
Hierarchy-Aware Layer Sweep

Alan Schelten

Master’s Thesis
2016

Prof. Dr. Reinhard von Hanxleden
Real Time Systems and Embedded Systems

Department of Computer Science
Kiel University

Advised by
M. Sc. Ulf Rüegg





Abstract

Data flow diagrams with modules can be modeled as hierarchical port-based layered graphs.
Here, nodes are connected to each other using ports. A module is modeled as a hierarchical
node—a node which contains a child graph. Edges incident to a port show the data flowing
in and out of the module at this port. Layered graph layout places the nodes on layers
and attempts to route as many edges as possible in a left-to-right direction. Minimizing the
number of edge crossings is considered an important goal for aesthetic quality and readability
of the diagram.

Previous methods of crossing minimization in hierarchical graphs have followed a bottom-
up strategy. Here, the layout of each child graph is completed before the layout of the graph
containing its parent. This often leads to many unnecessary edge crossings.

Crossing minimization in non-hierarchical layered graphs often uses the two-layer sweep
method, which visits each pair of neighboring layers, fixes the order of one layer and
permutes the order of the other while minimizing edge crossings. Hierarchy-Aware Layer
Sweep (HALS), proposed in this thesis, extends this principle to hierarchical graphs, sweeping
in and out of each hierarchical graph. While this principle can decrease the number of
crossings in some graphs, in others it leads to an increased number of edge crossings and
slow running time. This is improved using a heuristic which switches between the use of
bottom-up and HALS for each graph depending on its characteristics.

An evaluation on real-world and random datasets shows that the number of edge crossings
is reduced in most graphs up to a median improvement of 63% for one of the datasets, while
the running time of the crossing minimization phase worsens up to an average increase in
visited nodes of 40%. The amount of improvement and slowdown depends heavily on the
characteristics of the graph.

As further enhancements to the area of crossing minimization in layered graphs, this
thesis presents a simple algorithm which efficiently counts crossings between in-layer edges
(where both ends are in the same layer) and between-layer edges (where the ends are in
neighboring layers) and an efficient heuristic for sorting ports on nodes where some of the
ports have a fixed port order and others can be sorted freely.
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Chapter 1

Introduction

1.1 Automatic Layout of Hierarchical Graphs

Automatic layout of graphs is used in a wide variety of fields, ranging from VLSI design over
visualization of social networks to railway maps and data flow diagrams. We shall concentrate
on the latter case, where often the preferred mode of representation uses layered graphs which
place the nodes on layers and strives to orient most edges left-to-right. For an example of
such a graph, see Figure 1.1. Hierarchical graphs (graphs where nodes contain graphs) can
be used in any of these applications. In the context of data flow diagrams, they can show
modularization, where the data flowing into and out of a module is shown by edges into the
hierarchical node and the graph contained within the node shows the detailed implementation
of the module. This allows for tools where details can be shown or hidden with a click of
the mouse. An example can be seen in Figure 1.2. Automatic layout of hierarchical graphs
can lead to a significant increase of complexity compared to dealing with simple graphs.
A prominent method for automatic layout of layered graphs is a framework developed by
Sugiyama, Tagawa and Toda [STT81]. Split into different phases, it distributes the nodes to
layers and in a crossing minimization phase permutes the order of the nodes to minimize

Figure 1.1. Example of a data flow diagram laid out in layers.
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1. Introduction

(a)

(b)

Figure 1.2. (a) shows the hierarchical node InstanceOfWaitForPost2 collapsed. (b) shows it expanded,
revealing the child graph.

edge crossings. When extending this framework to hierarchical graphs, there are in general
three different approaches, Bottom-Up (BU), global layering and local layering. For an intuitive
understanding of the differences see Figure 1.3.

The simplest method is BU, where the graphs in the innermost hierarchical nodes are laid
out first and separately from the rest of the graph. The positions the edges connect to the
outside of each hierarchical node, i. e., the positions of what are called the ports, are then fixed
according to the layout of its inner graph and the hierarchy level above it is laid out next.
This method needs almost no change in the Sugiyama framework. However, the layout of the
graphs within hierarchical nodes is not influenced by the parent graph in any way. This can
lead to many unnecessary edge crossings, causing layouts as in Figure 1.3c.

In the case of global layering, the nodes of the parent and child graphs are assigned to
layers together. Here, any hierarchical node can span several of these global layers. During
the crossing minimization phase, the child nodes must be constrained to their parent nodes.

In local layering, the layering phase stays generally the same as for simple graphs, placing
normal nodes and hierarchical nodes in the same layer and placing the nodes of the child
graphs on separate layers. In contrast to BU, the crossing minimization phase can still traverse
the hierarchy while taking all edges into account.

2



1.1. Automatic Layout of Hierarchical Graphs

(a) Global layering: The dashed
lines show the global layers.

(b) Local layering: Each hierar-
chical node has its own set of
layers.

(c) BU layout: Since the sub-
graphs are laid out before the
parent graphs and without tak-
ing them into account, crossings
such as the one shown can occur.

Figure 1.3. Global layering, local layering and bottom-up

The Eclipse Layout Kernel (ELK)1 project provides an open source solution for automatic
graph layout, and incorporates a wide range of features and possibilities including different
types of graph layout algorithms. A popular algorithm of the project is ELK Layered, which
is based on the approach originally suggested by Sugiyama et al.

For hierarchical nodes, ELK Layered currently uses BU, resulting in many unnecessary
crossings. A successful implementation of global layering was evaluated in the context of
ELK Layered (see Fuhrmann [Fuh12]), however this implementation increases computation
time and more significantly, leads to an increased maintenance overhead. This is because
changes to the layout algorithm for simple graphs must be implemented a second time for
the code concerning the hierarchical graphs.

The local approach mainly changes the crossing minimization phase. Minimizing the
number of crossings between edges of the graph is generally viewed as an important goal to
increase the readability and aesthetic quality of the graph. Unfortunately, this problem has
been shown to be NP-complete [EW94]. To minimize crossings many suggested algorithms
use the layer sweep method: Sweep through the graph and compare neighboring layers,
assuming the order of nodes to be fixed in one layer and permuting the order of nodes
in the other layer with the goal of minimizing edge crossings. Even when reduced to this
task of minimizing crossings by ordering only one part of a bipartite graph, the problem
remains NP-complete [EW94]. Most research has concentrated on this simplified case, and a
large number of papers have been published, suggesting many heuristics and some optimal
algorithms.

1http://www.eclipse.org/elk/, accessed 2016-08-24
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1. Introduction

1.2 Contributions

This thesis examines a local layering approach for layout of hierarchical graphs and its
implementation into the ELK Layered framework. One of the implementation’s main goals is
to keep maintenance as easy as possible, ensuring that no other parts of the framework need
to be changed except for those explicitly accessing the complete hierarchy. The other parts of
the algorithm that previously worked on simple graphs stay the same.

As noted above, a local layering approach must mainly deal with the crossing minimization
phase. To be able to apply this method on hierarchical graphs, the layer sweep method is
adapted, creating the Hierarchy-Aware Layer Sweep (HALS). Here, the sweep continues into
the local layers of each child graph, thereby manipulating the complete hierarchy of the
graph.

At first glance, this seems to be a simple and effective solution to the unnecessary edge
crossings arising from the use of BU. However, HALS has a disadvantage compared to BU:
While BU is a divide-and-conquer approach, HALS is not. Due to the non-determinism in
the crossing minimization heuristic used in ELK Layered, this can lead to more crossings and
slower run-times.

To alleviate this problem, we propose a heuristic which decides to use BU or HALS for
each part of the inclusion tree separately, where the inclusion tree is a tree showing the
hierarchy relation of the nodes, i. e., where the children of a node v in the inclusion tree are
the nodes in the graph contained within v. To do this, it compares the influence of hierarchical
edges and of random placement of nodes. Figure 1.4 shows a number of examples, where
HALS leads to improved layouts.

