Introduction Dataflow Language Model

Philosophy of Dataflow Languages
Synchronous Languages—Lecture 5a

Christian Schneider

v

Drastically different way of looking at computation

v

Christian-Albrechts Universitit Kiel Von Neumann imperative language style: program counter is
Department of Computer Science kin
Real-Time Systems and Embedded Systems Group g

v

Dataflow language: movement of data the priority
30 November 2011
Last compiled: December 6, 2011, 17:32 hrs

v

Scheduling responsibility of the system, not the programmer

Thanks to Stephen Edwards

SCADE / Model Rallway (http: //wwwl. cs. columbia. edu/ ~sedwards/) for providing material for
q this lecture
<
C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 1 C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 3
Introduction Dataflow Language Model
Overview Dataflow Language Model

Introduction
Dataflow Language Model
Dataflow Communiction
Applications

SCADE. Processes communicating through FIFO buffers
Basics

SCADE Language

Model railway
Overview
Hardware
Network

Summary

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 2 C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 4

Introduction Dataflow Language Model

Dataflow Languages

» Every process runs simultaneously

v

Processes can be described with imperative code
» Compute ...compute ...receive ...compute ...transmit

> Processes can only communicate through buffers

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 5

Introduction

Dataflow Communiction

Dataflow Communication

» Communication is only through buffers
» Buffers usually treated as unbounded for flexibility

» Sequence of tokens read guaranteed to be the same as the
sequence of tokens written

» Destructive read: reading a value from a buffer removes the
value

» Much more predictable than shared memory

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 6

Introduction

Dataflow Communiction

Dataflow Languages

» Once proposed for general-purpose programming

v

Fundamentally concurrent: should map more easily to parallel
hardware

v

A few lunatics built general-purpose dataflow computers
based on this idea

> Largely a failure: memory spaces anathema to the dataflow
formalism
C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 7

Introduction

Applications

Applications of Dataflow

v

Not a good fit for, say, a word processor

v

Good for signal-processing applications

v

Anything that deals with a continuous stream of data

v

Becomes easy to parallelize

v

Buffers typically used for signal processing applications anyway

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 8

Introduction

Applications

Applications of Dataflow

Perfect fit for block-diagram specifications
» Circuit diagrams
» Linear/nonlinear control systems
» Signal processing

v

v

Suggest dataflow semantics
» Common in Electrical Engineering

Processes are blocks, connections are buffers

v

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 9

SCADE Basics

Safety Critical Applications Development Environment®

—

> The language ...
> is a graphical dataflow language (with textual backend)
» adheres to the Hypothesis of Synchrony
» contains built-ins for sequential behavior (state machines)
> provides a type system

> The tool ...
» provides code generation + simulation
> generated code is approved for use in safety critical systems
» can be connected to external tools (simulation stimuli,
simulation data visualization, ...)
» equipped with further components (verification, Ul modeling)

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 10

SCADE
SCADE Language

The SCADE language — Context

» Situation of software in an embedded, esp. a reactive, system:

surrounding system (mechanic, electronic, pneumatic,...)

analog software analog
hardware

hardware —
(actors) digitale hardware (sensors)

= code is executed in a cyclic manner, event loop is realized by
hardware or an operating system

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 11

SCADE
SCADE Language

The SCADE language

» A graphical successor of the dataflow language Lustre[2]
» Assignments on memories are understood as equations
» each memory value must be determined in every computation
cycle explicitly
» each value computation must be realizable by a finite amount
of atomic operations (no unbound loops!)
» multiple assignments to a memory in a cycle are rejected at
compile time.
> more on that later on in a dedicated lecture on dataflow
» Provides a bunch of basic operators (arithmetic, clocking,
data structuring)

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 12

SCADE
SCADE Language

The SCADE language

LowLimit HiLimit

Implementation of the linear trapezoidal integration in the SCADE standard library.

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 13

SCADE
SCADE Language

The SCADE language — Compound operators

» Enable structuring + reuse of particular specifications

» Can be specified. . .

» graphically — the typical way
» textually (in form of SCADE's textual backend)

» by means of host code functions

1
——s
e Rt Prort

e

ake 7
_— j A
s
i}
I_ 2
B s Frzset Priort
l ke
R
ABRO in SCADE
C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 14

SCADE
SCADE Language

The SCADE language — Compound operators (cont'd)

Compound operators may ...
» define their interfaces (inputs, outputs, generic constants).
» maintain local variables & signals (act as wires — no memory).
» instantiate other compound & basic operators.
» Recursive calls are strictly prohibited.

