Organisation und Architektur

von Rechnern
Lecture 18

Instructor:
Reinhard v. Hanxleden

http://www.informatik.uni-kiel.de/rtsys/teaching/v-sysinf2

These slides are used with kind permission from the Carnegie Mellon University

Last Time

m Memory hierarchy (Here: Core 2 Duo)

L1
I-cache

32 KB

CPU | Reg

L1
D-cache

Throughput: 16 B/cycle
Latency: 3 cycles

~4 MB

L2
unified
cache

8 B/cycle
14 cycles

~4 GB

Main

Memory

2 B/cycle
100 cycles

1 B/30 cycles
millions

~500 GB

Disk

Last Time

m Locality

m Temporal locality: Q 7

= Recently referenced items are likely
to be referenced again in the near future

block

m Spatial locality: m

" |tems with nearby addresses tend
to be referenced close together in time

block

Last Time

E = 2¢ lines per set
A

Address of word:

t bits s bits | b bits

S~~~

eeee tag set block

index offset

data begins at this offset

tag

oooooo B_1

m Caches
e
-
S =25 sets <
_
Vv
valid bit
4

7

B = 2 bytes per cache block (the data)

Strided Access Question

E = 2¢ lines per set
A

S=Zssets< XX

Address of word:

t bits s bits | b bits

S~~~

tag set block
index offset

m What happens if arrays are accessed in two-power strides?

m Example on the next slide
5

The Strided Access Problem (Blackboard?)

m Example: L1 cache, Core 2 Duo
= 32 KB, 8-way associative, 64 byte cache block size
" WhatisS, E, B?
= Answer: B =28 E =23 S=265

m Consider an array of ints accessed at stride 2',i20

" What is the smallest i such that only one set is used?
= Answer:i=10

= What happens if the stride is 29?
= Answer: two sets are used

m Source of two-power strides?
= Example: Column access of 2-D arrays (images!)

Today

m Program optimization:
= Cache optimizations

m Linking

Optimizations for the Memory Hierarchy

m Write code that has locality
= Spatial: access data contiguously
= Temporal: make sure access to the same data is not too far apart in
time
m How to achieve?
= Proper choice of algorithm
= Loop transformations

m Cache versus register level optimization:
" |n both cases locality desirable

= Register space much smaller + requires scalar replacement to
exploit temporal locality

= Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

I
*

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles (64 B as in Core 2 Duo)
" Cache size C << n (much smaller than n)

m First iteration: s
" n/8+ n=9n/8 misses

I
*

= Afterwards in cache:
(schematic) —

]
*

10 8 wide

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
® Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m Second iteration:
= Again:
n/8 + n =9n/8 misses

m Total misses:
" 9n/8 * n?=(9/8) * n3

11

8 wide

Blocked Matrix Multiplication

c = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (jl1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + j1l];

I
*
+

i1

I

12 Block size B x B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
= Three blocks ¥ fit into cache: 3B2< C

m First (block) iteration:
= B2/8 misses for each block ™

= 2n/B * B2/8 = nB/4
(omitting matrix c)

= Afterwards in cache []
(schematic)

13

n/B blocks
N

e | |1 \

Block size Bx B

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

® Cache size C << n (much smaller than n)
" Three blocks fit into cache: 3B2< C

. . n/B blocks
m Second (block) iteration: A

= Same as first iteration]
= 2n/B * B%/8 =nB/4

m Total misses: Block size B x B
= nB/4 * (n/B)? = n3/(4B)

14

Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
" But program has to be written properly

15

Today

m Program optimization:

" Cache optimizations

m Linking

16

Example C Program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int main() static int *bufp0 = &buf[0];
{ static int *bufpl;

swap () ;

return O; void swap ()
} {

int temp;

bufpl = &buf[l];
temp = *bufp0;
*bufp0 = *bufpl;
*bufpl = temp;

17

Static Linking

m Programs are translated and linked using a compiler driver:

unix> gcc -02 -g -o p main.c swap.cC

unix> ./p
maf.n .C swf,p C Source files
Translators Translators

(cpp,ccl, as) (cpp,ccl, as)

v v Separately compiled
main.o Swap.o relocatable object files
Linker (Id)
l Fully linked executable object file
P (contains code and data for all functions

defined in main.c and swap.c
18

Why Linkers? Modularity!

m Program can be written as a collection of smaller source files,
rather than one monolithic mass.

m Can build libraries of common functions (more on this later)
= e.g., Math library, standard C library

19

Why Linkers? Efficiency!

m Time: Separate Compilation
= Change one source file, compile, and then relink.
" No need to recompile other source files.

m Space: Libraries
= Common functions can be aggregated into a single file...

