Organisation und Architektur

von Rechnern
Lecture 04

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

The 5 Minute Review Session

1. What is a machine word size?

2. What does little endian/big endian mean?

3. How are strings represented in C?

s. How are Boolean values represented in C?

s. What types of shift operations do we distinguish?
s. How do we represent signed/unsigned integers?

Last Time: Integers

m Representation: unsigned and signed

m Conversion, casting
" Bit representation maintained but reinterpreted

m Expanding, truncating
®" Truncating = mod

m Addition, negation, multiplication, shifting
" (QOperations are mod 2%

m “Ring” properties hold
® Associative, commutative, distributive, additive 0 and inverse
m Ordering properties do not hold

" u>0doesnotmeanu+v>v

" y,v>0doesnotmeanu-v>0

Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Intel x86 Processors

m Totally dominate computer market

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
" First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33
" First 32 bit processor , referred to as IA32
= Added “flat addressing”
= Capable of running Unix
= 32-bit Linux/gcc uses no instructions introduced in later models

m Pentium 4F 2005 230M 2800-3800

" First 64-bit processor

= Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of
“Core” line

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Core i7

7 IA: often redefined as latest Intel architecture

Intel x86 Processors, contd.

m Machine Evolution

= 486 1989 1.9M
" Pentium 1993 3.1M
" Pentium/MMX 1997 4.5M
= PentiumPro 1995 6.5M
= Pentium Il 1999 8.2M
" Pentium 4 2001 42M

" Core 2 Duo 2006 291M

m Added Features
" |nstructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
® |nstructions to enable more efficient conditional operations

m Linux/GCC Evolution
g8 ® Very limited

More Information

m Intel processors (Wikipedia)

m Intel microarchitectures

New Species: iab4, then IPF, then Itanium,...

Name Date Transistors

m [tanium 2001 10M
" First shot at 64-bit architecture: first called 1A64
= Radically new instruction set designed for high performance
® Can run existing IA32 programs
= On-board “x86 engine”
= Joint project with Hewlett-Packard

m [ltanium 2 2002 221M
= Big performance boost
m Itanium 2 Dual-Core 2006 1.7B

m Itanium has not taken off in marketplace

® Lack of backward compatibility, no good compiler support, Pentium

4 got too good
10

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits
m Recently

" |ntel much quicker with dual core design
" |ntel currently far ahead in performance
= em64t backwards compatible to x86-64

11

Intel’s 64-Bit
m Intel Attempted Radical Shift from IA32 to |IA64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
" Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on |1A64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m Meanwhile: EM64t well introduced,

however, still often not used by OS, programs
12

Our Coverage

m IA32
® The traditional x86

m x86-64/EM64T

" The emerging standard

m Presentation

= Book has IA32
= |Lecture will cover IA32 and x86-64

13

Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

14

Definitions

m Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

m Microarchitecture: Implementation of the architecture.

m Architecture examples: instruction set specification,
registers.

m Microarchitecture examples: cache sizes and core
frequency.

m Example ISAs (Intel): x86, IA, IPF

15

Assembly Programmer’s View

CPU

PC Registers

Condition
Codes

m Programmer-Visible State

" PC: Program counter

= Address of next instruction

= Called “EIP” (IA32) or “RIP” (x86-64)
= Register file

= Heavily used program data
= Condition codes

» Store status information about most
recent arithmetic operation

16 = Used for conditional branching

Memory
Addresses
| Object Code
. Data .| Program Data
: D
~ Instructions 05 bata
Stack
" Memory

= Byte addressable array
= Code, user data, (some) OS data

» Includes stack used to support
procedures

Turning C into Object Code

" Code infiles

" Compile with command:

pl.c p2.c

= Use optimizations (-0O)

= Put resulting binary in file p

text

text

binary

binary
17

C program (pl.c p2.c)

l Compiler (gcc -S)

Asm program (pl.s p2.s)

\ Assembler (gcc or as)

Object program (pl.o p2.0)

\ Linker (gcc or 1d)

Executable program (p)

gece -0 pl.c p2.c -o p

Static libraries

(.a)