» accommodate State Machines
» States can be understood as compound operators, as well.
> may contain State Machines again = Hierarchy.
» State Machine dialect is close to André's SyncCharts[1]

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 15

The SCADE language — State Machines

S
B N B2

s
N Bty

T ~
A
oenet | aimema
(&
I IR
— —D

Implementation of the model railway switch controller.

SCADE
SCADE Language

The SCADE language — Further constructs 1/6

» SCADE supports (nested) structs & arrays

» Provides dedicated access/composition/manipulation
operators

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 17

SCADE
SCADE Language

The SCADE language — Further constructs 2/6

Structured
: any_type any type :
Make Flatten

F
g
g
R
[l
i

ieldB =

Data structure Copy with

g
3

odif.

ooo
[
=]

3
[

=}
S
=

a array Scal:

)
g

to

<
S

ctor

i
Bl
[

@
S
iy

Concatenate

2
=

]
2
3
a
@

Transpose

o
1
o

Static projection Dynamic projection

Taken from SCADE Suite reference card:
http: //www. esterel-technologies. com/products/ scade-suite/modeler

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 18

SCADE
SCADE Language

The SCADE language — Further constructs 3/6

» SCADE supports (nested) structs & arrays

> Provides dedicated access/composition/manipulation
operators

» lterator functions: map, mapi, fold, foldi, ...

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 19

SCADE
SCADE Language

The SCADE language — Further constructs 4/6

it
EER L L

w67 g

et

" fold<<d>>
it A map<<d>> 0o —a
234

i
o +_| it
PR i) + |

Taken from SCADE Suite website:
http: //www. esterel-technologies. com/products/scade-suite/modeler

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 20

SCADE
SCADE Language

The SCADE language — Further constructs 5/6

» SCADE supports (nested) structs & arrays

> Provides dedicated access/composition/manipulation
operators

» lterator functions: map, mapi, fold, foldi, ...

» Conditional execution: computation of an operator may be
restricted by a guard (initial output values are mandatory)

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 21

SCADE
SCADE Language

The SCADE language — Further constructs 6/6

Boolean activate

X %

op

op

0 init default default

Clocked activate

¥ [l ¥X
op ®_ i op ®_ i op ®_
when when not when match

Taken from SCADE Suite reference card:
http: //www. esterel-technologies. com/products/scade-suite/modeler

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 22

SCADE
SCADE Language

To Go Further

[@ Charles André.

SyncCharts: A visual representation of reactive behaviors.
Technical Report RR 95-52, rev. RR 96-56, 13S,
Sophia-Antipolis, France, Rev. April 1996.

@ Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud.
The synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305-1320, September 1991.

» Esterel Technologies

SCADE Reference card
http://www.esterel-technologies.com/files/
data-sheets/SCADE-Reference-card.pdf

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 23

Overview

Model railway

The model railway installation

—

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 24

Overview

Model railway

The model railway installation

> idea came up in 1995 at group of Prof. Kluge
> inspired by a mountain pass in Canada

> has been re-engineered twice

> scale is HO, currently

> 127 meter lanes (48 blocks)

> 11 trains

» 28 switches, 56, signals, 80 contacts
> 24 lights, ...

This part of the lecture is based on Stephan Hohrmann's colloquium talk in

context of his diploma thesis.

C| Alu Synchronous Languages WS 2011, Lecture 5a Slide 25

Overview

Model railway

First generation

WS 2011, Lecture 5a Slide 26

C| Alu Synchronous Languages

Overview

Model railway

Second generation

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 27
Overview
Model railway
Track scheme R
& KiisT2 e o
OO @ @ B ksts @ @ O Ouun wme ®
PO i st e
Kisto & ® —— KH_ST 5 . §

KN 8
KIO_LN_0

oc N4

10N 1

0C_eT 0

c - iCT 0

1o N4

c|alu

oL 2

KHNS

EJJ

KHLN 6

KH.LN,
ks

1N 3

0c N5
0.
KH_LN O

oc N2

ﬁ

1c_sT 2

—. csta . _

1657 1

@@@@ucsra@@@@

0C_s7 2

Synchronous Languages

e T

WS 2011, Lecture 5a Slide 28

Overview
Model railway
Simplified scheme

st e wsts

B b o e

L OO O @ O stz © O O @... e
° == s —
wisto W K STS P 4 LR

T |

o2 oLno

OCINO _coe \NOUTE oc N1
LR / t — cws — s
7 [T Do, oz

i o2 S T -

"

