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Abstract

Graphs can be used in the visualization of information in many different fields.
Layer-based graph layout distributes vertices among a set of layers and tries to
maximize the number of edges pointed in one direction. Minimizing the number
of crossings is one of the central aesthetic criteria in automatic layout of such
graphs.

In this context, the barycenter heuristic is a popular algorithm to reduce
crossings. Characteristic and sometimes obvious crossings remain, however. To
remove these, this thesis examines the use of the greedy switch heuristic as a
post-processor. This simple algorithm traverses each layer and node and switches
neighbouring nodes if this reduces the number of edge crossings. Run separately
it runs slowly and returns solutions of bad quality. However when run as a
post-processing step to the barycenter heuristic, the algorithm runs fast enough
to be feasible for real-time applications. Furthermore the greedy switch algorithm
is suitable to remove many of the characteristic crossings remaining after the
execution of the barycenter heuristic.

The original implementation of the greedy switch heuristic uses a crossing
matrix to store crossings of edges incident to all combinations of two nodes.
Calculating this crossing matrix runs in quadratic time. By computing the entries
of this matrix on demand the run-time of the heuristic is improved.

The KIELER Layout (KLay) Layered algorithm is a layer-based graph layout
algorithm. It uses port-based graphs, where each vertex has ports and each edge
connects ports in the graph. Furthermore it allows edges between vertices in a
single layer. This results in different causes for crossings. Algorithms for counting
crossings for all these cases are developed or improved. Since often only the
number crossings of edges incident to two nodes is needed for the greedy switch
heuristic, algorithms for counting only these are also described.

Using these, two principle variants of the greedy switch heuristic are com-
pared: Changing node order while considering the crossings to only one or both
neighbouring layers. An experimental evaluation shows that the latter runs fast
enough to be used in real-time applications, while the former is shown to be more
effective in reducing the crossing count but has a slower run-time. Both versions
are shown to improve the number of crossings sufficiently to justify permanent
integration into KLay Layered.
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Chapter 1

Introduction

Graphs are an important possibility for visualizing many different types of data, in
such varying fields as economy, social science, computer science or mathematics.
A common approach to automatic graph layout is layer-based graph layout,
which places the vertices on layers and attempts to let most edges go in a left-
to-right direction. Figure 1.1 shows such a layered graph. A readable and clear
presentation of such graphs is an essential aspect of understanding the data being
presented. Readability and aesthetics of the graph are influenced by a number of
aspects. One of the most important points is minimizing the number of crossings
between edges of the graph, a problem which has been shown to be NP-complete
[EW94]. There has been a large amount of research contributed to this topic,
introducing many heuristics and some optimal algorithms. Most algorithms
sweep through the graph and compares neighbouring layers, assuming the order
of vertices to be fixed in one layer (the fixed layer) and attempting to minimize

Figure 1.1. Example of a layered Ptolemy graph.1Note the data flow direction from left
to right.

1Ptolemy is a project studying modelling, simulation and design of concurrent, real-time and
embedded systems. Its presentation of models uses the KLay Layered Layout algorithms. See
Ptolemy.eecs.berkeley.edu, accessed 03/28/2015
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1. Introduction

(a) (b)

(c) (d)

Figure 1.2. (a) and (c) show typical errors of the barycenter algorithm which can be
corrected by the greedy switch heuristic, resulting in (b) and (d). The removed crossings
in (c) are marked.

crossings caused by edges to the other layer (the free layer) by calculating a good
order of the nodes. Even when reduced to this task of minimizing crossings by
ordering only one part of a bipartite graph, the problem still remains NP-complete
[EW94].

The most common algorithm used to minimize crossings is the barycenter
heuristic, a method which produces good results and runs fast even for very
large graphs. It does, however, return results with characteristic errors, which
sometimes can seem painfully obvious to users. These crossings reduce the
aesthetic quality of the graphs. Often enough, a simple switch in the order of
nodes in one layer would result in a significantly clearer drawing. This thesis
follows this intuition by examining the greedy switch heuristic, which switches
neighbouring nodes in the free layer as soon as this reduces the amount of
crossings. Used separately, this algorithm is slow and often constructs solutions
with more crossings than other methods. Based on the intuition that obvious
crossings can often be removed by simply switching neighbouring nodes, the
algorithm seems like a feasible post-processing step. Before describing the exact
contribution of this thesis and giving an overview of the way it is constructed, the
following section will examine previous research on the greedy switch heuristic.
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1.1. Related Work

1.1 Related Work

The concept of the layer-based layout algorithm originally was introduced by
Sugiyama, Tagawa and Toda [STT81]. This algorithm was designed to automati-
cally layout what they called hierarchical systems. This concept has been adapted
widely, although the focus in the naming of the method has shifted from the term
hierarchy to the fact that the nodes are placed in layers. In this thesis, the term
layer-based layout is used.

A major element of this thesis is integrating and evaluating the results of the
research into the KIELER Layout (KLay) Layered algorithm. The project provides
an open source solution for automatic graph layout and incorporates a wide range
of features and possibilities including different types of graph layout algorithms.
KLay Layered returns a layered layout of graphs and uses the barycenter heuristic.
This automatic graph layout algorithm is based on the framework by Sugiyama
et al. and is described in detail on their homepage2. A comprehensive list of
publications dealing with the architecture and specific parts of the algorithm can
be found on the same page (e. g., [SSvH14], [Sch11]).

The crossing minimization problem has been researched extensively, with a
very large number of publications suggesting heuristics and optimal methods
for two-layer crossing minimization (with or without one layer fixed) as well as
for the general k-level crossing minimization problem. No current and extensive
overview or comparison of effectiveness of the many approaches exists. Jünger
et al. published a comparative study for heuristics and exact algorithms of two-
layer problem in 1997 [JM97] and Martì et al. published a comparison of heuristics
for the same problem in 2003 [ML03], however many new solutions have been
suggested since then.

Only few authors seem to be interested in the greedy switch algorithm. The
reason for this is obvious: Used as a separate algorithm, greedy switch is slow
and gives bad results. This has been shown by theoretical analysis as well as
experimental evaluations.

The greedy switch heuristic was originally introduced by Eades and Kelly
[EK86] together with the greedy insert heuristic3 and the split heuristic.4 Eades
and Kelly come to the conclusion that the worst case runtime of greedy switch is
O(|L||E|2), where |L| is the number of nodes in the layer being sorted and |E| is
the number of edges. They explain this with the total number of possible crossings
being |E2|, noting that the time complexity is hard to compute. Chapter 3 discusses
this in more detail. In order to know when to switch nodes, they precompute the
crossing matrix, which stores the number of crossings between edges incident

2rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLay+Layered accessed 03/25/2015
3For each step, Greedy Insert chooses a node which minimizes the number of crossings to

nodes already chosen and places it as the next node in the layer.
4The split heuristic imitates a quicksort approach to order nodes
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1. Introduction

node i and node j in a matrix entry ci,j. The time complexity to compute this
matrix is given as O(|L||E|). Their experimental evaluation showed that greedy
switching performs poorly on low density graphs and slightly better than the
other two suggested algorithms on high density graphs. The paper also shows a
pathological example for greedy switching, where no crossings are reduced in a
graph which could have a much smaller number of crossings (see Chapter 3 for
further details).

Gansner et al. [GNV88] use greedy switch as a post-processing step after
applying their variant of the median heuristic.5 The reason for using the post-
processing is similar to the motivation for this thesis: They aim to reduce obvious
crossings. Astoundingly, they report a 20-50% reduction in edge crossings after
executing this step, however without giving any exact numbers. The paper
proposes an interesting variation of the heuristic: Usually greedy switch only
switches nodes when a switch would reduce the number of crossings. Here,
however, on every second forward and backward traversal they also switch
nodes when the crossing amount does not change. Supposedly this improves the
result. This approach is avoided in this thesis for several different reasons: The
implementation chosen in this thesis only terminates sweeping inside one layer
when no switch has occured. This would not be possible if nodes are switched
without change in crossing number, since this would lead to an endless loop in
many cases. Therefore the number of sweeps would have to be predefined. Since
the intuition here is that few crossings remain to be removed after execution of
the barycenter algorithm, this would either increase the run-time or decrease
solution quality. Furthermore, choosing this number is difficult, because in many
cases the nodes would simply be switched back to their original positions each
time. Adapting this approach could be part of future research however.

Jünger and Mutzel [JM97] did an experimental analysis of eight different
crossing minimization algorithms including greedy switch. Note that greedy
switch was not used as a post-processor but as a separate algorithm. Jünger
and Mutzel also developed an optimal algorithm which allows them to precisely
evaluate the success of the heuristics. Once again, greedy switch is shown to
fare very badly on low density graphs. On high density graphs its results are
close to the optimum. However, the algorithm is shown to significantly slow
down in relation to the density of the graph. In some graphs, it is much slower
than the optimal algorithm. If the graphs are sparse and the number of nodes
are increased, the running time is better than some of the other algorithms. In
comparison, the barycenter heuristic originally suggested Sugiyama et al. [STT81]
and the one implemented in KIELER is very robust: It runs very fast and gives
the best solutions compared to the other heuristics examined.

5The median heuristic calculates the median of the position of adjacent nodes in the fixed layer
and sorts each node in the free layer by the median value. This is similar to the barycenter heuristic
(see Section 2.3).

4



1.2. Problem Description

Martì et al. [ML03] did another comparison of heuristics in order to be able to
judge the effectiveness of their own developments. Once again they show that
greedy switch gives bad results. For example, on test graphs with 10 nodes on
each layer, greedy switch has an average deviation from the optimum result of
132%. Their examination confirms the relative success of the algorithm on dense
graphs and the very bad performance on sparse graphs. Strangely enough, when
testing the experimental running time, greedy switch seems to fare very well
even compared to the barycenter algorithm. The authors give no explanation and
neither is the source code available to see if any optimizations were attempted.
There seem to be two possible explanations: First of all the time is given in
tenths of seconds in order to be able to compare the running time to the optimal
algorithm and close to optimal heuristic suggested by the authors which, not
surprisingly, run much slower than the other heuristics. For the test cases given
however, this unit is not exact enough. The second possible explanation could be
that many of the results shown are experiments run on sparse graphs, where the
greedy switch algorithm has little to do (see Chapter 3).

Martì et al. also take into account combinations of algorithms, namely: Semi-
median heuristic6 and greedy switch, split and greedy switch, barycenter and
split, first greedy switch then split and finally barycenter and greedy switch,
which is the variant we will be discussing here. This last option results in a slight
improvement in relation to the optimal number of crossings with no significant
change in computation time. The combination of barycenter with greedy switch
seems to be the best compromise between speed and precision, although the
difference to the barycenter method is small.

As a side note, many further heuristics have been suggested which are not
compared in this paper, many of which give better results than the barycenter
algorithm. None of these, however, run faster (i. e., [YS99], [BF06], [Cat95],
[LMV97]).

To the best of my knowledge, the greedy switch algorithm has not been
examined further. This overview showed that only little research has been done
on the greedy switch algorithm. However, the suggested approach of using
greedy switch as a post-processing step has been investigated by some authors.

Let us now turn our attention to what contribution this thesis makes.

1.2 Problem Description

This thesis examines the consequences of implementing the greedy switch algo-
rithm as a post-processing step to the barycenter heuristic.

6The semimedian heuristic is a hybrid of the barycenter and median heuristic introduced by
Mäkinen [Mä90].

5



1. Introduction

The intuition justifying this approach is supported by the observation that
the current barycenter heuristic often results in obvious errors. Therefore the
barycenter heuristic and some characteristic errors are examined.

The characteristics of the greedy switch algorithm are considered and variants
developed which aim at optimizing speed or solution quality of the greedy switch
heuristic. To be able to implement the heuristic, the exact number of crossings
between neighbouring nodes and for complete layers need to be calculated.
Existing crossings counting algorithms in KLay Layered are examined and when
necessary, new ones are developed.

Using the results of an experimental evaluation, recommendations for a final
integration into KLay Layered are given.

1.3 Outline

This thesis is structured in the following manner:
Chapter 2 defines terminology and gives an introduction into the context

forming the basis for this thesis. This includes the general principle of layer-based
graph layout and the barycenter heuristic. To set the stage for the following
chapters, typical errors of the barycenter algorithm are discussed and presented.

Chapter 3 discusses the greedy switch heuristic from different perspectives.
The general form of the algorithm is described and theoretical run-time and
pathological cases are discussed. On an abstract level, different approaches to the
algorithm are presented.

Stepping down in the level of abstraction, Chapter 4 discusses methods for
counting edge crossings, which is the main algorithmic challenge in implementing
the greedy switch heuristic. To do this, different types of edges are considered
i. e., edges passing between layers, edges passing between nodes in the same layer
and edge crossings resulting from the order of north/south ports on a node. For
each of these the crossings in the complete layer and for neighbouring nodes are
discussed separately. Finally, the problem of hyperedge crossings is addressed.
For all of these cases, existing algorithms are presented and where necessary, new
algorithms are developed.

Chapter 5 gives a short introduction into the architecture of KLay Layered
and explains the architecture chosen for the implementation of the greedy switch
heuristic as a post-processor.

The experimental evaluation in Chapter 6 shows the results of practical exper-
iments which judge both quality and speed of the implementation. Recommenda-
tions on the configuration of the greedy switch heuristic are given.

