Organisation und Architektur von Rechnern

Lecture 03

Instructor:

Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Last Time: Bits & Bytes

- Bits, Bytes, Words
- Decimal, binary, hexadecimal representation
- Virtual memory space, addressing, byte ordering
- Boolean algebra
- Bit versus logical operations in C

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Integer C Puzzles

- Taken from old exams
- Assume 32-bit word size, two's complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

$$\Box x < 0$$

$$\Rightarrow ((x*2) < 0)$$

Initialization

int
$$x = foo()$$
;

unsigned uy = y;

$$\Box x \& 7 == 7$$

$$\Rightarrow$$
 (x<<30) < 0

$$\Box$$
 ux > -1

$$\Box x > y$$

$$\Box x * x >= 0$$

$$\Rightarrow$$
 $x + y > 0$

$$\Box x >= 0$$

$$\Box x \le 0$$

Encoding Integers

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement
$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign **Bit**

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Encoding Example (Cont.)

Sum

x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight	152	.13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

15213

-15213

Numeric Ranges

Unsigned Values

- *UMin* = 0 000...0
- $UMax = 2^w 1$ 111...1

■ Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$ 011...1

Other Values

Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	00000000 00000000

Values for Different Word Sizes

		W			
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	- 6
1011	11	– 5
1100	12	- 4
1101	13	- 3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

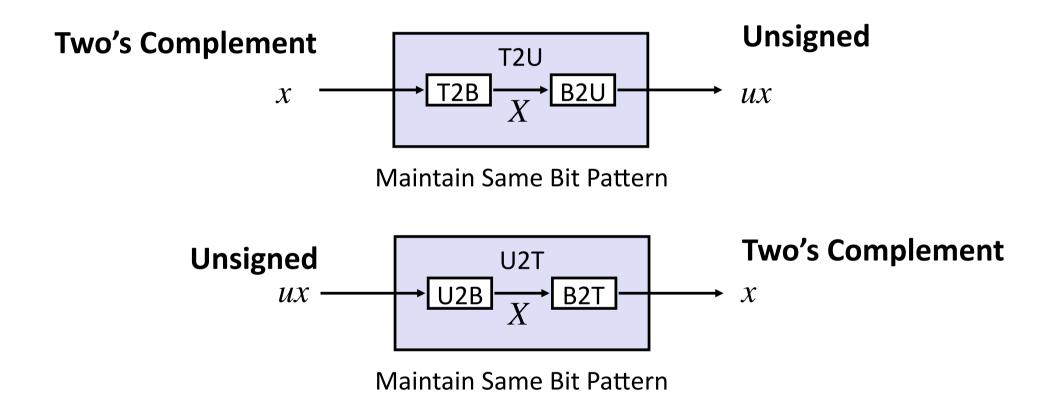
■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two's comp integer

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Mapping Between Signed & Unsigned



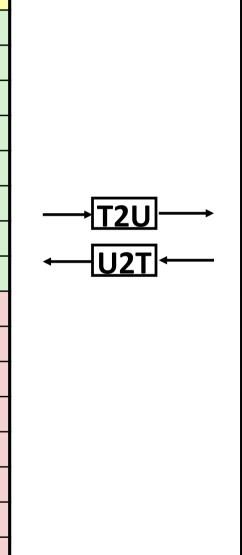
Mappings been unsigned and two's complement numbers:

keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

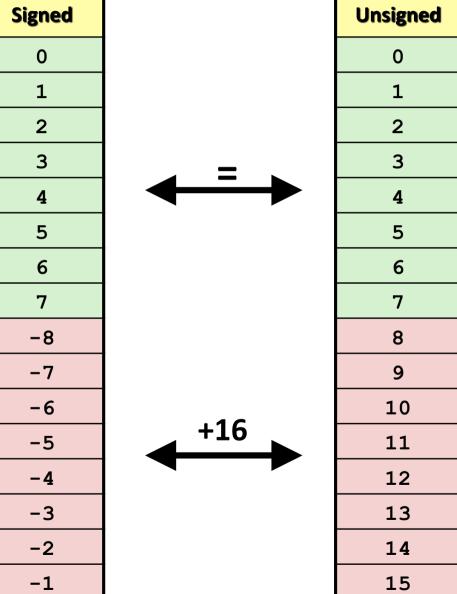


Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

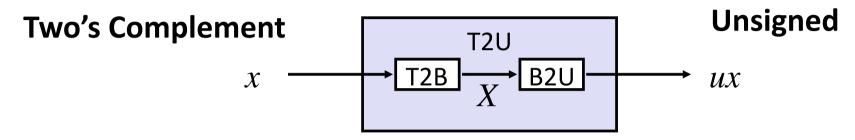
Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

