Organisation und Architektur

von Rechnern
Lecture 14

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Performance Metrics

m Clock rate
" Measured in Megahertz or Gigahertz

" Function of stage partitioning and circuit design
= Keep amount of work per stage small

m Rate at which instructions executed
= CPI: cycles per instruction

"= On average, how many clock cycles does each instruction require?
" Function of pipeline design and benchmark programs
= E.g., how frequently are branches mispredicted?

CPI for PIPE

m CPI=1.0

= Fetch instruction each clock cycle

= Effectively process new instruction almost every cycle
= Although each individual instruction has latency of 5 cycles

m CPI>1.0
= Sometimes must stall or cancel branches
m Computing CPI
= Cclock cycles
" | instructions executed to completion
= B bubbles injected (C=1+ B)
CPI = C/l = (I+B)/I = 1.0+ B/I
= Factor B/I represents average penalty due to bubbles

CPI for PIPE (Cont.)

B/ =LP + MP + RP
= |P: Penalty due to load/use hazard stalling Typical Values

= Fraction of instructions that are loads 0.25
= Fraction of load instructions requiring stall 0.20
= Number of bubbles injected each time 1

= LP=0.25*0.20 * 1 =0.05
= MP: Penalty due to mispredicted branches

= Fraction of instructions that are cond. jumps 0.20
= Fraction of cond. jumps mispredicted 0.40
= Number of bubbles injected each time 2

= MP=0.20*0.40*2=0.16
"= RP:Penalty due to ret instructions
= Fraction of instructions that are returns 0.02
= Number of bubbles injected each time 3
= RP=0.02 *3=0.06
4 ® Net effect of penalties 0.05 + 0.16 + 0.06 = 0.27
= CPI1=1.27 (Not bad!)

Fetch Logic Revisited

m During Fetch Cycle

1. Select PC

2. Read bytes from
instruction memory

3. Examine icode to
determine instruction
length

4. Increment PC
Timing
= Steps 2 & 4 require

significant amount of
time

icode| ifun rA

B

Split Align

Byte 0

Y
Bytes 1-

Instruction
memory

PC
increment

M_icode
M_Bch
{ M_valA
! W_icode
W_valM

Standard Fetch Timing

Select PC need_regids, need_valC
I\ |__Mem. Read | \ | Increment |
‘ !]
~—),
—~

1 clock cycle

" Must Perform Everything in Sequence

® Can’t compute incremented PC until know how much to increment
it by

A Fast PC Increment Circuit

erPC

Slow <

20-bit
incre-
menter

PC

3-bit adder > Fast

J

: n.eed_regids

0
need ValC

Modified Fetch Timing

need_regids, need_valC

Select PC \ 3-bit add
\ Mem. Read | | MUX
| | |
‘ e |
L)
~

1 clock cycle

m 29-Bit Incrementer
= Acts as soon as PC selected
" Qutput not needed until final MUX
= Works in parallel with memory read

Standard cycle

More Realistic Fetch Logic

Other PC Controls

Bytes 1-5

A
l l l J ! Byte O
Fetch Instr. » Current
Control Length Instruction
Instruction
Cache f
m Fetch Box

" |ntegrated into instruction cache

= Fetches entire cache block (16 or 32 bytes)
= Selects current instruction from current block

= Works ahead to fetch next block

= As reaches end of current block

= At branch target

Current Block

Next Block

Exceptions

"= Conditions under which pipeline cannot continue normal operation

m Causes
= Halt instruction (Current)
= Bad address for instruction or data (Previous)
" |nvalid instruction (Previous)
= Pipeline control error (Previous)

m Desired Action
= Complete some instructions
= Either current or previous (depends on exception type)

= Discard others —
= Call exception handler

= Like an unexpected procedure call

10

Exception Examples

m Detect in Fetch Stage

jmp $-1 # Invalid jump target
.byte OxFF # Invalid instruction code
halt # Halt instruction

m Detect in Memory Stage

irmovl $100, %eax
rmmov]l %eax,0x10000 (%eax) # invalid address

11

Exceptions in Pipeline Processor #1

demo-excl.ys
irmovl $100, %eax
rmmov]l %eax,0x10000 (%eax) # Invalid address

nop
.byte OxFF # Invalid instruction code
1 2 3 4 5
0x000: irmovl $100,%eax F|D /Exceptlon detected

