Organisation und Architektur

von Rechnern
Lecture 15

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

The 5 Minute Review Session

1. How is the PC predicted (different cases)?

2. What are pipelining hazards?

3. What is pipeline stalling?

s. How does the pipeline handle mispredicted branches?
s. What is data forwarding, why is it used?

Last Time

struct rec {
int i, Memory Layout
m Structures ot al3l; L la P
}_mt P 0 4 16 20
m Alignment straet ST 1
int i[2];
double v;
} *p;
c i[0] if1] v
p+0 pt+4 p+8 p+16 pt24
m Unions
union Ul ({ c
char c; . .
int i[2]; (0] 1[1]
double v; v
i up+0 up+4 up+8

Last Time —_—

st (3)
st (2)
m Floating point $st (1)

= x87 (getting obsolete) $st (0)

128 bit = 2 doubles = 4 singles

A
‘4 N\

= x86-64 (SSE3 and later)

$xmmO

$xmml5

= Vector mode and scalar mode

addps () addss ()

Today

m Memory layout

m Program optimization

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls

IA32 Linux Memory Layout

m Stack
= Runtime stack (8MB limit)

m Heap
= Dynamically allocated storage
" Whencallmalloc(), calloc(), new()

m Data

= Statically allocated data
= E.g., arrays & strings declared in code

m Text
= Executable machine instructions
= Read-only

Upper 2 hex digits
= 8 bits of address

FF

08
00

not drawn to scale

Stack

1

Heap

Data

Text

\

> 8MIB

not drawn to scale

Memory Allocation Example

Stack
char big array[1<<24]; /* 16 MB */ 1
char huge array[1<<28]; /* 256 MB */
int beyond;
char *pl, *p2, *p3, *p4;
int useless() { return O0; }
int main ()
{
pl = malloc(l <<28); /* 256 MB */
P2 = malloc(l << 8); /* 256 B */
p3 = malloc(l <<28); /* 256 MB */ 4
p4 = malloc(l << 8); /* 256 B */ .
/* Some print statements ... */ cap
} Data
- Text
Where does everything go? 08

. 00

not drawn to scale

IA32 Example Addresses FF

Stack
address range ~23? 1
Sesp Oxffffbcd0
p3 0x65586008
pl 0x55585008
p4 0x1904al110
p2 0x1904a008
&p2 0x18049760
beyond 0x08049744
big array 0x18049780 80 t
huge array 0x08049760
main () 0x080483c6 Heap
useless () 0x08049744
final malloc() 0x006bel66

Data
malloc () is dynamically linked Text
address determined at runtime 08

; 00

not drawn to scale

x86-64 Example Addresses oooo7r

Stack
address range ~247 1
Srsp Ox7££f££££8d1£8
p3 Ox2aaabaadd010
pl Ox2aaaaaadc010
p4 0x000011501120
p2 0x000011501010
&p2 0x000010500a60
beyond 0x000000500a44
big_array 0x000010500a80 000030 %
huge array 0x000000500a50
main () 0x000000400510
useless () 0x000000400500 Heap
final malloc() 0x00386ae6al70

Data
malloc () is dynamically linked Text
address determined at runtime

5 000000

C operators

Operators Associativity
() [1 -> left to right
' '~ ++ -- + & (type) sizeof righttoleft
*x /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right
= I= left to right
& left to right
A left to right
| left to right
&& left to right
| | left to right
?: right to left
= 4= -= *= [= §= I= <<= >>= right to left
, left to right

m -> has very high precedence
m () has very high precedence
M monadic * just below

C Pointer Declarations: Test Yourself!

int

int

int

int

int

int

int

int

int

11

*P
*p[13]
*(p[13])
**p

(*p) [13]
*£()
(*£) ()

(*(*£()) [13]1) O

(* (*x[31) () [3]

p is a pointer to int

p is a pointer to a pointer to an int

fis a function returning a pointer to int

fis a pointer to a function returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

C Pointer Declarations (Check out guide)

int

int

int

int

int

int

int

int

int

12

*P
*p[13]
*(p[13])
**p

(*p) [13]
*£()
(*£) ()