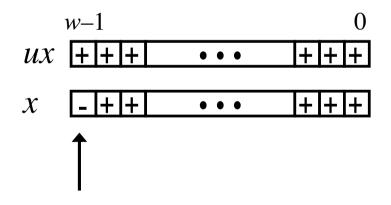
Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1



Relation between Signed & Unsigned



Maintain Same Bit Pattern



Large negative weight

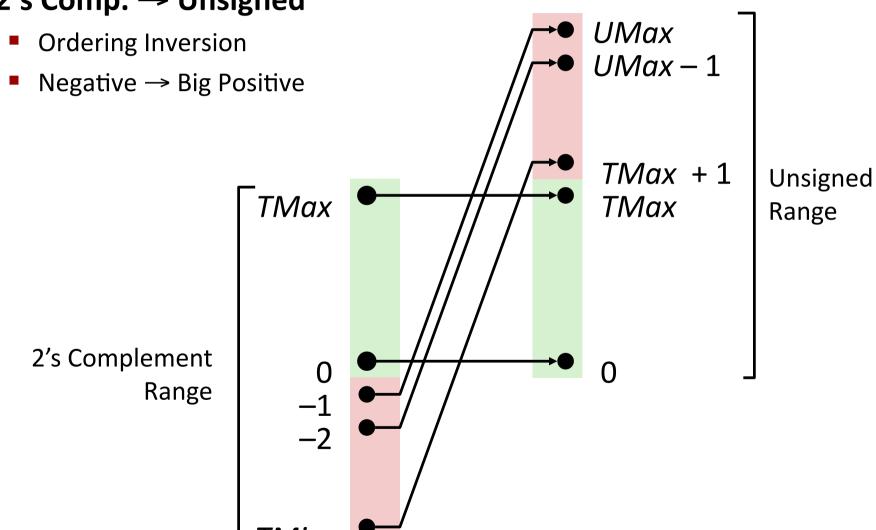
becomes

Large positive weight

$$ux = \begin{cases} x & x \ge 0 \\ x + 2^w & x < 0 \end{cases}$$

Conversion Visualized

■ 2's Comp. → Unsigned



Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix

```
OU, 4294967259U
```

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for W = 32: TMIN = -2,147,483,648, TMAX = 2,147,483,647

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
₁₇ 2147483647	(int) 2147483648U	>	signed

