SCCharts Overview Extended SCCharts \rightarrow Core SCCharts Normalizing Core SCCharts & Implementation

SyncCharts

SyncCharts:

ABRO

ndB

WS 2013, Lecture 20

WS 2013, Lecture 20

Statechart dialect for specifying

Synchrony Hypothesis 1. Discrete ticks

signals emitted by the environment (input)

deterministic & robust concurrency

2. Computations: Zero time

Hierarchy, Concurrency, Broadcast

chrony hypothesis

Slide 3

("global clock")

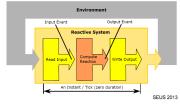
Synchronous Languages—Lecture 20

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel Department of Computer Science Real-Time Systems and Embedded Systems Group

13 January 2013 Last compiled: January 31, 2014, 8:56 hrs

SCCharts - Sequentially Constructive Statecharts for Safety-Critical Applications


CAU Synchronous Languages WS 2013, Lecture 20

Slide 1

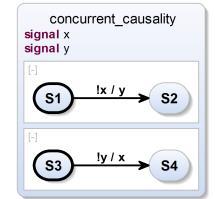
SCCharts Overview Motivation Extended SCCharts \rightarrow Core SCCharts Normalizing Core SCCharts & Implementation

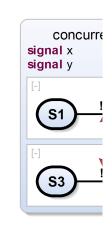
Reactive Embedded Systems

CAU

- Embedded systems react to inputs with computed outputs
- Typically state based computations

Slide 2


- Computations often exploit public class ValueHolder {
 private List listeners - new LinkedList();
 private int value;
 public interface Listener { concurrency \rightarrow Threads
 - Thursda and much laws atta WS 2013, Lecture 20 Synchronous Languages


SCCharts Overview Motivation Extended SCCharts \rightarrow Core SCCharts Normalizing Core SCCharts & Imple

Synchronous Languages

Causality in SyncCharts

CAU

SCCharts Motivation Extended SCCharts → Core SCCharts Contribution Normalizing Core SCCharts & Implementation Overview Overview	SCCharts Over Extended SCCharts → Core SCC Normalizing Core SCCharts & Implement:	harts Features
Causality in SyncCharts (cont'd)	SCCharts Overview	
sequential_causality signal x [1]	ABO input output bool A input output bool B output bool O1 output bool O2	 SCCharts = SyncCharts syntax + Seqentially Constructive semantics
$s_1 \xrightarrow{lx/x} s_2$ done = true;	VaitAB WaitAB WaitB WaitB B / 01 = true DoneB	 Hello World of Sequential Constructiveness: ABO Variables instead of signals Behavior (briefly) Initialize Initialize
 Rejected by SyncCharts compiler 	[-] HandleA	2. Concurrently wait for inputs A or B to become <i>true</i>
 Signal Coherence Rule 	WaitA A/B= true; 01 = true> DoneA	3. Once A and B are true after the initial tick, take <i>Termination</i>
 May seem awkward from SyncCharts perspective, but common paradigm 	/ 01 = false; 02 = true	4. Sequentially set $O1$ and $O2$
 Deterministic sequential execution possible using Sequentially Constructive MoC → Sequentially Constructive Charts (SCCharts) 	GotAB	☐

WS 2013, Lecture 20

Motivation Contribution Overview

SCCharts Overview	Overview
Extended SCCharts \rightarrow Core SCCharts	Features
Normalizing Core SCCharts & Implementation	Core Transformations

2: x < 0 / x = 0

M1

О

N1 suspend y > 10 weak suspend y > 1 \bigcirc

0

1: b / y = f(x)

input bool b input output int x output float y = 0.0 extern float f(int)

C

Synchronous Languages

Slide 5

SCCharts Overview

CAU

Overview

► Extended SCCharts → Core SCCharts

Synchronous Languages

Normalizing Core SCCharts

 $\begin{array}{l} \mbox{SCCharts Overview} \\ \mbox{Extended SCCharts} \rightarrow \mbox{Core SCCharts} \\ \mbox{Normalizing Core SCCharts & Implementation} \end{array}$

