
Static Concepts
Run-Time Concepts

Sequential Constructiveness

Synchronous Languages—Lecture 23

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

27 January 2014
Last compiled: February 3, 2014, 12:05 hrs

Sequentially Constructive
Concurrency II

Synchronous Languages WS 2013, Lecture 23 Slide 1

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The 5-Minute Review Session

1. How do SCCharts and SyncCharts differ?

2. What does the initialize-update-read protocol refer to?

3. What is the SCG?

4. What are basic blocks? What are scheduling blocks?

5. When compiling from the SCG, what types of low-level
synthesis do we distinguish? How do they compare?

Synchronous Languages WS 2013, Lecture 23 Slide 2

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Recall: Aim of Sequential Constructiveness

Sequential Languages
I Asynchronous schedule

/ No guarantees of determinism
or deadlock freedom

, Intuitive programming
paradigm

Synchronous Languages
I Clocked, cyclic schedule

, Deterministic concurrency
and deadlock freedom

/ Heavy restrictions by
constructiveness analysis

⇒
Sequentially Constructive Model of Computation (SC MoC)
, Deterministic concurrency and deadlock freedom

, Intuitive programming paradigm

Synchronous Languages WS 2013, Lecture 23 Slide 3

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Goals and Challenges

The idea behind SC is simple – but getting it “right” not so!

What we are up to:

1. Want to be conservative wrt “Berry constructiveness”
I An Esterel program should also be SC

2. Want maximal freedom without compromising determinism
I A deterministic program should also be SC
I An SC program must be deterministic

3. Want to exploit sequentiality as much as possible
I But what exactly is sequentiality?

4. Want to define not only the exact concept of SC, but also a
practical strategy to implement it

I In practice, this requires conservative approximations
I Compiler must not accept Non-SC programs
I Compiler may reject SC programs

Synchronous Languages WS 2013, Lecture 23 Slide 4

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Overview

Static Concepts
The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Run-Time Concepts

Sequential Constructiveness

Synchronous Languages WS 2013, Lecture 23 Slide 5

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

The Sequentially Constructive Language (SCL)

I Foundation for the SC MoC

I Minimal Language

I Adopted from C/Java and Esterel

s ::= x = e | s;s | if (e) s else s | l : s | goto l |
fork s par s join | pause

s Statement

x Variable

e Expression

l Program label

Synchronous Languages WS 2013, Lecture 23 Slide 6

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

The SC Graph (SCG)

The concurrent and sequential
control flow of an SCL program is
given by an SC Graph (SCG)

Internal representation for

I Semantic foundation
I Analysis
I Code generation

SC Graph:
Labeled graph G = (N,E)
I Nodes N correspond to statements of

sequential program
I Edges E reflect sequential execution

control flow

Synchronous Languages WS 2013, Lecture 23 Slide 7

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Node Types in the SCG

Node n ∈ N has statement type n.st

I n.st ∈
{entry, exit, goto, x = ex , if (ex), fork, join, surf, depth}

I x : variable, ex : expression.

Synchronous Languages WS 2013, Lecture 23 Slide 8

Edge Types in the SCG

Edge e ∈ E has edge type e.type

I e.type ∈ {seq, tick, wr, wi, ir, ww}
I Specifies the nature of the particular ordering constraint

expressed by e

I For e.type = α, write e.src →α e.tgt

I n1 →seq n2: sequential successors

I n1 →tick n2: tick successors

I n1 →seq n2, n1 →tick n2: flow successors,
induced directly from source program

I �seq: reflexive and transitive closure of →seq

I Note: n1 →seq n2 does not imply fixed run-time ordering
between n1 and n2 (consider loops)

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Mapping SCL & SCG

Synchronous Languages WS 2013, Lecture 23 Slide 10

SCL & SCG – The Control Example

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6 fork {
7 // Thread Request
8 Request entry:
9 pend = false;

10 if (req)
11 pend = true;
12 checkReq = req;
13 if (pend && grant)
14 pend = false;
15 pause;
16 goto Request entry;
17 }
18 par {
19 // Thread Dispatch
20 Dispatch entry:
21 grant = false;
22 if (checkReq && free)
23 grant = true;
24 pause;
25 goto Dispatch entry;
26 }
27 join;
28 }

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Sequentiality vs. Concurrency
Static vs. Dynamic Threads

Recall: We want to distinguish between sequential and concurrent
control flow.
But what do “sequential”/“concurrent” mean?
This distinction is not as easy to formalize as it may seem . . .