This approach is evaluated using three different datasets: A set of random graphs, a set
of graphs from the Ptolemy project2 and a set of Sequentially Constructive Graph (SCG)
with basic blocks [vHDM+14]. The experiments show that there is a default setting for the
heuristic, such that the graphs with improved or unchanged crossing number are in the
majority and the average number of crossings decreases in all cases. However, the algorithm
is much more successful for specific types of graphs, especially those with few simple nodes
in the child graphs. The most striking example of these are the SCGs. An example of this can
be seen in Figure 1.4c and the improvement in Figure 1.4f.

Since counting crossings is a major part of crossing minimization, we describe a simple
and efficient algorithm for counting in-layer edge crossings and between-layer edge crossings
at the same time. Here, in-layer edges are edges starting and ending on nodes in the same
layer, and between-layer edges are edges starting and ending on nodes in neighboring layers.
For the former, to the best of my knowledge, no efficient algorithm for counting crossings has
previously been proposed.

Finally, we shortly discuss an algorithm dealing with sorting ports for crossing minimiza-
tion on nodes where some of the ports have a fixed port order and others can be sorted
freely.

2See Ptolemy.eecs.berkeley.edu, accessed 16/05/27
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1.3. Outline

(a) (b) (c)

(d) (e) (f)

Figure 1.4. Examples of unnecessary crossings when using BU and their resolution with HALS. (a)
shows a trivial example. Since the port order is fixed, there is no way to remove the crossing once
the layout of the inner graphs is completed. (b) shows an example of a random graph where the
same effect can be seen on a less trivial example. (c) shows part of an SCG with basic blocks (see
Section 6.1.1) showing the large number of crossings which can happen when there are very few
simple nodes with very many hierarchical edges. (d), (e) and (f) show the same examples with the
crossings caused by BU removed using HALS.

1.3 Outline

To ensure the understanding of the basic concepts necessary for the rest of the thesis Chapter 2
explains preliminary definitions, the basic principles of the Sugiyama Framework and the
current crossing minimization technique.

This information is then used to give a literature overview in Chapter 3. Here, previ-
ous work on hierarchical graphs, crossing minimization and port sorting is presented and
reviewed.
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1. Introduction

Chapter 4 then elaborates the main contributions, explaining HALS as well as the chal-
lenges which arise from the main idea. The heuristic addressing this issue is introduced.
Furthermore, Chapter 4 presents two other contributions: Firstly, a simple and efficient algo-
rithm for counting in-layer and between-layer crossings at the same time. And secondly, a
fast method for inserting ports with no port constraints into a list of ports with fixed order.

Chapter 5 describes the main design principles of ELK Layered and the design decisions
made for integrating a crossing minimization method which applies to the complete hierarchy.

This implementation is then evaluated on two real-world datasets and different sets of
randomly generated graphs in Chapter 6. Here, we examine the success and running time of
HALS as well as different graph characteristics influencing the quality of the results.

Finally, Chapter 7 summarizes the results and gives an outlook on further research avenues
related to the contributions of this thesis.

6



Chapter 2

Preliminaries

This chapter addresses the preliminary information necessary for understanding the rest of
this thesis. First, we take a look at the terminology and definitions used in the following
chapters. The next section introduces the layered graph layout algorithm of which the
crossing minimization is one of the main phases. Finally, the current method of dealing with
hierarchical graphs is explained.

2.1 Terminology

Definitions and terms used across this thesis are collected here, so should the meaning of a
particular word or symbol be forgotten, this is the place to look. The definitions are partly
taken from those used in my bachelor’s thesis [Sch15] and by Sugiyama et al. [SM91]. An
overview over the graph elements is given in Figure 2.1.

Definition 1 (Simple Graph). A simple graph Ga = (V, E, P, vp) contains the following ele-
ments: V is the set of nodes and P the set of ports. Let D = {n, e, s, w} (D as in Direction) be
the set of sides a port can be on, where the letters n, e, s, w in the set D stand for north, east,
south and west. Using these, the function vp : P Ñ V ˆD maps ports to nodes and the side of
the node the port is on. To simplify the algorithms in the following chapters, we will be using
graphs with undirected edges connecting ports E = {p1, p2}, p1, p2, P P. Even though data
flow graphs obviously use directed edges, the direction of the edges is not of importance for
this thesis.

Definition 2 (Inclusion Tree). The hierarchy relation of the nodes is described by the inclusion
tree Ti = (V, F, r). Here, F = (v1, v2), v1, v2, P V are the directed inclusion edges connecting
nodes. r is an artificial root node which is not drawn in the final graph. Ti forms a tree rooted
in r. In this tree, parent, ancestors, children, and descendants of node v are denoted by Pa(v),
An(v), Ch(v) and De(v). Note that then in all cases An(r) = H.

Definition 3 (Hierarchical Graph). A hierarchical graph is a tuple G = (V, E, F, r, P, vp).
This contains the adjacencies in the simple graph Ga = (V, E, P, vp) and the inclusion tree
Ti = (V, F, r).

Definition 4 (Simple Node). A simple node is a node with no children in the inclusion tree,
i. e., v P V is simple ô Ch(v) = H.

7



2. Preliminaries

(a) Input graph.

n2 n3 d5 
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(b) Hierarchical graph.

Root node
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n1 

n2 n3 
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d5 

(c) Inclusion tree.

Figure 2.1. Overview over the graph elements.
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2.1. Terminology

Definition 5 (Hierarchical Node). A hierarchical node is a node which is a parent in the
inclusion tree, i. e., v P V is hierarchical ô Ch(v) ‰ H.

Definition 6 (Hierarchical Child Graph and Simple Child Graph). A hierarchical child graph
of a node vr is a subgraph of Go = (V, E, F, r, P, vp) where the descendants of vr in the original
inclusion tree To = (V, F, r) form a hierarchical graph with vr as the virtual root node, i. e.,
using Deo(v) as the descendants function on To:

G1 = (V1, E1, F1, r1, P1, vp1) is hierarchical child graph of vr P V ô r1 = vr, V1 = Deo(vr).

A simple child graph of a node vr is the simple graph containing only the children of vr and
edges between these children. We denote the simple child graph of a node v P V as simple(v).

Definition 7 (Layer). In layer-based graph layouts, there are n P N0 layers Li|i ă n. These
partition the set of nodes per simple graph: Each node is contained in exactly one layer. The
nodes in a layer form a tuple Li = (v(i,0), . . . , v(i,ki´1)), ki P N0, where ki is the number of
nodes in Li. The layered graph shall be denoted by the tuple L = (L0, . . . , Ln´1) Layers Li, Lj
are neighbors or neighboring if |i´ j| = 1.

In contrast to most publications on layered graphs, we assume a left-to-right layout of the
layers. This is because ELK Layered is mostly used to lay out data flow diagrams, where the
left-right direction is more common.

In most algorithms the problem of minimizing edge crossings is reduced to the subproblem
of minimizing crossings between two neighboring layers. The order of nodes in one of these
two layers is fixed, while the order of nodes in the second layer is changed. This second layer
shall be called the free layer, or L f ree, as opposed to the fixed layer or L f ix.

Definition 8 (Port Position Function and Node Position Function). Each node and also each
port has a position, i. e., within each layer, ports and nodes are numbered from top to bottom
when on the left or right side of a node and left-to-right when on the top or bottom side. The
functions posp : P Ñ N0 and posv : V Ñ N0 map ports and nodes to their indices.

