += 7;
Arithmetic shift
return x >> 3;

m Uses arithmetic shift for int

m For Java Users
= Arith. shift written as >>

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

" Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

52

Arithmetic: Basic Rules

m Unsigned ints, 2’s complement ints are isomorphic rings:
isomorphism = casting

m Left shift

= Unsigned/signed: multiplication by 2
= Always logical shift

m Right shift
= Unsigned: logical shift, div (division + round to zero) by 2k
= Signed: arithmetic shift (usually — the C standard does not demand this!)
= Positive numbers: div (division + round to zero) by 2k

= Negative numbers: div (division + round away from zero) by 2k
Use biasing to fix
53

Today: Integers

Representation: unsigned and signed
Conversion, casting

N

O

m Expanding, truncating

m Addition, negation, multiplication, shifting
H

Summary

54

Properties of Unsigned Arithmetic

m Unsigned Multiplication with Addition Forms
Commutative Ring
= Addition is commutative group
" Closed under multiplication
0 =UMult, (u,v) = 2¥-1
" Multiplication commutative
UMult (u, v) = UMult, (v, u)
" Multiplication is associative
UMult,(t, UMult (u, v)) = UMult, (UMult,(t, u), v)
= 1 is multiplicative identity
UMult (u, 1) = u
= Multiplication distributes over addition
UMult (t, UAdd,(u, v)) = UAdd, (UMult,(t, u), UMult,[t, v))

55

Properties of Two’s Comp. Arithmetic

m Isomorphic Algebras
" Unsigned multiplication and addition

= Truncating to w bits
" Two’s complement multiplication and addition

= Truncating to w bits

m Both Form Rings

® |somorphic to ring of integers mod 2%

m Comparison to (Mathematical) Integer Arithmetic

= Both arerings
" |ntegers obey ordering properties, e.g.,
u>0 = U+tv>v
u>0,v>0 = u-v>0
" These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin
56 15213 * 30426 == -10030 (16-bit words)

Why Should | Use Unsighed?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes
unsigned 1i;
for (i = ent-2; 1 >= 0; 1i--)
af[i] += a[i+1];
= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

= Logical right shift, no sign extension
57

Signed/Unsigned Conventions in C

m Constants: by default considered to be signed integers

m If mix unsigned and signed in single expression,
signed values implicitly cast to unsigned

58

C Puzzle Answers

= Assume machine with 32 bit word size, two’s comp. integers
" TMin makes a good counterexample in many cases

a x<0 = ((x*2) <0) False: TMin

QO ux>=0 True: 0 = UMin

0 X&7-== = (x<<30)<0 True: x;=1
Initialization 0 ux>-1 False: O
int x = foo(); Q x>y = X<-y False: -1, TMin
int y = bar(); Q x*x>=0 False: 30426
unsignedux=x; |0 x>0&&y>0 = X+y>0 False: TMax, TMax
unsigneduy=y; |0 x>=0 = -x<=0 True: —TMax <0

0 x<=0 = -x>=0 False: TMin

59

