Organisation und Architektur

von Rechnern
Lecture 12

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

The 5 Minute Review Session

1. What is the general principle of implementing
instructions, how do we achieve HW reuse?

2. What is the drawback of the SEQ architecture?

3. What is pipelining?

s. How do we compute the delay of a pipeline?

s. How do we compute the throughput of a pipeline?

Real-World Pipelines: Car Washes

Sequential Parallel

-~

m Idea

" Divide process into independent
stages

" Move objects through stages in
sequence

= At any given times, multiple
objects being processed

Computational Example

300 ps 20 ps
— Combingtional e 5 Delay = 320 ps
logic g Throughput = 3.12 GOPS
|
Clock

m System
= Computation requires total of 300 picoseconds

= Additional 20 picoseconds to save result in register
= Must have clock cycle of at least 320 ps

3-Way Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R _
—> logic [—"le[™" logic e[~ logic [—le Delay = 360 ps
Throughput = 8.33 GOPS
A 9 B 9 C g
Clock
m System

= Divide combinational logic into 3 blocks of 100 ps each

= Can begin new operation as soon as previous one passes through
stage A.

= Begin new operation every 120 ps
= Qverall latency increases
= 360 ps from start to finish

Pipeline Diagrams

m Unpipelined
OP1
OP2
OPs Time

= Cannot start new operation until previous one completes

m 3-Way Pipelined

OP1| A B C
OP2 A

OP3 A
Time

(0)
@

98]
@)

B
»

= Up to 3 operations in process simultaneously

v

Operating a Pipeline

2241 300 359

Clock | B
OP1
OP2 A 3 C
OP3 A B C
0 120 240 360 480 640

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. Comb.
%2 Icc:gi]c *2 IZ 42 Iggi]c
A g B

Clock

Limitations: Nonuniform Delays

" Throughput limited by slowest stage

50 ps 20ps 150 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. Delav = 510
=P logic =Pl g =P |ogic [=Ple[™P| logic [~Ple| 2> "VITPS
A Throughput = 5.88 GOPS
g B g C g
OP1 Clock
OP2 A C
OP3 A B C
Time

= Other stages sit idle for much of the time

= Challenging to partition system into balanced stages

v

Limitations: Register Overhead

90ps 20ps 50ps 20ps S50ps 20ps 50ps 20ps S0ps 20ps 50ps 20 ps

_.Corr_lb._> Fe{_>Comb._> E#Comb._» Fe{_>Con?b._> Iz_>Corr_1b._> Z_;Comb._’ Iz
logic logic logic logic logic logic
g g g g g g
Clock Delay = 420 ps, Throughput = 14.29 GOPS

= As try to deepen pipeline, overhead of loading registers becomes
more significant

= Percentage of clock cycle spent loading register:
=]1-stage pipeline: 6.25%
= 3-stage pipeline: 16.67%
= 6-stage pipeline: 28.57%

" High speeds of modern processor designs obtained through very
deep pipelining

Data Dependencies

— Combinational — I:
lodi
ogic g
Clock
OP1
OoP2
OP3
Time >
m System

= Each operation depends on result from preceding one

10

Data Hazards

| —
Comb. R Comb. Comb. R
=> logic [”|e logic [”|le[™™| logic [™e
A g B C g
ort[A]lB [CN Clock
OP2 A B C
OP3 A/l B | C
OP4 N A [B | C
Time

B
»

= Result does not feed back around in time for next operation

= Pipelining has changed behavior of system

11

Data Dependencies in Processors

1 irmovl $50,
2 addl ,
) , %edx

3 mrmovl 100 (

= Result from one instruction used as operand for another
= Read-after-write (RAW) dependency

= Very common in actual programs

" Must make sure our pipeline handles these properly
= Get correct results

= Minimize performance impact

12

SEQ Hardware ro

= Stages occur in sequence
. . M
= One operation in process at smen
a time
Execute
Coe00s
Decode Rﬁégist%r'\" ¢
file
Write back

Fetch Instruction PC

memory increment

L)

13

SEQ+ Hardware

Still sequential
implementation

Reorder PC stage to put at
beginning

m PC Stage

Task is to select PC for
current instruction

Based on results computed
by previous instruction

m Processor State

14

PCis no longer stored in
register

But, can determine PC based
on other stored information

Memory

Execute

Decode

Fetch

PC

> Data
.............. ’ memory

!data out

(e

A B |e
Register M
file

) Write back
@@G@@ <T>

Instruction
memory

increment

plcode| pBch

pvalM

Adding Pipeline Registers

valE, valM
W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Write back

Data

Memory memory

Memory

Addr, Data Addr, Data

Execute Execute
aluA, aluB
aluA, aluB
valA, valB
valA, valB
srcA, srcB
Decode icode, valC dstA, dstB Decode
valP
Write back
icode, ifun
rA, rB
valC
) icode, ifun
Fetch Instruction PC ‘ ’
memory increment A, 1B, valC
Fetch Instruction PC
memory increment
predPC
PC
PC