Definition 9 (Hierarchical Port and Hierarchical Port Dummy). To simplify the implemen-
tation of crossing minimization algorithms, edges connecting ports on nodes with different
parent nodes in the inclusion tree are changed internally in the following manner: For each
node v with edges ending in a descendant of v an extra layer at the leftmost (for ports on the
west of v) or rightmost (for ports on the east of v) position of the layers is added. Here, for
each port on a hierarchical node we add a hierarchical port dummy node in the new layer.
This node is treated as a normal node of the child graph with the exception that in a final
ordering of the nodes and ports, hierarchical port dummies and hierarchical ports must be
beside each other, i. e.,

v P V is hierarchical port dummy of p P P ñ posv(v) = posp(p).

See Figure 2.2 for an overview over the different types of dummy nodes.

Definition 10 (Simple Port). A simple port is a port on a simple node, or a port on a hierar-
chical node whose corresponding hierarchical port dummy has no outgoing edges.

9



2. Preliminaries

Definition 11 (Hierarchical Edge). A hierarchical edge is an edge connected to a hierarchical
port dummy.

Definition 12 (Port Constraints). There are two port constraints relevant for our use case (for
other constraints used in ELK Layered see Schulze et al. [SFvHM10]): Port ordering is fixed
when the input graph defines the order of ports for each node. Port ordering is free if the
layout algorithm can switch the order of ports on the node. In our case a free ordering of
ports means that while the order can be switched, the side of the node on which the ports are
situated must remain the same.

Definition 13 (Long Edge Dummy, North/South-Port Dummy, In-layer Edge Dummy). To
simplify the problem of crossing minimization to two layers, edges traversing more than one
layer are replaced by a chain of long-edge dummies, one for each layer.

When an edge is incident to a port on the top or bottom side of a node, a north/south
port dummy is added to show where the bend in the edge will be drawn.

Let v and u be nodes with u positioned in the same or a layer to the right of v. Then the
nodes are connected by a feedback edge e = {p1, p2}, with vp(p1) = (v, d) and vp(p2) = (u, d1),
when d, d1 P {w, e} and d ‰ d1. Feedback edges pass through the same layer as the nodes they
connect. When they do so, they are split by in-layer edge dummies

See Figure 2.2 for examples of in-layer edge dummies, long edge dummies and north/-
south port dummies.

Definition 14 (In-layer and Between-layer Edge). In the context of crossing minimization,
edges can be between-layer or in-layer. An edge e = {p1, p2}, p1, p2 P P is in-layer when it
connects nodes in the same layer L P L on the same side d P D:

e is in-layer ô vp(p1) = (v, d), vp(p2) = (v1, d)^ v, v1 P L

Note that an edge whose ports are on different sides of nodes in the same layer in the input
graph is a feedback edge, so an in-layer edge dummy is added. For an example, see Figure 2.2

Between-layer edges e = {p1, p2}, p1, p2 P P pass between neighboring layers Li, Lj P L:

e is between-layer ô vp(p1) = (v1, d1), v1 P Li ^ vp(p2) = (v2, d2), v2 P Lj ^ |i´ j| = 1

With these definitions all set, we will have a look at the layout method our algorithm will
be a part of.

2.2 Layered Graph Layout

The following section will give a short introduction to some basic background information
concerning the type of graph layout in question and the basic algorithm framework used for
automatic layout, called ELK Layered. This description is based on the one in my bachelor’s
thesis [Sch15].

The goal of ELK Layered is to construct a graph layout which is suited for graphs which
have an inherent edge direction, such as data flow diagrams. Data flow diagrams are used to

10



2.2. Layered Graph Layout

B

C

A

D E

F

(a) Input Graph

B

C

A

IL

NS

IL

LE

LE

D HP E

F

IL

(b) Internal Representation

Figure 2.2. (a) shows the input graph with the nodes A,B,C,D,E. This is transformed to the internal
interpretation in (b). The feedback edge from B to A creates two in-layer edge dummies (IL). Another
in-layer edge dummy is created when an edge connects ports on different sides of nodes in the same
layer, such as the edge between E and F. When traversing more than one layer an edge is split up into
portions separated by long-edge dummies (LE). When a node has an edge connected to its north or
south side, a north/south edge dummy is created (NS). When an edge connects nodes with different
parents in the inclusion tree, a hierarchical port dummy is created (HP).

demonstrate or model the flow of data through components of a given system. As an example
consider the one in Figure 1.1.

As the name suggests, ELK Layered uses a layered approach to automatic graph drawing.
This means that nodes are distributed among a set of layers. To make the graph as readable
as possible, the algorithm tries to optimize different criteria, the most important being:

Ź Maximize the number of edges directed from left-to-right, following the reading direction.

Ź Minimize crossings between edges.

Ź Minimize edge bends.

ELK Layered is based on an algorithm developed by Sugiyama, Tagawa and Toda [STT81].
The following section only gives a short and general overview of the Sugiyama framework.
For a more detailed description, see the original paper [STT81].

The algorithm is divided into three steps:

1. Distribute nodes to layers and replace long edges with node dummies.

2. Permute order of nodes.

3. Position nodes on the layer.

After the first step, a layering of a graph is then considered to be a proper layout when all
edges go in a left-right direction and connect nodes from one layer to nodes in a neighboring
layer. This why any edges going further than to the neighboring layer are broken by dummy
nodes. Node dummies are nodes which at the end of the algorithm are removed.

The second step reduces the number of edges crossings. This is the main concern of this
thesis and is more carefully discussed in the following section and the special problems of
hierarchical layout in Chapter 4.

11



2. Preliminaries
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Figure 2.3. Steps in Sugiyama algorithm: (a) Input graph. (b) Adds dummy edges and assigns layers.
(c) Reduces edge crossings. (d) Position nodes. (e) Remove dummy nodes.

The third step positions the nodes horizontally in each layer in order to reduce the number
of edge bends. Figure 2.3 shows the traversal of all the steps in the algorithm.

The following sections will consider step two more closely: The layer sweep crossing
minimization and two heuristics which ELK Layered in conjunction with this method, the
barycenter heuristic suggested by Sugiyama et al. [STT81] and the greedy switch heuristic by
Eades et al. [EW86].

2.2.1 Layer Sweep Crossing Minimization

As shown by Eades and Wormwald, minimizing the number of edge crossings by permuting
nodes in a layered graph is NP-complete [EW94].

The common approach is to reduce the difficulty of the problem by only considering a
pair of layers at a time. As determined in Definition 7, one of these is the free layer L f ree,
whose node order is permuted, and the other is the fixed layer L f ix, whose node order is fixed.
This is a problem which should be easier but unfortunately is also NP-complete [EW94].

To reduce edge crossings in the whole graph, many heuristic algorithms sweep from
left-to-right and backward across the layers until no further improvement of the number of
crossings is achieved, as shown in the algorithm layerSweep (Algorithm 1).

Depending on the heuristic, at least the permutation of the first fixed layer needs to be set
before one can sweep forward and backward across the layers. The simplest way to do this
is to choose a random order. Obviously, some choices for the order of the first layer may be
better than others. To take this into account, one can simply run the algorithm with several
randomized values and take the best result. The number of times this is done in ELK Layered
is set by the thoroughness parameter.

To choose a good permutation with feasible computation time, many different heuristics
have been suggested. Sugiyama et al. developed an algorithm which they called the barycenter
heuristic [STT81]. The barycenter (= center of mass) of a node is simply calculated as the average
of the positions of its adjacent nodes. The nodes are then sorted by their barycenters. This
heuristic is fast in theory and in practice and gives good results, which is why ELK Layered
uses this algorithm (for experimental evaluations see the research discussed in Section 3.2).

