Organisation und Architektur

von Rechnern
Lecture 17

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

The 5 Minute Review Session

1. What ist the difference between stack and heap?

Last Time

m Program optimization
= QOptimization blocker: Memory aliasing
® One solution: Scalar replacement of array accesses that are reused

for (i = 0; i < n; i++) {
b[i] = 0;
for (jJ = 0; j < n; j++)
b[i] += a[i*n + j];

for (i = 0; i < n; i++) {
double val = 0;
for (j = 0; j < n; j++)
val += a[i*n + j];
b[i] = val;

Last Time

m Instruction level parallelism
m Latency versus throughput

1 1 1 1 1 1
Integer/ § General FP Functional
Branch § Integer Add Units
v v ' ' ' '
latency cycles/issue
Integer Multiply 10 1
s Step 1 s Step2 i Step 10
1 cycle 1 cycle 1 cycle

Last Time

m Consequence

Twice as fast

Today

m Memory hierarchy, caches, locality
m Cache organization
m Program optimization:

= Cache optimizations

Problem: Processor-Memory Bottleneck

Processor performance

doubled about]
every 18 months Bus bandwidth
evolved much slower
Main
CPU | Reg
Memory
Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle
(1 SSE two operand add and mult) Latency

100 cycles

Solution: Caches

Cache

m Definition: Computer memory with short access time
used for the storage of frequently or recently used
instructions or data

Cache

Memory

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

General Cache Concepts: Hit

Cache

Memory

10

Request: 14
8 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is in cache:
Hit!

General Cache Concepts: Miss

Cache

Memory

11

Request: 12

8 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate

= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time

" Time to deliver a line in the cache to the processor

= includes time to determine whether the line is in the cache
® Typical numbers:

= 1-2 clock cycle for L1

= 5-20 clock cycles for L2

m Miss Penalty

= Additional time required because of a miss
12 = typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

m Huge difference between a hit and a miss

= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

13

Types of Cache Misses

m Cold (compulsory) miss

® (QOccurs on first access to a block

m Conflict miss

" Most hardware caches limit blocks to a small subset (sometimes a
singleton) of the available cache slots

= e.g., block i must be placed in slot (i mod 4)

® Conflict misses occur when the cache is large enough, but multiple
data objects all map to the same slot

= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

m Capacity miss
= QOccurs when the set of active cache blocks (working set) is larger

than the cache
14

Why Caches Work

m Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

m Temporal locality: (,7

= Recently referenced items are likely block
to be referenced again in the near future

m Spatial locality: C 2

" |tems with nearby addresses tend block
to be referenced close together in time

15

Example: Locality?

sum = 0;

for (i = 0; i < n; i++)
sum += a[i];

return sum;

m Data:

" Temporal: sumreferenced in each iteration

= Spatial: array a[] accessed in stride-1 pattern
m Instructions:

" Temporal: cycle through loop repeatedly
= Spatial: reference instructions in sequence

m Being able to assess the locality of code is a crucial skill

for a programmer
16

Locality Example #1

{

int sum array rows(int a[M] [N])

int i, j, sum = 0O;

for (1 = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];
return sum;

17

Locality Example #2

int sum array cols(int a[M] [N])

{

int i, j, sum = O;

for (J = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i] []]’
return sum;

18

Locality Example #3

int sum array 3d(int a[M] [N] [N])
{

int i, j, k, sum = 0;

for (1 = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += al[k] [1][]]’
return sum;

}

m How can it be fixed?

19

Memory Hierarchies

m Some fundamental and enduring properties of hardware and
software systems:

= Faster storage technologies almost always cost more per byte and have
lower capacity

" The gaps between memory technology speeds are widening
= True of registers <> DRAM, DRAM < disk, etc.
= Well-written programs tend to exhibit good locality

m These properties complement each other beautifully

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

20

An Example Memory Hierarchy

A
LO: _ _
registers CPU registers hold words retrieved from
L1 cache
L1: on-chip L1
Smaller, cache (SRAM) t; z:z:: holds cache lines retrieved from
faster,
costlier L2: off-chip L2
er byte
P y cache (SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
Larger, main memory . .
slower (DRAM) Main memory holds disk blocks
’ retrieved from local disks
cheaper
per byte L4: local secondary storage
| | disk Local disks hold files
(ocal dis S) retrieved from disks on
remote network servers
5 remote secondary storage
) (tapes, distributed file systems, Web servers)
\

21

Examples of Caching in the Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 4-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware+0OS

Buffer cache Parts of files Main memory 100 | OS

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

22

Memory Hierarchy: Core 2 Duo Not drawn to scale

L1/L2 cache: 64 B blocks

~4 MIB ~4 GB ~500 GB
L1
I-cache
L: d Main
32 KB i Memor
cache Y
CPU | Reg =
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles .
Latency: 3 cycles 14 cycles 100 cycles millions D | S k

23

Today

m Memory hierarchy, caches, locality
m Cache organization
m Program optimization:

" Cache optimizations

24

General Cache Organization (S, E, B)