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs

Typical Usage

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage /* Declaration of library function memcpy */

```
void *memcpy(void *dest, void *src, size t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void *user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
    memcpy(user dest, kbuf, len);
    return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

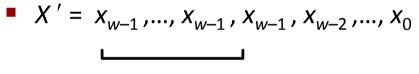
Sign Extension

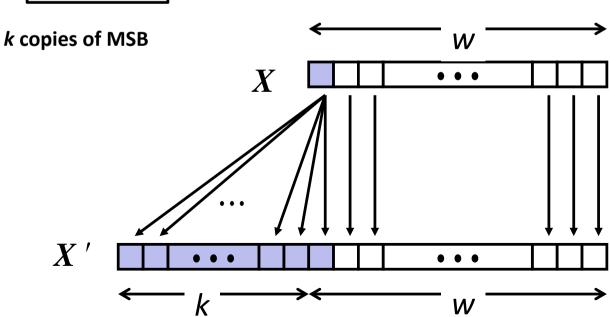
■ Task:

- Given w-bit signed integer x
- Convert it to *w*+*k*-bit integer with same value

Rule:

Make k copies of sign bit:





Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	1111111 1111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Negation: Complement & Increment

■ Claim: Following Holds for 2's Complement

$$\sim x + 1 == -x$$

Complement

• Observation: $\sim x + x == 1111...111 == -1$ x = 10011101 $+ \sim x = 01100010$ -1 = 11111111

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex		Binary	
x	15213	3B	6D	00111011	01101101
~x	-15214	C4	92	11000100	10010010
~x+1	-15213	C4	93	11000100	10010011
У	-15213	C4	93	11000100	10010011

$$x = 0$$

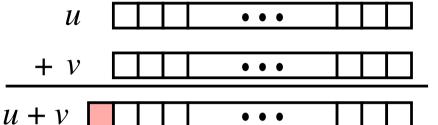
	Decimal	Hex	Binary	
0	0	00 00	00000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	00000000 00000000	

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits



 $UAdd_{w}(u, v)$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = (u + v) \mod 2^w$$

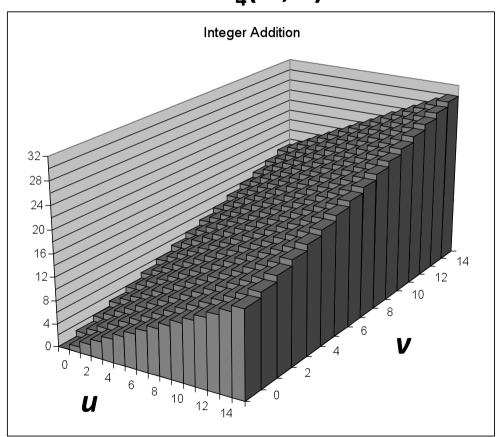
$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Visualizing (Mathematical) Integer Addition

■ Integer Addition

- 4-bit integers u, v
- Compute true sum $Add_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface

$Add_4(u, v)$

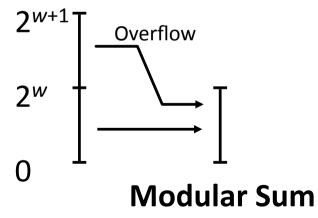


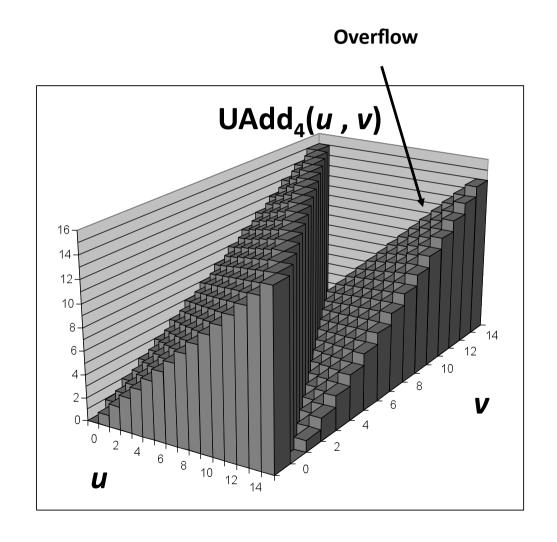
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum





Mathematical Properties

Modular Addition Forms an Abelian Group

Closed under addition

$$0 \le \mathsf{UAdd}_w(u, v) \le 2^w - 1$$

Commutative

$$UAdd_{w}(u, v) = UAdd_{w}(v, u)$$

Associative

$$UAdd_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UAdd_{w}(t, u), v)$$

0 is additive identity

$$UAdd_{w}(u,0) = u$$

- Every element has additive inverse
 - Let $UComp_w(u) = (2^w u) \mod 2^w$ $UAdd_w(u, UComp_w(u)) = 0$

Two's Complement Addition

■ TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

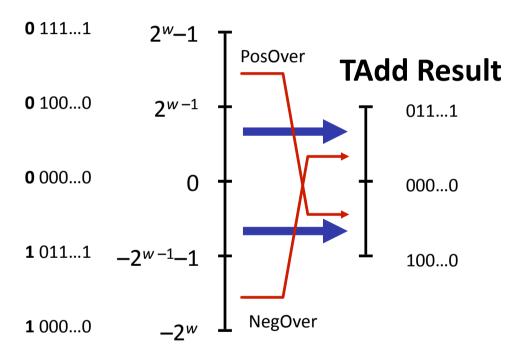
Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum



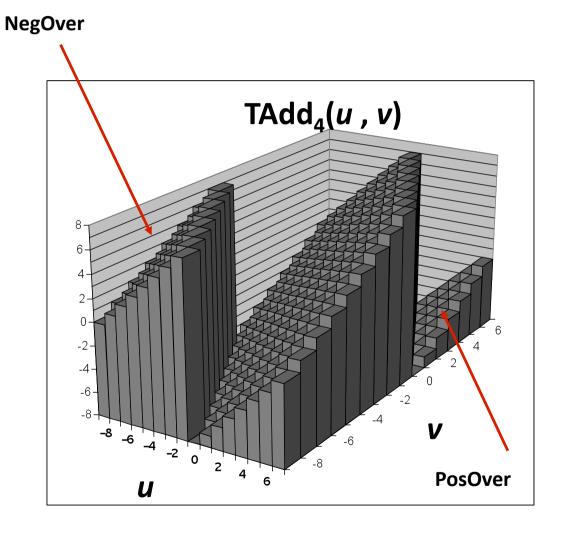
Visualizing 2's Complement Addition

Values

- 4-bit two's comp.
- Range from -8 to +7

Wraps Around

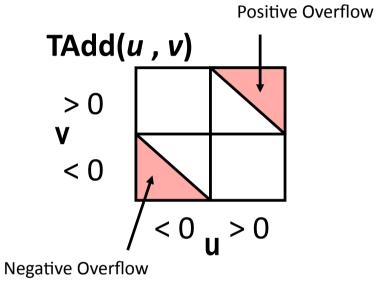
- If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once



Characterizing TAdd

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer



$$TAdd_{w}(u,v) = \begin{cases} u+v+2^{w} & u+v < TMin_{w} \text{ (NegOver)} \\ u+v & TMin_{w} \le u+v \le TMax_{w} \\ u+v-2^{w} & TMax_{w} < u+v \text{ (PosOver)} \end{cases}$$

Mathematical Properties of TAdd

Isomorphic Group to unsigneds with UAdd

- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two's Complement Under TAdd Also Forms an Abelian Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_{w}(u) = \begin{cases} -u & u \neq TMin_{w} \\ TMin_{w} & u = TMin_{w} \end{cases}$$

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

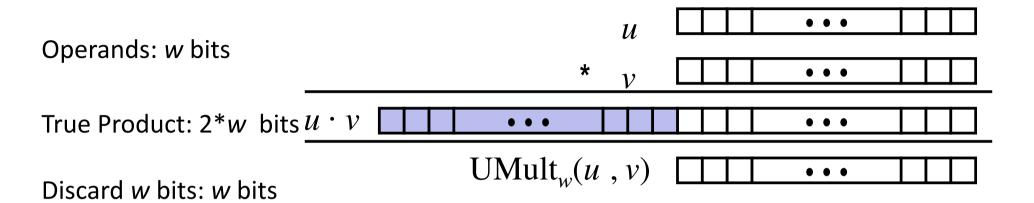
Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C



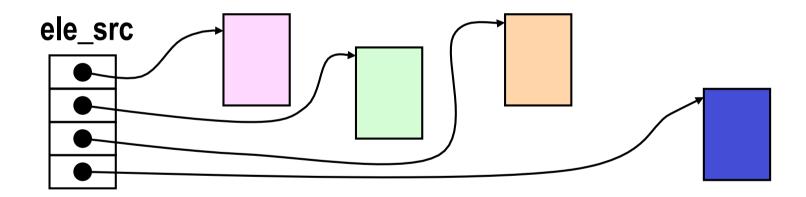
- Standard Multiplication Function
 - Ignores high order w bits
- **Implements Modular Arithmetic**

$$UMult_{w}(u, v) = (u \cdot v) \mod 2^{w}$$

Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);



malloc(ele_cnt * ele_size)

XDR Code