Finally, Chapter 7 summarizes the results and suggests further venues of
research related to the topic of this thesis.
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Chapter 2

Preliminaries

2.1 Terminology

Definitions and terms used across this thesis are collected here, so should the
meaning of a particular word or symbol be forgotten, this is the place to look.

Definition 1. Ports and Port-Based Graph
A port-based graph is a tuple Gp = (V, E, P, vp). Let D = {n, e, s, w} (D as in
Direction) be the set of sides a port can be on. The letters n, e, s, w in the set
D stand for north, east, south, west. P is the set of ports. Using these, the
function vp : P Ñ V ˆ D = {n, e, s, w} maps ports to nodes and the side of the
node the port is on. In order to simplify the algorithms for counting crossings
in a graph, we will be using graphs with undirected edges connecting ports
E = {p1, p2}, p1, p2, P P. Even though data flow graphs obviously use directed
edges, the direction of the edges is not of importance for this thesis. We will use
the term nodes instead of vertices to stay consistent with the KLay Layered source
code.

To be able to easily describe all ports on a given side of a layer, Pd, d P D shall
be a list containing all ports on side d sorted by their position in the layer (see
Definition 2).

Definition 2. Position Functions
Each node and also each port has a position, i. e., in each layer ports and nodes
are numbered from north to south when on the eastern or western side of a node
and east to west when on the northern or southern side. Formally, functions
posp : P Ñ N and posv : V Ñ N map ports or nodes to their indexes.

Definition 3. Connected Edges
Edges connected to a node on a given side d shall be written as connd(v). Edges
connected to a port shall be written as conn(p).

Definition 4. Switch
The greedy switch heuristic works by switching the order of nodes, when this
reduces the amount of crossings. Switching thereby changes the values of the
position functions. Formally, let posv and posp be defined as above. Switching
nodes n1 and n2 with posv(n1) ă posv(n2) results in changed function pos1v and
pos1p with pos1v(v1) = posv(v2) and pos1v(v2) = posv(v1). For the port positions,
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2. Preliminaries

the value functions must also change to reflect the new position of the ports
in the layer: @p : vp(p) = (v1, d), d P D, pos1p(p) = posp(p) + |connd(v2)| and
@p : vp(p) = (v2, d), d P D, pos1p(p) = posp(p)´ |connd(v1)|.

Definition 5. Fixed Port Order
Port ordering is fixed when the input graph defines the order of ports for each
node. Port ordering is free if the layout algorithm can switch the order of ports on
the node. In our case a free ordering of ports means that while the order can be
switched, the side of the node on which the ports are situated must remain the
same. To show free port order, each port on a node v P V and a side d P D with free
port order has the same position value i. e., for Pv,d = {p | p P P^ vp(p) = (v, d)}
it must hold that posp(p1v) = posp(p2v) for all pairs p1v, p2v P Pv. This means that we
do not count crossings caused by the ordering of ports and assume that a port
ordering algorithm can remove all of these crossings. As shown in Section 4.2,
this assumption is not always true.

Definition 6. Layer
In layer-based graph layouts, there are n P N layers Li, i ă n. These partition the
set of nodes, i. e., each node is contained in exactly one layer. The nodes in a layer
are a tuple Li = (v0, . . . , vki), ki P N, where ki is the number of nodes in Li. The
layered graph shall be denoted by the tuple L = (L0, . . . , Ln´1) Layers Li, Lj are
neighbours or neighbouring if |i´ j| = 1.

In contrast to most publications on crossing minimization I will assume a left
to right or east-west layout of the layers. This is because KLay Layered is mostly
used to layout data flow diagrams, where the left-right direction is more common.

In most algorithms the problem of minimizing edge crossings is reduced to
the subproblem of minimizing crossings between two neighbouring layers. The
order of nodes in one of these two layers is held fast, while the order of nodes in
the second layer is changed. This second layer shall be called the free layer, or L f ,
as opposed to the fixed layer or Lx.

Definition 7. In-layer and Between-layer Edges
Edges are either between-layer or in-layer. They are between-layer when they
pass from one layer to a neighbouring layer and in-layer when they connect
nodes in the same layer. Formally, an edge is an in-layer edge, when for edge
e = (p1, p2), p1, p2 P P and a side d P D it holds that vp(p1) = (v, d), vp(p2) =

(v1, d), v, v1 P L. Between-layer edges pass between neighbouring layers: An
edge e is an in-layer edge iff e = (p1, p2), p1, p2 P P : vp(p1) P Li ^ vp(p2) P

Lj ^ Li and Lj are neighbours

Definition 8. Long Edge Dummies, North/south-port Dummies
In order to simplify the problem of crossing minimization to two layers, edges
traversing more than one layer are replaced by a chain of long-edge dummies,
one for each layer.

8



2.2. Layered Graph Layout

B

C

A

BL

NS

BL

LE

LE

Figure 2.1. The feedback edge from A to B creates two in-layer edge dummies (IL).
When traversing more than one layer an edge is split up into portions separated by
long-edge dummies (LE). When a node has an edge connected to its north or south side, a
north/south edge dummy is created (NS).

When an edge is incident to a port on the north or south side of a node, a
north/south port dummy is added to show where the bend in the edge will be
drawn. See Figure 2.1 for examples of in-layer edge dummies, long edge dummies
and north/south port dummies.

Definition 9. Adjacency List
An adjacency list A(v, d) to a node v on side d P D is a sorted list of ports connected
by edges to ports on node v on side d. Formally, A(v, d) = (p0, . . . , pn´1),@i ă
n, D{pi, p1} P E, vp(pi) = (v, d) and @pi, pi+1, i ă n´ 1, posp(pi) ă posp(pi+1).

Definition 10. Crossing Matrix
The crossing matrix for a free layer L f and a fixed layer Lx is a matrix (ci,j)i,jă|L f |

where each entry ci,j saves the number of crossings of edges incident to two nodes
vi, vj where vi is above vj, or: posv(vi) ă posv(vj). Equivalently the entry cj,i saves
the number of crossings incident to those nodes when vj is above vi.

Definition 11. Hypergraph, Hyperedge
In accordance with Spönemann et al. [SSRvH14], a directed hypergraph is a pair
G = (V, H) where H Ď Pˆ P is a set of hyperedges. Each (S, T) P H has a set of
sources S and a set of targets T. KLay Layered supports the drawing of orthogonal
hyperedges.

With these definitions all set, we will have a look at the layout method our
algorithm will be a part of.

2.2 Layered Graph Layout

The following chapter will give a short introduction to some basic background in-
formation concerning the type of graph layout in question and the basic algorithm
framework used for automatic layouting, called KLay Layered.

9



2. Preliminaries

The goal of KLay Layered is to construct a graph layout which is suited
for graphs which have an inherent edge direction, such as data flow diagrams.
Data flow diagrams are used to demonstrate or model the flow of data through
components of a given system. As an example consider the one given above in
Figure 1.1.

As the name suggests, KLay Layered uses a layered approach to automatic
graph drawing. This means that nodes are distributed among a set of layers. In
order to make the graph as readable as possible, the algorithm tries to optimize
different criteria, the most important being:

Ź Maximize the number of edges directed from left to right, following the reading
direction.

Ź Minimize crossings between edges.

Ź Minimize edge bends.

KLay Layered is based on an algorithm developed by Sugiyama, Tagawa and
Toda [STT81]. This algorithm was designed to automatically layout what they
called hierarchical systems. The term hierarchy assumes that the first level of the
drawn layout is the top of a hierarchy and the directed edges show the nodes
further down in the hierarchy. For this reason, Sugiyama et al. draw their graphs
in a top-down order. This principle has been followed in most of the following
literature. As has been said, we will consider a left-to-right layout, since the goal
of KLay Layered is to layout data flow diagrams.

The following section only gives a very short and very general overview of
the Sugiyama framework. For a more detailed description, see the original paper
[STT81].

The algorithm is divided into four steps:

1. Distribute nodes to layers and replace long edges with node dummies.

2. Permute order of nodes.

3. Position nodes horizontally.

4. Remove dummy edges, replace with edge bends.

A hierarchical ordering of graphs is considered to be a proper layout when edges
always go in a left-right direction and always go from one layer to a neighbouring
layer. To make this possible, graphs layouted this way cannot contain cycles. After
distributing the nodes across the different layers, any edges going further than to
the neighbouring layer are broken by dummy nodes. These are nodes which in
step 4 will be removed and replaced with edge bends.

The second step reduces the number of edges crossings. This is the main
concern of this thesis and is more carefully discussed in Section 2.3 and Chapter 3.

10
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(a)
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Figure 2.2. Steps in Sugiyama algorithm: (b) Adds dummy edges and assigns layers. (c)
Reduces edge crossings. (d) Reduces edge bends. (e) Removes dummy nodes.

The third step positions the nodes horizontally in each layer in order to reduce
the number of edge bends. Figure 2.2 shows the traversal of all the steps in the
algorithm.

The following chapter will consider step two more closely: The Barycenter
Heuristic is suggested by Sugiyama et al. [STT81] and is used in KLay Layered to
reduce the number of crossings in a layered graph.

2.3 Barycenter Heuristic

As shown by Eades and Wormwald, minimizing the number of edge crossings by
permuting nodes in a layered graph is NP-complete [EW94].

The common approach is to reduce the difficulty of problem by only con-
sidering a pair of layers at a time. As determined in Definition 6, one of these
is the free layer L f , whose node order is permuted, and the other is the fixed
layer Lx, whose node order is held fast, a problem which should be easier but
unfortunately is also NP-complete [EW94].

In order to reduce edge crossings in the whole graph, many heuristic algo-
rithms sweep from left to right and backward across the layers until no further
improvement of the number of crossings is achieved, as shown in the algorithm
layerSweep (Algorithm 1).

Depending on the heuristic, at least the permutation of the first fixed layer
needs to be set before one can sweep forward and backward across the layers.
The simplest way to do this is to choose a random order. Obviously some choices
for the order of the first layer may be better than others. To take this into account,
one can simply run the algorithm with several randomized values and take the
best result.

To choose a good permutation with feasible computation time, very many
different heuristics have been suggested. Sugiyama et al. developed an algorithm
which they called the barycenter heuristic [STT81]. This heuristic is fast in theory
and in practice and gives good results, which is why KLay Layered uses this
algorithm (for experimental evaluations see the research discussed in Section 1.1).

The name barycenter is a synonym for the centre of mass, or the point where

11



2. Preliminaries

Algorithm 1: layerSweep
Data: Layers L

Result: Reordered layers LbestOrder
1 lastCrossings = 8;
2 currentCrossings = countCrossings(L);
3 forward = true;
4 while lastCrossings ą currentCrossings do
5 LbestOrder = copy of (L0, . . . , Ln), storing the current order of each layer
6 if forward then
7 for i = 0 to n´ 2 do
8 Lx = Li
9 L f = Li+1

10 Li = permute(Lx, L f )

11 else
12 for i = n´ 1 to 1 do
13 Lx = Li
14 L f = Li´1

15 Li = permute(Lx, L f )

16 forward != forward;
17 lastCrossings = currentCrossings;
18 currentCrossings = countCrossings(L)

(a) (b)

Figure 2.3. In b) the nodes the nodes are shown in the positions of their barycenters, or
where the edges would be as short as possible. In the case of nodes 4 and 6, a random
order is chosen, since both have the same barycenter.

the sum of gravitational pulls equals zero. This shows the general principle of
the algorithm. For each node in the free layer, its neighbours in the fixed layer
generate a gravitational force which pulls the free node to the barycenter of these
forces, minimizing the length of the edges. The barycenter of a node is simply
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2.3. Barycenter Heuristic

Algorithm 2: barycenterPermute. Remember that A(v, d) is an adjacency
list, see Definition 9

Data: Fixed layer Lx, free layer L f , Side d P D showing which side of the
free layer the fixed layer is on

Result: Reordered free layer L freord

1 bary := V Ñ < mapping nodes to their barycenter value
2 for Node v P L f do
3 if NLx(v) ‰ H then
4 bary(v) := ∑vnPA(v,d)

posv(vn)
|A(v,d)|

5 else
6 bary(v) := random value between 0 and |Lx|

7 L freord = L f sorted by bary(v), v P L f . Same values in random order.

calculated as the average of its neighbour’s positions. The nodes are then sorted
by their barycenters. Nodes with equal barycenters are sorted randomly. The
algorithm barycenterPermute (see Algorithm 2) shows how simple this algorithm
is. In a port-based graph this algorithm is simply changed to iterate through all
ports on all nodes on the side of the free layer and use the posp function for ports
(see [SFvHM10]).

The barycenter heuristic scales well. It calculates the barycenters in linear
time and can then use efficient sorting algorithms, resulting in a running time of
O(|E|+ |Vf | log|Vf |) (|E| to calculate the barycenters and |Vf | log|Vf | to sort the
nodes).

The framework described by Sugiyama et al. only takes between-layer edges
into account. For practical implementations however, and also in the case of KLay
Layered, we must take in-layer edge and north-south port crossings into account
as well.

Schulze [Sch11] suggested changes to the barycenter algorithm for in-layer
edges. For each node v with an in-layer edge, the node vIL connected to it by the
in-layer edge influences the barycenter value of v. The position value used for
calculation of the barycenter of v is the barycenter value of vIL.

