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Motivation
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C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Safety-Critical Embedded Systems

I Embedded systems often
safety-critical

I Safety-critical systems must react
deterministically

I Computations often exploit
concurrency

I Key challenge:
Concurrency must be
deterministic!

Thanks to Michael Mendler (U Bamberg) for support with these slides
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Implementing (Deterministic) Concurrency

I C, Java, etc.:

, Familiar
, Expressive sequential paradigm
/ Concurrent threads unpredictable in functionality and timing

I Synchronous Programming:

, predictable by construction
=⇒ Constructiveness

/ Unfamiliar to most programmers
/ Restrictive in practice

Aim: Deterministic concurrency with synchronous foundations,
but without synchronous restrictions.
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Comparing Both Worlds

Sequential Languages

I C, Java, ...

I Asynchronous schedule

o By default: Multiple
concurrent readers/writers

o On demand: Single
assignment synchronization
(locks, semaphores)

I Imperative

o All sequential control flow
prescriptive

o Resolved by programmer

Synchronous Languages

I Esterel, Lustre, Signal, SCADE,
SyncCharts ...

I Clocked, cyclic schedule

o By default: Single writer per
cycle, all reads initialized

o On demand: Separate
multiple assignments by
clock barrier (pause, wait)

I Declarative

o All micro-steps sequential
control flow descriptive

o Resolved by scheduler
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C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Comparing Both Worlds (Cont’d)

Sequential Languages

I Asynchronous schedule

/ No guarantees of determinism
or deadlock freedom

, Intuitive programming
paradigm

Synchronous Languages

I Clocked, cyclic schedule

, Deterministic concurrency
and deadlock freedom

/ Heavy restrictions by
constructiveness analysis

=⇒
Sequentially Constructive Model of Computation (SC MoC)

, Deterministic concurrency and deadlock freedom

, Intuitive programming paradigm
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Implementing Deterministic Concurrency: SC MoC

I Concurrent micro-step control flow:

, Descriptive
, Resolved by scheduler
, =⇒ Deterministic concurrency and deadlock freedom

I Sequential micro-step control flow:

, Prescriptive
, Resolved by the programmer
, =⇒ Intuitive programming paradigm
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A Sequentially Constructive Program (Cont’d)

Imperative program order (sequential access to shared variables)

I “write-after-write” can change value sequentially

I Prescribed by programmer

, Accepted in SC MoC
/ Not permitted in standard synchronous MoC
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Concurrency scheduling constraints (access to shared variables):

I “write-before-read” for concurrent write/reads

I “write-before-write” (i. e., conflicts!) for concurrent & non-confluent
writes

I Micro-tick thread scheduling prohibits race conditions

I Implemented by the SC compiler
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A Constructive Game of Schedulability

logically reactive program

Programmer

I Defines the rules

I Prescribes sequential execution order

I Leaves concurrency to compiler and run-time

I “Free Schedules”

Compiler = Player

I Determines winning strategy

I Restricts concurrency to ensure determinacy
and deadlock freedom

I “Admissible Schedules”

Run-time = Opponent

I Tries to choose a spoiling execution from
admissible schedules
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Sequential Admissibility

Sequential Admissibility – Basic Idea

I Sequentially ordered variable accesses

I Are enforced by the programmer
I Cannot be reordered by compiler or run-time platform
I Exhibit no races

I Only concurrent writes/reads to the same variable

I Generate potential data races
I Must be resolved by the compiler
I Can be ordered under multi-threading and run-time

The following applies to concurrent variable accesses only ...
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Organizing Concurrent Variable Accesses

I SC Concurrent Memory Access Protocol (per macro tick)

I Confluent Statements (per macro tick)
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Types of Writes I
Given two writes to x , distinguish

I Confluent writes

I Order of the writes does not matter
I Precondition: No side effects

I Non-confluent writes

I Order of the writes does matter

We also generalize the notion of confluence to pairs of arbitrary
statements, if their execution order does not matter.

Also distinguish

I Effective writes, which change value of x

I Ineffective writes, which do not change value of x

Note: Given two identical writes x = e; x = e,

I these are confluent

I the 2nd write is ineffective
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Combination Functions

Combination function f :

I f (f (x , e1), e2) = f (f (x , e2), e1)
for all side-effect free expressions e1, e2

I Sufficient condition: f is commutative and associative

I Examples: *, +, –, max, and, or
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Types of Writes II

Relative writes, of type f (“increment” / “modify”): x = f (x , e)

I f must be a combination function

I Evaluation of e must be free of side effects

I Thus, schedules
’x = f (x , e1); x = f (x , e2)’ and
’x = f (x , e2); x = f (x , e1)’ yield same result for x