(*(*£()) [13]1) O

(* (*x[31) () [3]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

fis a function returning a pointer to int
fis a pointer to a function returning int

fis a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Avoiding Complex Declarations

m Use typedef to build up the declaration

m Insteadof int (* (*x[3]) ()) [5]:
typedef int fiveints[5];
typedef fiveints* p5i;
typedef p5i (*£f of p5is) ()
f of p5is x[3];

m xis an array of 3 elements, each of which is a pointer to a function
returning an array of 5 ints

13

Today

m Memory layout
m Buffer overflow, worms, and viruses
m Program optimization

" QOverview

® Removing unnecessary procedure calls
" Code motion/precomputation

" Strength reduction

" Sharing of common subexpressions

" Optimization blocker: Procedure calls

14

Internet Worm and IM War

m November, 1988

" |nternet Worm attacks thousands of Internet hosts.
" How did it happen?

15

Internet Worm and IM War

m November, 1988
= Internet Worm attacks thousands of Internet hosts.
= How did it happen?

= July, 1999

" Microsoft launches MSN Messenger (instant messaging system).

" Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

16

Internet Worm and IM War (cont.)

m August 1999

= Mysteriously, Messenger clients can no longer access AIM servers.
" Microsoft and AOL begin the IM war:

= AOL changes server to disallow Messenger clients

= Microsoft makes changes to clients to defeat AOL changes.

= At least 13 such skirmishes.
®" How did it happen?

m The Internet Worm and AOL/Microsoft War were both based
on stack buffer overflow exploits!
= many Unix functions do not check argument sizes.

= allows target buffers to overflow.

17

String Library Code

m Implementation of Unix function gets ()

/* Get string from stdin */
char *gets (char *dest)
{
int ¢ = getchar();
char *p = dest;
while (c '= EOF && c !'= '\n') {
*p++ = c;
c = getchar() ;
}
*p = '\0"';
return dest;

}

= No way to specify limit on number of characters to read

m Similar problems with other Unix functions
= strcpy: Copies string of arbitrary length
12 " scanf, fscanf, sscanf, when given %s conversion specification

Vulnerable Buffer Code

/* Echo Line */
void echo()

{

gets (buf) ;
puts (buf) ;
}

char buf[4]; /* Way too small! */

int main ()

{
printf ("Type a string:");
echo () ;
return O;

19

unix>. /bufdemo
Type a string:1234567
1234567

unix>. /bufdemo
Type a string:12345678
Segmentation Fault

unix>./bufdemo
Type a string:123456789ABC
Segmentation Fault

Buffer Overflow Disassembly

080484f0 <echo>:

80484f0: 55 push %ebp

80484f1: 89 e5 mov %esp, sebp

80484f3: 53 push %ebx

80484f4: 8d 5d f£8 lea Oxfffffff8 (%ebp) , $ebx
80484f7: 83 ec 14 sub $0x14,%esp
80484fa: 89 1lc 24 mov %ebx, ($esp)
80484fd: e8 ae ff ff ff call 80484b0 <gets>
8048502: 89 1c 24 mov %ebx, (%esp)
8048505: e8 8a fe ff ff call 8048394 <puts@plt>
804850a: 83 c4 14 add $0x14,%esp
804850d: 5b pop %ebx

804850e: c9 leave

804850f: 3 ret

80485f2: e8 f9 fe ff ff call 80484f0 <echo>
80485f7: 8b 5d fc mov Oxfffffffc (%ebp) , $ebx
80485fa: ¢9 leave

80485fb: 31 cO Xor %eax, $eax

80485fd: 3 ret

Buffer Overflow Stack

Before call to gets

Stack Frame
formain

Return Address

Saved $ebp

131]r21]r11]03

Stack Frame

/* Echo Line */
void echo()

{

for echo

21

«— %ebp char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
buf }
echo:
pushl %ebp # Save %ebp on stack
movl %esp, %ebp
pushl %ebx # Save %ebx
leal -8(%ebp) , %ebx # Compute buf as %ebp-8
subl $20, %esp # Allocate stack space
movl %ebx, (%esp) # Push buf on stack
call gets # Call gets