If the barycenter has not yet been calculated for vIL, the barycenter calculation
algorithm is recursively called for vIL. To avoid an endless loop the in-layer edge
to v obviously needs to be ignored.

When calculating the positions of north/south dummy nodes, the barycenter
algorithm in KLay Layered does not currently take the positions of north and
south ports on a node into account. Conceivably, the algorithm could be changed
so that barycenter values of these dummy nodes are in some way influenced
by the position of the connected north/south ports and the direction of their
between-layer edges. This would go beyond the scope of this thesis, but might be
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2. Preliminaries

Figure 2.4. Simple pathological example for the barycenter heuristic. By switching the
rightmost vertex in the bottom layer with the five vertices to its left, the graph would
contain no crossings.

an interesting venue for further work in improving the results of the barycenter
algorithm in KLay Layered.

All in all, the current method used in KLay Layered is fast and good, so why
would one want to modify it? The following chapter will show some typical
weaknesses of the barycenter algorithm.

2.3.1 Errors of the Barycenter algorithm

Let us now turn our attention to typical errors of the barycenter heuristic.
Assuming there are only two layers and one layer is fixed, and any configura-

tion of nodes is possible in the fixed layer, we can easily construct pathological
examples where the barycenter algorithm returns very bad results (see Figure 2.4).

In the context of the Sugiyama framework, such configurations are mostly
prevented. The unconnected nodes can very well be put in a different layers,
changing the values of the barycenters.

Let us instead consider an example of a characteristic situation in graphs
layouted with KLay Layered, where obvious crossings remain.

Figure 2.5a shows a case where node N4 could be set directly beside N7 to
reduce two crossings. Why does the barycenter algorithm not do this? After all,
the center of gravity metaphor suggests that the edge connecting N4 and N7f should
be as short as possible. The reason for this is that the barycenter algorithm can
in some cases increase the number of crossings. Consider a backward sweep of
the barycenter algorithm across Figure 2.5a. Let the fixed layer and the free layer
be as marked in Figure 2.5a. In this case, all dummy nodes for the long edges
and nodes N5 and N3 are set to the same barycenter value, because their only
neighbour in the fixed layer is N9. As can be seen in Algorithm 2, in this case the
order of the nodes is determined randomly.1 However, if for example the nodes
which are connected to N7 (N5, N3 and two dummy nodes) are set further to the
top of the layer, the node N7 will follow and might cause a higher number of
crossings than before, for example with the edge to node N1.

As a matter of fact, the result created by the algorithm would be significantly

1Note that the randomization seed used to generate random numbers by KLay Layered is kept
constant for each graph to keep the layout consistent for the user.
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2.3. Barycenter Heuristic

(a)

N0

N4N4

N8N8

N7

N3

N5N5

N1

N9

N2
N6

(b)

Figure 2.5. Part of a randomly generated graph showing a typical problem of the
barycenter heuristic. A backward sweep of the barycenter algorithm would result in b).

(a) (b)

Figure 2.6. Part of a randomly generated graph showing a typical problem of the
barycenter heuristic. A backward sweep of the barycenter algorithm would result in b).

worse, as can be seen in Figure 2.5b. In this case the ordering of the nodes
neighbouring to N2 were also changed randomly and resulted in five crossings as
opposed to the previous three. To prevent the heuristic worsening the number
of crossings already achieved, after each forward or backward sweep the best
order is saved, as can be seen in layerSweep (Algorithm 1). As soon as the crossing
number is increased, the algorithm is aborted and the last saved layout taken. So
since the N4 node in Figure 2.5a was never reached by a backward sweep, it stays
where it was.

The position of dummy nodes which are part of in-layer edges is also deter-
mined by a barycenter value. This case is therefore prone to the exact same type
of error as the between-layer edges. See Figure 2.6 for an exemplary error.

The implementation in KLay Layered does not sort north/south port dummies
with respect to their connecting north/south port on the normal node. This results
in many unnecessary crossings, as can be seen in the example given earlier in
Figure 1.2c.

Errors due to this randomization seem to be quite common for the barycenter
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2. Preliminaries

algorithm and can be reduced if the number of executions with different random
values is increased. Obviously this increases running time by whichever number
of repetition is chosen.

I believe that these types of edge crossings are specifically problematic, because
humans can quickly and simply see how to improve the layout. In my opinion,
the possibility of obvious corrections significantly reduces the aesthetic quality
of the graph, a sentiment shared by users of KLay Layered who have provided
feedback.

After this quick look at the current situation, the next section will describe
which solutions the greedy switch algorithm as a post-processing step could offer.

16



Chapter 3

Greedy Switch Heuristic

The following chapters give a closer look at the principle of the greedy switch
heuristic and variants to be considered when implementing it.

3.1 Algorithm

In the context of the layered approach to graph drawing, the heuristic is very
quickly explained: For two neighbouring nodes, check to see if by exchanging
their positions (switching them) the number of crossings is reduced. If it is, switch
them, if it is not, don’t. This principle is continued throughout the graph for all
nodes in each layer.

The greedy switch heuristic was introduced by Eades and Kelly [EK86]. In
their paper, they suggest three different algorithms for drawing what they call
two-layered networks. This is a graph G = (V, E) with two layers L = (L1, L2) with
only between layer edges, i. e., edges passing from one layer to the other. Similar to
the barycenter heuristic, the order of one layer is fixed (Lx) and the order of the
other is free (L f ). The nodes in the free layer are permuted to reduce crossings.
This is done using greedyPermute (Algorithm 3).

Naturally, two-layered networks are not a real application. For general layered
networks the heuristic suggested by Eades and Kelly sweeps backwards and
forwards across the graph, always considering two neighbouring layers. This is

Algorithm 3: greedyPermute
Data: Fixed layer Lx, Free layer L f
Result: Reordered free layer L f

1 continueSweeping := true
2 while continueSweeping do
3 continueSweeping := false
4 for neighbouring nodes vupper, vlower in L f do
5 if switching vupper and vlower reduces number of crossings then
6 Switch values of posv(vupper) and posv(vlower)
7 continueSweeping: = true
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3. Greedy Switch Heuristic

the exact same principle as was described earlier for the barycenter algorithm. In
fact, there is no need to reprint the algorithm: layerSweep (Algorithm 1) can simply
be executed just the same as with barycenter, using greedyPermute (Algorithm 3))
as the permute algorithm.

3.2 Quality and Speed

What is the running time of the greedy switch heuristic? Although it looks
very similar to Bubblesort, there is no linear order of the nodes at which the
algorithm will always terminate. It ends when has reached a stable ordering,
where switching neighbouring nodes does not improve the crossing count. Since
the heuristic only continues when a switch occurs the maximum number of
possible traversions of the free layer is |L f |

2, in the case where only one node is
switched per traversion and each node is switched with every other node. This
results in a worst case running time of O(|L f |)

3.
However, actually constructing a pathological case where only one node is

switched per sweep and all nodes are switched with each other is difficult or
impossible and cannot be found in the literature. As Eades and Kelly [EK86] put
it, the actual time complexity of greedy switch is hard to compute.

It is much simpler to construct pathological examples showing low solution
quality. See for example Figure 3.1 where the resulting number of crossings is
quadratic to the optimal number of crossings.

As has been shown in different experimental evaluations (see Section 1.1), the
speed of the greedy switch heuristic deteriorates significantly when the density of
the graph increases, while the difference in the number of crossings to an optimal
ordering is decreased.

Since run-times of the algorithms counting crossings between nodes depend
on the number of edges (see Chapter 4) the speed decrease is obvious. There is
another reason for both speed decrease and quality increase: In sparse graphs,
greedy switch can easily be prevented from correcting obvious errors. Consider
the small example in Figure 3.2, where the nodes in the middle will not move,
since switching them with neighbouring nodes would not remove any crossings.

As the literature overview shows (see Section 1.1), past experimental results
have shown how badly the greedy switch heuristic fares compared to other
algorithms when used as the only algorithm to reduce edge crossings. However,
the motivation for the approach chosen here is to use the heuristic as a post-
processing step after executing the barycenter algorithm. As shown in Section 2.3,
this approach results in graphs with few crossings reasonably close to the optimal
ordering, while keeping some (often obvious) crossings due to characteristic errors
of the algorithm.

As a post-processing step, the greedy switch heuristic should therefore en-
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3.2. Quality and Speed

(a) (b)

Figure 3.1. Pathological example for the greedy switch heuristic. The bold edges going
to the two white nodes on the right layer (the free layer) prevent the greedy switch
algorithm from doing anything in (a), because no switch of neighbouring nodes would
reduce the crossing amount. However the optimal ordering shown in (b) has much fewer

crossings. In numbers: (a) has
(
|L f |

2

)2
+ 2 ˚

(
|L f |

2 + 1
)

= 50 crossings as opposed to

2 ˚ (|L f | ´ 2) + 1 = 19 crossings in (b).

Figure 3.2. The nodes cannot be switched by the greedy switch heuristic because edges
incident to neighbouring nodes have no crossings. Very simple crossings can remain.

counter a graph where only few crossings remain. Since it only continues to
sweep through the free layer if at least one pair of nodes have been switched, the
algorithm will run in linear time if no further crossings can be removed (assuming
a precomputed crossing matrix, see Section 3.3.3).

Furthermore, in my opinion, the greedy switch heuristic is similar to the
human approach of recognizing and removing unnecessary crossings in graphs.
Consider a further example of an error of the barycenter algorithm (Figure 3.3).
The unnecessary crossing caused by the position of the J node is strikingly obvious
because one could simply pull it upwards next to VectorIntegrator2. This might
also be the reason for the crossing being so obvious in the first place.

In summary, the greedy switch algorithm might specifically be well suited
for resolving obvious errors caused by the barycenter heuristic and might have
reasonable computation time when run as a post-processing.
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3. Greedy Switch Heuristic

MultiplyDivide2

J

J

VectorIntegrator2

Figure 3.3. The crossing of the edge connected to the J node is so strikingly obvious to be
especially bothersome.

A

B

D

C

L0               L1                L2 

Figure 3.4. Example of an obvious crossing which would only be removed in a backward
sweep of the one-sided variant.

The main algorithmic problem of greedy switch, namely deciding when to
switch, still has not been addressed. The next section will take one level of
abstraction further downward and compare six different general variants for this
problem.

3.3 Deciding When to Switch

3.3.1 Fixing one Neighbour Layer or Both

As described above (Section 3.1), the originally proposed greedy switch heuristic
uses the same layer sweep algorithm as the barycenter heuristic. This means that
for each node in the free layer, the number of crossings to one of the free layer’s
neighbours is reduced.

Note that in some cases a forward sweep does not reduce any crossings, while
a backward sweep would. Consider Figure 3.4: If L0 is the fixed layer and L1 the
free layer there is no reason to switch nodes A and B. If L1 is the fixed layer and L2

the free Layer, nodes C and D are not switched because the number of crossings
would remain the same. Only on a backward sweep when L2 is fixed and L1 free,
would the obvious crossing be removed. Therefore in order to improve the results,
the implementation chosen here always sweeps forwards and backwards before
counting the number of crossings. Incidentally, the examples for bad results of
the barycenter algorithms given so far (Figure 2.5a and Figure 3.3) would not be
improved if the heuristic would stop after a forward sweep.

In the case of greedy switching (as well as with the barycenter heuristic),
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3.3. Deciding When to Switch

(a) (b) (c)

Figure 3.5. (a) shows the graph in its first layout with one crossing. (b) shows the graph
after a forward sweep of the one-sided variant and (c) after the following backward sweep.
If the algorithm aborts when no switch has taken place in a sweep like the two-sided
variant does, this situation would end in an endless loop. If the algorithm aborts after a
certain number sweeps, the amount of crossings would always be increased.

executing the heuristic can lead to an increase in the number of crossings. Con-
sider the example in Figure 3.5. In order to prevent an increase in the number of
crossings, the layerSweep algorithm (Algorithm 1) counts the number of crossings
in the graph after each sweep and aborts if it has not improved.

Not surprisingly, counting the number of crossings in the whole graph is an
expensive operation (this is discussed in detail in Chapter 4). There is however a
simple variant of this heuristic which guarantees that nodes are only switched
if they can not increase the number of crossings in the graph. To do this one
can simply take into account the crossings to both neighbouring layers and only
switch if the total number of crossings is reduced. I call this the two-sided approach
as opposed to the usual variant, which equivalently will be named one-sided.

In this case we can abort after either a forward or backward sweep, just as in
the normal layerSweep algorithm, also saving computation time. The examples
of obvious barycenter errors named above would be successfully improved by
a single forward sweep of the two-sided variant (Figure 2.5a, Figure 3.3 and
Figure 3.4).

However, putting speed considerations aside, the two-sided approach in some
cases leads to fewer reductions in edge crossings than the one-sided would.

Consider the simple example in Figure 3.6: With one-sided greedy switching,
nodes A and B would be switched and the crossing would propagate to the next
layer, where, after switching the right-most nodes, it would disappear. With
two-sided greedy switching on the other hand, A and B would not be switched,
because the number of crossings in the layers neighbouring the free layer would
remain the same. The situation in Figure 3.6 happens quite often in the Sugiyama
Framework, because edges spanning more than one layer (called long edges in
KLay Layered) are broken by dummy nodes in each layer. Therefore, the two
sided variants could not remove crossings by switching long edges with each
other.

