Introduction Dataflow Language Model
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Scheduling responsibility of the system, not the programmer
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Introduction Dataflow Language Model

Dataflow Languages

» Every process runs simultaneously

v

Processes can be described with imperative code
» Compute ...compute ...receive ...compute ...transmit

> Processes can only communicate through buffers
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Introduction

Dataflow Communiction

Dataflow Communication

» Communication is only through buffers
» Buffers usually treated as unbounded for flexibility

» Sequence of tokens read guaranteed to be the same as the
sequence of tokens written

» Destructive read: reading a value from a buffer removes the
value

» Much more predictable than shared memory
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Introduction

Dataflow Communiction

Dataflow Languages

» Once proposed for general-purpose programming

v

Fundamentally concurrent: should map more easily to parallel
hardware

v

A few lunatics built general-purpose dataflow computers
based on this idea

> Largely a failure: memory spaces anathema to the dataflow
formalism
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Introduction

Applications

Applications of Dataflow

v

Not a good fit for, say, a word processor

v

Good for signal-processing applications

v

Anything that deals with a continuous stream of data

v

Becomes easy to parallelize

v

Buffers typically used for signal processing applications anyway
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Introduction

Applications

Applications of Dataflow

Perfect fit for block-diagram specifications
» Circuit diagrams
» Linear/nonlinear control systems
» Signal processing

v

v

Suggest dataflow semantics
» Common in Electrical Engineering

Processes are blocks, connections are buffers

v
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SCADE Basics

Safety Critical Applications Development Environment®

—

> The language ...
> is a graphical dataflow language (with textual backend)
» adheres to the Hypothesis of Synchrony
» contains built-ins for sequential behavior (state machines)
> provides a type system

> The tool ...
» provides code generation + simulation
> generated code is approved for use in safety critical systems
» can be connected to external tools (simulation stimuli,
simulation data visualization, ...)
» equipped with further components (verification, Ul modeling)
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SCADE
SCADE Language

The SCADE language — Context

» Situation of software in an embedded, esp. a reactive, system:

surrounding system (mechanic, electronic, pneumatic,...)

analog software analog
hardware

hardware —
(actors) digitale hardware (sensors)

= code is executed in a cyclic manner, event loop is realized by
hardware or an operating system
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SCADE
SCADE Language

The SCADE language

» A graphical successor of the dataflow language Lustre[2]
» Assignments on memories are understood as equations
» each memory value must be determined in every computation
cycle explicitly
» each value computation must be realizable by a finite amount
of atomic operations (no unbound loops!)
» multiple assignments to a memory in a cycle are rejected at
compile time.
> more on that later on in a dedicated lecture on dataflow
» Provides a bunch of basic operators (arithmetic, clocking,
data structuring)
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SCADE
SCADE Language

The SCADE language

LowLimit HiLimit

Implementation of the linear trapezoidal integration in the SCADE standard library.
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SCADE
SCADE Language

The SCADE language — Compound operators

» Enable structuring + reuse of particular specifications

» Can be specified. . .

» graphically — the typical way
» textually (in form of SCADE's textual backend)

» by means of host code functions

1
——s
e Rt Prort

e

ake 7
_— j A
s
i}
I_ 2
B s Frzset Priort
l ke
R
ABRO in SCADE
C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 14

SCADE
SCADE Language

The SCADE language — Compound operators (cont'd)

Compound operators may ...
» define their interfaces (inputs, outputs, generic constants).
» maintain local variables & signals (act as wires — no memory).
» instantiate other compound & basic operators.
» Recursive calls are strictly prohibited.

» accommodate State Machines
» States can be understood as compound operators, as well.
> may contain State Machines again = Hierarchy.
» State Machine dialect is close to André's SyncCharts[1]
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The SCADE language — State Machines
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SCADE
SCADE Language

The SCADE language — Further constructs 1/6

» SCADE supports (nested) structs & arrays

» Provides dedicated access/composition/manipulation
operators
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SCADE
SCADE Language

The SCADE language — Further constructs 2/6
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Taken from SCADE Suite reference card:
http: //www. esterel-technologies. com/products/ scade-suite/modeler
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SCADE
SCADE Language

The SCADE language — Further constructs 3/6

» SCADE supports (nested) structs & arrays

> Provides dedicated access/composition/manipulation
operators

» lterator functions: map, mapi, fold, foldi, ...
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SCADE
SCADE Language

The SCADE language — Further constructs 4/6
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Taken from SCADE Suite website:
http: //www. esterel-technologies. com/products/scade-suite/modeler
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SCADE
SCADE Language

The SCADE language — Further constructs 5/6

» SCADE supports (nested) structs & arrays

> Provides dedicated access/composition/manipulation
operators

» lterator functions: map, mapi, fold, foldi, ...