To get started, distinguish

I Static threads: Structure of a program (based on SCG)

I Dynamic thread instance: thread in execution

Synchronous Languages WS 2013, Lecture 23 Slide 12

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Static Threads

I Given: SCG G = (N,E)

I Let T denote the set of threads of G

I T includes a top-level Root thread
I With each thread t ∈ T , associate unique

I entry node ten ∈ N
I exit node tex ∈ N

I Each n ∈ N belongs to a thread th(n) defined as
I Immediately enclosing thread t ∈ T
I such that there is a flow path to n that originates in ten and

that does not traverse any other entry node t ′en, unless that
flow path subsequently traverses t ′ex also

I For each thread t, define sts(t) as the
set of statement nodes n ∈ N such that th(n) = t

Synchronous Languages WS 2013, Lecture 23 Slide 13

Threads in Control Example

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

I Threads T = {Root,Request,Dispatch}
I Root thread consists of the statement nodes

sts(Root) = {L0, L7, L28, L29}
I The remaining statement nodes of N are partitioned into

sts(Dispatch) and sts(Request)

Static Thread Concurrency and Subordination

Let t, t1, t2 be threads in T

I fork(t) =def fork node immediately preceding ten
I For every thread t 6= Root:

p(t) =def th(fork(t)), the parent thread

I p∗(t) =def {t, p(t), p(p(t)), . . . , Root}, the recursively
defined set of ancestor threads of t

I t1 is subordinate to t2, written t1 ≺ t2, if t1 6= t2 ∧ t1 ∈ p∗(t2)

I t1 and t2 are (statically) concurrent, denoted t1 || t2, iff
t1 and t2 are descendants of distinct threads sharing a
common fork node, i. e.:
∃t ′1 ∈ p∗(t1), t ′2 ∈ p∗(t2) : t ′1 6= t ′2 ∧ fork(t ′1) = fork(t ′2)

I Denote this common fork node as lcafork(t1, t2), the least
common ancestor fork

I Lift (static) concurrency notion to nodes:
th(n1) || th(n2) ⇒ lcafork(n1, n2) = lcafork(th(n1), th(n2))

Concurrency and Subordination in Control-Program
1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

I Root ≺ Request and Root ≺ Dispatch
I Request || Dispatch, Root is not concurrent with any thread

Note: Concurrency on threads, in contrast to concurrency on node instances, is
purely static and can be checked with a simple, syntactic analysis of the program
structure.

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Thread Trees

A Thread Tree illustrates the static thread relationships.
I Contains subset of SCG nodes:

1. Entry nodes, labeled with names of their threads
2. Fork nodes, attached to the entry nodes of their threads

I Similar to the AND/OR tree of Statecharts

Thread tree for Control example:

Root

L7

Request Dispatch

Synchronous Languages WS 2013, Lecture 23 Slide 17

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Thread Trees – The Reinc2 Example

1 module Reinc2
2 output int x, y;
3 {
4 loop:
5 fork { // Thread T1
6 x = 1; }
7 par { // Thread T2
8 fork { // Thread T21
9 y = 1; }

10 par { // Thread T22
11 pause;
12 y = 2; }
13 join;
14 fork { // Thread T23
15 y = 3; }
16 par { // Thread T24
17 x = 2; }
18 join}
19 join;
20 goto loop;
21 }

T1 T2

T21 T22

T23 T24

entry

exit

L6: x=1

L9: y=1

L12: y=2

L15: y=3 L17: x=2

Root

L5

T1 T2

L8 L14

T21 T22 T23 T24

Alternative definition for
static thread concurrency:

I Threads are concurrent iff
their least common
ancestor (lca) in thread
tree is a fork node

Synchronous Languages WS 2013, Lecture 23 Slide 18

Static Concepts
Run-Time Concepts

Sequential Constructiveness

The SC Language (SCL) and the SC Graph (SCG)
Thread Terminology
Thread / Statement Reincarnation

Thread Reincarnation – The Reinc Example

1 module Reinc
2 output int x, y;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x = 1;
8 }
9 par {

10 // Thread T2
11 pause;
12 x = 2;
13 }
14 join;
15 goto loop;
16 }

T1 T2

entry

exit

L7: x=1

L12: x=2

Are interested in run-time
concurrency, i. e., whether
ordering is up to discretion
of a scheduler. Observa-
tions:

I T2 exhibits thread
reincarnation

I Assignments to x
are both executed in
the same tick, yet
are sequentialized

I Thus, static thread
concurrency not
sufficient to
capture run-time
concurrency!