```
void* copy elements(void *ele src[], int ele cnt, size t ele size) {
   /*
     * Allocate buffer for ele cnt objects, each of ele size bytes
     * and copy from locations designated by ele src
     */
   void *result = malloc(ele cnt * ele size);
    if (result == NULL)
       /* malloc failed */
       return NULL;
   void *next = result;
    int i;
    for (i = 0; i < ele cnt; i++) {
        /* Copy object i to destination */
        memcpy(next, ele src[i], ele size);
       /* Move pointer to next memory region */
       next += ele size;
    return result;
```

XDR Vulnerability

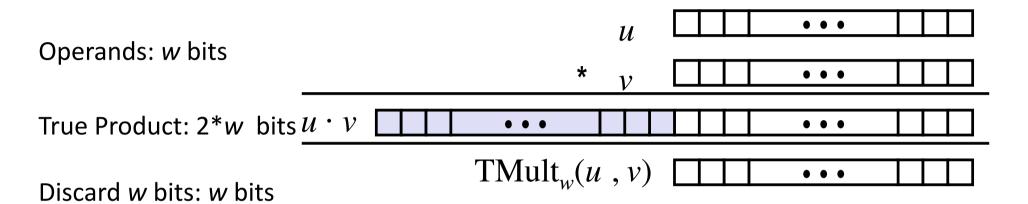
malloc(ele_cnt * ele_size)

■ What if:

