Organisation und Architektur

von Rechnern
Lecture 09

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

The 5 Minute Review Session

1. How does procedure calling differ in IA32 and x86-64?
2. How are one-dimensional arrays stored in memory?

3. How about multi-dimensional arrays?

a. What are structsinC?

s. How are structs mapped to memory?

Computer Architecture — Outline

m Background
" |nstruction sets
" Logic design
m Sequential Implementation
= Asimple, but not very fast processor design
m Pipelining
= Get more things running simultaneously
m Pipelined Implementation
= Make it work
m Advanced Topics

= Performance analysis

= High performance processor design

Computer Architecture — Coverage

m Our Approach
= Work through designs for particular instruction set
= Y86---a simplified version of the Intel IA32 (a.k.a. x86).
= |f you know one, you more-or-less know them all
= Work at “microarchitectural” level

= Assemble basic hardware blocks into overall processor
structure

— Memories, functional units, etc.

= Surround by control logic to make sure each instruction flows
through properly

= Use simple hardware description language to describe control logic
= Can extend and modify
= Test via simulation

Computer Architecture — Schedule

m Week #1

= |nstruction set architecture

= Logic design
m Week #2

= Sequential implementation

= Pipelining and initial pipelined implementation
m Week #3

" Making the pipeline work

" Modern processor design

Instruction Set Architecture

m Assembly Language View
" Processor state Application

= Registers, memory, ... Program

" |nstructions
= addl, movl, leal, .. Compiler| 0S

= How instructions are encoded as “
bytes

m Layer of Abstraction Dce:spign
= Above: how to program machine
= Processor executes instructions in Circuit
a sequence Design
= Below: what needs to be built Chip
= Use variety of tricks to make it run Layout
fast

= E.g., execute multiple instructions
simultaneously

Y86 Processor State

Program Coniti
registers onartion Memory
. — codes
seaX S 1
Secx | %$edi OF|ZE|SE
$edx | %esp PC
sebx sebp

" Program Registers
= Same 8 as with IA32. Each 32 bits
= Condition Codes
= Single-bit flags set by arithmetic or logical instructions
— OF: Overflow ZF:Zero SF:Negative
" Program Counter
= Indicates address of instruction
" Memory
= Byte-addressable storage array
= Words stored in little-endian byte order

Y86 Instructions

m Format
= 1--6 bytes of information read from memory

= Can determine instruction length from first byte

= Not as many instruction types, and simpler encoding than with
IA32

= Each accesses and modifies some part(s) of the program state

Encoding Registers

m Each register has 4-bit ID

zeax sesi
zecx sedi
sedx %esp
sebx sebp

= Same encoding as in I1A32

m Register ID 8 indicates “no register”
= Will use this in our hardware design in multiple places

Instruction Example

m Addition Instruction

Generic Form
/ Encoded Representation

/
addl rA, rB 6| 0|rArB

= Add value in register rA to that in register rB
= Store result in register rB
= Note that Y86 only allows addition to be applied to register data
= Set condition codes based on result
" eg.,addl %eax,%esi Encoding: 60 06
= Two-byte encoding
= First indicates instruction type
= Second gives source and destination registers

10

Arithmetic and Logical Operations

Instruction Code

Function Code

Add \\ ‘ /

addl rA, rB 6|0|rA(rB
Subtract (rA from rB)

subl rA, rB 6|1|rA(rB
And

andl rA, rB 6|2 |rA(rB |
Exclusive-Or

xorl rA, rB 6| 3|rA|rB |

11

Refer to generically as “Op1”

Encodings differ only by
“function code”

= Low-order 4 bits in first
instruction word

Set condition codes as side
effect

Move Operations

Register --> Register

| Immediate --> Register

Register --> Memory

rrmovl rA, rB rArB

irmovl V, rB 8 rB \'}
rmmovl rA, D (rB) rA|rB D
mrmovl D (rB), rA rArB D

Memory --> Register

"= Like the IA32 mov1 instruction

= Simpler format for memory addresses
= Give different names to keep them distinct

12

Move Instruction Examples

IA32 Y86 Encoding

movl $O0xabecd, %edx irmovl $0xabcd, %edx 30 82 cd ab 00 00
movl 3%esp, %ebx rrmovl %esp, %ebx 20 43

movl -12 (%ebp) , $ecx mrmovl -12 (%ebp) , %ecx 50 15 £4 f£f ff ff
movl %esi,Ox4lc (%esp) rmmov]l %esi,0x4lc(%esp) 40 64 1c 04 00 0O
movl $0xabecd, (%eax) —

movl %eax, 12 (%eax, %edx) —_

movl (%ebp,%eax,4) ,h6 %ecx —_

13

Jump Instructions
Jump Unconditionally

jmp Dest |7 |0 Dest |
Jump When Less or Equal

jleDest |7 |1 Dest |
Jump When Less

j1 Dest 7|2 Dest |
Jump When Equal

je Dest 713 Dest |
Jump When Not Equal

jne Dest |7 | 4 Dest |
Jump When Greater or Equal

jge Dest |7 |5 Dest |
Jump When Greater

jg Dest 7|6 Dest |

14

Refer to generically as “jXX”