Synchronous Languages WS 2013, Lecture 23 Slide 19

Statement Reincarnation I

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

1 module InstLoop
2 output int x = 0, y = 0;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x += 1;
8 }
9 par {

10 // Thread T2
11 y = x;
12 }
13 join;
14 if (y < 2)
15 goto loop;
16 }

I Accesses to x in L7 and
L11 executed twice
within tick

I Denote this as
statement reincarnation

I Accesses are (statically)
concurrent

I Data dependencies ⇒
Must schedule L7 before
L11

I But only within the
same loop iteration!

Not enough to impose an order on the program statements
⇒ Need to distinguish statement instances

Statement Reincarnation II

T1 T2

entry

x = 0; y = 0

exit

L14: y < 2

L7: x += 1 L11: y = x
1

ir

true

1 module InstLoop
2 output int x = 0, y = 0;
3 {
4 loop:
5 fork {
6 // Thread T1
7 x += 1;
8 }
9 par {

10 // Thread T2
11 y = x;
12 }
13 join;
14 if (y < 2)
15 goto loop;
16 }

/ Traditional
synchronous
languages: Reject

I Instantaneous loops
traditionally forbidden

, SC: Deterministic ⇒
Accept

I One might still want to
ensure that a program
always terminates

I But this issue is
orthogonal to
determinism and having
a well-defined semantics.

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Overview

Static Concepts

Run-Time Concepts
Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Sequential Constructiveness

Synchronous Languages WS 2013, Lecture 23 Slide 22

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Macroticks

I Given: SCG G = (N,E)

I (Macro) tick R, of length len(R) ∈ N≤1:
mapping from micro tick indices 1 ≤ j ≤ len(R),
to nodes R(j) ∈ N

A macro tick is also: Linearly ordered set of node instances

I Node instance: ni = (n, i),
with statement node n ∈ N,
micro tick count i ∈ N

I Can identify macro tick R with set
{(n, i) | 1 ≤ i ≤ len(R), n = R(i)}

Synchronous Languages WS 2013, Lecture 23 Slide 23

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Runs and Traces

I Run of G : sequence of macro ticks Ra,
indexed by a ∈ IN≤1

I Trace: externally visible output values at each macro tick R

Synchronous Languages WS 2013, Lecture 23 Slide 24

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Run-Time Concurrency

Given: macro tick R, index 1 ≤ i ≤ len(R), node n ∈ N
Def.: last(n, i) = max{j | j ≤ i ,R(j) = n},
retrieves last occurrence of n in R at or before index i

Given: macro tick R, i1, i2 ∈ N≤len(R), and n1, n2 ∈ N.
Def.: Two node instances ni1 = (n1, i1) and ni2 = (n2, i2) are
(run-time) concurrent in R, denoted ni1 |R ni2, iff

1. they appear in the micro ticks of R, i. e., n1 = R(i1) and
n2 = R(i2),

2. they belong to statically concurrent threads, i. e.,
th(n1) || th(n2), and

3. their threads have been instantiated by the same instance of
the associated least common ancestor fork, i. e.,
last(n, i1) = last(n, i2) where n = lcafork(n1, n2)

Synchronous Languages WS 2013, Lecture 23 Slide 25

Continuations & Thread Execution States
A continuation c consists of

1. Node c .node ∈ N, denoting the current state of each thread,
i. e., the node (statement) that should be executed next,
similar to a program counter

2. Status c .status ∈ {active,waiting , pausing}

In a trace (see next slide), round/square/no parentheses around
n = c .node denote c .status, for enabled continuations c

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Continuation Pool & Configuration

Continuation pool: finite set C of continuations

I C is valid if C meets some coherence properties,
e. g., threads in C adhere to thread tree structure

Configuration: pair (C , ρ)

I C is continuation pool

I ρ is memory assigning values to variables accessed by G

A configuration is called valid if C is valid

Synchronous Languages WS 2013, Lecture 23 Slide 27

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

Macro tick a 1 1
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 12

Input free t t
vars req f f
Output grant ⊥ f f
vars pend ⊥ f f
Local var checkReq ⊥ f f

CRoot L0 L7 [L28] [L28]
Continuations CRequest ⊥ L8 L10 L11 L13 L14 L14 L14 L14 L14 L16s (L16s)

CDispatch ⊥ L20 L20 L20 L20 L20 L22 L23 L25s (L25s) (L25s) (L25s)