» Conditional execution: computation of an operator may be
restricted by a guard (initial output values are mandatory)
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SCADE
SCADE Language

The SCADE language — Further constructs 6/6

Boolean activate

X %

op

op

0 init default default

Clocked activate

¥ [l ¥X
op ®_ i op ®_ i op ®_
when when not when match

Taken from SCADE Suite reference card:
http: //www. esterel-technologies. com/products/scade-suite/modeler
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SCADE
SCADE Language

To Go Further

[@ Charles André.

SyncCharts: A visual representation of reactive behaviors.
Technical Report RR 95-52, rev. RR 96-56, 13S,
Sophia-Antipolis, France, Rev. April 1996.

@ Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel
Pilaud.
The synchronous data-flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305-1320, September 1991.

» Esterel Technologies

SCADE Reference card
http://www.esterel-technologies.com/files/
data-sheets/SCADE-Reference-card.pdf
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Overview

Model railway

The model railway installation

—
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Overview

Model railway

The model railway installation

> idea came up in 1995 at group of Prof. Kluge
> inspired by a mountain pass in Canada

> has been re-engineered twice

> scale is HO, currently

> 127 meter lanes (48 blocks)

> 11 trains

» 28 switches, 56, signals, 80 contacts
> 24 lights, ...

This part of the lecture is based on Stephan Hohrmann's colloquium talk in

context of his diploma thesis.
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Overview

Model railway

First generation

WS 2011, Lecture 5a Slide 26

C| Alu Synchronous Languages

Overview

Model railway

Second generation
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Overview
Model railway
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Overview
Model railway
Simplified scheme
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Overview

Model railway

Second generation
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Overview

Model railway

Third generation
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Model railway Hardware

Hardware: Powering

> engines are driven with 12 volt direct current
» direction is according to polarity, speed is determined by PWM

» = track must be separated in blocks
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Model railway Hardware Model railway Hardware

Hardware: Switches Hardware: Contacts

. . » recognition of train passages by means or reed contacts
» enable change from main to branch and vice versa g passages by

. . . . » task: maintaining train positions, stopping in time/place
» driven by electromechanical device = heavy noise & P  StoppIng /p

> installed with redundancy = direction observation possible
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Model railway Hardware Model railway Hardware

Centerpieces Hardware: Signals

» main signals (red/green) und block signals (+yellow)
» reality, visualizing of the system state

> independent = are to be controlled by the software
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Model railway Hardware

Hardware: Lights

» decoration, highlighting of prominent parts

> can be used for debugging purposes
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Model railway Hardware

Hardware: Railroad crossing

» barriers, lights, bell, and sensors

> independent = are to be controlled by the software, as well
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Hardware

Model railway

Hardware: Power device
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Model railway Hardware

Hardware: Power device

> drives parts of the periphery, boards can be connected to
arbitrary bus systems
> signals
» 4 outputs each driving 3 LEDs
> contacts

» 4 inputs each observing a pair of reed contacts
» complex filtering + examination, redundancy management

» track driver

» 2 short circuit protected outputs supporting forward,
backward, brake, and speed regulation by means of PWM
> integrated occupancy detection, continuous speed control

C|A lu Synchronous Languages WS 2011, Lecture 5a Slide 40



Model railway Hardware

Hardware: Power device

> switches
> 4 outputs driven by by a separate power source
» may drive switches, lights, bell, ...
> robust wtr. to heavy disturbance
» Serial ports
> 4 port for connecting with computers
» UART-based protocol
» firmware chooses active port, at most 1 active at once
» 19200 Baud, 8N1, full duplex, cycle of at most 10 ms

» failures
» EEPROM backups failures of reed contacts, short curcuits, . ..
> display
» 7 segment display exhibits internal state
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Model railway Network

Connectivity: Modular concept
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Model railway Network

Connectivity: PC104 computers
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Model railway Network

Connectivity: TTP Powernodes
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Model railway Network

Connectivity: Networking

3
PC104 PC104 g
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TP TTP
== CAN-Bus PC104
CAN-Bus TTP
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== Ethernet
TP TTP
PC104 PC104
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Model railway

Network

Connectivity: Wiring/Ethernet
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Model railway

Network

Connectivity: TTP
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Summary

Summary

> introduction into the dataflow programming paradigm
» ‘“crash course” on the SCADE language
> presentation of our model railway demonstrator
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