" Yet executable files and running memory images contain only code
for the functions they actually use.

20

What Do Linkers Do?

m Step 1: Symbol resolution

= Programs define and reference symbols (variables and functions):
= void swap() {..} /* define symbol swap */
« swap() ; /* reference symbol swap */

= int *xp = &x; /* define xp, reference x */
= Symbol definitions are stored (by compiler) in symbol table.

= Symbol table is an array of structs

= Each entry includes name, type, size, and location of symbol.
" Linker associates each symbol reference with exactly one symbol

definition.

21

What Do Linkers Do? (cont.)

m Step 2: Relocation

"= Merges separate code and data sections into single sections

= Relocates symbols from their relative locations in the . o files to their
final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new positions.

22

Three Kinds of Object Files (Modules)

m Relocatable object file (. o file)

= Contains code and data in a form that can be combined with other relocatable
object files to form executable object file.

= Each .ofileis produced from exactly one source (.c) file

m Executable object file

= Contains code and data in a form that can be copied directly into
memory and then executed.

m Shared object file (. so file)

= Special type of relocatable object file that can be loaded into memory
and linked dynamically, at either load time or run-time.

= Called Dynamic Link Libraries (DLLs) by Windows

23

Executable and Linkable Format (ELF)

m Standard binary format for object files

m Originally proposed by AT&T System V Unix
= |Later adopted by BSD Unix variants and Linux

m One unified format for

= Relocatable object files (. 0),
= Executable object files
= Shared object files (.so)

m Generic name: ELF binaries

24

ELF Object File Format
m EIf header
= Word size, byte ordering, file type (.o,
exec, .s0), machine type, etc.
m Segment header table
= Page size, virtual addresses memory segments
(sections), segment sizes.

m .text section
= Code

m .rodata section

= Read only data: jump tables, ...

m .data section
" |nitialized global variables

m .bss section
® Uninitialized global variables
= “Block Started by Symbol”
= “Better Save Space”

25 . .
= Has section header but occupies no space

ELF header

Segment header table
(required for executables)

. text section

.rodata section

.data section

.bss section

.symtab section

.rel.txt section

.rel .data section

.debug section

Section header table

ELF Object File Format (cont.)

m .symtab section

= Symbol table

ELF header

®" Procedure and static variable names
= Section names and locations

Segment header table
(required for executables)

m .rel.text section

. text section

= Relocation info for . text section
= Addresses of instructions that will need to be

.rodata section

modified in the executable

.data section

" |nstructions for modifying.

.bss section

m .rel.data section

.symtab section

= Relocation info for . data section
= Addresses of pointer data that will need to be

.rel.txt section

modified in the merged executable

.rel .data section

m .debug section

.debug section

= |nfo for symbolic debugging (gcc -g)

m Section header table

Section header table

26 = Offsets and sizes of each section

Linker Symbols

m Global symbols
= Symbols defined by module m that can be referenced by other modules.
"= E.g.:non-static Cfunctions and non-static global variables.

m External symbols

= Global symbols that are referenced by module m but defined by some
other module.

m Local symbols
= Symbols that are defined and referenced exclusively by module m.
= E.g.: Cfunctions and variables defined with the static attribute.
" Local linker symbols are not local program variables

27

Resolving Symbols

Global

/]

int bu

[2]

int main ()

{
swap () ;
return O;

}

{1, 2};

main.c

External

28

Linker knows _—~
nothing of temp

External

Local

static int *buf
static int *bufpl;

{

int temp;
”/g:;;; sbuf[1];
temp = *bufpO;
*bufp0 *bufpl;
*bufpl temp;

4
extern int buf[l}///

sbuf[0] ;

void swap () €<— Global

swap.