A major difference in the abilities of the two variants occurs when considering
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3. Greedy Switch Heuristic

(a) (b) (c)

Figure 3.6. Assuming that the order of the nodes in first layer cannot be changed, the
one-sided variant results in the layout seen in (c), while the two-sided variant would not
do the step from (a) to (b), because the number of crossings is the same in both situations.

(a) (b) (c)

Figure 3.7. The one sided variant would execute the steps from (a) to (c) on a backward
sweep, while the two-sided variant would not be able to change the graph because in the
step from (a) to (b), the number of crossings is not reduced. If for some reason nodes 0

and 1 can not switch their positions, the situation in (b) would remain.

the crossings which can be caused by the ordering of north-south ports. Switching
the order of north-south port dummies always causes crossings of between-layer
edges to the neighbouring layer. Therefore, even if a north-south port crossing
is reduced by switching north-south dummies, the two-sided variant will never
change their order, because the number of crossings would remain the same. Only
the one-sided variant will therefore switch north-south port dummies. In the case
where the position of node connected to the north-south dummy in the next layer
cannot be changed without increasing the number of crossings further, this could
result in a less aesthetically pleasing drawing: The edge at the north/south port
dummy would either not be in a 90° angle or, if the edges are drawn orthogonally,
an extra edge bend would be added without actually reducing edge crossings.

One can also construct cases in which a better order of nodes in a single layer
is rejected by the one-sided approach while the two-sided corrects the error, see
Figure 3.8. These examples however, are more of a hypothetical nature.

In summary, we now have two versions of greedy switch, the two-sided and
one-sided variant, which switch different nodes and where the two-sided version
is certainly faster. The success in reducing crossing numbers and the actual speed
of these two are examined in Chapter 6. The question which still remains is
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(a) (b) (c)

Figure 3.8. The two-sided variant results in the layout seen on the in (b), while the
one-sided variant would end in (c). Since the four crossings here are more than the three
in the original graph (a), the one-sided variant would not change the original graph.

(a) (b) (c)

Figure 3.9. (a) shows the original layout. Assuming the order of the left layer is fixed, (b)
shows the result when sweeping through the right layer from top to bottom, reducing
one crossing but keeping two. (c) shows the result when sweeping from the bottom to
the top of the layer, removing all crossings.

how and when to count which crossings to be able to choose if a switch would
help or not. The next section will describe the when and which, while the how is
sufficiently complex to be put into its own chapter (Chapter 4).

3.3.2 Comparing Sweep Directions in a Single Layer

In the usual form of the algorithm as described in Section 3.1, for each layer we
start stepping through neighbouring pairs of nodes starting with the topmost
node and sweeping downward. As can be seen in Figure 3.9, there are cases
where sweeping from the top to the bottom of a layer results in a worse solution,
than if the sweep direction were the other way around.

For this reason, the algorithm could simply be changed to be run twice, once
sweeping from top to bottom in a layer, and once the other way around. After
counting the number crossings for both possibilities, the better version is taken.

Obviously this increases run-time. Since the algorithm is run twice, it should
simply double the time needed to compute a reordering. Furthermore, we need
to count crossings for the two-sided variant as well, which we did not need to
do before. This would remove some of the performance benefit of the two-sided
variant.

Incidentally, cases where certain combinations of top-down and bottom-up
sweeps return better solutions can also be constructed. Considering these as well
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would increase the run-time proportionally to the amount of variants tried. For
the implementation described more closely below, only the two most obvious
variants of only sweeping upwards or downwards in a layer are compared.

3.3.3 When to count which crossings

The algorithm suggested by Eades and Kelly uses a crossing matrix to decide when
to switch. A quick reminder of definitions: The free layer L f is a tuple of nodes
(v0, . . . , v|L f |´1) and the crossing matrix is a |L f | ˆ |L f | matrix C = (ci,j)i,jă|L f |

where each entry ci,j stores the number of crossings of between-layer edges
incident to nodes vi, vj with posv(vi) ă posv(vj), i. e., vi is placed above vj.
Therefore, switching nodes vi and vj would reduce crossings as soon as ci,j ă cj,i.
As noted by Eades and Kelly, and as we will see in more detail later, calculation
of this matrix can be done in time O(|E||V|) [EK86].

Any previous research using the greedy switch algorithm computes this
crossing matrix. However, in many cases only few entries of this crossing matrix
will be needed. This is especially true when the barycenter algorithm has been
run beforehand, because only few crossings should remain. If the greedy switch
algorithm cannot optimize any crossings only the entries adjacent to the diagonal
of the matrix are of any interest.

The naïve way to decide when a switch of neighbouring nodes could help,
is to simply count all crossings in the layer for the original situation, switch the
nodes, and then recount. At first glance, in the case where no crossings can be
reduced by greedy switch, this method might seem to be more efficient, since
it does not calculate unnecessary options. However, this intuition can quickly
be refuted when considering the run-time of the algorithm. The fastest known
algorithm for counting crossings between two layers runs in O(|E|log|E|) [BJM02].
In the case where greedy switch cannot reduce crossings, it will visit each node
and evaluate the number of crossings for the original order and for the switched
order per visited pair of nodes. Not taking the special cases of in-layer edges and
north-south port edges into account, this results in a minimal running time of
ω(|V||E|log|E|). In the same case, including calculation of the crossing matrix,
the usual version of the algorithm has a minimal running time of ω(|V|+ |E||V|).

The intuition to avoid calculating unnecessary entries in the crossing matrix
is a good one however. The entries can simply be calculated on demand and
saved in the crossing matrix for possible later use. Calculating between-layer
crossings of edges incident to neighbouring nodes v1, v2 P V for both the original
and the switched order runs in time O(|Ev1 |+ |Ev2 |), where |Evi | is the number of
edges incident to vi P V. Therefore, in the case of no possible switch, the minimal
running time of this variant is ω(|E|). Since the barycenter algorithm will be run
before the greedy switch heuristic, the assumption is that this minimal running
time will be the actual running time in many cases.
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3.3. Deciding When to Switch

The algorithms for counting edge crossings must still be discussed more
closely, and the data flow graphs which KLay Layered must work with do not
only have between-layer edges. The following chapter steps the abstraction
down a further level and discusses the exact algorithms and running times for
calculating the number of crossings for all different types of edges drawn in KLay
Layered.
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Chapter 4

Counting Edge Crossings

The greedy switch heuristic is a simple algorithm which is quickly explained.
However, the major challenge is developing algorithms which count the number
of crossings in order to know when a switch of neighbouring nodes improves the
graph. In the case of KLay Layered, the situation is significantly more complex
than in most of the literature about automated layout of layered graphs, because
we must take into account several different types of edges, namely

Ź Between-layer edges: Edges which connect nodes in the neighbouring layers.

Ź In-layer edges: Edges which connect nodes in the same layer.

Ź North/south edges: By ordering dummy nodes with edges to ports on the north
or south side of a node, crossings can be reduced.

Ź Hyperedges: Edges going to the same node or port can be joined to a hyperedge,
reducing the number of edges and crossings in an effort to increase readability.

In some cases the algorithms used to count these edges will be different
depending on whether we aim to only count the crossings of edges incident to
two (in some cases neighbouring) nodes or if we want to calculate all crossings in
the layer.

The following sections will therefore discuss all of these different problems
separately. In order to simplify the algorithms and shorten the discussion, the
following sections will always use undirected edges.

4.1 Crossings of Between-layer Edges

The first problem to be discussed here will be the issue of counting crossings
between edges passing from a layer to a neighbouring layer. The literature
discussing layer-based layout and edge crossing reduction mostly only considers
this situation.

4.1.1 Whole Layer

As mentioned earlier, an efficient algorithm for counting all crossings of edges
passing between neighbouring layers was suggested by Barth et al. [BJM02]. This
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4. Counting Edge Crossings

(a) (b)

Figure 4.1. (a) shows the lexicographical sort order of the edges. (b) shows the correspon-
dence of edge crossings to the inversions.

algorithm is implemented in KLay Layered to count the number of crossings
remaining after every sweep of the barycenter heuristic. The following section
summarizes the explanation from the paper of Barth et al.

To differentiate between the graph and the tree data structure that will be
described below, the following explanation will use the term vertex instead of node
for the graph and node for the tree data structure.

One definition in advance: In a sequence π = (a0, . . . , an´1), n P N, ai P N, i ă
n, a pair (ai, aj) is called an inversion if i ă j^ ai ą aj. The inversion number INV(π)

is the number of inversions in a sequence. For example in π = (00, 11, 22, 13, 04)

with entries of the form valueposition there are 4 inversions: (11, 04), (22, 13), (22, 04)

and (13, 04), hence INV(π) = 4.
In a two-layer graph (Ll , Lr) the between-layer edges can be sorted lexicograph-

ically in such a way so that in πE = (e0, . . . , e|E|) for each pair of edges ei, ej P πE,
it holds that ei = {li, ri} ă {lj, rj} = ej iff posv(li) ă posv(lj) or posv(li) = posv(lj)

and posv(ri) ă posv(rj). Consider for example the two-layer graph in Figure 4.1a
in which edges are named in by their position in πE.

We now take a look at the sequence of the position values of the nodes in the
right layer sorted by their occurrence in πE. Using the example of Figure 4.1 we
have π = (00, 11, 22, 13, 04) using the form rightNodePositionedgeNumber. In π each
inversion corresponds to an edge crossing in the graph. The inversions and their
corresponding crossings are marked in Figure 4.1b.

Therefore, to count the crossings in a two-layered graph, it is sufficient to
calculate INV(π). To do this, Barth et al. use a so-called accumulation tree. This is
a perfectly balanced binary tree with l leaves (l f0, . . . , l fl´1), where l is the next
power of two larger than the number of nodes in the right layer, |Lr|, formally:
2c´1 ă |Lr| ď 2c = l, c P N. Each node and leaf carries a value initialized to 0.
When a leaf’s value is incremented, all its ancestors’ values are incremented as
well. We number all leaves ascendingly corresponding to the positions of the
vertices.
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4.1. Crossings of Between-layer Edges

The algorithm of Barth et al. iterates through the vertices in the order of π

incrementing the leaf with the corresponding position. Each time a left sibling’s
value is incremented, the value on the right sibling’s node or leaf is added to the
number of crossings.

For each visited vertex in LR we must traverse the tree in log|V| steps, resulting
in a runtime of |E|log|V|. If we can choose the smaller layer of the two-layered
graph as the one whose nodes are being represented in the accumulation tree,
it runs in |E|log|Vsmall|. Whenever counting the crossings in a complete layered
graph, this consideration is only relevant when the length of the layer is accessible
in constant time. Even then, it might complicate the implementation without a
significant performance benefit.

To implement the one-sided variant of the greedy switch algorithm, this
counting method will be needed. More frequently however, we need to count
the number of crossings for only two nodes, which is the focus of the following
section.

4.1.2 Two Nodes

When deciding when to switch neighbouring nodes or when calculating the
crossing matrix, we only need to calculate the crossings caused by between-layer
edges incident to two neighbouring nodes or those corresponding to the current
entry in the crossing matrix. Using the algorithm described in Section 4.1.1,
and simply reducing the graph to two nodes, we already have an algorithm
which calculates the number of crossings in O(|E|log |Vsmall|) = O(|Evupper Y

Evlower |log 2) = O(|Evupper Y Evlower |) where vupper, vlower are the two nodes currently
being considered.

However, using an adaption of the suggestion in the original paper by Eades
and Kelly [EK86], we can calculate both the values for the original order of nodes
and the switched order in O(|Evupper Y Evlower |), giving a slightly more efficient
algorithm.

To do this, we merge the adjacency lists Avupper and Avlower of the two nodes.
Each time the adjacency with the highest position in the neighbouring layer is
from Avlower , we can add to the number of crossings for the original order cupperlower
the remaining length of Avupper and remove the adjacency from Avlower . This is
done analogously when the next adjacency comes from Avupper for the switched
order crossings clowerupper. If the next adjacencies in both lists have the same
position value p, we add to cupperlower the number of remaining adjacencies in
Avupper without the number of instances where posp(p1) = p, p1 P Avupper . We do
the same for clowerupper, adding the number of remaining adjacencies in Avlower

without the number of instances where posp(p1) = p, p1 P Avlower .
Consider the algorithm mergeAdjacencies (Algorithm 4) for an exact description

and Figure 4.2 for a detailed explanation of each case the algorithm considers.
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4. Counting Edge Crossings

Figure 4.2. Between-layer edge crossings between two nodes A and B are calculated by
merging sorted adjacency lists. The nodes filled with grey are deleted from the adjacency
list by the algorithm. Both the crossings for the order A-B and for the order B-A can be
calculated in the same step. There are three cases:

Ź BA-1: The position of the next adjacency to A is higher than the next adjacency to B.
We add to the B-A crossings the number of remaining adjacencies to B.

Ź AB-2: The position of the next adjacency to B is higher than the next adjacency to A

We add to the A-B crossings the number of remaining adjacencies to A.

Ź AB-3 and BA-3: The position of the next adjacency to B, in our case position 2, is
the same as than the next adjacency to a We add to the B-A crossings the number of
remaining adjacencies to B after the position of the next adjacency (position 2) and to
the A-B crossings the number of remaining adjacencies to A after the position of the
next adjacency (position 2).