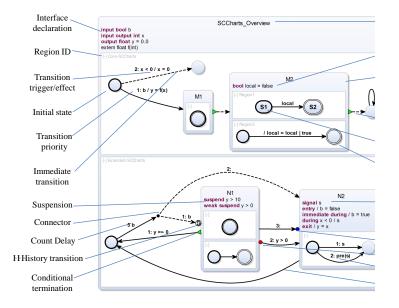
► Implementation in KIELER

CAU

SCCharts - Features

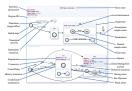
2: y > 0

2: pre/s


SCCharts_Overview

bool local = false

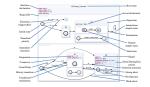
M2


WS 2013, Lecture 20

Slide 7

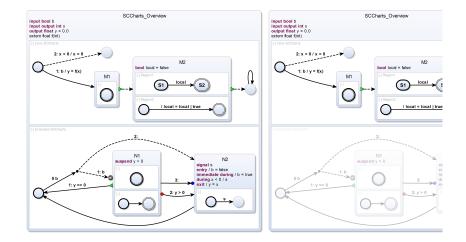
SCCharts Overview Overview Extended SCCharts → Core SCCharts Features Normalizing Core SCCharts & Implementation Core Transformations

Motivation (Cont'd)


Advantages:

- Minimal base language (Core SCCharts)
 - + advanced features (Extended SCCharts)
 - Similar to Esterel Kernel Statements & Statement Expansion
- Advanced features are syntactic sugar
- Extensible
- Compilation (ongoing research)
 - Modular & extensible
 - Less complex
 - Possibly less efficient

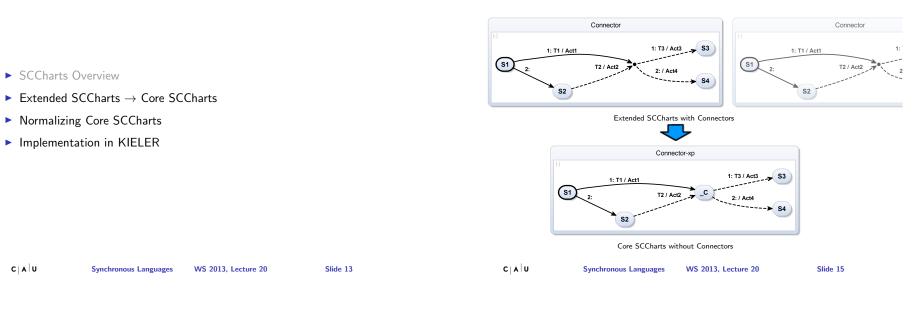
CA	U	Synchronous Languages	WS 2013, Lecture 20	Slide 11
----	---	-----------------------	---------------------	----------


SCCharts Overview	Overview	SCCharts Overview	Overview
Extended SCCharts \rightarrow Core SCCharts	Features	Extended SCCharts \rightarrow Core SCCharts	Features
Normalizing Core SCCharts & Implementation	Core Transformations	Normalizing Core SCCharts & Implementation	Core Transformations

Motivation

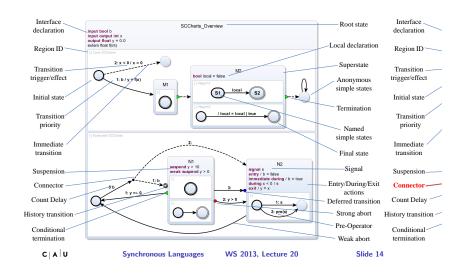
- **Observation I**: Numerous features
 - Compactness / readability of models
 - ► © Steeper learning curve
 - Solution Solution Solution Solution More complex
- **• Observation II**: Various features can be expressed by other ones
- ▶ Consequence: ⇒ Define extended features by means of base features

SCCharts - Core & Extended Features

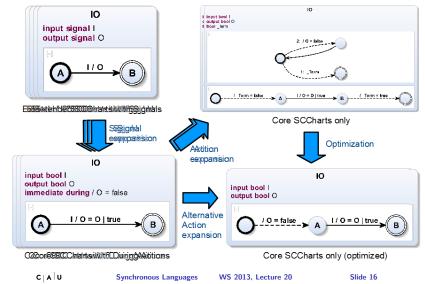


Slide 12

SCCharts Overview	Overview
Extended SCCharts \rightarrow Core SCCharts	Features
Normalizing Core SCCharts & Implementation	Core Transformations