Scheduled nodes Ra
i L0 L7 L8 L10 L11 L13 L20 L22 L23 L25s L14 L16s

1 module Control
2 input bool free, req;
3 output bool grant, pend;
4 {
5 bool checkReq;
6
7 fork {
8 // Thread Request
9 Request entry:

10 pend = false;
11 if (req)
12 pend = true;
13 checkReq = req;
14 if (pend && grant)
15 pend = false;
16 pause;
17 goto Request entry;
18 }

19 par {
20 // Thread Dispatch
21 Dispatch entry:
22 grant = false;
23 if (checkReq && free)
24 grant = true;
25 pause;
26 goto Dispatch entry;
27 }
28 join;
29 }

Request

Dispatch

L0,2

L7,2

L29,0

L8,2

L20,1

L28,0

L10,2: pend = false

L18,0L17,2

L11,2: req

L12,2: pend = true

L13,2: checkReq=req

L14,0: pend
&& grant

L23,1: checkReq
&& free

1wr

L15,0: pend = false

L16s,0

true

true

L16d,2

L22,1: grant = false

L27,0 L26,1

1
wr

L24,1: grant = true

1wr

L25s,0

true

L25d,1

Macro tick a 2 2
Micro tick i 1 2 3 4 5 6 7 8 9 10 11 12 13 13

Input free t t
vars req t t
Output grant f f t t
vars pend f f t f f
Local var checkReq f t t

CRoot [L28] [L28]
Continuations CRequest L16d L10 L11 L12 L13 L14 L14 L14 L14 L14 L14 L15 L16s (L16s)

CDispatch L25d L25d L25d L25d L25d L25d L22 L23 L24 L25s (L25s) (L25s) (L25s) (L25s)

Scheduled nodes Ra
i L16d L10 L11 L12 L13 L25d L22 L23 L24 L25s L14 L15 L16s

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Free Scheduling

Now define free scheduling, to set the stage for later defining
“initialize-update-read” protocol
(→ SC-admissible scheduling)

Only restrictions:

1. Execute only ≺-maximal threads
I If there is at least one continuation in Ccur , then there also is a
≺-maximal one, because of the finiteness of the continuation
pool

2. Do so in an interleaving fashion

Synchronous Languages WS 2013, Lecture 23 Slide 30

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Micro Steps I

Micro step: transition (Ccur , ρcur)
c→µs (Cnxt , ρnxt) between two

micro ticks

I (Ccur , ρcur): current configuration

I c: continuation selected for execution

I (Cnxt , ρnxt): next configuration

The free schedule is permitted to pick any one of the ≺-maximal
continuations c ∈ Ccur with c .status = active and execute it in the
current memory ρcur

Synchronous Languages WS 2013, Lecture 23 Slide 31

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Micro Steps II

(Recall:) Micro step: transition (Ccur , ρcur)
c→µs (Cnxt , ρnxt)

I Executing c yields a new memory ρnxt = upd(c , ρcur) and a
(possibly empty) set of new continuations nxt(c , ρcur) by
which c is replaced, i. e., Cnxt = Ccur \ {c} ∪ nxt(c , ρcur)

I If nxt(c , ρcur) = ∅: status flags set to active for all c ∈ Cnxt

that become ≺-maximal by eliminating c from C

I Actions upd and nxt (made precise in TR) depend on the
statement c .node.st to be executed

I (Cnxt , ρnxt) uniquely determined by c, thus may write
(Cnxt , ρnxt) = c(Ccur , ρcur)

Synchronous Languages WS 2013, Lecture 23 Slide 32

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Clock Steps I

Quiescent configuration (C , ρ):

I No active c ∈ C

I All c ∈ C pausing or waiting

If C = ∅:
I Main program terminated

Otherwise:

I Scheduler can perform a global clock step

Synchronous Languages WS 2013, Lecture 23 Slide 33

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Clock Steps II

Global clock step (Ccur , ρcur)
α→tick (Cnxt , ρnxt)

I Transition between last micro tick of the current macro tick
to first micro tick of the subsequent macro tick

I α is external input

I All pausing continuations of C advance from their surf node
to the associated depth node:

Cnxt = {c[active :: tick(n)] | c[pausing :: n] ∈ Ccur} ∪
{c[waiting :: n] | c[waiting :: n] ∈ Ccur}

Synchronous Languages WS 2013, Lecture 23 Slide 34

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Clock Steps III

Global clock step updates the memory:

I Let I = {x1, x2, . . . , xn} be the designated input variables of
the SCG, including input/output variables

I Memory is updated by a new set of external input values
α = [x1 = v1, . . . , xn = vn] for the next macro tick

I All other memory locations persist unchanged into the next
macro tick.