Remember that edges connected to a node on a given side d are be written as
connd(v).

In the worst case, this algorithm must visit all edges of both nodes. This
means that it runs in time O(|Evupper |+ |Evlower |). However, in KLay Layered the
adjacencies of each node are not kept sorted by their target in the neighbouring
layer. This means that before running the algorithm, we must sort the adjacencies,
adding |Evupper | log|Evupper |+ |Evlower | log|Evlower |. When sweeping through a layer,
the sorted adjacencies can be calculated beforehand and reused. Eades and Kelly
[EK86] assume that the adjacency list data structure is used for representing the
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4.2. Crossings of In-layer Edges

Algorithm 4: mergeAdjacencies
Data: Adjacency Lists Avupper and Avlower with posv(vupper) ă posv(vlower),

Side d P D
Result: cupperlower, clowerupper: number of crossings of edges incident to

vupper, vlower
1 while |Avupper | ą 0 and |Avlower | ą 0 do
2 pupper := first element of Avupper

3 plower := first element of Avlower

4 if posp(pupper) ą posp(plower) then
5 cupperlower += |Avupper |

6 remove first entry in Avlower

7 else if posp(plower) ą posp(pupper) then
8 clowerupper += |Avlower |

9 remove first entry in Avupper

10 else
11 v f _upper := the node to which the first entry of Avupper is connected.
12 cupperlower += |Avupper | ´ connd(vupper, v f _upper)

13 v f _lower := the node to which the first entry of Avlower is connected.
14 clowerupper += |Avlower | ´ connd(vlower, v f _lower)

15 remove first entry in Avupper

16 remove first entry in Avlower

complete graph and do not take port based graphs into account. Incidentally, the
same must be done in KLay Layered for the algorithm of Barth et al.

In the case of computing the crossing matrix the runtime can be calculated as
follows: When finding crossings of the first node v0 to all other nodes, the incident
between-layer edges of v0 are visited |V| ´ 1 times. The edges of the next node
v1 then have been visited once and v1 already has an entry for crossings with v0.
Therefore its edges must then only be visited |V| ´ 2 further times resulting in a
total of |V| ´ 1 visits. This is continued equivalently for the rest of the nodes and
results in the running time of O(|E||V|) noted above. Since for KLay Layered we
must sort the adjacency lists beforehand, we must add a factor of ∑vPL |v|log|v|.

4.2 Crossings of In-layer Edges

In-layer edges appear frequently in data flow graphs. Because inputs are usually
drawn on the left of a node, as soon as data from an output function or group of
functions is fed back recursively, the edge must wrap around the node. In this
case dummy nodes are added in the same layer with an in-layer edge connecting
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Figure 4.3. The edge going backward from Gen_Ctrl_Load2 to AddSubtract is a feedback
edge, because it goes against the usual left to right data direction. The grey circle shows
the position of the corresponding dummy node.

Figure 4.4. The current in-layer crossing count algorithm simply takes the difference
of the port positions of each edge as the number of in-layer crossings. In this case the
algorithm would count two crossings, while there are actually none.

the two. See Figure 4.3 for an example.
In-Layer edges can also cause crossings, both with between-layer edges and

with other in-layer edges. In order to know when to switch neighbouring nodes
and to prevent the one-sided greedy switch variant of adding extra edge crossings,
the number of in-layer crossings need to be counted.

Since the barycenter algorithm also needs to know the current number of
crossings after each sweep, KLay Layered uses an algorithm for counting all
in-layer crossings in a layer. This algorithm is very simple and runs in linear time,
however it only gives an upper bound for the in-layer crossings.

In order to calculate the upper bound it iterates through all ports, marking all
those which are unvisited. For each visited port with an in-layer edge it simply
adds the amount of port positions between both ends of the edge to the number
of crossings. This however, will often lead to a number of crossings which is too
high. As soon as there are in-layer edges which start and end between the ends
of another in-layer edge, the algorithm will count all their ports as crossings, even
though no crossings exist. See Figure 4.4 for an example.

For the greedy switch algorithm, the exact number of crossings must be
known. The following section describes a simple algorithm for counting all in-
layer crossings in a layer. The same algorithm is reused for counting crossings
between neighbouring nodes.
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4.2. Crossings of In-layer Edges

Figure 4.5. If the port order of the highest node is not set as fixed, the in-layer edge
counting algorithm will set the position functions of all ports on the top node to the same
value. Therefore the crossing will not be counted, since the assumption is that the port
sorting algorithm can resolve the crossing. In this case, the assumption is wrong.

4.2.1 Whole Layer

Counting in-layer edge crossings is complicated by the fact that we do not want to
count crossings of in-layer edges incident nodes whose port order is not fixed. We
assume that all these crossings can be removed by sorting the port order, and leave
the problem to a port sorting algorithm running after the greedy switch heuristic.
This means that we cannot simply use the order of the edge end ports to count
the edge crossings. Note that the assumption that the port sorting algorithm can
remove all of the crossings between edges incident to a node with free port order
is only an approximation. Figure 4.5 shows a hypothetical example where this is
not the case. When using this assumption, the greedy switch heuristic will not
return the best possible solution for these cases.

In order to count the number of in-layer crossings we proceed through all
edges in the graph, saving the start and end position of each edge in a sorted list.
If the edge is a between-layer edge, we simply add the position of the port on this
layer to the list. Each time we meet an edge which has been visited, we count all
port position in between the end and start position of this edge and delete it from
the list. As defined in Definition 5, ports on nodes with free port order have equal
position values, so in this way, crossings on the same node with free port order
are ignored. The algorithm is run twice, once for the edges on the eastern side of
the layer in question and once for those on the western side. See Figure 4.6 for a
graphical explanation of the algorithm.

Since we will reuse the actual counting algorithm with different ports for
counting the in-layer edge crossing on only two nodes, the algorithm is split into
two parts, allInLayer (Algorithm 5)) and countInLayerCrossings (Algorithm 6)). As
a reminder, Pd, d P D is a list of ports on side d (in this case east or west) ordered
according to their position in the layer and conn(p) is the set of edges incident to
port p.

How fast is this method? The implementation uses a binary tree datastructure
with the ability to specify a cardinality for its leaves. It is used to store the port
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4. Counting Edge Crossings

Ports:  ()                  (0, 2)         (0, 0, 1, 2)  (0, 0, 1, 1, 2, 3) (0, 1, 2, 3)    (0, 1, 2, 2, 3)         (1, 2, 3)             (2)
Step:                   A        B        C        D         E          F        G
Crossings added:                                              +1       +1                 

Figure 4.6. Counting in-layer edge crossings: The left-most situation shows the nodes
on which the ports are situated: The nodes are drawn as a rectangle, while the circles
are the ports with their position values. In this case the port order on all nodes is not
fixed, resulting in only two counted crossings, because the port list sorting algorithm
can remove these crossings by reordering the ports with same position values. The port
positions which have been entered into the sorted list of port positions are marked in grey.
The port positions where both ends of an edge have been visited are shown hatched. The
arrow shows the port currently being visited. Note that in step D no crossing is counted,
because the ports in the third and fourth step have the same position as they are on the
same node without fixed port order. Similarly in step F, the crossing between the edge
which is deleted from the list and the between-layer edge above it is not counted, because
the position value is the same.

Algorithm 5: allInLayer. Remember that Pd, d P D is a list of ports on side s
Data: Layer L = (v0, . . . , vn ´ 1), n P N, Side d P D
Result: number of crossings c caused by in-layer edges

1 Evisited := empty set of edges
2 TP´visited := binary tree structure, with port positions at its leaves
3 for p in Pd do
4 c += countInLayerCrossings(p, Evisited, TP´visited)

positions of each edge. With |EIL| as the number of in-layer edges and |EBL| as the
number of between-layer edges, this means that finding the first leaf i P TP´visited
with i ą pcurr runs in O(log(2 ¨ |EIL| + |EBL|)). Calculating the length of the
subset |{leaves i P TP´visited | i ą posp(pcurr)) ^ i ă posp(p1curr))}| then needs
linear time, in the worst case O(2 ¨ |EIL|+ |EBL|). Therefore allInLayer runs in
O(|E|(2 ¨ |EIL|+ |EBL)log(2 ¨ |EIL|+ |EBL|)).

Since the algorithm is run as a post-processor step to the barycenter algorithm,
the actual distance between the ends of an in-layer edge should never be very large
however, which should keep the linear factor 2 ¨ |EIL|+ |EBL| very small, reducing
the quadratic nature of the algorithm. Remember that due to the adaption of the
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4.2. Crossings of In-layer Edges

Algorithm 6: countInLayerCrossings
Data: Port p, Set of visited edges Evisited, Binary tree structure with port

positions at its leaves TP´visited
Result: Returns number of crossings c caused by in-layer edges incident to

p with edges in Evisited and updates set Evisited and binary tree
TP´visited

1 for e = {pcurr, p1curr} in conn(p) do
2 if pv(pcurr) = (v, d) : v P L then
3 if e = {p1, p2} R Evisited then
4 Evisited := Evisited Y e
5 TP´visited := add to tree posp(p1) and posp(p2)

6 else
7 Evisited := Evisited z e
8 c += |{leaves i P TP´visited | i ą posp(pcurr))^ i ă posp(p1curr))}|

9 else
10 c += |Evisited| ´ |{leaves i P TP´visited | i = posp(pcurr}|

barycenter algorithm suggested by Schulze [Sch11] and implemented in KLay
Layered, during the calculation of the barycenter of a node n with in-layer edges,
the barycenter value of the connected in-layer node is also used as part of the
calculation (see Section 2.3). This is done with the explicit goal of avoiding the
end ports of in-layer edges being positioned too far apart.

In order to be used for greedy switch, only the crossing number for two
neighbouring nodes is needed, which is discussed in the next section.

4.2.2 Between two Nodes

Now that we have an exact algorithm for counting in-layer crossings for all
edges in the layer, the simplest way of implementing an algorithm which counts
crossings for edges incident to two nodes is to reuse the algorithm given above.
We simply pick only those ports Prel connected to the two nodes and feed them to
countInLayercrossings. See the algorithm twoInLayer (Algorithm 7).

This method counts all in-layer crossings, including those of in-layer edge
crossings of edges incident to only one of the two nodes which exist due to fixed
port-ordering. These crossings cannot be changed by exchanging the nodes and it
is therefore unnecessary to count them. The correctness of the decision whether
to switch nodes or not is not influenced however, since the number of crossings
caused by fixed port order will be the same in both the original and the switched
order.

To count the number of crossings for the switched order, the nodes must
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4. Counting Edge Crossings

Algorithm 7: twoInLayer
Data: Nodes v1, v2
Result: Crossing number c caused by in-layer edges connected to v1 and v2

1 Prel := (p0, . . . , pk´1), {pi, p1} P E, vp(pi) = v1 _ vp(pi) = v2, posp(pi) ă
posp(pi+1), i ă k´ 1

2 Evisited := empty set of edges
3 TP´visited := binary tree structure, with port positions at its leaves
4 for p in Prel do
5 c += countInLayercrossings(p, Evisited, TP´visited)

actually be switched and the crossings recounted, updating the values of the posp

function as defined in Definition 4.
The running time of this algorithm is the same as allInLayer, however the

number of considered edges is obviously reduced.
The original algorithm in KLay Layered counted the number of crossings

between north/south edges and long edge dummies together with the in-layer
edge crossings. Since this is now not the case for the algorithm described in
this section those crossings will be counted together with the problem for the
following section: counting crossings of north/south edges.

4.3 Crossings of North/South Edges

4.3.1 Whole layer

As described in Section 3.3, only the one-sided variant can switch the order of
north/south dummy nodes. The two-sided variant could however be able to
switch normal nodes and long-edge dummies where the north/south edges create
unnecessary crossings.

The algorithm for counting north/south port crossings currently implemented
in KLay Layered is very simple and runs in quadratic time. It traverses the layer
and for each north/south port dummy iterates through all following nodes until
it finds the normal node to which it is connected. On the way, it adds to the
crossing number all north/south port edges it crosses, using a similar table as
described for the algorithm for counting north/south edge crossing between two
nodes described in Section 4.3.2.

The following section will describe a simple algorithm for counting all north-
south port crossings which runs in linear time. Consider the image in Figure 4.7.
Only the crossings of the horizontal edges are counted so as not to count the
crossings twice. Let us first consider the node at position 0, 2. To simplify, we can
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4.3. Crossings of North/South Edges

Figure 4.7. The row of numbers in the node show the position of the ports. The numbers
on the side show the nearness of the north/south dummies to their origin port, i. e., the
closer the node, the higher the nearness.

draw the situation as a matrix:  ´ x ´

´ ´ x
X ´ ´


The box shows the matrix to the top right of the node in the bottom left position
written in bold font, which corresponds to the node at position 0, 2. Comparing
Figure 4.7 and the matrix, we can easily see that the number of crossings of a
north/south dummy with an eastern edge is equal to the number of nodes in the
marked area of the matrix.

For western edges on dummy nodes, consider the box in the following matrix
for the node in position 2, 1:  ´ x ´

´ ´ X
x ´ ´


In this case the number of crossings is equal to the number of nodes in the
remaining matrix to the bottom left of the node in question.