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+ty; movl %esp, sebp
return t; movl 12 (%ebp) , $eax
} addl 8 (%ebp) , Seax
movl 3%ebp, Sesp
opl %ebp
ret
Obtain with command /
gcc -0 -S code.c Some compilers use single

, instruction “leave”
Produces file code. s

18

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

19

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" |Load data from memory into register
= Store register data into memory

m Transfer control

" Unconditional jumps to/from procedures
= Conditional branches

20

Object Code

Code for sum

0x401040 <sum>:

21

0x55
0x89
Oxe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
Oxec
0x5d
Oxc3

e Total of 13 bytes

e Each instruction
1, 2, or 3 bytes

e Starts at address
0x401040

m Assembler

" gcc -0 -c code.c
" Translates .sinto .o
= Binary encoding of each instruction
= Nearly-complete image of executable code
= Missing linkages between code in different
files
m Linker
= Resolves references between files
= Combines with static run-time libraries
= E.g.,codeformalloc, printf
= Some libraries are dynamically linked

= Linking occurs when program begins
execution

Machine Instruction Example

int t = xty;

addl 8 (%ebp) , Seax

Similar to expression:
X +t=y
More precisely:
int eax;
int *ebp;
eax += ebp[2]

0x401046: 03 45 08

22

m C Code

= Add two signed integers

m Assembly
= Add two 4-byte integers
= “Long” words in GCC parlance
= Same instruction whether signed

or unsigned
" Operands:
x: Register Teax
y: Memory M[%ebp+8]
t: Register seax

— Return function value in $eax

m Object Code
= 3-byte instruction
= Stored at address 0x401046

Disassembling Object Code

Disassembled

00401040 < sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, sebp
3: 8b 45 Oc mov Oxc (%ebp) , $eax
6: 03 45 08 add 0x8 (%ebp) , Seax
9: 89 ec mov %ebp, sesp
b: 5d pop sebp
C: c3 ret
d: 8d 76 00 lea 0x0 (%esi) , $esi

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code

® Can be run on either a.out (complete executable) or . o file
23

Alternate Disassembly

Object

0x401040:
0x55
0x89
Oxe5
0x8b
0x45
0x0c
0x03
0x45
0x08
0x89
Oxec
0x5d
0xc3

24

Disassembled

0x401040 <sum>:
0x401041 <sum+1l>:
0x401043 <sum+3>:
0x401046 <sum+6>:
0x401049 <sum+9>:
0x40104b <sum+1l1l>:
0x40104c <sum+1l2>:
0x40104d <sum+13>:

push
mov
mov
add
mov
pop
ret
lea

sebp

sesp, 3ebp

Oxc (%ebp) , Seax
0x8 (%ebp) , $eax
%ebp, sesp

sebp

0x0 (%esi) , %esi

m Within gdb Debugger

gdb p
disassemble sum

" Disassemble procedure

x/13b sum

= Examine the 13 bytes starting at sum

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, sebp
30001003: 6a ff push SOxXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push S0x304cdc9l

m Anything that can be interpreted as executable code

m Disassembler examines bytes and reconstructs assembly source
25

Machine Programming I: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

26

Integer Registers (1A32) Origin

(mostly obsolete)

—
Seax Sax 2ah 2al accumulate
o $ecx $cx %ch $cl counter
7
o
2 °) ed sdh edl data
S 6edx oQAX ° °
Q.
- =<
©
3 Sebx %bx | %bh bl base
&
o . o _ = source
°esl sS1 index
- destination
) [PR [
_ sedi sdi index
° o stack
o) 5SS .
se€sSp °SP pointer
base
sebp %bp :
pointer
\)

Y
16-bit virtual registers

27 (backwards compatibility)

Moving Data: IA32

m Moving Data

m Lots of these in typical code

28

movx Source, Dest
xin{b, w, 1}

movl Source, Dest:
Move 4-byte “long word”
movw Source, Dest:
Move 2-byte “word”
movb Source, Dest:
Move 1-byte “byte”

$eax

$ecx

$edx

$ebx

$esi

Sedi

sesp

sebp

Moving Data: IA32 Jeax

m Moving Data secx
mov1l Source, Dest: Sedx

o
m Operand Types sebx
" Immediate: Constant integer data sesi
= Example: $0x400, $-533 sedi
= Like C constant, but prefixed with *$” Qesp