Relocating Code and Data

Relocatable Object Files

System code

System data

main.o

main ()

int buf[2]={1,2}

Swap.o

swap ()

int *bufpO0=&buf[0]

int *bufpl

29

.text
.data

.text
.data

.text

.data
.bss

N/

Headers

System code

main ()

swap ()

More system code

System data

int buf[2]={1,2}

int *bufp0=&buf[0]

Uninitialized data

.symtab
.debug

Executable Object File

Relocation Info (main)

main.c main.o
int buf[2] = {1,2}; 0000000 <main>:
0: 55 push %ebp
int main () 1: 89 e5 mov %esp, $ebp
{ 3: 83 ec 08 sub $0x8, $esp
6: e8 fc ff ff ff call 7 <main+0x7>
swap () ; 7: R 386 PC32 swap
return 0; b: 31 c0 xor %eax,%eax
} d: 89 ec mov %ebp, $esp
f: 5d pop %ebp
10: c3 ret

Source: objdump
30

00000000 <buf>:

Disassembly of section

0: 01 00 00 00 02 00 00 00

.data:

Relocation Info (swap, . text)

swap.c

swap.o

extern int buf][];

static int *bufp0 =
&buf[0];
static int *bufpl;

void swap ()

{

int temp;

bufpl = &buf[l];
temp = *bufp0;
*bufp0 = *bufpl;
*bufpl = temp;

31

Disassembly of section

00000000 <swap>:
0: 55
1: 8 15 00 00 00 00

7: al 0 00 00 OO

c: 89 e5
e: c7 05 00 00 00 OO

18: 89 ec
la: 8b Oa
lc: 89 02

le: al 00 00 00 OO

23: 89 08
25: 5d
26: c3

.text:

push sebp

mov 0x0, %edx
3: R 386 32 bufp0
mov 0x4, %$eax
8: R 386 32 buf
mov %esp, $ebp
movl $0x4,0x0

10: R 386 32 bufpl

mov %ebp, sesp
mov %$edx) , $ecx
mov %eax, (%edx)
mov 0x0, seax
1f: R 386 32 bufpl
mov %ecx, (%eax)
pop sebp

ret

Relocation Info (swap, .data)

swap.c

extern int bufl[];

static int *bufp0 =
&buf[0];
static int *bufpl;

void swap ()
{

int temp;

bufpl = &buf[l];

temp = *bufpO;
*bufp0 = *bufpl;
*bufpl = temp;

Disassembly of section .data:

00000000 <bufpO0>:
0: 00 00 00 0O

0: R 386 32 buf

32

Executable After Relocation (.text)

080483b4

80483b4:
80483b5:
80483b7:
80483ba:
80483bf:
80483cl:
80483c3:
80483c4:

080483c8

80483c8:
80483c9:
80483cf:
80483d4:
80483d6:
80483dd:
80483e0:
80483e2:
80483e4:
80483e6:
80483eb:
80483ed:
80483ee:

<main>:

<swap>:

55
89
83
e8
31
89
5d
c3

55
8b
al
89
c’

89
8b
89
al
89
5d
c3

eb5
ec
09
cO
ec

15
58
eb5
05

ec
Oa
02

08

08
00

5¢
94

48

00 00

94 04 08
04 08

95 04 08

push
mov
sub
call
Xor
mov
pPop
ret

push
mov
mov
mov
movl

mov
mov
mov
mov
mov
pPop
ret

sebp

sesp, $ebp
$0x8, $esp
80483c8 <swap>
$eax, seax
%ebp, sesp

%ebp

%ebp

0x804945¢c, $edx
0x8049458, $eax

sesp, sebp
$0x8049458,0x8049548

%ebp, %sesp
(%edx) , %ecx
%eax, (%edx)
0x8049548, %eax
%ecx, (%eax)
%ebp

99

Executable After Relocation (.data)

Disassembly of section .data:

08049454 <buf>:
8049454 01 00 00 00 02 00 00 OO

0804945¢c <bufp0>:
804945c: 54 94 04 08

34

Strong and Weak Symbols

m Program symbols are either strong or weak
" Strong: procedures and initialized globals
" Weak: uninitialized globals

pl.c p2.cC
strong > int foo=5; int foo:; |«
strong - pl() { P2 () {

} }

35

weak

strong

Linker’s Symbol Rules

m Rule 1: Multiple strong symbols are not allowed
= Each item can be defined only once

= Otherwise: Linker error

m Rule 2: Given a strong symbol and multiple weak symbol,

choose the strong symbol
= References to the weak symbol resolve to the strong symbol

m Rule 3: If there are multiple weak symbols, pick an arbitrary
one
= Can override this with gcc —fno-common

36

Linker Puzzles

int x;) ;

p1() {} p1() {} Link time error: two strong symbols (p1)
int x; int x; References to x will refer to the same

pl() {} p2() {} uninitialized int. Is this what you really want?
int x; double x; .) 2 mich) |

A s p2() {} W.rl;ces to x in p2 might overwrite y!

pL() {} Evill

int x=7; double x; Writes to x in p2 will overwrite y!

int y=5; p2 () { } Nastyl

pl() {}

int x=7; int x; References to x will refer to the same initialized
pl() {} p2() {} variable.

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.

Global Variables

m Avoid if you can

m Otherwise
= Use static ifyoucan
" |nitialize if you define a global variable
= Use extern if you use external global variable

38

Packaging Commonly Used Functions

m How to package functions commonly used by programmers?

= Math, I/O, memory management, string manipulation, etc.

m Awkward, given the linker framework so far:
= Option 1: Put all functions into a single source file
= Programmers link big object file into their programs
= Space and time inefficient
® Option 2: Put each function in a separate source file

= Programmers explicitly link appropriate binaries into their
programs

= More efficient, but burdensome on the programmer

39

Solution: Static Libraries

m Static libraries (.a archive files)

= Concatenate related relocatable object files into a single file with an
index (called an archive).

" Enhance linker so that it tries to resolve unresolved external references
by looking for the symbols in one or more archives.

= |f an archive member file resolves reference, link into executable.

40

Creating Static Libraries

atof. .C prini:f .C random.c
Translator Translator Translator
atoi.o printf.o random. o

\ l

Archiver (ar)

l

libc.a C standard library

unix> ar rs libec.a \
atoi.o printf.o .. random.o

m Archiver allows incremental updates
m Recompile function that changes and replace .o file in archive.
41

Commonly Used Libraries

libc. a (the C standard library)
= 8 MB archive of 900 object files.

= |/0, memory allocation, signal handling, string handling, data and time, random

numbers, integer math

libm. a (the C math library)
= 1 MB archive of 226 object files.

= floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t /usr/lib/libc.a | sort

fork.o

fprintf.o

fpu control.o
fputc.o
freopen.o
fscanf.o
fseek.o
fstab.o

% ar -t /usr/lib/libm.a

e acos.o

e acosf.o

e acosh.o

e acoshf.o
e acoshl.o
e acosl.o

e asin.o

e asinf.o

e asinl.o

sort

Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

1 1

Translators
(cpp, ccl, as)

S~

ReI.ocatfvbIe main? . o
object files

l

l

Archiver
(ar)
libvector.a libc.a Static libraries
addvec .o printf.o and any other
' modules called by printf.o
Linker (1d)

43

l

Fully linked
executable object file

Using Static Libraries

m Linker’s algorithm for resolving external references:

Scan .o filesand . a files in the command line order.
During the scan, keep a list of the current unresolved references.

As each new .o or . a file, obj, is encountered, try to resolve each
unresolved reference in the list against the symbols defined in obj.