12



2.3. Bottom-Up Hierarchical Layout

Input: Layers L

Output: Reordered layers LbestOrder
1 currentCrossings = countCrossings(L);
2 forward = true;
3 do
4 LbestOrder = copy of (L0, . . . , Ln), storing the current order of each layer
5 if forward then
6 for i = 0 to n´ 2 do
7 L f ix = Li

8 L f ree = Li+1

9 Li = permute(L f ix, L f ree)

10 end
11 end
12 else
13 for i = n´ 1 to 1 do
14 L f ix = Li

15 L f ree = Li´1

16 Li = permute(L f ix, L f ree)

17 end
18 end
19 forward != forward;
20 lastCrossings = currentCrossings;
21 currentCrossings = countCrossings(L)
22 while lastCrossings ą currentCrossings;

Algorithm 1: layerSweep

As shown in my bachelor’s thesis [Sch15], the barycenter heuristic results in specific types
of errors, which can sometimes be an Obviously Non-Optimal Graph (O-NO-graph). For
this reason, the greedy switch heuristic was implemented as a post-processing step. Here,
neighboring nodes are switched, if this reduces the number of crossings.

2.3 Bottom-Up Hierarchical Layout

The current implementation in ELK Layered lays out hierarchical graphs using a simple
method, which we shall call BU: Each simple child graph is laid out separately in an order
such that each child graph is laid out before the graph containing its parent node is. After
finishing the complete layout of the child graph, i. e., including all steps of the layout algorithm,
the position and order of the parent node’s ports is fixed. Then, from the viewpoint of the
layout algorithm processing the parent node’s graph, the node is now a simple node. In this
way, the layout algorithm itself never processes a hierarchical graph but only simple graphs.

13



2. Preliminaries

Figure 2.4. Example where three different kinds of layout algorithms are used for different sim-
ple graphs of the hierarchical graph: The uppermost graph in the inclusion tree is laid out using
ELK Layered, while the simple child graph on the left uses force directed layout and the simple child
graph on the right uses tree layout.

This method has a number of advantages: First of all, it simplifies the implementation,
since even though the graph in the final layout is hierarchical, the different phases must only
deal with simple graphs. Secondly, it enables choosing between different layout algorithms,
e. g., non-layered based algorithms such as force-directed methods or tree layout algorithms
for each simple graph contained in the hierarchical graph. For an example of such a layout,
see Figure 2.4.

The disadvantages of BU are a direct consequence of the necessity to fix the order of
the ports after finishing a layout of a child graph. Graphs with fixed port order can lead to
many unavoidable crossings. The main contribution of this thesis is a method which can help
remove these kinds of edge crossings by taking the complete hierarchical graph into account
(see Chapter 4).

Before taking a detailed look at the contributions, we will first examine related work
dealing with the automatic layout of hierarchical data flow graphs, crossing minimization
and crossing counting as well as port sorting.
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Chapter 3

Related Work

3.1 Global and Local Layering

The automatic layout of graphs with hierarchical nodes using the Sugiyama framework is not
a very common area of research.

In the context of the ELK Layered algorithm Fuhrmann [Fuh12] implemented a global
layering approach. As part of this exploratory thesis, an extensive literature overview is
given, not only taking into account publications directly related to the problem, but also
examining related areas such as clustered graphs or hierarchical graphs using the force-
directed approach. Since a global layering scheme can often lead to reduced graph size,
a global layering algorithm was chosen and implemented in ELK Layered. The evaluation
shows an increase of computation time, which for large graph instances can be problematic.
According to the author, the crossing minimization did not lead to satisfactory results.

As Fuhrmann points out, basically only two publications exist which provide algorithms
for dealing with the hierarchical graph problem in the context of layered graph layouts. These
are a paper by Sugiyama and Misue [SM91] based on the local layering approach and a paper
by Sander [San96] based on the global layering approach.

As described above, the local layering approach mainly differs from the Sugiyama frame-
work for flat graphs with regard to the crossing minimization phase. Sugiyama and Misue’s
algorithm tries to achieve three goals: Firstly, maximize the closeness of the nodes, mean-
ing the distance between two hierarchical nodes, where one node has children with edges
connected to children of the other node. Secondly, they aim to minimize edge crossings and
thirdly to minimize the crossings between edges and node borders. In general, for crossing
minimization they use a top-down approach. This means that they first do a layer sweep
across the simple graph of the virtual root node and then minimize crossings in each child
node recursively. The problems arising from this approach would be the same as with BU,
however, in contrast to ELK Layered, they do not use ports. In this case, the edges can be
routed directly to nodes in other hierarchical simple graphs. Because of this the nodes are
placed as close as possible to the side of its parent node where most of the hierarchy traversing
edges go to, which the authors call the splitting method. To minimize edge crossings, the
barycenter algorithm is used and for minimizing crossings between edges and node borders,
a barycenter insert method is applied. The splitting method is applied as a preprocessing
algorithm to find a starting point for the two barycenter algorithms which are then applied in
alternating fashion. Note that in ELK Layered, there can be no unnecessary crossings of edges
and node borders. These edges will always be routed around nodes they would otherwise
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cross. Furthermore, while the goal of minimizing closeness is an interesting one, it is currently
not one of the aims of ELK Layered.

Raitner published a paper expanding on the suggestions proposed by Sugiyama and
Misue [Rai05]. The use case driving this publication was the possibility for users to expand
and contract hierarchical nodes. Raitner observed that redrawing the complete layout when
executing such a command is slow and more importantly, changes the layout of the complete
graph. This can cause a conflict with the mental map which users have formed of the graph
they are working on. To reduce this problem Raitner suggests a local update scheme. To reach
this goal, all old nodes stay in the same layers and only the nodes of the expanded graph are
put into new layers. In the case of the crossing minimization phase, the order of all nodes
outside of the expanded hierarchical node remain the same. To achieve this, the order of the
hierarchical dummy nodes is fixed. Note that in ELK Layered, users can also expand and
contract hierarchical nodes. Using a fixed port order on the expanded node, the layout of
the rest of the graph could also be kept the same. However, in this case the complete graph
layout would still be recalculated.

Sander suggested a global layering method [San96] which aims to be an alternative to the
local scheme described earlier, although in its general form it remains similar to the algorithm
by Sugiyama and Misue. The main difference is in the use of global layers, meaning that
there is only one set of layers for all nodes of the graph across the complete inclusion tree. A
hierarchical node can then span several global layers. The algorithm follows the basic pattern
of the Sugiyama framework, but with significant differences in many of the phases. Fuhrmann
adapted Sanders method to KLayLayered, predecessor of ELK [Fuh12] which works on a flat
representation of the hierarchical graph.

In general, the global layering approach often creates more compact drawings at the cost
of computation time. Since the existing implementation in ELK Layered also requires an
increased amount of maintenance, this thesis explores the possibilities of a simplified local
layering scheme.

Currently, the implementation in Eclipse Layout Kernel Layered (ELK Layered) uses
Bottom-Up (BU): Here, each child graph is laid out completely before the graph containing
it’s parent node. ELK Layered shares this approach with two other implementations of the
layered layout algorithm based on Sugiyamas work, one from Paulisch and Tichy [PT90] and
one from Henry [Hen92].

Henry notes that the user can put the most important modules in the lowest level of the
hierarchy. Using BU then lets this module determine the layout of the graph on the outer
levels. However, this idea is not suited for the use case of data flow graphs. Furthermore, he
states that the most important feature of BU is its simplicity, and also points out the edge
crossings which can occur on the boundary of the hierarchical node. In his system, these
crossings can be manually removed. This is currently not possible in ELK Layered. He also
shortly discusses a top-down approach, and without giving concrete examples touches on
the subject of the algorithms communicating in both directions along the hierarchy. For the
crossing minimization algorithm, this is what HALS does.
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3.2. Crossing Minimization

Figure 3.1. Contrived example taken from Bachmeier et al. [BBBH10] a two-layer sweep algorithm
cannot lead to a global optimum. Each of the two unconnected components of the graph oscillates
between five and six crossings on every sweep. Since one component is just a flipped version of the
other, the total number of crossings remains at eleven, although ten would be optimal.