Buffer Overflow
Stack Example

Before call to gets

Stack Frame
formain

Return Address
Saved $ebp

131]r21]121lr01] bus

Stack Frame
for echo

unix> gdb bufdemo

(gdb) break echo

Breakpoint 1 at 0x8048583

(gdb) run

Breakpoint 1, 0x8048583 in echo ()
(gdb) print /x S$ebp

$1 = Oxffffc638

(gdb) print /x *(unsigned *)Sebp
$2 = O0xffffc658

(gdb) print /x *((unsigned *)Sebp + 1)
$3 = 0x80485f7

Before call to

gets

Stack Frame
formain

Oxffffc658

08|04]85

£7

ff|££f| c6

58 |Oxffffc638

XX | XX | XX

XX | buf

Stack Frame

for echo

80485f2:call 80484f0 <echo>
2280485f7:mov Oxfffffffc (%ebp),h %ebx # Return Point

Buffer Overflow Example #1

Before call to gets

Stack Frame
formain

08

04

85

£7

ff

ff

c6

58

XX

XX

XX

XX

Stack Frame
for echo

23

Oxffffc658

Oxffffc638

buf

Overflow buf, but no problem

Input 1234567

Stack Frame
formain

08]04]85

£7

ff|££f]| c6

58

00]37] 36

35

34|33]32

31

Stack Frame
for echo

Oxffffc658

Oxffffc638

buf

Buffer Overflow Example #2

Before call to gets

Stack Frame Oxffffc658
formain
08104|85]| £7
ff|£f£f|c6|58|0xffffc638
XX | xx | xx | xx| buf
Stack Frame
for echo
804850a: 83 c4 14 add
804850d: 5b pop %ebx
804850e: c9 leave
@64850f: c3 ret

Input 12345678

Stack Frame
formain

08]04]85

£7

ff|££f]| c6

00

38]137]36

35

34|33]32

31

Stack Frame
for echo

Base pointer corrupted

restore %ebx

$0x14,%esp # deallocate space

Oxffffc658

Oxffffc638

buf

movl %$ebp, %esp; popl %ebp

Return

Buffer Overflow Example #3

Before call to gets

Stack Frame
formain

08]04]85

£7

ff|ff]| c6

58

XX | XX | XX

XX

Stack Frame
for echo

80485f2: call 80484f0 <echo>

Oxffffc658

Oxffffc638

buf

Return address corrupted

Input 12345678

Stack Frame
formain

08]04]85

00

431 42|41

39

38]137]36

35

34|33]32

31

Stack Frame
for echo

80485f7: mov Oxfffffffc(%ebp),h %ebx # Return Point

25

Oxffffc658

Oxffffc638

buf

Malicious Use of Buffer Overflow

Stack after call to gets ()

\
void foo () { foo stack frame
bar () ; return >
.. <+ address
} A (B <
int bar() { data written pad
char buf[64]; by gets ()
ets (buf) ;
?. . exploit > bar stack frame
return ...; B—= code
}

J

m Input string contains byte representation of executable code
Overwrite return address with address of buffer
2 When bar () executes ret, will jump to exploit code

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

m Internet worm

= Early versions of the finger server (fingerd) used gets () to read the
argument sent by the client:

= finger droh(@cs.cmu.edu
= Worm attacked fingerd server by sending phony argument:
» finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

27

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

IM War

28

AOL exploited existing buffer overflow bug in AIM clients

exploit code: returned 4-byte signature (the bytes at some location in
the AIM client) to server.

When Microsoft changed code to match signature, AOL changed
signature location.

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,

I It was later determined that this
1 ucking

Founder, Bucking Consulting email originated from within
philbucking@yahoo.com

; /
- Microsoft!

Code Red Worm

m History

= June 18, 2001. Microsoft announces buffer overflow vulnerability
in IIS Internet server

= July 19, 2001. over 250,000 machines infected by new virus in 9
hours

= White house must change its IP address. Pentagon shut down
public WWW servers for day

m When We Set Up CS:APP Web Site

= Received strings of form
GET /default.ida?