If any entries in the unresolved list at end of scan, then error.

m Problem:

44

" Command line order matters!
" Moral: put libraries at the end of the command line.

unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function main':
libtest.o(.text+0x4): undefined reference to "libfun'

Loading Executable Object Files

Executable Object File

ELF header

Program header table
(required for executables)

.init section

.text section

.rodata section

.data section

.bss section

.symtab

.debug

Jine

.strtab

Section header table
(required for relocatables)

0xc0000000

0x40000000

0x08048000

0

Kernel virtual memory

User stack
(created at runtime)

’
f

Memory-mapped region for
shared libraries

T

Run-time heap
(created bymalloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory
invisible to
user code

+——%esp
(stack
pointer)

<— brk

Loaded
from

} the
executable

file

Shared Libraries

m Static libraries have the following disadvantages:
= Duplication in the stored executables (every function need std libc)

® Duplication in the running executables

= Minor bug fixes of system libraries require each application to explicitly
relink

m Modern Solution: Shared Libraries

" QObject files that contain code and data that are loaded and linked into
an application dynamically, at either load-time or run-time

= Also called: dynamic link libraries, DLLs, .so files

46

Shared Libraries (cont.)

m Dynamic linking can occur when executable is first loaded
and run (load-time linking).

= Common case for Linux, handled automatically by the dynamic linker
(ld-linux.so).

= Standard Clibrary (1ibc. so) usually dynamically linked.

m Dynamic linking can also occur after program has begun
(run-time linking).
= |n Unix, this is done by calls to the dlopen () interface.
= High-performance web servers.
= Runtime library interpositioning

m Shared library routines can be shared by multiple processes.

" More on this when we learn about virtual memory

47

Dynamic Linking at Load-time

main2.c vector.h unix> gcc -shared -o libvector.so \
addvec.c multvec.c

Translators /
(cpp, ccl, as) libe. so

i libvector.so
Rel o€atab.Ie main2.o Relocation and symbol table
object file l info
Linker (1d)
Partially linked p2
executable object file l
Loader libc.so
(execve) libvector.so
Code and data
Fully linked v
executable Dynamic linker (Ld-1inux. so)

48 in memory

Dynamic Linking at Runtime

int
int
int

int

{

#include <stdio.h>
#include <dlfecn.h>

x[2] = {1, 2};

y[2] {3, 4};
z[2];

main ()

void *handle;
void (*addvec) (int *, int *, int *, int);
char *error;

/* dynamically load the shared 1lib that contains addvec() */
handle = dlopen("./libvector.so", RTLD LAZY);
if ('handle) {

fprintf (stderr, "%s\n", dlerror()):;

exit (1) ;

49

Dynamic Linking at Run-time

/* get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec")

if ((error = dlerror()) !'= NULL) {
fprintf (stderr, "%$s\n", error);
exit(1l);

}

addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1l]);

/* unload the shared library */

if (dlclose(handle) < 0) {
fprintf (stderr, "%$s\n", dlerror()):
exit (1),

}

return 0O;

/* Now we can call addvec() it just like any other function */

50

Case Study: Library Interpositioning

Library interpositioning is a powerful linking technique that
allows programmers to intercept calls to arbitrary functions

Interpositioning can occur at:
= compile time
= When the source code is compiled
" |ink time
= When the relocatable object files are linked to form an executable
object file
= |oad/run time

= When an executable object file is loaded into memory, dynamically
linked, and then executed.

See Lectures page for real examples of using all three interpositioning
techniques to generate malloc traces.

51

Some Interpositioning Applications

Security
= Confinement (sandboxing)
= Interpose calls to libc functions.
= Behind the scenes encryption
= Automatically encrypt otherwise unencrypted network
connections.
Monitoring and Profiling
" Count number of calls to functions
® Characterize call sites and arguments to functions
= Malloc tracing
= Detecting memory leaks
= Generating malloc traces

52

Example: malloc () Statistics

Count how much memory is allocated by a function

void *malloc(size_t size) {

static void * (*fp) (size_t) = 0;
void *mp;
char *errorstr;

/* Get a pointer to the real malloc() */

if ('fp) {
fp = dlsym(RTLD NEXT, "malloc");
if ((errorstr = dlerror()) !'= NULL) {
fprintf (stderr, "%s(): %s\n", fname, errorstr);
exit (1),

}

/* Call the real malloc function */
mp = fp(size);

mem used += size;

return mp;

53

