
Motivation
Sequential Constructiveness (SC)

Analyzing SC

Synchronous Languages—Lecture 22

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

23 January 2014
Last compiled: January 31, 2014, 9:02 hrs

Sequentially Constructive
Concurrency

Synchronous Languages WS 2013, Lecture 22 Slide 1

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Safety-Critical Embedded Systems

I Embedded systems often
safety-critical

I Safety-critical systems must react
deterministically

I Computations often exploit
concurrency

I Key challenge:
Concurrency must be
deterministic!

Thanks to Michael Mendler (U Bamberg) for support with these slides

Synchronous Languages WS 2013, Lecture 22 Slide 2

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Implementing (Deterministic) Concurrency

I C, Java, etc.:

, Familiar
, Expressive sequential paradigm
/ Concurrent threads unpredictable in functionality and timing

I Synchronous Programming:

, predictable by construction
=⇒ Constructiveness

/ Unfamiliar to most programmers
/ Restrictive in practice

Aim: Deterministic concurrency with synchronous foundations,
but without synchronous restrictions.

Synchronous Languages WS 2013, Lecture 22 Slide 3

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Comparing Both Worlds

Sequential Languages

I C, Java, ...

I Asynchronous schedule

o By default: Multiple
concurrent readers/writers

o On demand: Single
assignment synchronization
(locks, semaphores)

I Imperative

o All sequential control flow
prescriptive

o Resolved by programmer

Synchronous Languages

I Esterel, Lustre, Signal, SCADE,
SyncCharts ...

I Clocked, cyclic schedule

o By default: Single writer per
cycle, all reads initialized

o On demand: Separate
multiple assignments by
clock barrier (pause, wait)

I Declarative

o All micro-steps sequential
control flow descriptive

o Resolved by scheduler

Synchronous Languages WS 2013, Lecture 22 Slide 4

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Comparing Both Worlds (Cont’d)

Sequential Languages

I Asynchronous schedule

/ No guarantees of determinism
or deadlock freedom

, Intuitive programming
paradigm

Synchronous Languages

I Clocked, cyclic schedule

, Deterministic concurrency
and deadlock freedom

/ Heavy restrictions by
constructiveness analysis

=⇒
Sequentially Constructive Model of Computation (SC MoC)

, Deterministic concurrency and deadlock freedom

, Intuitive programming paradigm

Synchronous Languages WS 2013, Lecture 22 Slide 5

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

Implementing Deterministic Concurrency: SC MoC

I Concurrent micro-step control flow:

, Descriptive
, Resolved by scheduler
, =⇒ Deterministic concurrency and deadlock freedom

I Sequential micro-step control flow:

, Prescriptive
, Resolved by the programmer
, =⇒ Intuitive programming paradigm

Synchronous Languages WS 2013, Lecture 22 Slide 6

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

A Sequentially Constructive Program

Synchronous Languages WS 2013, Lecture 22 Slide 7

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

A Sequentially Constructive Program (Cont’d)

Synchronous Languages WS 2013, Lecture 22 Slide 8

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

A Sequentially Constructive Program (Cont’d)

Synchronous Languages WS 2013, Lecture 22 Slide 9

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

A Sequentially Constructive Program (Cont’d)

Imperative program order (sequential access to shared variables)

I “write-after-write” can change value sequentially

I Prescribed by programmer

, Accepted in SC MoC
/ Not permitted in standard synchronous MoC

Synchronous Languages WS 2013, Lecture 22 Slide 10

Motivation
Sequential Constructiveness (SC)

Analyzing SC

C, Java vs. Synchronous Programming
A Sequentially Constructive Program

A Sequentially Constructive Program (Cont’d)

Concurrency scheduling constraints (access to shared variables):

I “write-before-read” for concurrent write/reads

I “write-before-write” (i. e., conflicts!) for concurrent & non-confluent
writes

I Micro-tick thread scheduling prohibits race conditions

I Implemented by the SC compiler

Synchronous Languages WS 2013, Lecture 22 Slide 11

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Overview

Motivation

Sequential Constructiveness (SC)
Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Analyzing SC

Synchronous Languages WS 2013, Lecture 22 Slide 12

A Constructive Game of Schedulability

logically reactive program

Programmer

I Defines the rules

I Prescribes sequential execution order

I Leaves concurrency to compiler and run-time

I “Free Schedules”

Compiler = Player

I Determines winning strategy

I Restricts concurrency to ensure determinacy
and deadlock freedom

I “Admissible Schedules”

Run-time = Opponent

I Tries to choose a spoiling execution from
admissible schedules

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Sequential Admissibility – Basic Idea

I Sequentially ordered variable accesses

I Are enforced by the programmer
I Cannot be reordered by compiler or run-time platform
I Exhibit no races

I Only concurrent writes/reads to the same variable

I Generate potential data races
I Must be resolved by the compiler
I Can be ordered under multi-threading and run-time

The following applies to concurrent variable accesses only ...