$=2° sets<

25

E = 2¢ lines per set

A
e ~N
(_
o000
0000000000000 00000 O0COCOGCEOGEOGEOSIOSEOINIO
o000
Cache size:
v tag OTI121...... 51 S x E x B data bytes
valid bit —
B = 2 bytes per cache block (the data)

Cache Read

E = 2¢ lines per set

* Locate set

* Check if any line in set
has matching tag

* Yes + line valid: hit

p A ~ - Locate data starting
r at offset
o000
Address of word:
oo t bits s bits | b bits
= 2s S~
S = 2%sets < eoeoe tag set block
index offset
OO0 0000000000000 0O0OCGCOCEOGEOSGSEOSGSEOSOSOOOO
o000
\.
data begins at this offset
v tag 1 Ll P B_1
valid bit ~ —

26

B = 2 bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

S = 2% sets <

V . OTITZT13 Address of int:

28 tbits | 0..01 | 100
Vv ta Ul1l]1<21]5>5

g find set
Vv tag VUl1l]1<2]5>

27

tag

U

1

Z

3

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

vV Ul1]<Z]>5

Itag 4|5

28

block offset

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

valid? + match: assume yes = hit

Address of int:

t bits

0..01

100

tag als|e]|7

int (4 Bytes) is here

No match: old line is evicted and replaced

29

block offset

Example

int

{

sum array rows (double a[l16][16])

int i, j;
double sum = 0;

for (i = 0; 1 < 16; i++)
for (J = 0;, 3 < 16; j++)
sum += a[i] [j];
return sum;

int

sum array cols(double a[l16][16])

int i, j;
double sum = 0;

for (J = 0; jJ < 16; j++)
for (1 = 0; 1 < 16; i++)
sum += a[i] [j]’
return sum;

30

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
“ J
Y

32 B =4 doubles

blackboard

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes

Address of short int:

Vv

tag | [

T

ZTS

4}

5]

5

/

Vv

tag | [

T

]

5]

17

31

t bits 0..01 | 100
v taﬂrﬁlrpqasl v tagJI‘ﬁ].ZTS'rll:.BI
v taL-ﬁlszqasl v taL'ﬁlzTSTZI:BI find set
v taL'ﬁlZ‘l‘Sq:Bl v taL'ﬁlZ‘l‘S‘l‘&:E/

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

tasJI‘O].Zqu:B/ v tagl‘OIZTS'rlI:B/

block offset

32

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

match both

valid? + | match: yes = hit

tagJI‘O].ZTS'FI:BI v tagl‘OIZTS'rlI:B/

block offset

short int (2 Bytes) is here

No match:
* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Example

int

{

sum array rows (double a[l16][16])

int i, j;
double sum = 0;

for (i = 0; 1 < 16; i++)
for (J = 0;, 3 < 16; j++)
sum += a[i] [j];
return sum;

int

sum _array rows (double a[l6][16])

int i, j;
double sum = 0;

for (J = 0; 1 < 16; i++)
for (1 = 0; jJj < 16; j++)
sum += a[i] [j]’
return sum;

34

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
“ J
g

32 B =4 doubles

blackboard

What about writes?

35

Multiple copies of data exist:
= L1, L2, Main Memory, Disk

What to do one a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow

= No-write-allocate (writes immediately to memory)

Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

Software Caches are More Flexible

m Examples
= File system buffer caches, web browser caches, etc.

m Some design differences

= Almost always fully associative
= 50, ho placement restrictions
= index structures like hash tables are common

= Often use complex replacement policies
= misses are very expensive when disk or network involved
= worth thousands of cycles to avoid them

"= Not necessarily constrained to single “block” transfers

= may fetch or write-back in larger units, opportunistically

36

Today

m Memory hierarchy, caches, locality
m Cache organization
m Program optimization:

" Cache optimizations

37

Optimizations for the Memory Hierarchy

m Write code that has locality
= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in
time
m How to achieve?
= Proper choice of algorithm
= Loop transformations

m Cache versus register level optimization:
" |n both cases locality desirable

= Register space much smaller + requires scalar replacement to
exploit temporal locality

= Register level optimizations include exhibiting instruction level

" parallelism (conflicts with locality)

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+]j] += a[i*n + k]*b[k*n + j];

I
*

39

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: s
" n/8+ n=9n/8 misses

I
*

= Afterwards in cache:
(schematic) —

]
*

40 8 wide

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Second iteration:
= Again:
n/8 + n =9n/8 misses

m Total misses:
" 9n/8 * n?=(9/8) * n3

41

8 wide

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (jl1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + j1l];

I
*
+

i1

I

42 Block size B x B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
= Three blocks ¥ fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block ™

= 2n/B * B2/8 = nB/4
(omitting matrix c)

= Afterwards in cache []
(schematic)

43

n/B blocks
N

e | |1 \

Block size Bx B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A

= Same as first iteration]
= 2n/B * B%/8 =nB/4

m Total misses: Block size B x B
= nB/4 * (n/B)? = n3/(4B)

44

Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
" But program has to be written properly

45