Formally,

ρnxt(x) =

{
vi , if x = xi ∈ I ,

ρcur (x), if x 6∈ I .

Synchronous Languages WS 2013, Lecture 23 Slide 35

Macro Ticks
Scheduler runs through sequence

(C a
0 , ρ

a
0)

ca1→µs (C a
1 , ρ

a
1)

ca2→µs · · ·
ca
k(a)→ µs (C a

k(a), ρ
a
k(a)) (1)

to reach final quiescent configuration (C a
k(a), ρ

a
k(a))

Sequence (1) is macro tick (synchronous instant) a:

(C a
0 , ρ

a
0)

αa/Ra

=⇒ (C a
k(a), ρ

a
k(a)) (2)

I αa: projects the initial input, αa(x) = ρa0(x) for x ∈ I

I ρak(a): response of a

Ra: sequence of statement nodes executed during a

I len(Ra) = k(a) is length of a

I Ra is function mapping each micro tick index 1 ≤ j ≤ k(a) to
node Ra(j) = ca

j .node executed at index j

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Determinism
Recall:

(C a
0 , ρ

a
0)

ca1→µs (C a
1 , ρ

a
1)

ca2→µs · · ·
ca
k(a)→ µs (C a

k(a), ρ
a
k(a)) (1)

(C a
0 , ρ

a
0)

αa/Ra

=⇒ (C a
k(a), ρ

a
k(a)) (2)

I Macro (tick) configuration: end points of a macro tick (2)

I Micro (tick) configuration: all other intermediate
configurations (C a

i , ρ
a
i), 0 < i < k(a) seen in (1)

Synchrony hypothesis:

I only macro configurations are observable externally
(in fact, only the memory component of those)

I Suffices to ensure that
sequence of macro ticks =⇒ is deterministic

I Micro tick behavior →µs may well be non-deterministic

Synchronous Languages WS 2013, Lecture 23 Slide 37

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Active and Pausing Continuations are Concurrent

Given:

I (C , ρ), reachable (micro or macro tick) configuration

I c1, c2 ∈ C , active or pausing continuations with c1 6= c2

Then:

I c1.node 6= c2.node

I th(c1.node) || th(c2.node)

(Proof: see TR)

Synchronous Languages WS 2013, Lecture 23 Slide 38

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Concurrency vs. Sequentiality Revisited I

Recall: Want to exploit sequentiality as much as possible

I Thus, consider only run-time concurrent data dependencies

Recall: Static concurrency 6⇒ run-time concurrency

I Consider Reinc example

I Thus, can ignore some statically concurrent data dependencies

Synchronous Languages WS 2013, Lecture 23 Slide 39

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Concurrency vs. Sequentiality Revisited II

Question: Does (static) sequentiality preclude run-
time concurrency?

I Then we could ignore data dependencies
between nodes that are sequentially ordered

I But the answer is: no

Counterexample: Reinc3 (SCG shown on left)

I Assignments to x run-time concurrent? Yes!

I Assignments to x sequentially ordered? Yes!

Thus, concurrency and (static) sequentiality are
not mutually exclusive, but orthogonal!
However, run-time sequentiality (on node in-
stances) does exclude run-time concurrency

T1 T2

entry

exit

x=1 x=2

Synchronous Languages WS 2013, Lecture 23 Slide 40

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Free Scheduling I

Key to determinism:
rule out uncertainties due to unknown scheduling mechanism

I Like the synchronous MoC, the SC MoC ensures macro-tick
determinism by inducing certain scheduling constraints on
variable accesses

I Unlike the synchronous MoC, the SC MoC tries to take
maximal advantage of the execution order already
expressed by the programmer through sequential commands

I A scheduler can only affect the order of variable accesses
through concurrent threads

Synchronous Languages WS 2013, Lecture 23 Slide 41

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Free Scheduling II

Recall:

I If variable accesses are already sequentialized by →seq, they
cannot appear simultaneously in the active continuation pool

I Hence, no way for thread scheduler to reorder them and thus
lead to a non-deterministic outcome

Similarly, threads are not concurrent with parent thread

I Because of path ordering ≺, a parent thread is always
suspended when a child thread is in operation