```
• ele_cnt = 2<sup>20</sup> + 1
• ele_size = 4096 = 2<sup>12</sup>
• Allocation = ??
```

How can I make this function secure?

Signed Multiplication in C



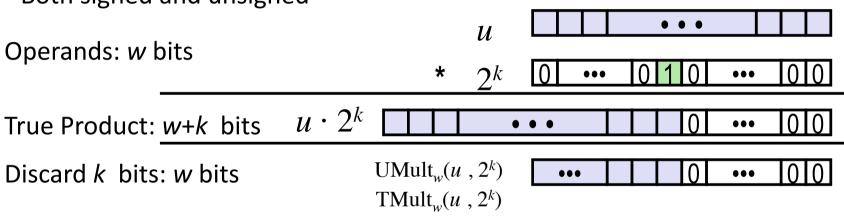
Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned



k

Examples

- u << 3
- u << 5 u << 3 u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

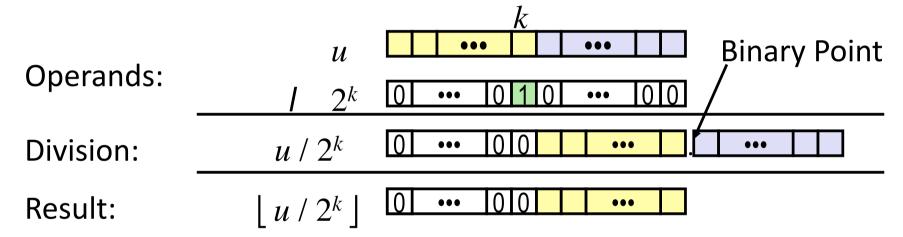
Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $[\mathbf{u} / \mathbf{2}^k]$
 - Uses logical shift



	Division	Computed	Hex	Binary	
x	15213	15213	3B 6D	00111011 01101101	
x >> 1	7606.5	7606	1D B6	00011101 10110110	
x >> 4	950.8125	950	03 B6	00000011 10110110	
x >> 8	59.4257813	59	00 3B	00000000 00111011	

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

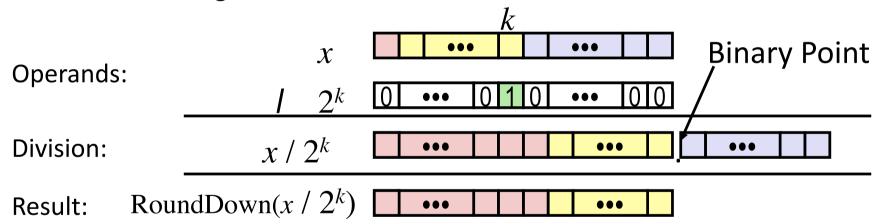
Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

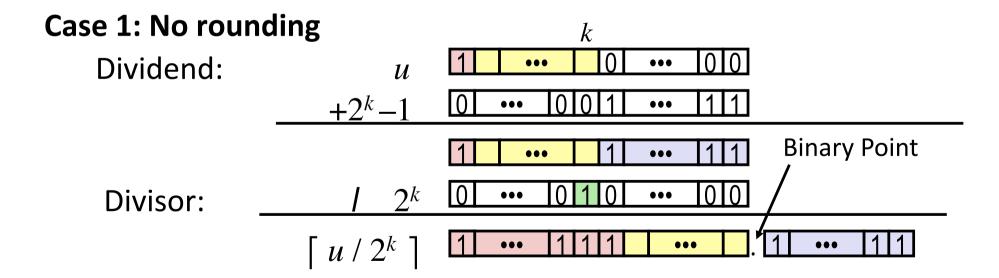
- Quotient of Signed by Power of 2
 - $x \gg k$ gives $[x / 2^k]$
 - Uses arithmetic shift (in most cases but the C standard does not demand this, see previous lecture!)
 - Rounds wrong direction when **u** < 0



				Division	Computed	Hex		Binary	
	У			-15213	-15213	C4	93	11000100	10010011
	У	>>	1	-7606.5	-7607	E2	49	1 1100010	01001001
	У	>>	4	-950.8125	-951	FC	49	11111100	01001001
48	У	>>	8	-59.4257813	-60	FF	C4	11111111	11000100

Correct Power-of-2 Divide

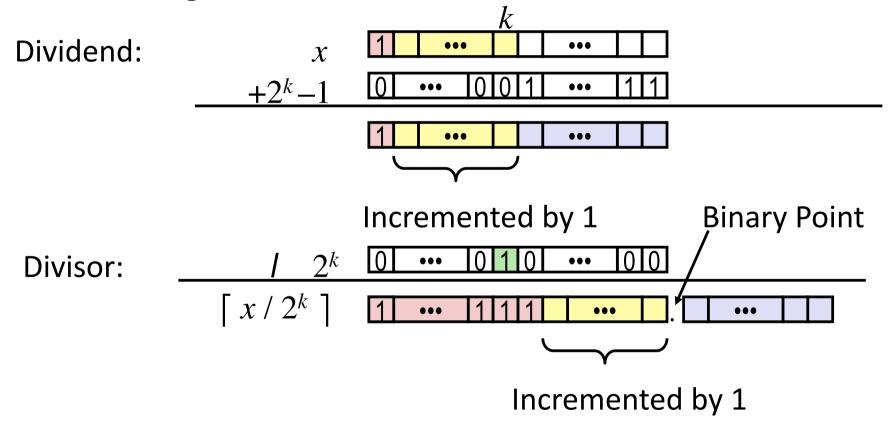
- Quotient of Negative Number by Power of 2
 - Want $[x / 2^k]$ (Round Toward 0)
 - Compute as $[(x+2^k-1)/2^k]$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0



Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding



Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
   return x/8;
}
```