Paulisch and Tichy also point out the unnecessary edge crossings which occur using BU,
but note that the layout of the child graph is unaffected by changes to the graph containing
the parent node is a benefit of BU.

3.2 Crossing Minimization

The most relevant problem of BU is the high number of unnecessary edge crossings. Min-
imizing the number of edge crossings is generally seen as an important aspect to increase
readability and aesthetic quality of a graph layout. The following will give a short overview
of different crossing minimization algorithms in flat layered graphs.

This topic has been researched extensively, with a large number of publications suggesting
heuristics and optimal methods for two-layer crossing minimization. These can be used for
the general k-level problem by sweeping through the graph and comparing neighboring
layers. Even when reduced to this task of minimizing crossings by ordering only one part
of a bipartite graph, the problem still remains NP-complete [EW94]. Some of the algorithms
suggest to optimize the number of crossings by changing both sides of a two-layer graph.
These cannot be used for a layer by layer sweep without some kind of adaptation. The general
k-level crossing minimization problem has not been researched as extensively as the two-layer
problem. However, as Bachmeier et al. point out [BBBH10], there are cases when even an
algorithm which leads to an optimal (i. e., minimal) number of crossings but considers only
two layers at a time, cannot lead to an optimal global layout, as can be seen in Figure 3.1.

No current and extensive overview or comparison of the effectiveness of the many ap-
proaches for the bipartite graph crossing minimization problem exists. Jünger et al. published
a comparative study for heuristics and exact algorithms of two-layer problem in 1997 [JM97]
and Martì et al. published a comparison of heuristics for the same problem in 2003 [ML03],
however new solutions have been suggested since then.

To the best of my knowledge the only overview of k-level crossing minimization heuristics
is by Bachmeier et al. [BBBH10] Here the authors compare the layer-sweep barycenter
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approach with a global barycenter heuristic, a layer-sweep sifting solution and two k-level
sifting approaches, including one of their own and one by Matuszewski et al. [MSM99].
Sifting is a very simple process: Starting from a predefined order, for every node in a layer
each possible position for that node is considered while keeping the relative order of the other
nodes fixed. Then the best position is chosen. The global barycenter does not fare well and
the two-layer sifting approach results in similar solution quality as the barycenter algorithm,
while being significantly slower. The global sifting methods return better results than the
common barycenter approach at the cost of increased computation time.

The barycenter heuristic was first suggested in the original paper by Sugiyama et al.
[STT81]. Together with its variants described below, it is currently the fastest known algorithm
and returns good results. The barycenter of a node in the free layer is calculated as the average
of the indices of its respective neighbors in the fixed layer. The vertices in the free layer are
then sorted by their barycenters.

Similar algorithms to the barycenter heuristic have been suggested, including the median
heuristic which uses the median instead of the average, suggested by Eades and Wormwald
[EW94] and the semi-median suggested by Mäkinen et al [Mä90] which includes a greedy
tie-breaking strategy.

Eades and Kelly [EW86] introduced the greedy switch heuristic, which switches neighboring
nodes when this causes a reduction in the crossing number, together with the greedy insert
heuristic which minimizes the number of crossings to nodes already set until no nodes are
left and the split heuristic, which imitates a quicksort approach to order nodes. None of these
have proven to be successful in practice. However, greedy switch and the split heuristic can
be used as post-processing steps, e. g., after applying the barycenter method. ELK Layered
currently uses greedy switch as a post-processing step to the barycenter method, an approach
which also has been used by Gansner et al. [GNV88] and Nachmanson [NRL08]. In its default
setting, this implementation uses the two-sided greedy switch, where the crossings to both sides
of the free layer are considered. This leads to better performance at the cost of more crossings
(see Schelten [Sch15]).

Further algorithms which have proven to be unsuccessful in practical applications are the
assignment heuristic suggested by Catarci [Cat95] and the stochastic heuristic suggested by
Dresbach [Dre95].

A research group at the University of Valencia including Valls, Martì, Laguna and Lino
have published several approaches for minimizing crossings in two-layer graphs using meta-
heuristics, such as taboo thresholding [VML96], taboo search [Mar98], GRASP [LM99] for the
two-layer case, as well as a taboo search [VML96] algorithm for the k-level problem. These
meta-heuristics use combinations of the other known heuristics, including greedy switch,
sifting and barycenter.

Another meta-heuristic applied to solve the global crossing minimization problem is
presented by Kuntz et al. They use a hybridized genetic algorithm which results in better
solution quality than the taboo search method suggested earlier, however once again at the
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3.3. Cross Counting

cost of slow computation time. Unfortunately, they do not compare their heuristic to any of
the two layer sweep heuristics.

It is often difficult to judge the practical success of these algorithms. It seems that using
barycenter together with the layer sweep approach combined with the greedy switch heuristic
remains a robust and fast method. However, it might be interesting to choose and implement
one of the several other approaches into ELK Layered to compare them.

3.3 Cross Counting

Since the two-layer sweep only searches for local optima, all two-layer crossing minimization
algorithms, including an optimal one, may increase the number of crossings. To check the
success of a sweep, we must therefore count the number of crossings each time. This is
therefore an operation which must be efficient for any crossing minimization algorithm.

There have been a number of publications dealing with the problem of counting crossings.
Due to the complexity of the graphs in use in ELK Layered, there are a number of cases
which have to be dealt with. This includes in-layer edges, i. e., edges between nodes in the
same layer and edges connected to ports on the north or south port of a node.

Barth et al. [BJM02] suggested an efficient algorithm for counting between-layer crossings.
This is the algorithm currently used in ELK Layered. The algorithm by Barth et al. is described
in more detail in Section 3.3.

For counting in-layer crossings, an algorithm which counts crossings of in-layer edges was
suggested in the context of my bachelor’s thesis [Sch15].

The algorithm iterates over all ports and their edges in the graph, saving the start and
end position of each in-layer edge and the position of the current port for each between-layer
edge in a sorted list. Each time we meet an edge which has been visited, the port positions in
between the end and start position of this edge are counted and deleted it from the list. The
algorithm is run twice, once for the edges on the eastern side of the layer in question and
once for those on the western side.

The implementation uses a binary tree datastructure with the ability to specify a cardinality
for its leaves. It is used to store the port positions of each edge. The algorithm runs in
O(|E|(|EIL|+ |EBL|)log(|EIL|+ |EBL|)), where |EIL| is the number of in-layer edges and |EBL|

the number of between-layer edges [Sch15].
This is obviously a poor running time. To improve this and to reduce the amount of

maintenance needed for two different counting algorithms for in-layer and between-layer
edges, Section 3.3 presents a simple algorithm for counting both types of crossings at the
same time.

For the case of crossings between north and south ports, an algorithm for counting these
crossings in linear time can be found in my bachelor’s thesis [Sch15], which will shortly
explain here.
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Figure 3.2. The row of numbers in the node show the position of the ports. The numbers on the side
show the nearness of the north/south dummies to their origin port, i. e., the closer the node, the higher
the nearness.

For this, consider Figure 3.2. To simplify, we can draw the situation as a matrix: ´ a ´

´ ´ b
X ´ ´


The box shows the nodes on the top right of the node in the bottom left position (written
in bold font), which corresponds to the node at position 0, 2. Comparing Figure 3.2 and the
matrix, we can easily see that the number of crossings of a north/south dummy with an
eastern edge is equal to the number of nodes in the marked area of the matrix. We use this to
formulate the following method of calculating the crossings.