I Thus, not up to scheduler to decide between parent and child
thread

I No race conditions between variable accesses performed by
parent and child threads; no source of non-determinism

Synchronous Languages WS 2013, Lecture 23 Slide 42

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

The Aim

Want to find a suitable restriction on the “free” scheduler which is

1. easy to compute

2. leaves sufficient room for concurrent implementations

3. still (predictably) sequentialises any concurrent variable
accesses that may conflict and produce unpredictable
responses

In the following, will define such a restriction:
the SC-admissible schedules

Synchronous Languages WS 2013, Lecture 23 Slide 43

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Guideline for SC-admissibility

I Initialize-Update-Read protocol, for concurrent accesses

I Want to conservatively extend Esterel’s “Write-Read
protocol” (must emit before testing)

I But does Esterel always follow write-read protocol?

Synchronous Languages WS 2013, Lecture 23 Slide 44

Write After Read Revisited
module WriteAfterRead
output x, y, z;

emit x;
[
present x then
emit y

end
||
present y then
emit z

end;
emit x

]
end

Esterel version

module WriteAfterRead
output int x, y, z;
{
x = 1;
fork
y = x;

par
z = y;
x = 1;

join
}

SCL version

SCG
I Concurrent emit after present test

I But WriteAfterRead is BC – hence should also be SC!

I Observation: second emit is ineffective

I One approach: permit concurrent ineffective writes after read

Ineffectiveness – 1st Try
1 module InEffective1
2 output int x = 2;
3 int y;
4 {
5 fork
6 if (x == 2) {
7 y = 1;
8 x = 7
9 }

10 else
11 y = 0
12 par
13 x = 7
14 join
15 }

If L13 is scheduled before L6:

I L13 is effective

I No out-of-order write

I y = 0

If L13 is scheduled after L8 (and L6):

I L13 is out-of-order write

I However, L13 is ineffective

I y = 1 (→ non-determinism!)

I The problem: L8 hides the
potential effectiveness of L13 wrt.
L6!

I Both schedules would be permitted under a scheduling regime
that permits ineffective writes

I → Strengthen notion of “ineffective writes”:

I Consider writes “ineffective” only if they do not change read!

Ineffectiveness – 2nd Try

1 module InEffective2
2 output bool x = false;
3 int y;
4 {
5 fork
6 if (!x) {
7 y = 1;
8 x = x xor true
9 }

10 else
11 y = 0
12 par
13 x = x xor true;
14 join
15 }

“x = x xor true”

I Relative writes

I Equivalent to “x = !x”

Sequence L13; L6; L11:

I y = 0

Sequence L6; L7; L8; L13:

I Q: Is L13 ineffective relative to L5?

I A: Yes!

I L13 is out-of-order . . .

I but writes x = true, which is what
L5 read!

I y = 1 (→ again non-determinism!)

I Again, both schedules would be permitted under a scheduling
regime that permits ineffective writes

I → Replace “ineffectiveness” by “confluence”

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Confluence of Nodes

Given:

I Valid configuration (C , ρ) of SCG

I Nodes n1, n2 ∈ N

n1, n2 are conflicting in (C , ρ) iff

1. n1, n2 active in C ,
i. e., ∃c1, c2 ∈ C with
ci .status = active and ni = ci .node

2. c1(c2(C , ρ)) 6= c2(c1(C , ρ))

n1, n2 are confluent with each other in (C , ρ),
written: n1 ∼(C ,ρ) n2, iff

I 6 ∃ Sequence of micro steps (C , ρ)�µs (C ′, ρ′)
such that n1 and n2 are conflicting in (C ′, ρ′)

Synchronous Languages WS 2013, Lecture 23 Slide 48

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Confluence

(From definition:) n1 ∼(C ,ρ) n2 iff

I 6 ∃ Sequence of micro steps (C , ρ)�µs (C ′, ρ′)
such that n1 and n2 are conflicting in (C ′, ρ′)

Observations I

I Confluence is taken relative to valid configurations (C , ρ)
and indirectly as the absence of conflicts

I Instead of requiring that confluent nodes commute with each
other for arbitrary memories, we only consider those
configurations (C ′, ρ′) that are reachable from (C , ρ)

I E. g., if it happens for a given program that in all memories ρ′

reachable from a configuration (C , ρ) two expressions ex1 and
ex2 evaluate to the same value, then the assignments x = ex1
and x = ex2 are confluent in (C , ρ)