0x006: rmmovl %$eax,0x10000 (%eax)

n
M| O |m

0x00c: nop
0x00d: .byte OxFF

miom(Z

omiZ|(S

Exception detected -

m Desired Behavior

= rmmovl should cause exception

12

Exceptions in Pipeline Processor #2

demo-exc2.ys

0x000: xorl %eax, %eax # Set condition codes

0x002: jne t # Not taken

0x007: irmovl $1,%eax

0x00d: irmovl $2,%edx

0x013: halt

0x014: t: .byte OxFF # Target

2 3 4 5 7 8

0x000: xorl %eax, %eax DIE | M|[W
0x002: jne t F|ID|E | M
0x014: t: .byte OxFF F|D|E W
0x???: (I'm lost!) F | D M| W
0x007: irmovl $1,%eax F E [M

Exception detected

m Desired Behavior

" No exception should occur

13

Maintaining Exception Ordering

O-N-E - |~ W=
O-N-H-0 - [» W
H exc .icode ifun -

icode | ifun
predPC

valC valA valB dstE | dstM | srcA | srcB

rA B valC valP

= Add exception status field to pipeline registers

= Fetch stage sets to either “AOK,” “ADR” (when bad fetch address),
or “INS” (illegal instruction)

" Decode & execute pass values through
= Memory either passes through or sets to “ADR”
= Exception triggered only when instruction hits write back

14

Side Effects in Pipeline Processor

demo-exc3.ys

irmovl $100, %eax

rmmov]l %eax,0x10000 (%eax) # invalid address

addl %eax, $eax # Sets condition codes

1 2 3 4 5

0x000: irmovl $100,%eax FIDp|lE|[M]|wW /Exceptlon detected
0x006: rmmovl %eax,0x1000(%eax) | F | D | E [M
0x00c: addl %eax, %eax F | D|E

Condition code set

m Desired Behavior

= rmmovl should cause exception

= No following instruction should have any effect
15

Avoiding Side Effects

m Presence of Exception Should Disable State Update
"= When detect exception in memory stage
= Disable condition code setting in execute
= Must happen in same clock cycle
= When exception passes to write-back stage
= Disable memory write in memory stage
= Disable condition code setting in execute stage

m Implementation
" Hardwired into the design of the PIPE simulator
" You have no control over this

16

Rest of Exception Handling

m Calling Exception Handler
= Push PC onto stack
= Either PC of faulting instruction or of next instruction
= Usually pass through pipeline along with exception status
= Jump to handler address
= Usually fixed address
= Defined as part of ISA

m Implementation
= Haven’t tried it yet!

17

Modern CPU Design

Instruction Control
O L L L LI Address

Register struction
File

Operations

Register| : Prediction

Updates| : OK?

Operation Results

Executio

18

Instruction Control

Instruction Control
Address

Register struction
File

v

m Grabs Instruction Bytes From Memory

Operations

= Based on Current PC + Predicted Targets for Predicted Branches

= Hardware dynamically guesses whether branches taken/not taken and
(possibly) branch target

m Translates Instructions Into Operations
" Primitive steps required to perform instruction
® Typical instruction requires 1-3 operations

m Converts Register References Into Tags

= Abstract identifier linking destination of one operation with sources of
later operations
19

Execution Updates |} OK?

Unit =

Register Prediction Operations
\ 4 \ 4 \ 4 \ 4 \ 4
Integer/| | General FP FP F ti |
Branch| | Integer|| Add ||muwpi]| 029 || Store uncbor:}tas
;R S N S Y S s
v v L 4 4 \4 v
Operation Results Addr Addl
Data Data
\ 4 vv
Data
Cache
Execution