Overview

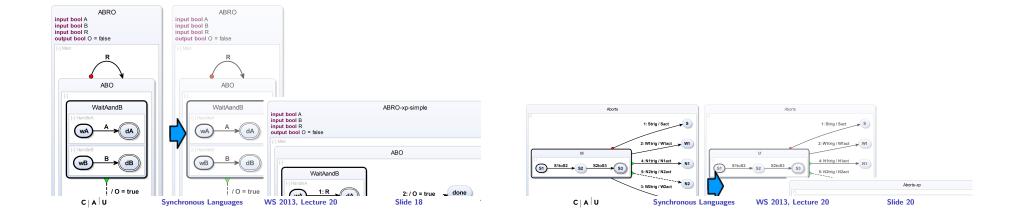
Transforming Connectors


SCCharts Overview	Connector
Extended SCCharts → Core SCCharts	Signal
Normalizing Core SCCharts & Implementation	Strong Abort

SCCharts - Core Transformations Examples

SCCharts Overview Extended SCCharts \rightarrow Core SCCharts	Connector Signal
Normalizing Core SCCharts & Implementation	Strong Abort

Transforming Signals

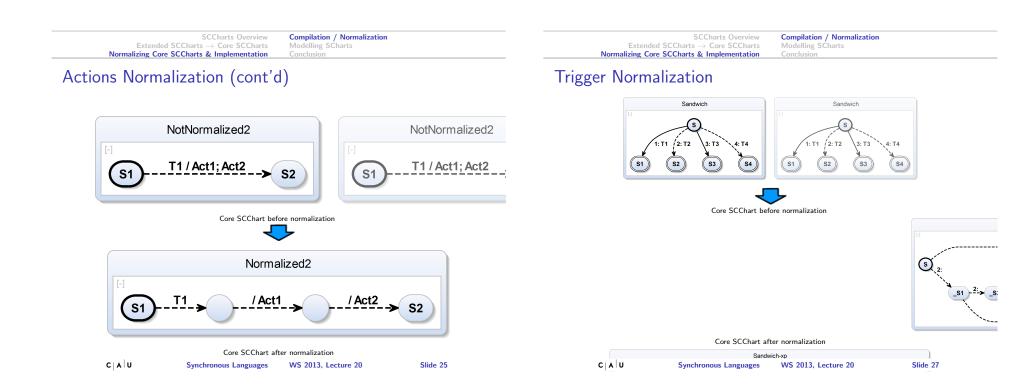


Normalizing Core SCCharts & Implementation Strees	ng Abort	ABRO - Transforming Strong Aborts (cont'd)	
ABRO ABO WaitAandB WaitAandB WaitAandB B B B Charles André, Semantics of SyncCharts, 2003]	ABRO iput bool B put bool O = faise inter	ABRO Hingth bool B organization bool O = false Imput bool B Imput bool B	

SCCharts Overview	Connector	SCCharts Overview	Connector
Extended SCCharts \rightarrow Core SCCharts	Signal	Extended SCCharts → Core SCCharts	Signal
Normalizing Core SCCharts & Implementation	Strong Abort	Normalizing Core SCCharts & Implementation	Strong Abort

ABRO - Transforming Strong Aborts

Transforming General Aborts

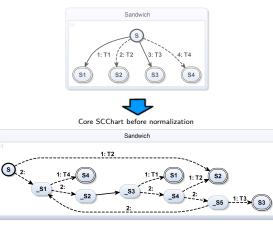

Extended SCCharts → Core SCCharts Signal Normalizing Core SCCharts & Implementation Strong Abort	SCCharts Overview Compilation / Normalization Extended SCCharts → Core SCCharts Modelling SCharts Normalizing Core SCCharts & Implementation Conclusion
Overview	Normalization
	Further simplify compilation process for Core SCCharts
SCCharts Overview	 Allowed patterns:
► Extended SCCharts → Core SCCharts	Region Superstate Trigger Action State
 Normalizing Core SCCharts Implementation in KIELER 	(connected states) (parallel regions) (conditionals) (assignments) (tick boundary)
C A U Synchronous Languages WS 2013, Lecture 20 Slide 21	C A U Synchronous Languages WS 2013, Lecture 20 Slide 23
C A U Synchronous Languages WS 2013, Lecture 20 Slide 21 SCCharts Overview Extended SCCharts → Core SCCharts Normalizing Core SCCharts & Implementation Normalizing Core SCCharts & Implementation	C A U Synchronous Languages WS 2013, Lecture 20 Slide 23 SCCharts Overview Extended SCCharts → Core SCCharts Normalizing Core SCCharts & Implementation Modelling SCharts Conclusion
SCCharts Overview Compilation / Normalization Extended SCCharts → Core SCCharts Modelling SCharts	SCCharts Overview Compilation / Normalization Extended SCCharts → Core SCCharts Modelling SCharts