I Thus, writes are confluent

I E.g., x++, x = 5*x, x = x-10

Absolute writes (“write” / “initialize”): x = e

I Writes that are not relative

I E.g., x = 0, x = 2*y+5, x = f(z)
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Scheduling Relations I

For macro tick R, and concurrent but not confluent node instances
(executed statements) ni1, ni2, define scheduling relations:

ni1 →R ni2: “happens before” (linear order)

I ni1 occurs before ni2 in R

ni1 ↔R
ww ni2: “write / write conflict”

I ni1 and ni2 both perform absolute writes on the same variable

I or both perform relative writes of different type on the same variable

I E Impossible to find linear order!
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Scheduling Relations II

For macro tick R, and concurrent but not confluent node instances
(executed statements) ni1, ni2, define scheduling relations:

ni1 →R
wr ni2: “write before read”, or “initialize before read”

I ni1 is absolute write

I ni2 is read of the same variable

ni1 →R
ir ni2: “increment before read”, or “update before read”

I ni1 is relative write

I ni2 is read of the same variable

ni1 →R
wi ni2: “write before increment”, or “initialize before update”

I ni1 is absolute write

I ni2 is relative write of the same variable
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Sequential Admissibility

ni1 →R ni2 : “happens before”
ni1 ↔R

ww ni2 : “write / write”
ni1 →R

wr ni2 : “write before read”
ni1 →R

ir ni2 : “increment before read”
ni1 →R

wi ni2 : “write before increment”

Definition: A run is SC-admissible iff
for all macro ticks R and all node instances ni1, ni2 in R:

¬(ni1 ↔R
ww ni2)∧

((ni1 →R
wr ni2) ∨ (ni1 →R

ir ni2) ∨ (ni1 →R
wi ni2)) ⇒ ni1 →R ni2)
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Sequential Constructiveness – Definition

Definition: A program is sequentially constructive (SC) iff for each initial
configuration and input sequence:

1. There exists an SC-admissible run

2. Every SC-admissible run generates the same determinate sequence
of macro responses
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Conservative Static Approximation

In practice, a compiler must be conservative:

I Use a relation n1|n2 to over-approximate n1|Rn2, i. e., what
statements are concurrently invoked in the same tick,

I by considering only static control flow, or
I ignoring dependency on initial conditions, or
I by falsely considering nodes to be in the same tick.

I May not recognize confluence

I May not recognize that writes are relative
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Acyclic Sequential Constructiveness – Definition

I By over-approximating concurrency and confluence the
static node relations

n1 ↔ww n2, n1 →wr n2, n1 →ir n2, and n1 →wi n2

are computed.

I A suitable over-approximation of →R is the (transitive closure) of
the static control flow relation n1 →seq n2 (program order).

I Let → be defined as the following union:

→ := →seq

⋃ →wr

⋃ →ir

⋃ →wi

⋃ ↔ww

Definition: A program is acyclic SC (ASC) schedulable iff in its
sequential-concurrent control flow graph (SCG)
all → cycles consist entirely of →seq edges.
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Theorem: ASC schedulability =⇒ sequential constructiveness

Synchronous Program Classes

Sequentially
Constructive (S)

Logically Correct
(L)

Pnueli-Shalev
Constructive (P)

Berry Constructive
(B)

Acyclic SC (A)

Speculate on 

absence
Speculate on 

absence or presence

Sequences 

of values

Static cycles

Dynamic scheduling

Out-of-order 

scheduling

Ineffective 

writes
PP

PS

PAS

PAPS

PALPS

PALS

PABLPS

PBLPS

PPS PLS

PL

PLP

PLPS

if (!x) x=1

P0

or concurrent 

writes

Cycle of 

concurrent        

dependencies

,

All Programs

if (x) x=1

else x=1

if (x) x=1

if (x and y) x=1

y=x1 par

if (!x0) x1=1 

x0=1;

{if (x0) then y=1 par   

if (y) then x1=1}

if (x) x=1 par

if (!y) z=1 par

if (!z) {y=1; z=1}

if (x) x=1 par if (!x) 

x=1

if (!x) y=1 par

if (!y) {x=1; y=1}

if (x) y=1 par

if (y) x=1 else {x=1; y=1}

if (!x) y=1 par

if (!y) x=1

if (x) then y=z par

if (!x) then z=y
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Conclusions

I Clocked, synchronous model of execution for imperative,
shared-memory multi-threading

I Conservatively extends synchronous programming (Esterel) by
standard sequential control flow (Java, C)

I =⇒ Deterministic concurrency with synchronous foundations, but
without synchronous restrictions

I , Expressive and intuitive sequential paradigm
I , Predictable concurrent threads
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To Go Further
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