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

$u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%
9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3% uOO
03%u8b00%u531b%ub53£f£f%$u0078%u0000%ul00=a

HTTP/]..O" 400 325 "—-n n_mn

30

Code Red Exploit Code

m Starts 100 threads running
m Spread self

Between 1st & 19th of month

m Attack www.whitehouse.gov

" Generate random IP addresses & send attack string

= Send 98,304 packets; sleep for 4-1/2 hours; repeat

= Denial of service attack
Between 21st & 27th of month

m Deface server’s home page

31

= After waiting 2 hours

1 HELLO! - Microsoft Internet Explorer

S [=] B3
| File Edit View Favorites Tools Help

|
‘E:--»,aﬁﬁ‘@

Eanward Stop Refresh

Home Search
JAgl_dress |@ H:\Projects\malicious code\Code Red Worm'\hackedwej @ Go H Links »
=l
Welcome to http://www.worm.com !
Hacked By Chinese!
[~
@] Done

| =My Computer

N\

Code Red Effects

m Later Version Even More Malicious
= Code Red Il
= As of April, 2002, over 18,000 machines infected
= Still spreading
m Paved Way for NIMDA
= Variety of propagation methods
= One was to exploit vulnerabilities left behind by Code Red Il
m ASIDE (security flaws start at home)
" rhosts used by Internet Worm
= Attachments used by MyDoom (1 in 6 emails Monday morning!)

32

Avoiding Overflow Vulnerability

/* Echo Line */
void echo ()

{
char buf[4]; /* Way too small!

*/
fgets (buf, 4, stdin);
puts (buf) ;

m Use library routines that limit string lengths
= fgets instead of gets
= strncpy instead of strcpy
"= Don’t use scanf with $s conversion specification

= Use £gets to read the string
= Oruse $ns where n is a suitable integer

33

System-Level Protections

m Randomized stack offsets

= At start of program, allocate random amount
of space on stack

= Makes it difficult for hacker to predict
beginning of inserted code

m Nonexecutable code segments

" |n traditional x86, can mark region of memory
as either “read-only” or “writeable”

= Can execute anything readable
= Add explicit “execute” permission

34

unix> gdb bufdemo
(gdb) break echo

(gdb) run
(gdb) print /x $ebp
$1 = Oxffffc638

(gdb) run
(gdb) print /x $ebp
$2 = Oxf£f£ffbb08

(gdb) run
(gdb) print /x $ebp
$3 = Oxffffc6a8

Worms and Viruses

m Worm: A program that
= Canrun by itself
= Can propagate a fully working version of itself to other computers

m Virus: Code that

= Add itself to other programs
= Cannot run independently

m Both are (usually) designed to spread among computers
and to wreak havoc

35

Today

m Memory layout

m Program optimization

36

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s (giga floating point operations per second)
50

45

—

Best code

40
35
30
25
20

15
This code is

not obviously stupid

10
Triple loop

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000
matrix size
m Standard desktop computer, compiler, using optimization flags
m Both implementations have exactly the same operations count (2n3)
a7 Whatis going on?

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
—
40 -
35
30 .
s Multiple threads: 4x
20
15 +
10 - -
1 Vector instructions: 4x
= * * Memory hiera‘rchy and other optimizations: 20)2
0 T T T T T T T T 1
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

m Effect: more instruction level parallelism, better register use,

38 less L1/L2 cache misses, less TLB misses

Harsh Reality

m There’s more to runtime performance than asymptotic
complexity

m One can easily loose 10x, 100x in runtime or even more

m What matters:
= Constants (100n and 5n is both O(n), but)

= Coding style (unnecessary procedure calls, unrolling, reordering, ..

= Algorithm structure (locality, instruction level parallelism, ...)
= Data representation (complicated structs or simple arrays)

39

)

Harsh Reality

m Must optimize at multiple levels:
= Algorithm
= Data representations
" Procedures
" Loops

m Must understand system to optimize performance
" How programs are compiled and executed
= Execution units, memory hierarchy
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

40

Optimizing Compilers

m Use optimization flags, default is no optimization (-00)!
m Good choices for gcc: -02, -03, -march=xxx, -m64

m Try different flags and maybe different compilers
41

Example

double a[4][4];
double b[4][4];
double c[4][4]; # set to zero

/* Multiply 4 x 4 matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
c[i*4+]j] += a[i*4 + k]*b[k*4 + j];

m Compiled without flags:
~1300 cycles

m Compiled with —03 —-m64 -march=... -fno-tree-vectorize
~150 cycles

m Core 2 Duo, 2.66 GHz
42

Optimizing Compilers

m Compilers are good at: mapping program to machine
= register allocation
= code selection and ordering (scheduling)
= dead code elimination
= eliminating minor inefficiencies
m Compilers are not good at: improving asymptotic efficiency