Compiled Arithmetic Operations

```
test1 %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
   x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>

Arithmetic: Basic Rules

Addition:

- Unsigned/signed: Normal addition followed by truncate, same operation on bit level
- Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
- Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

Multiplication:

- Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
- Unsigned: multiplication mod 2^w
- Signed: modified multiplication mod 2^w (result in proper range)

Arithmetic: Basic Rules

Unsigned ints, 2's complement ints are isomorphic rings: isomorphism = casting

Left shift

- Unsigned/signed: multiplication by 2^k
- Always logical shift

Right shift

- Unsigned: logical shift, div (division + round to zero) by 2^k
- Signed: arithmetic shift (usually the C standard does not demand this!)
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

Properties of Unsigned Arithmetic

- Unsigned Multiplication with Addition Forms Commutative Ring
 - Addition is commutative group
 - Closed under multiplication

$$0 \le \mathsf{UMult}_w(u, v) \le 2^w - 1$$

Multiplication commutative

$$UMult_{w}(u, v) = UMult_{w}(v, u)$$

Multiplication is associative

$$UMult_w(t, UMult_w(u, v)) = UMult_w(UMult_w(t, u), v)$$

1 is multiplicative identity

$$UMult_{w}(u, 1) = u$$

Multiplication distributes over addition

$$UMult_{w}(t, UAdd_{w}(u, v)) = UAdd_{w}(UMult_{w}(t, u), UMult_{w}(t, v))$$

Properties of Two's Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to w bits
- Two's complement multiplication and addition
 - Truncating to w bits

Both Form Rings

Isomorphic to ring of integers mod 2^w

■ Comparison to (Mathematical) Integer Arithmetic

Both are rings

56

Integers obey ordering properties, e.g.,

$$u > 0$$
 $\Rightarrow u + v > v$
 $u > 0, v > 0$ $\Rightarrow u \cdot v > 0$

These properties are not obeyed by two's comp. arithmetic

$$TMax + 1 == TMin$$

15213 * 30426 == -10030 (16-bit words)

Why Should I Use Unsigned?

- **Don't** Use Just Because Number Nonnegative
 - Easy to make mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension

Signed/Unsigned Conventions in C

- Constants: by default considered to be *signed integers*
- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned

C Puzzle Answers

- Assume machine with 32 bit word size, two's comp. integers
- TMin makes a good counterexample in many cases

$$\Box x < 0$$

$$\Rightarrow ((x*2) < 0)$$

False: TMin

$$\square$$
 ux >= 0

$$\Box x \& 7 == 7$$

$$\Rightarrow$$
 (x<<30) < 0

True:
$$x_1 = 1$$

Initialization

$$\Box$$
 ux > -1

int
$$x = foo()$$
;

$$\Box x > y$$

$$\Box x * x >= 0$$

$$\Rightarrow$$
 $x + y > 0$

$$\Box x \ge 0 \Rightarrow -x \le 0$$

True:
$$-TMax < 0$$