
Organisation und Architektur von Rechnern

Foundations of Debugging

Christoph Daniel Schulze



Problems With Software

1 // Update frames
2 for (int i = 0; i < frames.length; i++) {
3 Container containers[] =
4 frames[i].getContainers();
5

6 // Update containers
7 for (int j = 0; j < containers.length; j++) {
8 SwingUtilities.updateComponentTreeUI(
9 containers[i]);

10 }
11 }

Christoph Daniel Schulze Foundations of Debugging 1 / 15



Problems With Software

Ariane 5 (Source: Wikipedia)

Christoph Daniel Schulze Foundations of Debugging 1 / 15



Problems With Software

USS Yorktown (CG-48) (Source: Wikipedia)

Christoph Daniel Schulze Foundations of Debugging 1 / 15



Outline

1 Defining Bugs
What Are Bugs?
Bug Classification
Finding Bugs

2 Fixing Bugs
Bug Fixing Strategies
Tracing
Using Debuggers

Christoph Daniel Schulze Foundations of Debugging 2 / 15



Bugs. . .
. . . in computer programming

Wikipedia says:

A software bug is an error, flaw, failure, or fault in a computer
program or system that produces an incorrect or unexpected result,
or causes it to behave in unintended ways.

Christoph Daniel Schulze Foundations of Debugging 3 / 15



A Bit of History
Where does the term ‘bug’ come from?

Legend:

• Moth found in relay of Harvard Mark II
computer with Admiral Grace Hopper
around in 1947.

• She then supposedly said she “found a
bug.”

Truth:

• The term ‘bug’ had been in use as early
as 1878.

• Grace Hopper popularized the term.

Rear Admiral Grace Hopper
(Source: Wikipedia)

Christoph Daniel Schulze Foundations of Debugging 4 / 15



The Original Log Book
Moth included

(Source: Wikipedia)

Christoph Daniel Schulze Foundations of Debugging 5 / 15



Types of Bugs
Kinds of things that can go wrong

• Arithmetic
Division by zero, overflow / underflow, loss of precision, . . .

• Logic
Infinite loops, off-by-one errors, . . .

• Syntax
Writing horst = 42 instead of horst == 42, . . .

• Resource
Null pointers, uninitialized variables, access violations, memory leaks, buffer
overflows, stack overflows, . . .

• Synchronization
Deadlocks, race conditions, . . .

Christoph Daniel Schulze Foundations of Debugging 6 / 15



Reproducability of Bugs
A measure of frustration

• Deterministically Reproducible
A fixed sequence of steps reproduces the bug.

• Non-Deterministically Reproducible
Sometimes it’s there, sometimes it’s not. (often: concurrency problems)

• Heisenbugs
A bug that is not reproducible anymore once you start debugging.

Christoph Daniel Schulze Foundations of Debugging 7 / 15



Ways for Finding Bugs
Manual and automatic

• Software Testing
Sit down and do stuff to your software. (normal use)

• Aggressive Software Testing
Sit down and do bad stuff to your software. (explicitly test corner cases)

• Code Analysis
Have a tool look for common mistakes programmers tend to make.

• Instrumentation
Analyse your software while it’s running.

Christoph Daniel Schulze Foundations of Debugging 8 / 15



What to Do Once You’ve Found a Bug
A handy list of steps towards success

1 Reproduce
Work out a sequence of steps that will cause the bug to appear.

2 Simplify
Work out a minimal sequence steps that will cause the bug to appear.

3 Deduce
Form and test hypotheses about the cause of the bug.
Things that can help:

• Tracing
• Debuggers

4 Fix
Fix the bug! Have a victory beer!

Christoph Daniel Schulze Foundations of Debugging 9 / 15



How Tracing Works
. . . and why it’s also called “printf debugging”

Insert printf(...) statements into your C code to. . .

• . . . ensure correct values of variables.

• . . . see when (and if) certain pieces of code execute.

• . . . look for violated assumptions.

Example:

1 int i;
2 for (i = 0; i <= 255; i++) {
3 // Trace
4 printf("Iteration %d\n", i);
5

6 // Do stuff
7 }

Christoph Daniel Schulze Foundations of Debugging 10 / 15



What Are Debuggers?
A short overview

Features:

• setting breakpoints

• inspecting and modifying the contents of memory and registers

• single-stepping through your code (forward and backward)

• replacing code as it runs

• remote debugging

Christoph Daniel Schulze Foundations of Debugging 11 / 15



Popular Debuggers
Programs you might use in the future

Graphical: Eclipse Debugger

Christoph Daniel Schulze Foundations of Debugging 12 / 15



Popular Debuggers
Programs you might use in the future

Command-line: The GNU Project Debugger (GDB)

Christoph Daniel Schulze Foundations of Debugging 12 / 15



Using GDB
A short introduction

Let’s use GDB to debug stuff!

Christoph Daniel Schulze Foundations of Debugging 13 / 15



Beyond Debugging
There’s more to debuggers than debugging

Fun stuff to do with debuggers:

• wreak havoc by randomly calling functions

• reverse engineer unknown programs

Christoph Daniel Schulze Foundations of Debugging 14 / 15


	Defining Bugs
	What Are Bugs?
	Bug Classification
	Finding Bugs

	Fixing Bugs
	Bug Fixing Strategies
	Tracing
	Using Debuggers