" up to programmer to select best overall algorithm
" big-0O savings are (often) more important than constant factors
= but constant factors also matter

m Compilers are not good at: overcoming “optimization
blockers”
= potential memory aliasing
" potential procedure side-effects

43

Limitations of Optimizing Compilers

44

If in doubt, the compiler is conservative

Operate under fundamental constraints
" Must not change program behavior under any possible condition

= Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles
= e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within procedures
= Whole-program analysis is too expensive in most cases

Most analysis is based only on static information

= Compiler has difficulty anticipating run-time inputs

Today

m Memory layout

m Program optimization

45

Overview

Removing unnecessary procedure calls
Code motion/precomputation

Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls
Optimization blocker: Memory aliasing

Example: Data Type for Vectors

/* data structure for vectors */

typedef.struct{ len
int len;
double *data;

} wvec;

/* retrieve vector element and store at val */
double get vec element(*vec, idx, double *val)
{
if (idx < 0 || idx >= v->len)
return O;
*val = v->data[idx];
return 1;

46

len-1

data—

Example: Summing Vector Elements

/* retrieve vector element and store at val */
double get vec element(*vec, idx, double *val)
{
if (idx < 0 || idx >= wv->len)
return O;
*val = v->data[idx];
return 1;

}

/* sum elements of vector */
double sum elements(vec *v, double *res)
{

int i;

n = vec_length(v);

*res = 0.0;

double val;

for (i = 0; i < n; i++) {
get vec element(v, i, &val);
*res += val;

}

return res;

Bound check
unnecessary

in sum_elements
Why?

Overhead for every fp +:

* One fct call

* One<

* One >=

* One ||

* One memory variable
access

Slowdown:
probably 10x or more

Removing Procedure Call

/* sum elements of vector */
double sum elements(vec *v, double *res)
{

int i;

n = vec_length(v);

*res = 0.0;

double val;

for (1 = 0; i < n; i++) {
get vec element(v, i, &val);
*res += val;

}

return res;

}

/* sum elements of vector */
double sum elements(vec *v, double *res)

{

int i;
n = vec_length(v);
*res = 0.0;

double *data = get vec_start(v);

for (i = 0; i < n; i++)
*res += datal[i];
return res;

Removing Procedure Calls

m Procedure calls can be very expensive
m Bound checking can be very expensive
m Abstract data types can easily lead to inefficiencies

= Usually avoided in superfast numerical library functions

m Watch your innermost loop!

m Get a feel for overhead versus actual computation being
performed

49

Today

m Memory layout

m Program optimization

50

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls
Optimization blocker: Memory aliasing

Code Motion

m Reduce frequency with which computation is performed
= |f it will always produce same result
= Especially moving code out of loop

m Sometimes also called precomputation

void set row(double *a, double *b,
long i, long n)
{
long j;
for (j = 0; j < n; j++)
a[n*i+j] = b[]jl:;

long j;

int ni = n*ji;

for (j = 0; j < n; j++)
51 a[ni+j] = b[]jl;

Compiler-Generated Code Motion

void set row(double *a, double *b, long j;
long i, long n) long ni = n*i;
{] double *rowp = a+ni;
S _ _ for (3 = 0; j < n; j++)
for (j = p;.j < n;.j++) *rowp++ = b[j];

a[n*i+j] = b[]jl;

}

set _row:
xorl $r8d, %r8d $# =0
cmpg $rcx, %r8 # J:n
jge L7 # if >= goto done
movqgq $rcx, %rax # n
imulg $rdx, %rax # n*i outside of inner loop
leaq ($rdi,%rax,8), %rdx # rowp = A + n*i*8

.L5: # loop:
movqg (%$rsi,%r8,8), %rax # t = Db[]]
incqg %r8 # J++
movq $rax, (%rdx) # *rowp =t
addgq $8, %$rdx # rowp++
cmpgq $rcx, %r8 # J:n
jl .L5 # if < goto loop

.L7: # done:
rep ; ret # return

Today

m Memory layout

m Program optimization

53

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls
Optimization blocker: Memory aliasing