KIO_Lh_1

I

KN B
KIO_LN_0
oc_tn 0

oc I s
st

. Y
|
\ A\
|
|
h\

cs3 p——
cor2 Eauy N
. st e N CsTe
! \ ocsis @ ® 0 00 ocss @ ® ® © _® ocsio / I
1] — il ocsT2 — 7 —)
8| o 0oC_ST_1 — 8
! e s g 89099 |
s e s g M e P s SO
C| Alu Synchronous Languages WS 2011, Lecture 5a Slide 29
Overview

Model railway

Second generation

C| Alu Synchronous Languages WS 2011, Lecture 5a Slide 30

Overview

Model railway

Third generation

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 31

Model railway Hardware

Hardware: Powering

> engines are driven with 12 volt direct current
» direction is according to polarity, speed is determined by PWM

» = track must be separated in blocks

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 32

Model railway Hardware Model railway Hardware

Hardware: Switches Hardware: Contacts

. . » recognition of train passages by means or reed contacts
» enable change from main to branch and vice versa g passages by

. . . . » task: maintaining train positions, stopping in time/place
» driven by electromechanical device = heavy noise & P StoppIng /p

> installed with redundancy = direction observation possible

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 33 C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 35

Model railway Hardware Model railway Hardware

Centerpieces Hardware: Signals

» main signals (red/green) und block signals (+yellow)
» reality, visualizing of the system state

> independent = are to be controlled by the software

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 34 C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 36

Model railway Hardware

Hardware: Lights

» decoration, highlighting of prominent parts

> can be used for debugging purposes

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 37

Model railway Hardware

Hardware: Railroad crossing

» barriers, lights, bell, and sensors

> independent = are to be controlled by the software, as well

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 38

Hardware

Model railway

Hardware: Power device

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 39

Model railway Hardware

Hardware: Power device

> drives parts of the periphery, boards can be connected to
arbitrary bus systems
> signals
» 4 outputs each driving 3 LEDs
> contacts

» 4 inputs each observing a pair of reed contacts
» complex filtering + examination, redundancy management

» track driver

» 2 short circuit protected outputs supporting forward,
backward, brake, and speed regulation by means of PWM
> integrated occupancy detection, continuous speed control

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 40

Model railway Hardware

Hardware: Power device

> switches
> 4 outputs driven by by a separate power source
» may drive switches, lights, bell, ...
> robust wtr. to heavy disturbance
» Serial ports
> 4 port for connecting with computers
» UART-based protocol
» firmware chooses active port, at most 1 active at once
» 19200 Baud, 8N1, full duplex, cycle of at most 10 ms

» failures
» EEPROM backups failures of reed contacts, short curcuits, . ..
> display
» 7 segment display exhibits internal state
C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 41

Model railway Network

Connectivity: Modular concept

@ 888 o—s

[
5 Lampen Signale Schranken
s
E :@ = ==
Weichen Kontakte Gleise Glocke
g Leistungselektronik
=
<
3 —< $ RS232 $ P
?
[$ 1 Ethernet
a CAN{
= TTP
o CAN2

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 42

Model railway Network

Connectivity: PC104 computers

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 43

Model railway Network

Connectivity: TTP Powernodes

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 44

Model railway Network

Connectivity: Networking

3
PC104 PC104 g
3
£
TP TTP
== CAN-Bus PC104
CAN-Bus TTP
TTP-Bus
== Ethernet
TP TTP
PC104 PC104
C| Alu Synchronous Languages WS 2011, Lecture 5a Slide 45

Model railway

Network

Connectivity: Wiring/Ethernet

C| Alu Synchronous Languages WS 2011, Lecture 5a Slide 46

Model railway

Network

Connectivity: TTP

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 47

Summary

Summary

> introduction into the dataflow programming paradigm
» ‘“crash course” on the SCADE language
> presentation of our model railway demonstrator

C|A lu Synchronous Languages WS 2011, Lecture 5a

Slide 48