We use the nearness of a north/south dummy vNS to the node with the north/south
ports v: This measures how close a north/south dummy is in comparison to the number of
north/south dummies on the side of vNS.

nearnessvNS := |connd(originNode(vNS))| ´ |posv(vNS)´ posv(originNode(vNS))|,

where |connd(v)| is the number of edges incident to node v on side d P D, and originNode :
VNS Ñ V maps north/south port dummy to its connected normal node in the same layer.

Then, the number of crossings for a north dummy vN with a western edge can be
calculated as: min(posp(originPort(vN)), nearness(vN)),

where originPort : VNS Ñ V is the port the dummy node is connected to and posp numbers
the ports from east to west in ascending order. The number of crossings with an eastern edge
can be calculated as:

min(cards(vN)´ posp(originPort(vN))´ 1, nearness(vN))

For north/south dummies on the southern side of a node, the same algorithm is used.
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3.4 Port Sorting

A special problem in ELK Layered is the support of ports. Sander proposes to handle ports by
adding dummy nodes for each port [San94]. Crossing minimization with the use of ports was
first suggested by Waddle et al. [Wad01], who uses an adaption of the barycenter heuristic.
The implementation and algorithms necessary in ELK Layered are explained in detail in
Schulze et al. [Sch11]. The following will give a short overview.

As described in the preliminaries in Chapter 2, each node has ports. The position of
each port can be constrained by different port constraints. These can be specified before the
algorithm is applied and are also used to separate concerns during execution of the algorithm.

Especially important for the crossing minimization phase are the two port sorting al-
gorithms, presented by Schulze et al. [Sch11]. Both are based on the barycenter heuristic.
However it should be easily possible to transfer most of the two-sided crossing minimization
heuristics to the port sorting problem.

To calculate the barycenter value of a node with ports, the concept of port ranks r(p) for a
port p is introduced. For a node v, the barycenter is then redefined using the port ranks to be

1
|E(v)| ∑(pv,pu)PE(v) r(pu), where pv, vp(pv) = v is a port on v and E(v) are all edges connected
to ports on v. This value is used to sort the nodes just as in the usual barycenter heuristic.

For simplicity we will only describe the case of the forward sweep. To calculate the port
ranks, Schulze et al. suggest two similar but slightly different approaches: The first version is
called layer total rank rLT of vj, which gives a unique integer value to each port, thereby giving
nodes with many ports a greater range of rank. It is defined as rLT(p) = (∑kăi range(vk)) +

posp(p), where range(vk) = |P1(vk)| is the range of port ranks occupied by a node vk in La.

The other they call node-relative and define it as rNR(p) = posv(vp(p)) + posp(p)
range(v)+1 . Here, each

node is assigned an equal range of one.
When comparing the two different approaches Schulze et al. come to the conclusion that

both methods yield different results for different graphs, however on average they are equally
effective. For this reason ELK Layered chooses randomly between the two implementations.

Since the port sorting phase will be integrated in the crossing minimization phase as
described in Section 4.1.1, sorting north/south ports will also be executed during crossing
minimization. Schulze et al. describe the implementation chosen in ELK Layered: hi The
north/south port dummies are sorted by the crossing minimization algorithm, permitting
long edge dummies to be placed in between the north/south port dummies of a node. To
sort north/south ports, each dummy node is assigned a barycenter value depending on its
position and whether it has incoming, outgoing or both kinds of edges. These are used to
sort the ports on their respective sides.
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Chapter 4

Hierarchy-Aware Crossing Minimization

This chapter describes the main algorithm proposed for crossing minimization in hierarchical
graphs: The Hierarchy-Aware Layer Sweep (HALS). The first section describes the basic
principle. Following that, different issues which can arise from this original idea are shown.
First, we examine a problem coming from non-deterministic two-layer sweep algorithms
which can cause an increase in the crossing number. The next section then briefly shows how
HALS can in some cases increase computation time. Then we examine different solutions for
these caveats, using a heuristic which flexibly decides for each hierarchical node whether to
process the child graph separately or as part of its parent. Finally, two issues which influence
the success of the crossing minimization, which are only indirectly related to the hierarchical
layer sweep algorithm are shown: The first is a problem which can arise when having both
hierarchical and simple ports on a node laid out using BU. The second is an efficient algorithm
for counting both in- and between-layer crossings at the same time.

4.1 Layer Sweep

The following section discusses an adaption of the layer sweep crossing minimization algo-
rithm as described in Chapter 2. To understand the idea of the hierarchy-aware sweep, we
will first look at a short intuitive explanation, as well as a pseudo-code representation of the
algorithm and a concrete example showing all necessary steps.

The general principle of the normal two-layer sweep will be kept: The order of the nodes
in one layer (the fixed layer) is preserved while the order of the nodes in the other (the free
layer) is changed. Now, on each hierarchical node we sort the ports after each re-sorting of the
free layer. Then, the port dummy nodes on the sweep side of the hierarchical node are sorted
according to the order of their respective hierarchical ports. Finally, the algorithm proceeds to
sweep across the child graph. If the child graph contains any more hierarchical nodes, we
proceed in the same manner. In the case where hierarchical edges exit the other side of the
hierarchical node currently being processed, the last layer in the child graph will be the layer
containing the hierarchical port dummies. Now, the ports on the this side of the hierarchical
node are sorted according to the order of the port dummies. Once all hierarchical nodes in
the layer have been processed, the sweep continues. In this way the entire hierarchy is visited
in one sweep.

The pseudo-code for this procedure can be found in Algorithm 2 (layerSweep), which uses
Algorithm 3 (sweepForward) and an equivalently defined variant of the latter: sweepBackward.
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4. Hierarchy-Aware Crossing Minimization

Input: Layers L

Output: Reordered layers LbestOrder
1 lastCrossings = 8
2 currentCrossings = countCrossings(L)
3 f orward = true
4 while lastCrossings ą currentCrossings do
5 LbestOrder = copy of (L0, . . . , Ln), storing the current order of each layer
6 if forward then
7 sweepForward(L)
8 end
9 else

10 sweepBackward(L)
11 end
12 f orward = ! f orward
13 lastCrossings = currentCrossings
14 currentCrossings = countCrossings(L)
15 end

Algorithm 2: layerSweep

Before starting to sweep across the graph, Algorithm 2 counts the number of crossings using
the order given in the input. The sweeping stops as soon as the number of crossings does
not shrink anymore. We are able to use any two-layer permute(fixed layer L f ix, free layer L f ree)
algorithm for the one-sided crossing minimization problem, and any sortPorts(node n, sweep
side s) algorithm to sort ports on a node in such a way as to minimize crossings. Note the
condition in sweepForward, where a compound node can be marked so as to allow traversing
downward in the inclusion tree or not. The reason for this option and its use is explained in
Section 4.2.

Finally, Figure 4.1 gives an example with a step by step visualization of the approach.

4.1.1 Sorting Ports During Sweep

In ELK Layered, ports are currently sorted in a separate step after the crossing minimization
phase. For this, the crossing counting algorithm does not count all crossings of edges to ports
on nodes with free port order. However, this separation can lead to crossings which could
easily have been avoided in the crossing minimization phase, as can be seen in Figure 4.2.