Synchronous Languages WS 2013, Lecture 22 Slide 14

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Organizing Concurrent Variable Accesses

I SC Concurrent Memory Access Protocol (per macro tick)

I Confluent Statements (per macro tick)

Synchronous Languages WS 2013, Lecture 22 Slide 15

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Types of Writes I
Given two writes to x , distinguish

I Confluent writes

I Order of the writes does not matter
I Precondition: No side effects

I Non-confluent writes

I Order of the writes does matter

We also generalize the notion of confluence to pairs of arbitrary
statements, if their execution order does not matter.

Also distinguish

I Effective writes, which change value of x

I Ineffective writes, which do not change value of x

Note: Given two identical writes x = e; x = e,

I these are confluent

I the 2nd write is ineffective

Synchronous Languages WS 2013, Lecture 22 Slide 16

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Combination Functions

Combination function f :

I f (f (x , e1), e2) = f (f (x , e2), e1)
for all side-effect free expressions e1, e2

I Sufficient condition: f is commutative and associative

I Examples: *, +, –, max, and, or

Synchronous Languages WS 2013, Lecture 22 Slide 17

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Types of Writes II

Relative writes, of type f (“increment” / “modify”): x = f (x , e)

I f must be a combination function

I Evaluation of e must be free of side effects

I Thus, schedules
’x = f (x , e1); x = f (x , e2)’ and
’x = f (x , e2); x = f (x , e1)’ yield same result for x

I Thus, writes are confluent

I E.g., x++, x = 5*x, x = x-10

Absolute writes (“write” / “initialize”): x = e

I Writes that are not relative

I E.g., x = 0, x = 2*y+5, x = f(z)

Synchronous Languages WS 2013, Lecture 22 Slide 18

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Scheduling Relations I

For macro tick R, and concurrent but not confluent node instances
(executed statements) ni1, ni2, define scheduling relations:

ni1 →R ni2: “happens before” (linear order)

I ni1 occurs before ni2 in R

ni1 ↔R
ww ni2: “write / write conflict”

I ni1 and ni2 both perform absolute writes on the same variable

I or both perform relative writes of different type on the same variable

I E Impossible to find linear order!

Synchronous Languages WS 2013, Lecture 22 Slide 19

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Scheduling Relations II

For macro tick R, and concurrent but not confluent node instances
(executed statements) ni1, ni2, define scheduling relations:

ni1 →R
wr ni2: “write before read”, or “initialize before read”

I ni1 is absolute write

I ni2 is read of the same variable

ni1 →R
ir ni2: “increment before read”, or “update before read”

I ni1 is relative write

I ni2 is read of the same variable

ni1 →R
wi ni2: “write before increment”, or “initialize before update”

I ni1 is absolute write

I ni2 is relative write of the same variable

Synchronous Languages WS 2013, Lecture 22 Slide 20

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Sequential Admissibility

ni1 →R ni2 : “happens before”
ni1 ↔R

ww ni2 : “write / write”
ni1 →R

wr ni2 : “write before read”
ni1 →R

ir ni2 : “increment before read”
ni1 →R

wi ni2 : “write before increment”

Definition: A run is SC-admissible iff
for all macro ticks R and all node instances ni1, ni2 in R:

¬(ni1 ↔R
ww ni2)∧

((ni1 →R
wr ni2) ∨ (ni1 →R

ir ni2) ∨ (ni1 →R
wi ni2)) ⇒ ni1 →R ni2)

Synchronous Languages WS 2013, Lecture 22 Slide 21

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Sequentially Constructive Schedulability
Concurrent Variable Accesses
Sequential Admissibility

Sequential Constructiveness – Definition

Definition: A program is sequentially constructive (SC) iff for each initial
configuration and input sequence:

1. There exists an SC-admissible run

2. Every SC-admissible run generates the same determinate sequence
of macro responses

Synchronous Languages WS 2013, Lecture 22 Slide 22

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

Overview

Motivation

Sequential Constructiveness (SC)

Analyzing SC
Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

Synchronous Languages WS 2013, Lecture 22 Slide 23

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

Conservative Static Approximation

In practice, a compiler must be conservative:

I Use a relation n1|n2 to over-approximate n1|Rn2, i. e., what
statements are concurrently invoked in the same tick,

I by considering only static control flow, or
I ignoring dependency on initial conditions, or
I by falsely considering nodes to be in the same tick.