As defined in Definition 3, |connd(v)| is the number of edges incident to node
v on side d P D. Let VNS =

⋃
vPV,dP{s,n} connd(v) be the set of north/south port

dummies. Furthermore, let originNode : VNS Ñ V be a function mapping a
north/south port dummy to its connected normal node in the same layer and
originPort : VNS Ñ V be the port the north/south port dummy is connected on
for that node. In order to be able to find the needed coordinates for north/south
port dummies, the nearness of a north/south dummy to its origin is defined as
follows:

nearness := (VNS, D)Ñ N, nearness(vNS, d) = |connd(originNode(vNS))|´

|posv(vNS)´ posv(originNode(vNS))|

For a north/south dummy vNS P VNS with posp(originPort(vNS)) we now have
the same coordinates as in Figure 4.7. Since in each row and column of the matrix,
there can only be one node, the number of crossings for a north/south dummy
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nsDummyAmount = 1 c = 0
c += nsDummyAmount c = 1

nsDummyAmount = 2 c = 1

c += nsDummyAmount c = 3

longEdgeDummyAmount = 1 c = 3

c += longEdgeDummyAmount c = 4
longEdgeDummyAmount = 2 c = 4

c += longEdgeDummyAmount c = 6

Figure 4.8. Step by step example for counting all crossings between long edge dummies
and north/south nodes.

vNS with an western edge can be calculated as:

min(posp(originPort(v)), nearness(v))

the number of crossings for a north/south dummy vNS with an eastern edge on
the northern side can be calculated as:

min(cards(vNS)´ posp(originPort(vNS))´ 1, nearness(vNS))

For north/south dummies on the southern side of a node, we can use the exact
same algorithm, if the posp function also numbers the ports from east to west in
ascending order.

We can now choose to iterate either over the north/south ports of each normal
node, or over all north/south dummies of a node and add the resulting crossings.
This algorithm obviously runs in linear time.

In KLay Layered, long-edge dummies can be drawn in between north/south
dummies and their origin node. Obviously this causes crossings with all north-
south edges passing through the long edge dummy. Originally, these crossings
were counted at the same time as the in-layer edges. Since this algorithm has
been replaced, they need to be counted. Counting these crossings is simple and
can be done in a single pass across the layer. Each time we are on the north
side of the origin node of north/south dummies, we collect the current number
of north/south dummies which already have been visited and each time we
meet a long edge dummy we add to the crossing count the current number of
north/south dummies. On the southern side, we count the number of long edge
dummies we meet and each time we meet a north/south dummy, we add to the
crossing count the current number of long edge dummies. Consider the example
Figure 4.8.

Once again we need a method for counting north/south edges for only two
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(a) (b) (c) (d) (e)

Figure 4.9. Two of the possible cases for north/south port crossings. The numbers on
the large black origin nodes show the port positions of the north/south edges and the
letters at the edges of the north/south dummies show the direction of the edges (e for
east and w for west). The image in (b) shows the mirrored situation for southern ports as
for the northern ports in (a). The same holds for (c) and (d). (e) shows crossings between
north/south dummies and long-edge dummies.

Edge direction v f urther Edge direction vcloser Port positions Crossings

east east pos f urther ă poscloser c += 0
east east pos f urther ą poscloser c += 1
east west pos f urther ă poscloser c += 1
east west pos f urther ą poscloser c += 0
west west pos f urther ă poscloser c += 1
west west pos f urther ą poscloser c += 0
west east pos f urther ą poscloser c += 1
west east pos f urther ă poscloser c += 0

Table 4.1. All possibilities for north/south port crossings. All upper and lower nodes
are called v f urther and vcloser depending on which north/south dummy is closer to the
origin node. Furthermore, for this case let pos f urther := posp(originPort(vupper)) and
poscloser := posp(originPort(vlower)) and c be the number of crossings.

neighbouring nodes, a simple problem which is addressed in the next section.

4.3.2 Two nodes

Counting north/south crossings between two neighbouring nodes can be done
by considering all possible cases for two nodes. Except for when considering
long-edge dummies and normal nodes with north/south ports, there is only one
crossing possible between different north/south port dummies or north/south
port dummies and long edge dummies. See Figure 4.9 for an overview of some
of the cases. Table 4.1 shows all possible different cases which must be taken into
account when considering two north/south dummies on the northern side of
their origin node.

If the port positions of the southern ports are numbered ascendingly from
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(a) (b)

Figure 4.10. The example in (a) shows a reduction of crossings by drawing hyperedges.
In (c) the number of crossings is increased. Note that by changing the node position in
the eastern layer of (b), one edge crossing could be avoided. Example taken and adapted
from [SSRvH14].

west to east in the same way as the northern ports, we can use the same table to
look up the number of crossings. In this case the node closer to the origin node
will be the upper node and the node further from the origin node will be the
lower node.

As can be seen in Figure 4.9e, a long-edge dummy only causes a crossing
with a north/south dummy if it is further away from the origin node of the
north/south dummy then the north/south dummy itself.

Lastly, a long-edge dummy causes crossings with all outgoing northern edges
of a node if it is on its northern side and with all southern edges of a node if it
is on its southern side. Since in KLay Layered the number of edges for a certain
side of a node is not saved in the data structure, it must be recalculated each time,
leading to slight increase in computation time.

Up to this point it has been assumed, that the number of crossings only
depends on the ordering of the nodes in the layer. This is not the case with
orthogonal hyperedges however, a problem which is discussed in the following
section.

4.4 Crossings of Hyperedges

KLay Layered supports the drawing of orthogonal hyperedges. An example can
be seen in Figure 4.10.

Figure 4.10 also shows the basic problem for the greedy switch algorithm.
The number of crossings caused by hyperedges can be less or greater than the
number of crossings would be if the same graph had been drawn with straight
lines. Contrary to normal edges, in the case of hyperedges the exact number of
crossings in a graph does not only depend on the order of the nodes in the layer,
but also on the way the edges are routed and on the placement of the nodes.
An example can be seen in Figure 4.10b. In the crossing reduction phase of the
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(a) (b) (c) (d)

Figure 4.11. (a) shows an original drawing. (b) shows the actual data available at the
node ordering phase. Long edge dummy nodes are drawn in grey. Note that there are
actually two edges and that the two crossings which would actually be present if all
edges were drawn straight, disappear when drawn as hyperedges. The greedy switch
heuristic does not know of any hyperedges and therefore switches to the order seen in (c),
reducing the straight-line crossings by one. When this order is drawn with hyperedges
however, as seen in (d) it results in one extra crossing when compared with (a).

framework by Sugiyama et al., the routing of the edges is unknown.
The obvious problem in our case is that although a switch might reduce

the number of straight line crossings, the actual number of crossings might be
increased. A real-world example of this is shown in Figure 4.11.

Spönemann et al. suggest algorithms for approximating the number of hyper-
edge crossings during the crossing reduction phase. These algorithms can then
be used by the barycenter algorithm to decide when the number of between-layer
edge crossings has been improved.

A similar possibility exists in our case. By simply replacing the between-
layer crossing algorithm discussed in Section 4.1 for counting crossings in the
whole layer with the algorithm by Spönemann et al. when layouting graphs with
orthogonal hyperedges, the number of crossings might be further reduced. Since
the algorithm ApproxOpt described by Spönemann et al. has been implemented in
KLay Layered, we can reuse it for this case. It runs in O(b + |H|(log|V|+ log|H|),
where H are the hyperedges, and b = ∑(S,T)PH(|S|+ |T|).

However, tt is not possible to use the algorithm to decide when to switch
nodes without slowing down the algorithm significantly. Researching whether
there is a possibility to estimate the change of crossings for hyperedges when
only taking two neighbouring nodes into account is be beyond the scope of this
thesis and is material for further research.

In this chapter several algorithms counting the crossings caused by different
types of edges have been introduced and are in place for use in the implementation.
The following chapter gives a short overview of KLay Layered and in what way
the greedy heuristic and all the crossing counting algorithms have been integrated
into it.
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Chapter 5

Integration into KLay Layered

5.1 KLay Layered

Although KLay Layered principally follows the framework suggested by Sugiyama
et al., it must be able to deal with significantly more complex situations and types
of graphs than described in the original paper. The first and most obvious
difference is that we cannot assume that all graphs which are given to the
algorithm are acyclic. This means that KLay Layered must add another phase
at the beginning of the algorithm in order to remove the cycles. Another issue
dealt with by KLay Layered in a separate phase is edge routing, resulting in a
total number of five phases.

The graphs processed by KLay Layered have many other use cases which
must be dealt with. They are port-based graphs and contain labels, hyperedges
and comments, to name just a few of the extra cases to be considered during
the layout. None of these situations are covered by the Sugiyama algorithm. In
order to keep complexity under control and to have sufficient flexibility in the
implementation, all cases the five main phases were not specifically designed for
are kept separate in so-called Intermediate Processors [Sch11], which are executed
in between the phases. A simple overview is shown in Figure 5.1.

Figure 5.1. An overview of KLay Layered’s architecture.1
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In order for the algorithm to know when to execute the intermediate pro-
cessors, each phase must specify their dependencies. This defines in between
which phases which intermediate processor must be run. The execution order of
processors which are in between the same phases must be manually defined by
the programmer.

This modular structure of the algorithm enhances the freedom to adapt and
extend the algorithm greatly and simplifies maintainability.

5.2 Greedy Switch Post-processor

Since we are using the greedy switch heuristic as a post-processor, the obvi-
ous place to implement it is as an intermediate processor behind the crossing
minimization phase.

As described in the previous chapters, there are several different variants of
the greedy switch heuristic to be compared. To summarize:

1. When to count the crossings:

(a) Recounting all crossings for each switch

(b) Calculating the crossing matrix

(c) Calculating the crossing matrix on demand

2. Which crossings to count:

(a) One-sided approach

(b) Two-sided approach

3. Comparing results for either downward or upward in-layer sweep direction or
not

4. Using the hyperedge crossing counter or not

This results in conceivably 24 different combinations. While it is certainly
not interesting to actually compare all 24, for the experimental evaluation the
implementation should give the flexibility to be able to choose any variant easily.

In general the algorithm was split up in three different parts: The inter-
mediate processor GreedySwitchProcessor, the SwitchDecider classes and
the CrossingsCounter classes. The configuration of the algorithm is defined
by the GreedySwitchType enum. The GreedySwitchProcessor implements
the most abstract view of the algorithm, sweeping across the graph and the
layers. It delegates the decision whether to switch neighbouring nodes to its

1Taken from http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLay+Layered, accessed
03/16/2015
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5.2. Greedy Switch Post-processor

SwitchDecider. Both the GreedySwitchProcessor and the SwitchDecider use
the CrossingsCounter classes to calculate the crossings they need.

Let us first examine the implementation of the crossing counting algorithms.
As described in Chapter 4, we have a different algorithm for each different type
of edge and for each of these a different one for the case of counting crossings
for neighbouring nodes and for the case of counting crossings in the complete
graph. For these reasons, each crossing count algorithm is implemented in a
separate class. Except for the current node norder in the layers in question, they
share no data between each other, saving the positions of ports and nodes on
instantiation. This structure maximizes cohesion in each class while keeping
coupling at a minimum and thereby simplifies testability and maintainability. In
this way it is simple to replace the between-layer crossing counter for counting
straight edges with the hyperedge crossings counter or change the values for
the posp or posv function mapping ports to position values as needed by each
algorithm. As always when increasing modularization however, performance
suffers. In our case, this is because first of all for each class the values of the posp

and posv function are recalculated and saved separately. Secondly each algorithm
iterates over the nodes, ports or edges it needs separately. Therefore the number
of iterations over the graph, layer or nodes in question increases linearly with the
number of classes called.

The following list shows the different crossing counter classes.

BetweenLayerStraightEdgeAllCrossingsCounter Counts all crossings of
straight between-layer edges between two layers.

BetweenLayerHyperedgeAllCrossingsCounter Counts all crossings of between-
layer hyperedges between two layers.

BetweenLayerEdgeTwoNodeCrossingsCounter Counts crossings for straight
between-layer edges incident to two nodes.

InLayerEdgeAllCrossingsCounter Counts all crossings with in-layer edges in
a specified layer.

InLayerEdgeTwoNodeCrossingsCounter Counts crossings with in-layer edges
incident to two nodes.

NorthSouthEdgeAllCrossingsCounter Counts all crossings in a given layer
caused by the order of north/south ports and between north/south edges and
long edge dummies.