Synchronous Languages WS 2013, Lecture 23 Slide 49

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Confluence
(From definition:) n1 ∼(C ,ρ) n2 iff

I 6 ∃ Sequence of micro steps (C , ρ)�µs (C ′, ρ′)
such that n1 and n2 are conflicting in (C ′, ρ′)

Observations II

I Similarly, if the two assignments are never jointly active in any
reachable continuation pool C ′, they are confluent in (C , ρ),
too

I Thus, statements may be confluent for some program relative
to some reachable configuration, but not for other
configurations or in another program

I However, notice that relative writes of the same type are
confluent in the absolute sense, i. e., for all valid
configurations (C , ρ) of all programs

Synchronous Languages WS 2013, Lecture 23 Slide 50

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Confluence
(From definition:) n1 ∼(C ,ρ) n2 iff

I 6 ∃ Sequence of micro steps (C , ρ)�µs (C ′, ρ′)
such that n1 and n2 are conflicting in (C ′, ρ′)

Observations III

I Confluence n1 ∼(C ,ρ) n2 requires conflict-freeness for all
configurations (C ′, ρ′) reachable from (C , ρ) by arbitrary
micro-sequences under free scheduling

I Will use this notion of confluence to define the restricted set
of SC-admissible macro ticks

I Since compiler will ensure SC-admissibility of the execution
schedule,
one might be tempted to define confluence relative to these
SC-admissible schedules;
however, this would result in a logical cycle

Synchronous Languages WS 2013, Lecture 23 Slide 51

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Notes on Confluence
(From definition:) n1 ∼(C ,ρ) n2 iff

I 6 ∃ Sequence of micro steps (C , ρ)�µs (C ′, ρ′)
such that n1 and n2 are conflicting in (C ′, ρ′)

Observations IV

I This relative view of confluence keeps the scheduling
constraints on SC-admissible macro ticks sufficiently weak

I Note: two nodes confluent in some configuration are still
confluent in every later configuration reached through an
arbitrary sequence of micro steps

I However, there more nodes may become confluent, because
some conflicting configurations are no longer reachable

I Exploit this in following definition of confluence of node
instances by making confluence of node instances within a
macro tick relative to the index position at which they occur

Synchronous Languages WS 2013, Lecture 23 Slide 52

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Micro/Macroticks, Runs, Traces
Free Scheduling
Confluence

Confluence of Node Instances

Given:

I Macro tick R

I (Ci , ρi) for 0 ≤ i ≤ len(R), the configurations of R

I Node instances ni1 = (n1, i1) and ni2 = (n2, i2) in R, i. e.,
1 ≤ i1, i2 ≤ len(R), n1 = R(i1), n2 = R(i2)

Call node instances confluent in R, written ni1 ∼R ni2, iff

I n1 ∼(Ci ,ρi) n2

I for i = min(i1, i2)− 1

Synchronous Languages WS 2013, Lecture 23 Slide 53

InEffective2 Revisited

1 module InEffective2
2 output bool x = false;
3 int y;
4 {
5 fork
6 if (!x) {
7 y = 1;
8 x = x xor true
9 }

10 else
11 y = 0
12 par
13 x = x xor true;
14 join
15 }

Recall sequence L6; L7; L8; L13:

I Q: Is L13 ineffective relative to L5?

I A: Yes!

I L13 is out-of-order . . .

I but writes x = true, which is what
L5 read!

I Q: Are L5 and L13 confluent?

I A: No!

→ Current def. of SC-admissibility – specifically, the underlying
scheduling relations – use confluence condition

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

Overview

Static Concepts

Run-Time Concepts

Sequential Constructiveness
Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

Synchronous Languages WS 2013, Lecture 23 Slide 55

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

(Recall:) Scheduling Relations I

For macro tick R, and concurrent but not confluent node
instances (executed statements) ni1, ni2, define scheduling
relations:

ni1 →R ni2: “happens before” (linear order)

I ni1 occurs before ni2 in R

ni1 ↔R
ww ni2: “write / write conflict”

I ni1 and ni2 both perform absolute writes on the same variable

I or both perform relative writes of different type on the same
variable

I E Impossible to find linear order!