- Some core transformations will produce (use) other extended features
- $\blacktriangleright \ \rightarrow$ Order in which core transformations are applied is important
- \blacktriangleright \rightarrow Dependencies (do not have any cycle, which would be forbidden)

/ **A1**

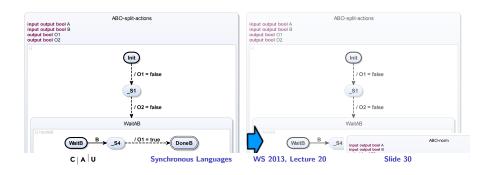
S1

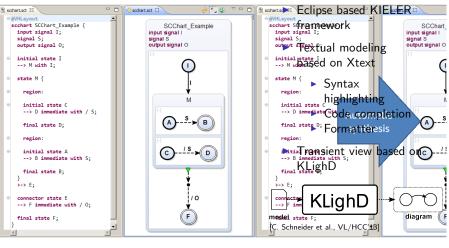
/A2 → S2


SCCharts Overview	Compilation / Normalization
Extended SCCharts \rightarrow Core SCCharts	Modelling Scharts
Normalizing Core SCCharts & Implementation	Conclusion

Actions Normalization Implementation Example

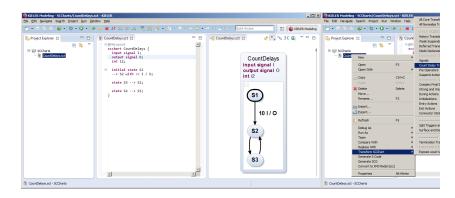
SCCharts Overview	Compilation / Normalization
Extended SCCharts \rightarrow Core SCCharts	Modelling SCharts
Normalizing Core SCCharts & Implementation	Conclusion


Trigger Normalization (Cont'd)



Core SCChart after optimized normalization

CAU


Synchronous Languages

WS 2013, Lecture 20

Slide 32

Compilation / Normalization Modelling SCharts

Transforming SCCharts with KIELER

- SCCharts context menu *Transform SCChart*
- Transformed model (*.transformed.sct) is opened and visualized
- Apply core transformations and normalization in one step (\rightarrow order!)

C	AU	Synchronous Languages	WS 2013, Lecture 20	Slide 33
-		ejitetitette zangaagee		onde oo

SCCharts Overview	Compilation / Normalization
Extended SCCharts → Core SCCharts	Modelling SCharts
Normalizing Core SCCharts & Implementation	Conclusion

Conclusions

- SyncCharts are a great choice for specifying deterministic control-flow behavior...
- but does not accept sequentiality
 If (!done) { ... ; done = true;}
- ► SCCharts extend SyncCharts w.r.t. semantics → Sequentially Constructive MoC
 - > All valid SyncCharts interpreted as SCCharts keep their meaning
- ▶ Core SCCharts: Few basic features for simpler & more robust compilation
- **Extended** SCCharts: Syntactic sugar, readability, extensible
- ► Normalized SCCharts: Further ease compilation → Details in the next lecture :-)

To Go Further

- **KIELER website**: http://rtsys.informatik.uni-kiel.de/kieler
- C. André. Semantics of SyncCharts. Technical Report ISRN I3S/RR-2003-24-FR, I3S Laboratory, Sophia-Antipolis, France, April 2003.
- G. Berry. *The foundations of Esterel*. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language, and Interaction: Essays in Honour of Robin Milner, pages 425-454, Cambridge, MA, USA, 2000.
- R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer, and O. O'Brien. SCCharts: Sequentially Constructive Statecharts for Safety-Critical Applications. Technical Report 1311, Christian-Albrechts-Universitaet zu Kiel, Department of Computer Science, Dec 2013.
- R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann, C. Motika, S. Mercer, and O. O'Brien. Sequentially Constructive Concurrency - A conservative extension of the synchronous model of computation. In Proc. Design, Automation and Test in Europe Conference (DATE'13), Grenoble, France, March 2013.
- C A U Synchronous Languages WS 2013, Lecture 20 Slide 35