Strength Reduction

m Replace costly operation with simpler one

m Example: Shift/add instead of multiply or divide
16*x - x << 4
= Utility machine dependent
= Depends on cost of multiply or divide instruction
" On Pentium IV, integer multiply requires 10 CPU cycles

m Example: Recognize sequence of products

for (i = 0; 1 < n; i++) int ni = 0;
for (J = 0; jJ < n; j++) for (i = 0; 1 < n; i++) {
a[n*i + j] = b[j]; for (j = 0; j < n; j++)
afni + j] = b[]j]:
ni += n;
}

54

Today

m Memory layout

m Program optimization

55

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls
Optimization blocker: Memory aliasing

Share Common Subexpressions

m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

3 mults: i*n, (i-1)*n, (i+1)*n 1 mult: i*n

/* Sum neighbors of i,j */ int inj = i*n + j;

up = val[(i-1)*n + J 1 up = val[in]j - n];

down = val[(i+l)*n + j 1], down = val[inj + n];

left = wval[i*n + j-11; left = wval[inj - 1];

right = val[i*n + j+1]; right = val[inj + 1];

sum = up + down + left + right; sum = up + down + left + right;
leaq 1(%rsi), %$rax # i+l imulqg $rcx, %$rsi # i*n

leaq -1(%rsi), %r8 # i-1 addqg $rdx, $rsi # i*n+j
imulg $%rcx, %rsi # i*n movq $rsi, %rax # i*n+j
imulg %rcx, %rax # (i+l1l)*n subq $rcx, %rax # i*n+j-n
imulg %rcx, %r8 # (i-1)*n leaq ($rsi,%rcx), %rcx # i*n+j+n
addq $rdx, %rsi # i*n+j

addqg $rdx, %$rax # (i+1) *n+j

addqg $rdx, %r8 # (i-1) *n+j

Today

m Memory layout

m Program optimization

57

Overview

Removing unnecessary procedure calls
Code motion/precomputation
Strength reduction

Sharing of common subexpressions
Optimization blocker: Procedure calls
Optimization blocker: Memory aliasing

Optimization Blocker #1: Procedure Calls

m Procedure to convert string to lower case

void lower (char *s)
{
int 1i;
for (1 = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z'")
S[l] — ('A' - lal);
}

Extracted from actual lab submissions

58

Performance

m Time quadruples when double string length
m Quadratic performance

CPU Seconds
1000

100
10

1
0,1
0,01 I I
0,001 l
0,0001 W . |
O oN V4 - =z 4 V4 V4 V4 Y4
() i i o < (0.0] (o] (@] < o0
N (Hp] — o (o] g

String Length

256k

59

Why is That?

void lower (char *s)
{
int i;
for (i = 0; i < strlen(s),; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');

}

m String length is called in every iteration!
" And strlenis O(n), so lower is O(n?)

/* My version of strlen */
size t strlen(const char *s)
{
size t length = 0;
while (*s '= '\0') {
s++;
length++;
}

return length;

Improving Performance

void lower (char *s)
{
int i;
for (i = 0; i < strlen(s),; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a');
}

void lower (char *s)
{
int i;
int len = strlen(s);
for (i = 0; i1 < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z')
S[l] —— ('Al - lav);

Move call to strlen outside of loop
Since result does not change from one iteration to another
Form of code motion/precomputation

(o)}
o H N

Performance

m Lower2: Time doubles when double string length
m Linear performance

1CPU Seconds

100
10

1
0,1
0,01

0,001
0,0001
0,00001
0,000001 ! | |
O N Xz V4 -
LN — — (@N| <
(@\| LN

String Length

W lowerl M lower2

4
00

16k
32k
64k
128k
256k

62

Optimization Blocker: Procedure Calls

m Why couldn’t compiler move strlen out of inner loop?

Procedure may have side effects

Function may not return same value for given arguments

= Could depend on other parts of global state

» Procedure lower could interact with strlen

m Compiler usually treats procedure call as a black box that cannot
be analyzed

Consequence: conservative in optimizations

m Remedies:

63

Inline the function if possible
Do your own code motion

int lencnt = 0;
size t strlen(const char *s)

{

size t length = 0;
while (*s !'= '\0') {
s++; length++;

}
lencnt += length;

return length;

