Organisation und Architektur

von Rechnern
Lecture 10

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Overview of Logic Design

m Fundamental Hardware Requirements
" Communication
= How to get values from one place to another
= Computation
= Storage

m Bits are Our Friends
= Everything expressed in terms of values 0 and 1
" Communication
= Low or high voltage on wire
= Computation
= Compute Boolean functions
= Storage
= Store bits of information

Digital Signals

-t
o

— 0

Voltage

Time

= Use voltage thresholds to extract discrete values from continuous
signal
= Simplest version: 1-bit signal
= Either high range (1) or low range (0)
= With guard range between them
= Not strongly affected by noise or low quality circuit elements

= Can make circuits simple, small, and fast

Computing with Logic Gates
And Or Not

a — a
o — out bD out a—[>o-0ut

out=a s& b out=a || b out='a

" Qutputs are Boolean functions of inputs

= Respond continuously to changes in inputs

= With some, small delay
Rising Delay Falling Delay

Voltage

Time

Combinational Circuits

Acyclic Network
1 -
> Lo
o

Primary
Inputs

Primary
Outputs

1>

i

T

m Acyclic Network of Logic Gates
" Continously responds to changes on primary inputs

" Primary outputs become (after some delay) Boolean functions of
primary inputs

Bit Equality

Bit equal

D

ikt

0 >

— eq

" Generate 1if aand b are equal

HCL Expression

bool eq =

m Hardware Control Language (HCL)

= Very simple hardware description language

(a&&b) | | ('a&&!b)

= Boolean operations have syntax similar to C logical operations

= We'll use it to describe control logic for processors

Hardware Control Language

= Very simple hardware description language
= Can only express limited aspects of hardware operation
= Parts we want to explore and modify

m Data Types
" bool:Boolean
= 3,b,c, ..
= int:words
= AB,C, ..
= Does not specify word size---bytes, 32-bit words, ...

m Statements
" bool a = bool-expr ;

" Iint A = int-expr ;

HCL Operations

= (Classify by type of value returned

m Boolean Expressions

" Logic Operations

= a && b, a || b, la
" Word Comparisons
= A== B, A!=B, A<B A<<=DB A>B, A>B

= Set Membership
= A 1n { B, C, D }
— Sameas A == || A == || A ==
m Word Expressions
= Case expressions
= [a : A; b : B; ¢ : C]
= Evaluate test expressions a, b, ¢, ... in sequence
3 = Return word expression A, B, C, ... for first successful test

Word Equality

Word-Level Representation

Py Bit equal il ° — b Eq
A3 - B
by ™1 €030 A
Bit equal
dzo ~ |

HCL Representation

(] ([
® >— Eq bool Eqg = (A == B)
(] ([

by — eq;
Bit equal . .
a, — = 32-bit word size
by — eqo " HCL representation
Bit equal : :
a, — = Equality operation

= Generates Boolean value

Bit-Level Multiplexor

10

ki

Bit MUX

= Control signal s

= Datasignalsaandb

out

" Qutput a when s=1, b when s=0

HCL Expression

bool out

(s&&a) | | ('s&&b)

Word Multiplexor

Word-Level Representation

S eereesseeeesiny
—
MUX Out
I outs;, A
HCL Representation
o—
int Out = |
| —— Outs, s ! A;
1 : B;

1;

= Select input word A or B depending
on control signal s

" HCL representation

= Case expression
— out, = Series of test : value pairs
= QOutput value for first successful

test

HCL Word-Level Examples

Minimum of 3 Words

: _ " Find minimum of three input
int Min3 = |

words
C— A <=B & A <=C : A; _
B —— MIN3 Min3 B<=A § B <=C : B; ® HCL case expression
A 1 . ¢: ™ Final case guarantees match
17
4-Way Multiplexor
S1
] S
P = Select one of 4 inputs
) int Outd = [PES
DO — based on two control bits
D{ — 1sl1&&!'s0: DO; ,
MUX4 Out4 s . . " HCL case expression
D2 —— 's : D1;
D3—— 1s0 . D2: = Simplify tests by assuming
— 1 . D3; sequential matching
17

12

Arithmetic Logic Unit

" Combinational logic
= Continuously responding to inputs
= Control signal selects function computed

= Corresponding to 4 arithmetic/logical operations in Y86
" Also computes values for condition codes

13

Storing 1 Bit

Bistable Element

— > - Q+
>>C< '9T Q-
q =0or1

0.9 //

08 N /

07 \\ —V1

V2 06 N /_V2
i} // \\
V 0.2
" V1 0.1 ///

Vin
14

Storing 1 Bit (cont.)