As described above, the hierarchy-aware sweep must sort ports during crossing minimiza-
tion at least for every hierarchical node. Since cases such as in Figure 4.2 can happen, this is
changed so that sorting ports is done during sweep for all nodes: All port orders are assumed
to be fixed in the crossing minimization phase and ports are sorted after each reordering of
the free layer. The port sorting algorithms already implemented in ELK Layered as described
in Schulze et al. [Sch11] can be used for this. This leads to fewer crossings by removing such
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(1.) The ports of n13 are sorted.
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(2.) The hierarchical dummy nodes of n13 are
sorted by their hierarchical ports, according
to the order determined in (1.).
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(3.) Now the layer with the dummy nodes
is the fixed layer, and the layer marked with
the dotted box is the free layer whose nodes
are are sorted with respect to the order of the
fixed layer.

n13

p1

p2

p3 p6n0 n4

n1

n3

n2 n14

p1

p2

p3 d3

d2

d1

n8

n7

n6 n9

n10 p4d4

p5d5 n11

n12

n5

p5

p4

d3

d2

d1

d6

d5

d4

(4.) The nodes in the next layer ((n5,n14)) are
sorted.

n13

p1

p2

p3 p6n0 n4

n1

n3

n2 n14

p1

p2

p3 d3

d2

d1

n8

n7

n6 n9

n10 p4d4

p5d5 n11

n12

n5

p5

p4

d3

d2

d1

d6

d5

d4

(5.) The ports on n14 are sorted.
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(6.) The hierarchical dummy nodes of n14 are
sorted by their hierarchical ports.
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(7.) The layer sweep is continued within the
child graph of n14.

Figure 4.1. Example for the steps of HALS.
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4. Hierarchy-Aware Crossing Minimization

Input: Layers L = (L0, L1, . . . , Ln´1)
Output: Reordered layers L

1 for i = 0 to n´ 2 do
2 L f ix = Li

3 L f ree = Li+1

4 Li = permute(L f ix, L f ree)
5 for vi P Li vi is compound do
6 if vi marked for hierarchical sweep then
7 sort eastern ports of vi and dummy nodes
8 sweepForward(childGraph(vi))
9 sort western ports of vi by their corresponding dummies

10 end
11 end
12 end

Algorithm 3: sweepForward. sweepBackward is defined equivalently
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(a) If the ports of n13 have free port order, the current
policy considered all ports of n13 to be at the same
position, assuming that all remaining crossings can be
resolved in a separate port sorting phase. However,
this is impossible in this case.
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(b) The crossings could easily be removed by the cross-
ing minimization algorithm.

Figure 4.2. Reason for sorting ports during the layer sweep.

crossings as in Figure 4.2, but might also lead to a slower run-time, because the ports are
re-sorted in each sweep.

Using the barycenter port sorting algorithms excludes the use of the two-sided greedy
switch algorithm as previously described in my bachelor’s thesis [Sch15]. The two-sided
greedy switch exchanges the position of neighboring nodes if the number of crossings
on both sides of the node would be reduced. Because then the number of crossings can
never increase, this enables the algorithm to skip counting crossings, which improves the
running time. However, the port sorting algorithm in ELK Layered uses barycenter values
and therefore does not offer this guarantee: Using barycenter can in some cases increase
crossings. Furthermore, the barycenters are calculated with respect to the edges going to the
fixed layer only. To continue using the two-sided greedy switch algorithm, the two-sided
greedy switch approach must be applied to port sorting. This includes counting crossings
caused on the inside of a hierarchical node.
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4.2. Limitations

While the basic idea of this algorithm is simple, there are a few limitations which become
apparent when taking a closer look. The following sections do exactly that.

4.2 Limitations

4.2.1 Solution Quality

When using a non-deterministic two-layer sweep algorithm, the hierarchical layer sweep can
in some cases cause significantly worse layouts then BU. As an abstract explanation, this
is because BU is a divide and conquer approach. Therefore, it must make fewer random
decisions per sweep, because it sweeps on smaller graphs. This way, it has a higher probability
of making a combination of random decisions which leads to a better layout. To understand
this in more detail, let us first take another look at the main crossing minimization algorithm:
the barycenter heuristic.

The barycenter algorithm (see Section 2.2.1) depends on a number of random decisions.
Barycenter values for two nodes are varied by small random values to decide on a specific
order when the barycenter calculation resulted in equal values. Furthermore, each node with
no connection to the fixed layer is given a random barycenter value which then defines its
position in the layer. In ELK Layered, this is only the case in the first sweep of the algorithm.
The subsequent sweeps are implemented as follows: For a node nu with unknown barycenter
value, this value is set by taking the middle value between the known barycenters of the
two nodes neighboring nu in the order calculated in the previous sweep. However, since the
direction of the first sweep is set randomly in ELK Layered, both nodes with no eastern and
no western connections can have completely random barycenter values.

This randomization process is de-facto part of all two-layer crossing minimization algo-
rithms. If there are no connections to the fixed layer, there is no way to determine the correct
position of a node. In the case of the greedy switch algorithms implemented in ELK Layered,
the one-sided greedy switch does not randomly re-sort such nodes. This is because it is
applied as a post-processing step after the barycenter algorithm, the assumption being that
the order found already contains only few crossings. If greedy switch were the only crossing
minimization algorithm, one would have to consider comparing different random initial
layouts.

For the barycenter algorithm, multiple layouts with different random decisions are com-
pared and the one with the fewest crossings is chosen. The number of performed layout runs
is defined by a user parameter which we call thoroughness or t.

As an example, consider a hierarchical graph G. To prove our point and for the sake of
simplicity, the graph shall contain no hierarchical edges. Furthermore, let its inclusion tree
contain two levels and G2 be the set of simple graphs in the second level of the inclusion tree.
When layouting G using BU, each graph in G2 is considered separately. Let the probability of
an optimal layout for a graph g2i P G2 be pi. To simplify the following calculation, we choose
the graph in such a way so that the crossing number of the parent graph is always optimal
and can therefore be ignored. See Figure 4.3 for an example of such a graph.
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Figure 4.3. Example hierarchical graph with five hierarchical nodes containing equal graphs (on level 2
of the inclusion tree). When sweeping backward, the barycenters for n1, n3 and n6 are equal. Therefore
the order of the second layer is completely random. Two out of the six possible orders for the second
layer lead to crossings as in c0. Therefore the overall probability of a layout with two crossings is 1

3 .

The probability popti of achieving an optimal layout for g2i once in t runs, is the inverse
of the probability of achieving a bad layout in all runs or: popti = 1´ (pi)

t = 1´ (1´ pi)
t.

Using BU, the layout of the child graphs on the same level of the inclusion tree are always
independent of each other. Therefore the overall probability poptbottom-up of layouting the
complete graph optimally with BU strategy is:

poptbottom-up = ∏
iP|G2|

(1´ pt
i)

In the example in Figure 4.3 all subgraphs are equal, so using a thoroughness t = 10 the
probability of a successful layout would be equal to (1´ pt

i)
|G2| = (1´ 1

3
10
)7 „ 100%.

Now let us look at HALS. Since there are no cross hierarchy edges, the layout of the
subgraphs is again independent of each other. The probability of layouting all graphs correctly
in a single run is prun = ∏iP|G2|

pi and the probability of making a single mistake is the inverse
prun. Therefore, the probability of achieving only non-optimal layouts in t runs is pt

run. Putting
it all together we can calculate the probability of an optimal layout by:

popthierarchical = 1´ pt
run = 1´ (1´ ∏

iP|G2|

pi)
t.

For the example in Figure 4.3 we once again use a thoroughness of t = 10 and the fact that
all subgraphs are equal with pi =

2
3 . Then the probability of a successful layout using the

hierarchical sweep algorithm would be 1´ (1´ p|G2|

i )t = 1´ (1´ 2
3

7
)10 „ 43%.

4.2.2 Speed

We have seen that the solution quality can in some cases suffer when using HALS. What
about speed? Does the run time of HALS differ from BU?

Assume a single run of the algorithm, i. e., with thoroughness equal to one. When
using any two-layer sweep algorithm, another sweep is executed as long as the number of
crossings has decreased in the last sweep (see Algorithm 2). Furthermore assume once again a
hierarchical graph G = (V, E, r, F, P, vp), where each simple graph is independent of another
and we have no hierarchical edges. Furthermore let there be n simple child graphs in G,
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where each simple graph Gi, i ă n, needs a number si of sweeps when laid out separately.
How do we find the number of visited nodes in a sweep?