15

Pipeline Stages

Fetch

= Select current PC
= Read instruction
"= Compute incremented PC

Decode

= Read program registers

Execute
" QOperate ALU

Memory
= Read or write data memory

Write Back
= Update register file

16

Memory

Execute

Decode

Fetch

PC

W _icode, W_valM

W_valE, W_valM, W_dstE, W_dstM

Data
memory

Addr, Data

aluA, aluB

valA, valB
d_srcA,
A B
d_srcB Register M

file

Write back

icode, ifun,
rA, rB, valC

PC
increment

Instruction
memory

predPC

PIPE- Hardware

= Pipeline registers hold
intermediate values from
instruction execution
m Forward (Upward) Paths

= Values passed from one
stage to next

" Cannot jump past stages

= e.g., valC passes through
decode

17

Write back

Memory

M_Bch

valM - dstE

dstM

read

A f

data out

Data

write

»
»
» memory

I3

A
data in

M_valA

-

valA

dstE

dstM

Execute

‘ e_Bch

CC [*

1 A

\v
El

ifun - valC

valA

valB

dstE

dstM

srcA | srcB

Decode

ALU
r 3

d_rvalA

A B
Register M[™

d_srcA[d_srcB

W_valM

file

W_valE

A

Fetch

ifun | rA B valC
Instruction
memory increment
f_PC L 3
J M_valA
N W_valM

Feedback Paths

m Predicted PC

= Guess value of next PC

m Branch information
= Jump taken/not-taken

= Fall-through or target
address

m Return point
= Read from memory

m Register updates

= To register file write ports

18

Write back

valM - dstE

I

f data out

Data

vy

memory

A
? i data in

M_valA

valE valA - dstE

Execute

»
.'

ﬂicode ifun - valC
S

A B |le
Decode Register M[”
file
uicode ifun B valC -
Instruction PC
memory increment
Fetch
f_PC 2

M_icode

Predicting the

PC
increment

F 3

Split Align
T Byte O 1 Bytes 1-5

Instruction
memory

A

= Start fetch of new instruction after current one has completed fetch stage
= Not enough time to reliably determine next instruction

= Guess which instruction will follow
= Recover if prediction was incorrect

19

Our Prediction Strategy

m Instructions that Don’t Transfer Control
" Predict next PC to be valP
= Always reliable

m Call and Unconditional Jumps
= Predict next PC to be valC (destination)

= Always reliable

m Conditional Jumps
= Predict next PC to be valC (destination)
" Only correct if branch is taken
= Typically right 60% of time

m Return Instruction
= Don’t try to predict

20

M_icode

Recovering from

W_icode

PC uiwde — " — “ “ W_valM
Misprediction =

PC
increment

Split Align
T Byte 0 1 Bytes 1-5

Instruction
memory

= Mispredicted Jump
= Will see branch flag once instruction reaches memory stage
= Can get fall-through PC from valA

® Return Instruction
= Will get return PC when ret reaches write-back stage

21

Pipeline Demonstrati

22

irmovl
irmovl
irmovl
irmovl

halt

m File: demo-basic.

S1, %eax
$2,%ecx
$3, $edx
S4,%ebx

#I1
#I2
#I3
#I4
#I5

YsS

on

2

F

m|O|m

Mmo|m|(Z

<

mom(Z|S

om|Z|S

<

Cycle 5

T1

12

I3

T4

I5

Data Dependencies: 3 Nop’s

23

demo-h3.ys
0x000:
0x006:
0x00c:
0x00d:
0x00e:
0x00f:

O0x011:

1 3 4 5 6 7 8 9 10 11
irmovl $10, $edx F E M W
irmovl $3, %eax D E M W
nop F| D| E| M| W
nop F| Dl E| M| W
nop F| D| E| M| W
addl %$edx, $eax F Dl EI M| W
halt F| D| E| M| W
Cycle 6
W
Rlseax] <3
Cycle 7
D

valA < R[2edx] =10
valB < R[%eax] =3

Data Dependencies: 2 Nop’s

24

demo-h2.ys

0x000:
0x006:
0x00c:
0x00d:
0x00e:

0x010:

irmovl $10, $edx
irmovl $3, %eax
nop

nop

addl %edx, $eax

halt

1 2 3 4 5 6 7 8 9 10
F D E|l M| W
F D E| M| W
F D E{ M| W
F D E| M| W
F D El M| W
F D E| M| W
Cycle 6
W
Rl[seax] <3
D
valA <R[%edx] =19// Error
valB < R[2eax] =0

Data Dependenmes 1 Nop

demo-hl.ys

25

0x000:
0x006:
0x00c:
0x00d:
0x00f:

irmovl $10, $edx
irmovl $3, %eax
nop

addl %edx, $eax

halt

2 5 6 7 8
D El M| W
F| D| Ef M| W
F{ D| E| M| W
F|{ D| E| M| W
F D E[M
Cycle 5
W
R[$edx] €10
M
M_valE = 3
M_dStE=%eaX
D
. F
valA <Rlseqx] =0¥ L — O

valB < R[2eax] =0

Data Dependencies: No Nop

demo-hO0.ys

0x000: irmovl $10, $edx
0x006: irmovl $3,%eax
0x00c: addl %edx, %eax

Ox00e: halt

26

1 2 3 4 5 6 7
F D E| M| W
F| D| E| M| W
F| D| E| M| W
F D| E| M
Cycle 4
M
M _valE =10
M_dstE =2edgx
E
e valE «0+3=3
E_dStE =%ecax
D
—— E
valA < R[3edx] =O4// rror
valB < R[%eax] =0

Branch Misprediction Example

27

demo-j.ys

0x000:
0x002:
0x007:
0x00d:
0x00e:
0x00f:
0x010:
0x011: ¢t:
0x017:
0x01d:

xorl %eax, %eax

jne t
irmovl $1,
nop

nop

nop

halt
irmovl $3,
irmovl $4,
irmovl $5,

$eax

%edx
%ecx
$edx

3+ I+

3H* H= HF

Not taken
Fall through

Target (Should not execute)
Should not execute
Should not execute

= Should only execute first 7 instructions

Branch Misprediction Trace

28

demo-j

0x000:
0x002:

0x011l: t:

0x017:
0x007:

xorl %eax, $eax

jne t # Not taken

1

2

F

D

F

irmovl $3, %edx # Target

irmovl $4, %ecx # Target+l

irmovl $1, %eax # Fall Through

" |ncorrectly execute two
instructions at branch target

m(O|m

Mo m(Z

<

mjoim|(Z|S
om|Z|S

<

Cycle 5

M

M Bch=0
M_valA = 0x007

E

valE ¢ 3
dstE = $edx

D

valC = 4
dstE = ecx

F

valC ¢ 1
rBo %eax

Return Example

irmovl Stack,%esp # Intialize stack pointer

0x000:

0x006:
0x007:
0x008:
0x009:
0x00e:
0x014:
0x020:
0x020:
0x021:
0x022:
0x023:
0x024:
0x02a:
0x030:
0x036:
0x100:
0x100:

29

nop
nop
nop
call p
irmovl
halt

.pos 0x20

P:

.pos 0x100

nop
nop
nop
ret
irmovl
irmovl
irmovl
irmovl

Stack:
= Require lots of nops to avoid data hazards

$5,%esi

$1,%eax
$2,%ecx
$3,%edx
$4,%ebx

demo-ret.ys

Avoid hazard on %esp

Procedure call
Return point

procedure

Should not be executed
Should not be executed
Should not be executed
Should not be executed

Stack: Stack pointer

Incorrect Return Example

30

demo-ret

0x023:
0x024:
0x02a:
0x030:
0x00e:

ret

irmovl
irmovl
irmovl

irmovl

$1, %eax
$2,%ecx
$3, 3edx

$5, %esi

H+= H H FHF

" |ncorrectly execute 3 instructions
following ret

F D E M| W
cops!| F | D| E| M| W
Oops ! F|ID|E|M|W
Oops ! F|IDIE|M|W
Return F|D|E| M
W
valM = 0x0e
M
valE =1
dstE = 3eax
E
valE ¢ 2
dstE = 3ecx
D
valC =3
dstE = edx
F
valC ¢ 5
rBe %esi

Pipeline Summary

m Concept
= Break instruction execution into 5 stages
= Run instructions through in pipelined mode

m Limitations

" Can’t handle dependencies between instructions when instructions
follow too closely

= Data dependencies
= One instruction writes register, later one reads it
= Control dependency
= |nstruction sets PC in way that pipeline did not predict correctly
= Mispredicted branch and return
m Fixing the Pipeline
= We'll do that next time

31