Bistable Element

| DC L Q4+
o =0or1 O/Stable1
yd

/

/o

N]

/ Metastable
Vi, /|
/

Stable 0 \TQ e

Vin
15

Physical Analogy

16

Stable 0 \.

Stable left

09

0.8

0.7

0.6

05

04

03

0.2

0.1

0.2

0.3

0.4

—Vin
—V2

Metastable

0.5

Vin

0.6 0.7 0.8 0.9

Metastable

v

Stable 1

Stable right

Storing and Accessing 1 Bit

Bistable Element

R-S Latch
L Q+ R Q+
'T Q- -
Q S Q
q =0or1
Resetting Setting Storing

1 1 !

| .>‘ - R%fm R%qu
o1 _ 1 0. 'q,_

S .> Q S Q so Q

17

1-Bit Latch

D Latch

D
Dat I: R
o — Q+
c [S
Clock S
Latching Storing
d D DC!d !% 'd d 4D chd
| Q+ |
1 ¢ Q- 0 ¢
@ 4 14

18

Transparent 1-Bit Latch

Latching Changing D
d b Dc!d 'd 'd d c
i o O
(]
1c Q-
g 4 14 Q+ \ \
Time

" When in latching mode, combinational propagation from D to Q+
and Q—

= Value latched depends on value of D as C falls

19

Edge-Triggered Latch

D
Dat I: R
ata N Q+
R o-
c D=
Clock T
Trigger
c ®= Only in latching mode for

brief period

= Rising clock edge

= Value latched depends on
data as clock rises

9 o
I
o~

= Qutput remains stable at
all other times

Time
20

Registers

Structure

I, o Q+ o,
e~ o Q+ O
i5 o a+ O
Vi o Q+ o, |—p —PO
I3 o Q+ 05
i2] g Q+ O2 |
i 0, Clock
P ——— o Q+ 0,

Clock

= Stores word of data
= Different from program registers seen in assembly code
= Collection of edge-triggered latches

" Loads input on rising edge of clock
21

Register Operation

State = x
Input =y Output = x
DIX

= Stores data bits
" For most of time acts as barrier between input and output

=

= As clock rises, loads input

22

Rising
clock

State =y

Output =y

State Machine Example

Comb. Logic
0
= Accumulator
A circuit
0
IL_J Out = Lloador
MUX accumulate on
In 1 each cycle
;E_/
Clock
Clock |_
Load %
In Xo X4 Xo X3 Xy X5
Out Xo Xo+X; [Xg+X{+Xo| X5 Xg+X, | XX +Xg

23

Random-Access Memory

valA
C—

A
SsrcA valw

Register astw Write port

file —

Read ports

valB

srcB
—_—

Clock

= Stores multiple words of memory
= Address input specifies which word to read or write

= Register file
= Holds values of program registers
= 3eax, sesp, etc.
= Register identifier serves as address
— ID 8 implies no read or write performed

= Multiple Ports
= Can read and/or write multiple words in one cycle

24
— Each has separate address and data input/output

Register File Timing

valA 2
Da— X
SsrcA A
Register
X B file
srcB
2 —
21 X
alw
Register
file stW

25

Clock

m Reading

= Like combinational logic

= Qutput data generated based on input

address

= After some delay

m Writing
= Like register

= Update only as clock rises

Rising

y
2 |:> clock

=

21 Yy

Register |,
file

valW

|dstW

Clock

Summary

m Computation
= Performed by combinational logic
= Computes Boolean functions
" Continuously reacts to input changes

m Storage

= Registers
= Hold single words
= Loaded as clock rises

= Random-access memories
= Hold multiple words
= Possible multiple read or write ports
= Read word when address input changes
= Write word as clock rises

26