Encodings differ only by
“function code”

Based on values of condition
codes

Same as IA32 counterparts
Encode full destination address

= Unlike PC-relative addressing
seenin |A32

Y86 Program Stack

Stack

“Bottom” = Region of memory holding program

data

= Used in Y86 (and IA32) for
supporting procedure calls

= Stack top indicated by $esp

Increasing = Address of top stack element

Addresses = Stack grows toward lower addresses

= Top element is at lowest
address in the stack

= When pushing, must first
decrement stack pointer

= When popping, increment stack

— %esp .
pointer

Stack “Top”

15

Stack Operations

pushl rA a|O|rA| 8 |

= Decrement 3esp by 4
= Store word from rA to memory at $esp
= Like IA32

popl rA b|O0|rA| 8 |

= Read word from memory at 3esp
= SaveinrA

" |ncrement $esp by 4
Like IA32

16

Subroutine Call and Return

call Dest 8|0 Dest |

= Push address of next instruction onto stack
" Start executing instructions at Dest
= Like IA32

= Pop value from stack
" Use as address for next instruction
= Like IA32

17

Miscellaneous Instructions

18

nop 0|0 |

" Don’t do anything

halt 1|0 |

= Stop executing instructions

" |A32 has comparable instruction, but can’t execute it in user
mode

= We will use it to stop the simulator

Writing Y86 Code

m Try to Use C Compiler as Much as Possible
= Write code in C
= Compile for IA32 with gcc -5
" Transliterate into Y86

m Coding Example

" Find number of elements in null-terminated list

int lenl (int afl]);
a — 5043
6125 — 3
7395
0

19

Y86 Code Generation Example

m First Try

= Write typical array code

m Problem

= H

ard to do array indexing on

Y86

/* Find number of elements in
null-terminated list */

int lenl (int al[])

{
int len;
for (len = 0; a[len]; len++)

return len;

= Since don’t have scaled
addressing modes

L18:

incl %eax
cmpl S0, (%edx, %eax,4)
jne L18

= Compile with gcc -02 -S

20

Y86 Code Generation Example #2

m Second Try m Result
= Write with pointer code = Don’t need to do indexed
addressing
/* Find number of elements in
null-terminated list */
int len2(int a[]) L24:
{ movl (%edx) , %eax
int len = 0; incl %ecx
while (*a++) L26:
lent+: addl $4,%edx
return len: testl %eax, %eax
} jne L24

= Compile with gcc -02 -S

21

Y86 Code Generation Example #3

m |A32 Code m Y86 Code
= Setup = Setup

len2: len2:
pushl %ebp pushl %ebp # Save %ebp
xorl %ecx, %$ecx xXorl %ecx, %$ecx # len = 0
movl %esp, $ebp rrmovl %esp, %ebp # Set frame
movl 8 (%ebp) , %edx mrmovl 8 (%ebp) ,%edx# Get a
movl (%edx) , %eax mrmovl (%edx),h %eax # Get *a
jmp L26 jmp L26 # Goto entry

22

Y86 Code Generation Example #4

m |A32 Code
® Loop + Finish

m Y86 Code

" Loop + Finish

L24:
movl (%edx), %Seax
incl %ecx

L26:
addl $4,%edx

testl %eax, Seax
jne L24

movl %ebp, Sesp

movl %ecx, %eax

popl %ebp

ret

L24:

mrmovl (%$edx),6 %eax #

irmovl $1,%esi

addl %esi, %ecx
L26:

irmovl $4,%esi

addl %esi, %$edx

andl %eax, %eax

jne L24

rrmovl %ebp, Sesp

rrmov]l %ecx, $eax

popl %ebp

ret

3+ 3=

3 H H

Get *a

len++
Entry:

a++
*a == 07
No--Loop
Pop

Rtn len

23

Y86 Program Structure

irmovl Stack, %esp
rrmovl 3%esp, 3ebp
irmovl List, %edx
pushl %edx
call len2
halt
.align 4
List:
.long 5043
.long 6125
.long 7395
.long O

Function
len2:

Allocate space for
.pos 0x100
Stack:

Set up stack
Set up frame

Push argument
Call Function
Halt

List of elements

stack

24

Program starts at
address O

Must set up stack

= Make sure don’t
overwrite code!