(o]

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers
= Example: $eax, %edx
= But $esp and $ebp reserved for special use
= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: ($eax)

) = Various other “address modes”

movl Operand Combinations

Source Dest

4 { Reg movl
Imm
Mem movl

movl < Reg Reg movi
Mem movl

\ Mem Reg movl

Src,Dest

$0x4,%eax

$-147, (%eax)

$eax, sedx

Seax, (%edx)

%eax) , %sedx

C Analog
temp = 0x4;
*p = -147;

temp2 = templ;
*p = temp;

temp = *p;

Cannot do memory-memory transfer with a single instruction

30

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8 (%ebp) , sedx

31

Using Simple Addressing Modes

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xXp = tl;

*yp = t0;

32

swap:

pushl
movl
pushl

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

sebp
sesp, sebp
sebx

12 (%ebp) , $ecx
8 (%¥ebp) , $edx
gecx) , $eax
%edx) , $ebx
Seax, (%edx)
%ebx, (%ecx)

-4 (%ebp) , $ebx
sebp, sesp
sebp

- Set

> Body

> Finish

Using Simple Addressing Modes

void swap (int *xp, int *yp)
{

int t0 = *xp;

int t1 = *yp;

*xXp = tl;

*yp = t0;

33

swap:

movl
movl
movl
movl
movl
movl

12 (%ebp) , Secx
8 (%¥ebp) , $edx
gecx) , $eax
%edx) , $ebx
Seax, (%edx)
%ebx, (%ecx)

\

> Body

J

Understanding Swap

void swap (int *xp, *yp)
{ int t0 = *xp;
int tl1 = *yp;
*xp = tl;
*yp = tO0;
}
Register Value
secx yp movl
sedx Xp movl
eax tl movl
%$ebx t0 movl
movl
movl

34

o
. Stack
Offset ¢ (in memory)
12 ypP
8 Xp
4 | Rtnadr
O |Old %ebp[—— %ebp
-4 |0ld %ebx
12 (%ebp) ,%ecx # ecx = yp
8 (%ebp) ,%edx # edx = xp
%ecx) , %eax # eax = *yp (tl)
(%$edx) , $ebx # ebx *xp (t0)
%eax, (%edx) # *xp = eax
%ebx, (%$ecx) # *yp = ebx

Understanding Swap

$eax

oP
()]
&

$ecx

$ebx

$esi

$edi

sesp

sebp

0x104

35

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) , $ecx
8 (%ebp) , $edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

123
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx *Xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

oP
()]
&

$ecx

0x120

$ebx

$esi

$edi

sesp

sebp

0x104

36

movl
movl
movl
movl
movl
movl

yp
Xp

%ebp

12 (%ebp) , $Secx
8 (%ebp) , $edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

123
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx *Xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

oP
()]
&

0x124

$ecx

0x120

$ebx

$esi

$edi

sesp

sebp

0x104

37

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) ,%ecx
8 (%ebp) , 5edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

123
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx = *xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

oP
()]
&

0x124

$ecx

0x120

$ebx

$esi

$edi

sesp

sebp

0x104

38

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) ,%ecx
8 (%ebp) , $edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

123
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx *Xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

oP
()]
&

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

sebp

0x104

39

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) ,%ecx
8 (%ebp) , $edx
%ecx) ,%eax
(%$edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

123
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx = *xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

oP
()]
&

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

sebp

0x104

40

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) ,%ecx
8 (%ebp) , $edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%$ecx)

456
456
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx *Xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

oP
()]
&

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

sebp

0x104

41

movl
movl
movl
movl
movl

movl

yp
Xp

%ebp

12 (%ebp) ,%ecx
8 (%ebp) , $edx
%ecx) ,%eax
(%edx) , $ebx
Seax, (%edx)

$ebx, (%ecx)

456
123
Offset
12 | 0x120
8 | 0x124
4 | Rtn adr
— 0
-4
ecx = yp
edx = xp
eax = *yp
ebx *Xp
*xp = eax
*yp = ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for $esp
= Unlikely you’d use $ebp, either
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg|[Ri]]

42