= Multiple functional units

= Each can operate in independently

= (QOperations performed as soon as operands available

= Not necessarily in program order

= Within limits of functional units

= Control logic

= Ensures behavior equivalent to sequential program execution

20

CPU Capabilities of Pentium Il

m Multiple Instructions Can Execute in Parallel

1 load

1 store

2 integer (one may be branch)
1 FP Addition

1 FP Multiplication or Division

m Some Instructions Take > 1 Cycle, but Can be Pipelined

21

Instruction Latency
Load / Store 3
Integer Multiply 4
Integer Divide 36

Double/Single FP Multiply
Double/Single FP Add
Double/Single FP Divide 38

Cycles/Issue
1

1

36

2

38

PentiumPro Block Diagram

m P6 Microarchitecture
" PentiumPro
= Pentium Il
=" Pentium Il

Microprocessor Report
2/16/95

22

Instr TLB

(32 entry) 8K Instruction Cache -—
T e L

1
@r;::ng? # Simple Decoder -
Bufler . Reorder
— Simple Decoder Butfer
» General Decoder
Instruction [3
Fetch Unit| IN-ORDER | Uop Sequencer
SECTION

Reservation Station
(20 entries)
Load
Stora Intagar
Addr
Memory Reorder
Buffer (MOB)

Slore
Addr
Unit

FP Intagar

1 sira - 1 load
%3'3, T&S 8K Dual-Ported Data Cache]0-

64 "

System Bus Interface

L2 Cache Interface |..

f f f
‘t:;e addr ‘tsa data “tu dsta

PentiumPro Operation

m Translates instructions dynamically into “Uops”
= 118 bits wide
= Holds operation, two sources, and destination

m Executes Uops with “Out of Order” engine
= Uop executed when
= Operands available
= Functional unit available
= Execution controlled by “Reservation Stations”
= Keeps track of data dependencies between uops
= Allocates resources

23

PentiumPro Branch Prediction

m Critical to Performance
= 11-15 cycle penalty for misprediction

m Branch Target Buffer
= 512 entries
= 4 bits of history
= Adaptive algorithm

= Can recognize repeated patterns, e.g., alternating taken—not
taken

m Handling BTB misses
= Detectincycle 6
= Predict taken for negative offset, not taken for positive
= Loops vs. conditionals

24

Example Branch Prediction

m Branch History

" Encode information about prior history of branch instructions
= Predict whether or not branch will be taken

NT NT NT
:/—\ :/_\ .
T (E:/.) <Yes?> <No?> <EZZ> NT
/* N N
m State Machine T T T

= Each time branch taken, transition to right
= When not taken, transition to left
" Predict branch taken when in state Yes! or Yes?

25

Pentium 4 Block Diagram

26

Front-End BTB Instruction —
(4K Entries) TLB/Prefetcher 3@“
¥
| Instruction Decoder | Microcode w
) l ROM \Z
Trace Cache BTB Trace Cache
(512 Entries) |' (12K pops) | Hee Quan pl?r':,:gu
| " —— ||| 3.268B/s
o Quene | | I Integer/Flozting Point wop @] Bus
CHepenSchedder] [Fat ' @b Interface
— - - + Unit
L 4 vy }
[e oer Reqister File / Bypass tetwork 3 h--vl_FPiRe_ er 333 ﬁ_
b b . 4
]| ™
AGU AGU 2x ALU ||| 2x AL | | [Stow aLu EP L2 Cache
Load st Sirno) Simpl comol MM 2 FP (256K Byte
ue ore mple Imge mplet M
Address| | Address hstpr. hstr. Instr. gss EEz o 8-way)
1 I]]] ! I

| L1 Data Cache (SKbyte 4-way)

* 48GB/s
k%(ibih l
{

= Next generation microarchitecture

Intel Tech. Journal
Q1, 2001

Pentium 4 Features

1A32
Instrs.

m Trace Cache |L2cache

Instruct.
Decoder

uops

= Replaces traditional instruction cache

" Caches instructions in decoded form

= Reduces required rate for instruction decoder

m Double-Pumped ALUs

= Simple instructions (add) run at 2X clock rate

m Very Deep Pipeline
= 20+ cycle branch penalty
= Enables very high clock rates

= Slower than Pentium Il for a given clock rate

27

Trace
Cache

I Operations

Processor Summary

m Design Technique
® Create uniform framework for all instructions

= Want to share hardware among instructions
= Connect standard logic blocks with bits of control logic

m Operation
= State held in memories and clocked registers

= Computation done by combinational logic

® Clocking of registers/memories sufficient to control overall
behavior

m Enhancing Performance

= Pipelining increases throughput and improves resource utilization
" Must make sure maintains ISA behavior

28