I May not recognize confluence

I May not recognize that writes are relative

Synchronous Languages WS 2013, Lecture 22 Slide 24

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

Acyclic Sequential Constructiveness – Definition

I By over-approximating concurrency and confluence the
static node relations

n1 ↔ww n2, n1 →wr n2, n1 →ir n2, and n1 →wi n2

are computed.

I A suitable over-approximation of →R is the (transitive closure) of
the static control flow relation n1 →seq n2 (program order).

I Let → be defined as the following union:

→ := →seq

⋃ →wr

⋃ →ir

⋃ →wi

⋃ ↔ww

Definition: A program is acyclic SC (ASC) schedulable iff in its
sequential-concurrent control flow graph (SCG)
all → cycles consist entirely of →seq edges.

Synchronous Languages WS 2013, Lecture 22 Slide 25

Theorem: ASC schedulability =⇒ sequential constructiveness

Synchronous Program Classes

Sequentially
Constructive (S)

Logically Correct
(L)

Pnueli-Shalev
Constructive (P)

Berry Constructive
(B)

Acyclic SC (A)

Speculate on

absence
Speculate on

absence or presence

Sequences

of values

Static cycles

Dynamic scheduling

Out-of-order

scheduling

Ineffective

writes
PP

PS

PAS

PAPS

PALPS

PALS

PABLPS

PBLPS

PPS PLS

PL

PLP

PLPS

if (!x) x=1

P0

or concurrent

writes

Cycle of

concurrent

dependencies

,

All Programs

if (x) x=1

else x=1

if (x) x=1

if (x and y) x=1

y=x1 par

if (!x0) x1=1

x0=1;

{if (x0) then y=1 par

if (y) then x1=1}

if (x) x=1 par

if (!y) z=1 par

if (!z) {y=1; z=1}

if (x) x=1 par if (!x)

x=1

if (!x) y=1 par

if (!y) {x=1; y=1}

if (x) y=1 par

if (y) x=1 else {x=1; y=1}

if (!x) y=1 par

if (!y) x=1

if (x) then y=z par

if (!x) then z=y

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

Conclusions

I Clocked, synchronous model of execution for imperative,
shared-memory multi-threading

I Conservatively extends synchronous programming (Esterel) by
standard sequential control flow (Java, C)

I =⇒ Deterministic concurrency with synchronous foundations, but
without synchronous restrictions

I , Expressive and intuitive sequential paradigm
I , Predictable concurrent threads

Synchronous Languages WS 2013, Lecture 22 Slide 28

Motivation
Sequential Constructiveness (SC)

Analyzing SC

Conservative Static Approximation
Acyclic Sequential Constructiveness (ASC)
Conclusion

To Go Further

DFG-funded PRETSY Project: www.pretsy.org

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, and O. O’Brien. Sequentially Constructive
Concurrency – A conservative extension of the synchronous model of
computation. In Proc. Design, Automation and Test in Europe Conference
(DATE’13), Grenoble, France, March 2013. http://rtsys.informatik.
uni-kiel.de/˜biblio/downloads/papers/date13.pdf

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, O. O’Brien, and Partha Roop. Sequentially
Constructive Concurrency – A Conservative Extension of the Synchronous
Model of Computation. Technical Report 1308,
Christian-Albrechts-Universitaet zu Kiel, Department of Computer
Science, Aug 2013. http://rtsys.informatik.uni-kiel.de/
˜biblio/downloads/papers/report-13seqc.pdf

G. Berry. The foundations of Esterel. In G. Plotkin, C. Stirling, and M.
Tofte, editors, Proof, Language, and Interaction: Essays in Honour of
Robin Milner, pages 425-454, Cambridge, MA, USA, 2000.

Synchronous Languages WS 2013, Lecture 22 Slide 29