Must initialize data

Can use symbolic
names

Assembling Y86 Program

unix> yas eg.ys

= Generates “object code” file eg. yo
= Actually looks like disassembler output

0x000: 308400010000 | irmovl Stack, $esp # Set up stack
0x006: 2045 | rrmovl %esp, $ebp # Set up frame
0x008: 308218000000 | irmovl List, %edx

0x00e: a028 | pushl %edx # Push argument
0x010: 8028000000 | call len2 # Call Function
0x015: 10 | halt # Halt

0x018: | .align 4

0x018: | List: # List of elements
0x018: b3130000 | .long 5043

0x0lc: ed170000 | .long 6125

0x020: e31c0000 | .long 7395

0x024: 00000000 | .long O

25

Simulating Y86 Program

unix> yis eg.yo

" |nstruction set simulator

= Computes effect of each instruction on processor state

= Prints changes in state from original

Stopped in 41 steps at PC =

Changes to registers:
%eax:
%ecx:
sedx:
zesp:
%ebp:
%esi:

Changes to memory:
0x00£4:
0x00£8:
0x00fc:

Oxle6.

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x00000000
0x00000000
0x00000000

Exception

0x00000003
0x00000003
0x00000028
0x000000fc
0x00000100
0x00000004

0x00000100
0x00000015
0x00000018

"HLT ',

CC Z=1 s=0 0=0

26

Summary

m Y86 Instruction Set Architecture
= Similar state and instructions as 1A32
= Simpler encodings
= Somewhere between CISC and RISC

m How Important is ISA Design?
= Less now than before

= With enough hardware, can make almost anything go fast
" |ntel is moving away from |A32
= Does not allow enough parallel execution
= |Introduced IA64
— 64-bit word sizes (overcome address space limitations)

— Radically different style of instruction set with explicit
parallelism

27 — Requires sophisticated compilers

CISC Instruction Sets

28

= Complex Instruction Set Computer
= Dominant style through mid-80’s

Stack-oriented instruction set

= Use stack to pass arguments, save program counter

= Explicit push and pop instructions

Arithmetic instructions can access memory
" addl %Seax, 12 (%ebx, secx,4)

= requires memory read and write

= Complex address calculation

Condition codes

= Set as side effect of arithmetic and logical instructions

Philosophy

= Add instructions to perform “typica

III

programming tasks

RISC Instruction Sets

= Reduced Instruction Set Computer

" |nternal project at IBM, later popularized by Hennessy (Stanford) and
Patterson (Berkeley)

m Fewer, simpler instructions
= Might take more to get given task done
= Can execute them with small and fast hardware

m Register-oriented instruction set

= Many more (typically 32) registers
= Use for arguments, return pointer, temporaries

m Only load and store instructions can access memory
= Similar to Y86 mrmov1l and rmmovl

m No Condition codes

" Test instructions return 0/1 in register

29

MIPS Registers

30

SO
S1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14
$15

SO

Sat

SvO0

Svl

Sa0

Sal

Sa2

Sa3

$to

Stl

S$t2

$t3

st

$t5

S$té

S$t7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:

May be overwritten by
called procedures

$16
$17
$18
$19
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$30
$31

S$sO

Ssl

S$s2

S$s3

Ss4

$s5

$s6

S$s7

$t8

$t9

S$kO

Skl

$gp

$sp

$s8

Sra

Callee Save
Temporaries:

May not be
overwritten by
called procedures

Caller Save Temp

Reserved for
Operating Sys
Global Pointer
Stack Pointer
Callee Save Temp
Return Address

MIPS Instruction Examples

R-R
Op Ra Rb Rd 00000 Fn
addu $3,$2,61 # Register add: $3 = $2+$1
R-I
Op Ra Rb Immediate

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2
Branch
Op Ra Rb Offset
beq $3,$2,dest # Branch when $3 = $2
Load/Store
Op Ra Rb Offset
lw $3,16($2) # Load Word: $3 = M[$2+16]

- sw $3,16($2) # Store Word: M[$2+16] = $3

CISC vs. RISC

m Original Debate
= Strong opinions!
= CISC proponents---easy for compiler, fewer code bytes

= RISC proponents---better for optimizing compilers, can make run
fast with simple chip design

m Current Status

" For desktop processors, choice of ISA not a technical issue

= With enough hardware, can make anything run fast
= Code compatibility more important

" For embedded processors, RISC makes sense

= Smaller, cheaper, less power

32

Riickmeldung zu dieser Vorlesung ...

a) GQut verstanden -
Stoff leicht

b) Einigermaflen verstanden — Stoff
ok

¢ Waenig verstanden —
Stoff schwer

o e

33