Synchronous Languages WS 2013, Lecture 23 Slide 56

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

(Recall:) Scheduling Relations II
For macro tick R, and concurrent but not confluent node
instances (executed statements) ni1, ni2, define scheduling
relations:

ni1 →R
wr ni2: “write before read”, or “initialize before read”

I ni1 is absolute write

I ni2 is read of the same variable

ni1 →R
ir ni2: “increment before read”, or “update before read”

I ni1 is relative write

I ni2 is read of the same variable

ni1 →R
wi ni2: “write before increment”, or “initialize before update”

I ni1 is absolute write

I ni2 is relative write of the same variable

Synchronous Languages WS 2013, Lecture 23 Slide 57

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

(Recall:) Sequential Admissibility

ni1 →R ni2 : “happens before”
ni1 ↔R

ww ni2 : “write / write”
ni1 →R

wr ni2 : “write before read”
ni1 →R

ir ni2 : “increment before read”
ni1 →R

wi ni2 : “write before increment”

Definition: A run is SC-admissible iff
for all macro ticks R and all node instances ni1, ni2 in R:

¬(ni1 ↔R
ww ni2)∧

((ni1 →R
wr ni2) ∨ (ni1 →R

ir ni2) ∨ (ni1 →R
wi ni2))⇒ ni1 →R ni2)

Synchronous Languages WS 2013, Lecture 23 Slide 58

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

SC-admissibility vs. Determinism

1 module NonDet
2 output bool x = false, y = false;
3 {
4 fork { // Thread CheckX
5 if (!x)
6 y = true;
7 }
8 par { // Thread CheckY
9 if (!y)

10 x = true
11 }
12 join
13 }

Multiple admissible runs but
non-deterministic outcome

CheckX CheckY

entry

x = false; y = false

exit

if !x

y = true

true

if !y
1

wr
x = true

true1wr

Thus: SC-admissibility 6⇒ Determinism

Synchronous Languages WS 2013, Lecture 23 Slide 59

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

SC-admissibility vs. Determinism

1 module Fail
2 output bool z = false;
3 {
4 fork {
5 if (!z)
6 z = true;
7 }
8 par {
9 if (z)

10 z = true
11 }
12 join
13 }

Deterministic outcome but
no SC-admissible schedule

Thus: Determinism 6⇒ SC-admissibility

Synchronous Languages WS 2013, Lecture 23 Slide 60

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

(Recall:) Sequential Constructiveness – Definition

Definition: A program is sequentially constructive (SC) iff for each
initial configuration and input sequence:

1. There exists an SC-admissible run

2. Every SC-admissible run generates the same determinate
sequence of macro responses

Synchronous Languages WS 2013, Lecture 23 Slide 61

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

Summary I

Underlying idea of sequential constructiveness rather simple

I Prescriptive instead of descriptive sequentiality

I Thus circumventing “spurious” causality problems

I Initialize-update-read protocol

However, precise definition of SC MoC not trivial

I Challenging to ensure conservativeness relative to
Berry-constructiveness

I Plain initialize-update-read protocol does not accomodate,
e. g., signal re-emissions

I Restricting attention to concurrent, non-confluent node
instances is key

Synchronous Languages WS 2013, Lecture 23 Slide 62

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

Summary II

ASC-schedulability

I Is conservative approximation to SC

I Basis for practical implementation

Future work

I Plenty of it (SC+, optimized code gen, improved SCCharts
transformations, . . .)

I Talk to us if you want to be part of it

Synchronous Languages WS 2013, Lecture 23 Slide 63

Static Concepts
Run-Time Concepts

Sequential Constructiveness

Scheduling Relations
Sequential Admissibility
SC-admissibility vs. Determinism

To Go Further
DFG-funded PRETSY Project: www.pretsy.org

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, and O. O’Brien. Sequentially Constructive
Concurrency – A conservative extension of the synchronous model of
computation. In Proc. Design, Automation and Test in Europe Conference
(DATE’13), Grenoble, France, March 2013. http://rtsys.informatik.
uni-kiel.de/˜biblio/downloads/papers/date13.pdf

R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, O. O’Brien, and P. Roop. Sequentially Constructive
Concurrency – A Conservative Extension of the Synchronous Model of
Computation. Technical Report 1308, Christian-Albrechts-Universität zu
Kiel, Department of Computer Science, Aug 2013.
http://rtsys.informatik.uni-kiel.de/˜biblio/downloads/
papers/report-13seqc.pdf

J. Aguado, M. Mendler, R. von Hanxleden, I. Fuhrmann. Grounding
Synchronous Deterministic Concurrency in Sequential Programming. In
Proceedings of the 23rd European Symposium on Programming
(ESOP’14), Grenoble, France, April 2014.

Synchronous Languages WS 2013, Lecture 23 Slide 64