NorthSouthEdgeNeighbouringNodeCrossingsCounter Counts crossings be-
tween neighbouring nodes caused by the order of north/south ports and
between north/south edges and long edge dummies.
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5. Integration into KLay Layered

+countCrossings(upperNode : LNode, lowerNode : LNode) : void
NorthSouthEdgeNeighbouringNodeCrossingsCounter

+countCrossings() : int
NorthSouthEdgeAllCrossingsCounter

+countCrossingsBetweenNodes(upper : LNode, lower : LNode) : void
InLayerEdgeTwoNodeCrossingCounter

+countCrossings(leftLayer : LNode [], rightLayer : LNode []) : int
#initialize(graph : LNode [][]) : void
#getPortPos() : int []

BetweenLayerEdgeAllCrossingsCounter

+countAllCrossingsInGraph() : int
+countAllCrossingsInGraphWithOrder(currentOrder : LNode [][]) : int
+useHyperedgeCounter() : void

AllCrossingsCounter

+countEasternEdgeCrossings(upperNode : LNode, lowerNode : LNode) : void
+countWesternEdgeCrossings(upperNode : LNode, lowerNode : LNode) : void
+countBothSideCrossings(upperNode : LNode, lowerNode : LNode) : void

BetweenLayerEdgeTwoNodeCrossingsCounter

+countCrossings(leftLayer : LNode [], rightLayer : LNode []) : int
BetweenLayerHyperedgeAllCrossingsCounter

+countCrossings(leftLayer : LNode [], rightLayer : LNode []) : int
BetweenLayerStraightEdgeAllCrossingsCounter

+notifyOfSwitch(wasUpperNode : LNode, wasLowerNode : LNode) : void
InLayerEdgeCrossingsCounter

+countCrossings() : int
InLayerEdgeAllCrossingsCounter

-inLayerEdgeCrossingsCounter

-northSouthPortCrossingCounter

-inbetweenLayerCounter

Visual Paradigm Standard Edition(University of Kiel)

Figure 5.2. Overview of the CrossingsCounter classes. Private methods, private
members and constructors are not displayed.

AllCrossingsCounter Utility class which collects all other counters and offers
methods for counting all crossings in-between two specified layers or in the
whole graph.

The classes dealing with in-between layer edges and in-layer edges each have
superclasses to avoid code duplication. See Figure 5.2 for an overview as a UML
class diagram showing the hierarchies.

The number of in-layer crossings between any two nodes depends not only
on the position of these nodes, but also on the position of all other nodes in
the same layer connected with in-layer edges. Therefore, InLayerEdgeTwoN-
odeCrossingsCounter and InLayerEdgeAllCrossingsCounter need to be
notified of a switch of nodes, so they can keep the position values up to date.
This is done by calling a notifyOfSwitch(LNode wasUpper, LNode wasLower) method
with the nodes in question as parameter. Due to the nature of the algorithms,
this does not need to be done with NorthSouthEdgeAllCrossingsCounter or
NorthSouthEdgeNeighbouringNodeCrossingsCounter.

The classes described so far deal with how to count crossings. Now let us step
further up in the level of abstraction, and consider the decision when to count
which crossings. The previous chapters have suggested six possibilities. First of
all, we can differentiate between the one-sided and the two-sided approaches and
secondly we can implement whether to recount all crossings, use a crossing matrix
or calculate it on demand. Each of these will then use the CrossingsCounter

classes needed for the occasion in order to decide whether a switch of two
neighbouring nodes would improve the crossing number or not. These variants
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are implemented as subclasses of an abstract SwitchDecider class. To avoid
code duplication a comparatively complex class hierarchy is used, a UML class
diagram of which can be seen in Figure 5.3. The abstract SwitchDecider deals
with constraints to the order of nodes. This includes preventing normal nodes
being in between nodes with north/south ports and their respective north/south
port dummies and vertex successor constraints, restricting the relative order of
pairs of nodes. The following list describes the role of SwitchDecider class in
detail:

SwitchDecider Abstract superclass. Checks constraints.

CrossingMatrixSwitchDecider Abstract class calculates entries in the crossing
matrix.

CrossingMatrixOneSidedSwitchDecider Asks for all entries in the crossing
matrix for crossings to one side of the free layer.

CrossingMatrixTwoSidedSwitchDecider Asks for all entries in the crossing
matrix for crossings to both sides of the free layer.

OnDemandCrossingMatrixSwitchDecider Abstract class manages boolean
matrix to save filled entries in the crossing matrix.

OnDemandCrossingMatrixOneSidedSwitchDecider Asks for needed entries
in the crossing matrix for crossings to one side of the free layer.

OnDemandCrossingMatrixTwoSidedSwitchDecider Asks for needed in the
crossing matrix for crossings to both sides of the free layer.

CounterSwitchDecider Abstract class for recounting all crossings for each
possible switch.

CounterOneSidedSwitchDecider Recounts all crossings for each possible switch
on one side of the free layer.

CounterTwoSidedSwitchDecider Recounts all crossings for each possible switch
on both sides of the free layer.

The notifyOfSwitch method tells the switch decider when a switch of two nodes
has actually taken place. It is not assumed, that each time doesSwitchReduceCross-
ings returns true, the order is actually switched. In order to separate logic from
object creation, a SwitchDeciderFactory is used, which, depending on the type
given to it in the form of a GreedySwitchType enumeration returns a newly
created SwitchDecider of the type needed.

The third part of the implementation is the actual intermediate processor
GreedySwitchProcessor. This class implements the most abstract form of the
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+process() : void
GreedySwitchProcessor

+SwitchDeciderFactory()
+getNewSwitchDecider() : »SwitchDecider

SwitchDeciderFactory

+doesSwitchReduceCrossings() : boolean
#switchNodes() : void
+notifyOfSwitch() : void
#constraintsPreventSwitch() : boolean
#getLayerForIndex() : LNode []
#getGraph() : LNode [][]
#getFreeLayerIndex() : int
#freeLayerIsNotFirstLayer() : boolean
#freeLayerIsNotLastLayer() : boolean
#getFreeLayer() : LNode []

SwitchDecider

#fillCrossingMatrix() : void
OnDemandCrossingMatrixTwoSidedSwitchDecider

#getCrossingMatrixEntry() : int
#fillCrossingMatrix() : void
#setCrossingMatrixEntriesFromCounter() : void

OnDemandCrossingMatrixSwitchDecider

#fillCrossingMatrix() : void
OnDemandCrossingMatrixOneSidedSwitchDecider

#getCrossingMatrixEntry() : int
CrossingMatrixTwoSidedSwitchDecider

#getCrossingMatrixEntry() : int
CrossingMatrixOneSidedSwitchDecider

+doesSwitchReduceCrossings() : boolean
+notifyOfSwitch() : void
#getCrossingMatrixEntry() : int
#getTwoLayerCrossCounter() : »BetweenLayerEdgeTwoNodeCrossingsCounter
#positionOf() : int

CrossingMatrixSwitchDecider

#calculateCrossings() : int
CounterTwoSidedSwitchDecider

+doesSwitchReduceCrossings() : boolean
+notifyOfSwitch() : void
#calculateCrossings() : int
#getBetweenLayerCounter() : »BetweenLayerEdgeAllCrossingsCounter
#getInLayerCounterFor() : »InLayerEdgeAllCrossingsCounter
#getNorthSouthPortCounterFor() : »NorthSouthEdgeAllCrossingsCounter

CounterSwitchDecider

#calculateCrossings() : int
CounterOneSidedSwitchDecider

-switchDeciderFactory

-switchDecider

Visual Paradigm Standard Edition(University of Kiel)

Figure 5.3. Overview of the SwitchDecider hierarchy. Private methods, private members
and constructors are not displayed.

algorithm, delegating the question whether or not to switch neighbouring nodes
to the SwitchDecider class. For the one-sided variants it must save the cur-
rent node order and compare the number of crossings after each forward and
backward sweep. For this it is possible to set whether the processor should use
either BetweenLayerStraightEdgeAllCrossingsCounter or BetweenLayer-
HyperedgeAllCrossingsCounter using the GreedySwitchType enumeration.
Using the same enumeration, it is possible to specify whether the greedy switch
algorithm should attempt to sweep only in one direction in a single layer or
attempt both directions and use the solution which gives better results.

Integrating the greedy switch processor permanently into KLay Layered would
make simplifications necessary. Since only the fastest version of functionally
similar code is needed, many of the SwitchDecider classes can be removed.
Finding which combination of settings would be best for production code depends
on the experimental evaluation shown in the following chapter.
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Chapter 6

Experimental Evaluation

The following sections show the results of the experimental evaluation of all
different variants of the greedy switch heuristic discussed above. The experiments
were executed on random graphs with different characteristics and on a set of
194 graphs taken from a set of demo models shipping with the Ptolemy tool1.
These were chosen with the sole criterion that the graphs must have at least
one hyperedge crossing. Ptolemy graphs use so-called compound nodes which
the user can open to reveal a graph within a lower hierarchy level. This allows
modularization and reduces visible edges and nodes in which the user is not
interested in. Since these graphs would be relatively small, this structure was
flattened for the purposes of this evaluation. As is usual for the layout of Ptolemy
diagrams with KLay Layered, their edges were drawn as orthogonal hyperedges.

The first results discussed below are those pertaining to the speed of the
algorithm, while the section after that will show the quality of the solutions.

6.1 Speed

Since KLay Layered is implemented in Java, testing execution speed is difficult.
To counterbalance the effect of the Java Hotspot Compiler, a warm-up phase was
executed before running the tests on the random graphs. All tests were run on
relatively old hardware with a 2.1 Ghz IntelCore 2 Duo Processor and 4 GB of
RAM.

As mentioned in Section 3.3.3, three different types of the greedy switch
heuristic quickly come to mind when considering how to implement it. The
simplest and most obvious is to recount all crossings for each considered switch.
Since counting all crossings in a layer must be implemented anyway and is
needed for the barycenter algorithm, this is very easily implemented. The second
approach is to use the method typically found in previous research, which for
between-layer edges precomputes a crossing matrix and then uses it to look
up the crossing numbers when they are needed. The third approach fills this
crossing matrix on demand. As mentioned, counting in-layer and north/south
edge crossings must be repeated each time, because switching the order of nodes
can influence these types of crossings for several different nodes. The theoretical

1See Ptolemy.eecs.berkeley.edu, accessed 03/28/2015
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Figure 6.1. Running time for random graphs of increasing size with an average of 1.5
edges per node.

run-time analysis in Section 3.3.3 suggests that recounting all crossings each time
is slow compared to calculating the crossing matrix. The same chapter also shows
that the minimal running time decreases when calculating the crossing matrix on
demand. Since the barycenter heuristic already reduces the amount of crossings
quite well, it can be expected that the on-demand calculation should improve the
performance.

As can be seen in Figure 6.1, recounting all crossings for each possible switch
quickly results in unacceptable run-times, as was expected. Furthermore, calculat-
ing the crossing matrix on-demand gives a significant performance benefit. Since
all three methods return the same results, there is no reason not to always use the
on-demand version.

Section 3.3.1 discusses two different approaches to the greedy switch heuristic.
The one-sided method, comparing crossings between one free layer and one of its
neighbours. And the two-sided method, comparing crossings to both sides of the
free layer. The one-sided method needs to recount the crossings in the complete
graph after each forward and backward sweep and should therefore perform
more slowly. Furthermore the one-sided method is set to always sweep forwards
and backwards each time, since many crossings would be missed otherwise.
The two-sided method however stops as soon as no switch occurred in a sweep
across the graph. This should also improve performance. Comparing upward and
downward sweeps obviously should take at least twice as long since the algorithm
is simply run twice. Furthermore, after each run of the algorithm the crossings
need to be recounted to be able to judge which run was more successful. The
hyperedge crossing counter by Spönemann et al. roughly has the same theoretical
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Figure 6.2. Running time for random graphs of increasing size with an average of 1.5
edges per node comparing one-sided and two-sided methods.
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Figure 6.3. Running time for random graphs with 200 nodes of increasing density
comparing one-sided and two-sided methods.

run-time as the straight edge counter by Barth et al. Therefore, performance
should change little.

As expected, comparing the two-sided and one-sided methods shows a very
clear performance advantage of the two-sided over the one-sided variant. This
can already be seen when increasing the number of nodes and keeping the edge
count constant (Figure 6.2), but results in extreme differences when increasing
the density of the graph, seen in Figure 6.3. As has already been shown in
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Figure 6.4. Extending the test of the two-sided methods to more extreme values, the
diagram shows the run-time increase on graphs with 1.5 edges per node up to 10,000
nodes.

other research (see Section 1.1), the greedy switch algorithm very quickly slows
when increasing graph density. The two-sided variant is much less prone to
this problem however: While the one-sided variant already took an average of
around 6.5 s for graphs with 200 nodes and an average of 3.2 edges per node, the
two-sided variant still runs in acceptable speeds.

As expected, each algorithm takes more than twice as long when comparing
upward or downward in-layer sweep direction. As shown in Figure 6.2, using
the hyperedge crossing counter instead of the algorithm for counting straight line
crossings does not significantly change the run-time.

To test the boundaries of the two-sided method, the run-time was evaluated
when increasing the number of nodes and the density further.

As can be seen in Figure 6.4, increasing the node count to extreme measures
on graphs with 1.5 edges per node results in a more or less linear increase in
run-time, with reasonable speeds even for graphs with 10,000 nodes.

Performance suffers more quickly when increasing the density on graphs
with 200 nodes, shown in Figure 6.5. Starting at around 3.5 edges per node,
the duration of the algorithm starts to be a significant problem for real-time
applications, taking 0.4 s. Higher densities might be feasible on more powerful
hardware, however.

To put the density and node count numbers into perspective: The highest
number of nodes in the collection of Ptolemy diagrams used for the second part
of this evaluation was a diagram with 864 with an average of 1.02 edges per node.
The highest density was 2.1 edges per node on a graph with 111 nodes.
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Figure 6.5. Extending the test of the two-sided methods to more extreme values, the
diagram shows the run-time increase on graphs with 200 nodes when increasing the
amount of edges per node up to 3.2.

TS TS UD OS OS UD OS HCC

Maximum time 0.0299 s 0.0466 s 0.3820 s 0.3840 s 0.3870 s

Table 6.1. Maximum runtime using the Ptolemy diagrams. TS: Two-sided, OS: One-Sided,
UD: Best of upward or downward sweep, HCC: Hyperedge crossing counter

Table 6.1 shows the maximum running time for five variants of the greedy
switch heuristic layouting the 194 Ptolemy diagrams, Measuring the maximum
run-time value is of course prone to errors, because single runs may be signifi-
cantly slower due to circumstances in the system which are not under our control.
In general however, these values confirm the previous evaluation on random
graphs, showing a significant performance benefit of the two-sided methods.
Note that the slowest run of the one-sided variant comparing upward and down-
ward sweeps was on the graph with the highest density of 2.1 mentioned earlier.
Using the hyperedge crossing counter instead of the normal crossing counter
does not change the speed of the algorithm significantly.

In summary: The two-sided methods run fast enough so that they should
rarely hamper user experience, while the one-sided methods may slow the per-
formance of the KLay Layered algorithm significantly to be noticeable by a user
especially when run on graphs with higher density. Comparing all upward and all
downward sweeps comes with a clear performance penalty. Using the hyperedge
crossing counter instead of the normal crossing counter does not change the
running time significantly.
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The following section compares the quality of the solutions proposed by the
different greedy switch variants.

6.2 Quality

The following section measures solution quality of the greedy switch algorithm
by the number of remaining crossings in the graph. The lower the number of
crossings, the better the solutions. Note that we do not have an optimal algorithm
for KLay Layered at our disposal. Comparing the remaining crossings to an
optimal solution would give a more exact measure of solution quality.

Solution quality was first measured on random graphs with different con-
figurations. For each configuration, be it a change in size or in density, five
different random instances were created. The results are given using the average
improvement of crossing numbers compared to using only barycenter.

Let us first consider the two most general approaches of taking into ac-
count two or one neighbouring layer when deciding whether to switch nodes.
Section 3.3.1 showed hypothetical examples both where the one-sided method
performs better than the two-sided method and other way around. Remember
however that the one-sided method is the only one that can remove crossings
caused by the order of north/south ports and is in general more optimistic in
its approach, since the two-sided method only switches nodes when no new
crossings can be created.

Indeed, when run on random graphs with increasing density (Figure 6.6) and
with increasing number of nodes (Figure 6.7), the one sided method always shows
a higher number of crossing reduction than the two sided method. On average
for the increase of density shown in Figure 6.6 the one-sided method had 3,6%
fewer crossings compared to the two sided method. The difference roughly stays
the same independent of the density of the graph.

As seen in Figure 6.7, when keeping the number of edges per node constant
at 1.5 and increasing the number of nodes up to graphs with 1000 nodes, greedy
switch was more effective on small random graph instances. Once again, the
one-sided method was superior to the two-sided method, showing an average
difference of 3.9%.

Note that in both cases the amount of improvement was reduced when
increasing the amount of nodes or the density of the graph. Previously published
results showed that the performance of greedy switch improved with increasing
density (see Section 1.1). Although Figure 6.6 seems to contradict these findings,
bear in mind that the aforementioned research was examining the greedy switch
heuristic as a separate heuristic replacing barycenter, not as a post-processing
step after running barycenter. Furthermore the heuristics were being compared to
an optimal algorithm, while Figure 6.6 shows the improvement over only using
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Figure 6.6. Percentage of improvement of crossing number to the barycenter algorithm
relative to the number of edges per node run on random graphs with 200 nodes.
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Figure 6.7. Improvement of the number of edge crossings when compared to the barycen-
ter algorithm relative to the number of nodes in random graphs with an average of 1.5
edges per node.

barycenter.
Solution quality with and without trying both in-layer sweep directions was

compared using the one-sided method and the same setup as for Figure 6.7. This
version only gives an almost negligable further reduction in crossing number: On
average just 0.4 % difference when compared to when this comparison was turned
off. Moreover, as described earlier (see Figure 6.3), it comes with a significant
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TS TS UD OS OS UD OS HCC

Improv. of c 9.1% 8.7% 12% 11% 14%
Improv. of ctotal 11% 10.7% 15.2% 14.1% 14.6%
Improv. of c

edgecount 12.7% 12.6% 14.3% 13.4% 15%
Improv. of ctotal

edgecounttotal
11.1% 10.8% 15.4% 14.3% 14.8%

c increased 5.2% 5.7% 5.2% 6.7% 1.5%

Table 6.2. TS: Two-sided, OS: One-Sided, UD: Best of upward or downward sweep, HCC:
Using Hyperedge crossing counter, c: number of crossings, edgecount: number of edges
in graph, ctotal , edgecounttotal : total number of crossings and edges in all 194 graphs.
Improv. of c shows the average improvement of crossing numbers in the Ptolemy graphs.
Improv. of ctotal shows the sum of all crossings reduced compared to only running the
barycenter heuristic. Improv. of c

edgecount shows the average improvement of crossings per
number of edges. Improv. of ctotal

edgecounttotal
once again sums up all crossings and edge counts.

The last row shows the amount of graphs where the crossing number has increased.

performance penalty.
Let us now turn to the evaluation of quality when using the set of 194 Ptolemy

graphs. Comparing solution quality using these graphs is not simple, because
it is difficult to judge which data yields significant information. As an example,
consider a graph with only one crossing and a graph with many crossings. If
the one crossing in the first graph can be removed it will influence the result
more heavily than if many crossings are removed in the second graph. Table 6.2
therefore shows a range of different data. Remember that Ptolemy diagrams
are drawn with orthogonal hyperedges. In this case the number of resulting
crossings can not be computed exactly beforehand. As discussed in Section 4.4,
this can lead to layouts with more crossings than before executing the greedy
switch heuristic.

As with the random graphs, we can see that the one-sided method results in
fewer crossings than the two-sided variant.

Comparing upward and downward sweeps does not improve the graphs. In
this case, these variants even perform worse on average. This can be explained by
the higher number of graphs with an increased crossing number.

Using the hyperedge crossing counter reduces the number of instances with
more crossings and therefore gives better average results. When comparing the
sum of all crossings and edge counts however, the standard one-sided variant
gives similar results. Note that while the results are not included in the table
above, comparing up and down sweeps while using the hyperedge crossing
counter returned exactly the same results, as when this feature was turned off.

In summary: The one-sided variants consistently return higher quality solu-
tions than the two-sided methods. Comparing upward and downward sweeps
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does not improve the crossing number. And finally, using the hyperedge crossing
counter on graphs with hyperedges does reduce the number of cases where the
crossing number is worsened. Generally speaking, the reduction of edge crossings
is large enough for both the one-sided and two side versions to justify using
greedy switch as a post-processing step.

In general the improvement of the crossing number seems large enough to
justify integrating the greedy switch heuristic permanently into KLay Layered.
However there is a danger that the one-sided version can lead to a significant
decrease of performance on graphs with high density. For this reason the two-
sided method could be activated by default and the one-sided method enabled
only when called by the user. Even though in most cases comparing the directions
of sweeping in a single layer does not improve the number of crossings, the
possibility should principally be kept in the source code, perhaps accessible
to the user through an advanced option which is hidden by default. This is
because there are some — albeit rare — cases where this option results in a
clearly improved layout. When layouting graphs with hyperedges, the hyperedge
crossing approximation algorithm should be activated by default, since this
reduces the chance of creating worse layouts. Once again, the option to turn
this off should be made possible in some form, since experience shows that in
some graphs the results are better when crossings are counted as straight edge
crossings.

The following chapter reviews the results from all previous chapters and
suggests further venues of research.
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Chapter 7

Conclusion

In this last chapter, short summarizing answers to three simple questions are
given: What has been done in this thesis? What should be done using its results?
And: What could be done in future?

The greedy switch heuristic is an algorithm which is slow and works badly
when used separately to minimize crossings in layered graphs. However, the
barycenter heuristic currently used in KLay Layered often results in characteristic
errors which occasionally can be so obvious to users as to be especially bothersome.
The solution to this problem examined here was to implement the greedy switch
heuristic as a post-processing step to improve the number of crossings. For this,
the performance of the greedy switch heuristic was improved by calculating the
crossing matrix of the original heuristic on demand. To calculate the number
of crossings exactly for graphs without hyperedges, several different algorithms
were developed and implemented for the cases not already covered in KLay
Layered. These deal with crossings caused by between-layer edges, in-layer edges
and the ordering of north/south-ports. For each of these problems algorithms
both for counting crossings in a complete layer and for counting crossings only
for neighbouring nodes were developed. Two principally different variants were
compared: The one-sided method fixes one neighbouring layer of a given free
layer, while the two-sided method fixes both neighbouring layers. The one-sided
method is slower while giving better results, while the two-sided method is faster
while not improving the number of crossings as much. Furthermore, an attempt
was made to improve the crossing count by comparing different directions to
sweep in each layer. In some hypothetical cases sweeping from the lowest to the
highest node in a layer can lead to an improved result. However, this improvement
is not relevant enough to justify the performance penalty. Finally, it was found
that using the heuristic for judging the amount of hyperedge crossings suggested
by Spönemann et al. ([SSRvH14]) for preventing an increase of crossings in the
one-sided method reduces the number of cases of increasing the crossing count
when layouting graphs with hyperedges.

For a final integration into KLay Layered, the two-sided method could be
activated by default and the one-sided method be available to the user. When lay-
outing graphs with hyperedges the hyperedge crossing approximation algorithm
should be used by default. Comparing upward and downward sweeps should
only be kept as a hidden options for the rare cases it can actually improve the
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graph. A final integration would furthermore include the barycenter algorithm
using the same crossing counting code as the greedy switch heuristic. This could
also improve the results of the barycenter algorithm in some cases.

The following section discusses further venues of research and development
which could extend these results.

7.1 Future Work

In order to avoid using the potentially slow one-sided variant, the barycenter
heuristic could be tweaked to reduce the difference between the two variants.
Remember that the barycenter algorithm does not take the positions of fixed
north/south ports into account. This results in many unnecessary and obvious
crossings. By changing the barycenter value of the connected north/south-
dummies depending on the direction of their between-layer edge and the position
of the north/south ports, this situation could be improved. Due to the nature
of the algorithms, only the slower one-sided method can change the order of
north/south dummies. Changing the barycenter heuristic in this way might be a
more efficient way of removing these crossings.

Using the hyperedge crossing counter to decide if a layout has been worsened
by the one-sided variant reduces the amount of errors caused by the greedy switch
heuristic when layouting graphs with hyperedges. Conceivably there could be a
way of already taking possible hyperedge crossings into account when deciding
whether or not to switch two neighbouring nodes. This might improve the layout
of both greedy switch variants when layouting graphs with hyperedges.

Gansner et al. [GNV88] also use greedy switch as a post-processing step. On
every second forward and backward traversal they also switch nodes when the
crossing amount does not change. This approach was not implemented in this
thesis and could be examined in future research.

The crossing counting code implemented for the greedy switch algorithm in
KLay Layered can quite easily be reused to implement other heuristics which use
the crossing matrix as a basis for their work. These heuristics could be a possible
replacement of or alternative to the current barycenter algorithm and could still
be followed by the greedy switch post-processor. Note that all of these methods
result in a slower run-time than the barycenter heuristic, but return better results
according to the respective authors. The following two paragraphs describe some
of these methods using the crossing matrix.

An elegant and simple heuristic is a sifting method originally suggested by
Matuszewski et al. [MSM99]. Starting from a predefined order, for every node
in a layer each possible position for that node is considered while keeping the
relative order of the other nodes fixed. Then the best position is chosen. This
heuristic obviously has quadratic run-time. Since the success of the algorithm
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does depend on the starting layout, this method could conceivably also be used
as a post-processing step. However, contrary to greedy switch, the algorithm
would not run faster when only few crossings remain. The approach was adapted
by Bachmeier et al. to include in-layer edges [BF06] and even as an approach for
minimizing all crossings in a graph without using the usual method of comparing
only two neighbouring layers [BBBH10]. According to the authors, these methods
give good solutions in reasonable computation time.

An interesting variant of the greedy insert approach was introduced by Ya-
maguchi et al. [YS99]. The greedy insert approach inserts one node at a time
add the end of the layer, always choosing the node which has the fewest number
of crossings to the nodes already inserted. The algorithm by Yamaguchi et al.
instead uses the crossing matrix to calculate a rather intuitive heuristic function
which takes into account the number of crossings caused by this vertex to vertices
not yet placed and chooses the node which minimizes this value.

As a final interesting option, let us quickly consider the possibility of imple-
menting optimal algorithms for small problem cases in KLay Layered. Jünger et al.
come to the conclusion that for the two-layer one-sided crossing minimization
problem, their suggested optimal algorithm is sufficiently fast for up to 60 nodes
and therefore there is no need for further heuristics[JM97]. Their results suggest
that for real-time applications, this does not hold. Note however, that the article
was published in 1996 and recent hardware would certainly yield different results.
Newer optimal algorithms have been suggested (e. g., [CMB08]). Most are integer
linear programming solutions, others use an approach based on semidefinite
programs (e. g., [CHJM12]). Integrating such approaches in KLay Layered would
include a heuristic for judging whether the size of the graph could pose a run-time
problem for the use of these algorithms.
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