When using BU, we simply sum the sweeps times the number of nodes in the each simple
graph, visited = ∑iăn si ¨ |Vi|, where Vi is the set of nodes in the simple graph Gi.

When using HALS, the number of sweeps is the maximum number of sweeps needed
in the simple child graphs, or sm = maxiăn si. This is because once again the layout of the
simple child graphs is independent of one another, since as before there are no hierarchical
edges. Then the number of visited nodes in a sweep is all the nodes in the graph times the
maximum number of sweeps, |V| ¨ sm. Since in most cases not all si will be equal, this results
in more work to be done. Note that not only does the sweep visit more nodes, the crossing
counting algorithm must also visit more nodes in each sweep.

In a more general view, BU is a divide-and-conquer approach, where the hierarchical
graph is divided up into its simple graphs. This has consequences both for speed and
solution quality. For example, when only viewing simple graphs, there are much fewer
random decisions to make in each sweep. Therefore it is more likely to find a better solution.
Furthermore, the simple graphs are smaller, so cases where we need to sweep across the
graph often before reaching a local minimum do not lead to a strong runtime increase. While
this does not sound good for the hierarchical sweep approach, bear in mind that we excluded
the reason why the hierarchical sweep was considered in the first case, namely hierarchical
edges.

These observations suggest that using HALS for all graphs in the inclusion tree is not a
good idea. In the following we therefore discuss different solution proposals.

4.3 Solution Proposals

The following sections first show why the intuitive solution of increasing the thoroughness
value to improve solution quality is not practical. Then a variant of the hierarchy-aware sweep
is developed which combines BU and HALS and switches between them based on a heuristic
comparing the influences of randomly positioned nodes and hierarchical edges.

4.3.1 Thoroughness Value

An obvious approach to increase solution quality is to simply increase the thoroughness
value. Here, the drawback is just as obvious: The running time increases linearly with the
thoroughness value. The success of this approach once again depends on the form of the
graph in question. Let us consider a worst case example such as the one shown in Figure 4.3.
As shown above, the probability of an optimal layout for this graph is 1´ (1´ 2

3
7
)t. How high

must the thoroughness value be to reach a probability equal to the bottom up solution above?
If we simply set (1´ 2

3
7
)t = (1´ 1

3
10
)7, we can solve for t, resulting in t „ 150. So to reach the

same probability in the example from above, the thoroughness would have to be 15 times
higher, thereby increasing the running time by a factor of at least 15. At least, because the
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Figure 4.4. (a) shows a hierarchical graph. (b) shows its inclusion tree. There is no reason to sweep into
the child graph of n12, Gn12 (hatched), because there is only one hierarchical edge on either side of
n12. For this reason the list of processed graphs would be (Gn12, Gr). After processing Gn12 separately,
n12 is seen as an atomic node from the perspective of Gr. Note that Gn12 is once again laid out using
HALS.

hierarchical layer sweep will often be slower in any case, due to the considerations described
in Section 4.2.2. Once again, this type of graph will probably be quite rare, but still it would
be preferable to have a method which scales better.

4.3.2 Choosing Approach per Subgraph

A different idea is to evaluate for each child graph some characteristic to decide whether
to layout it together with its parent graph or whether to use a BU approach. To be able to
flexibly choose between a BU and hierarchical approach, we need to change the layer sweep
algorithm slightly. Before processing the node order, we traverse each simple graph in the
inclusion tree in level order, i. e., as returned by a breadth-first-search. For each subgraph
we decide whether to allow a hierarchical sweep using the methods described below. In the
case where the decision is to layout the simple graph separately from its parent, the graph
is pushed onto a stack of graphs. This stack is then processed and layerSweep (Algorithm 2)
is applied on each of its graphs. As described above, the sweepForward (Algorithm 3) and
sweepBackward algorithms then check for each child graph whether to sweep into it or not.
After processing a graph, the parent node’s port constraints are set to fixed order. This can
then lead to combinations of both approaches as shown in the example in Figure 4.4. The
following paragraphs describe an algorithm to decide for each hierarchical node n whether to
process its child graph together with the graph containing n.

In a first step, we see that we can exclude the use of the hierarchy-aware sweep in some
simple cases. If there are no hierarchical edges (as with all hierarchical nodes in Figure 4.3) or
only one hierarchical edge, using BU can not be worse than using the hierarchy-aware sweep.
When we have no hierarchical edge to a hierarchical node, we can ignore the child graph and
sort its ports without considering hierarchy. When we have up to one hierarchical edge on
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Figure 4.5. Example of a hierarchical node where all nodes in the child graph have only hierarchical
influence, i. e., there are no paths to nodes without edges on the eastern or western side of the node.

each side of a node, the conclusion is the same. Note that in ELK Layered using BU, the port
order is always set to fixed after each layout of a simple graph. For these cases, the port order
must still be changeable.

In a second step, we develop a heuristic which uses characteristics of each child graph to
decide whether to sweep into it or process it using BU. The problem elaborated in Section 4.2
only exists in subgraphs where the crossing minimization algorithm must make random
decisions. As already noted, the example in Figure 4.3 is one extreme case because it has no
hierarchical edges. In this case there is no reason not to layout each child graph separately.
Conversely, the hierarchical sweep is maximally beneficial when the order of all nodes in a
subgraph is only dependent on the order of the nodes of the parent graph. The example in
Figure 4.5 shows such an extreme example, where the child graph is completely dependent
on its parent.

The general idea of the heuristic is to judge how strongly the order of the nodes depends
on hierarchical edges and how strongly it depends on random decisions.

Heuristic For this we suggest comparing two numbers: Firstly, the number of paths be-
ginning at (or ending in) hierarchical dummies to (or from) all other nodes, which we shall
denote as pH(G) for a simple child graph G. Secondly, the number of paths beginning at (or
ending in) nodes with no edges on one side of the node, which we shall denote as pR(G). In
the latter case, the position of the nodes cannot be defined when the sweep comes from the
direction of the side with no edges. It is therefore subject to random influences, explicitly in
the barycenter algorithm by randomly setting barycenter values and implicitly in the greedy
switch algorithm, by using the order previously defined. Figure 4.6 shows examples of paths
from a hierarchical port dummy and a node with random influence.

We then normalize and compare the numbers to calculate a measure showing the relation
between random and hierarchical influence in the following manner:

b(G) =
pR(G)´ pH(G)

pR(G) + pH(G)
(4.1)
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Figure 4.6. Influence of two nodes: d1 is hierarchical dummy node. It is the start of four paths to other
nodes in the graph. These are shown as finely dashed arrows. n8 has no edges on its west side. In a
left-right sweep, its position is therefore dependent on a random barycenter value. It also is the start
of four paths to other nodes in the graph. These are shown in dashed and dotted arrows. In total there
are 25 paths to and from hierarchical dummy nodes and 11 paths to and from nodes with random
initial positioning.

This definition ensures that ´1 ď b(G) ď 1. The closer the value is to ´1, the higher the
influence of hierarchical edges. And the closer the value is to 1, the higher the influence of
random edges. Then, we can define a threshold value th, where once again ´1 ď th ď 1. This
value can be set by the user or validated experimentally, To be able to choose how likely it is
to use a hierarchical sweep, using:

hierarchical(G) =

{
true if b(G) ă th

false otherwise
(4.2)

Therefore, if we set th = ´1, we will always use BU. Conversely, if we set th = 1, we will
always sweep into the child graphs, except in those cases excluded by the first step, i. e.,
where there are fewer than two hierarchical edges on each side.

Note that this method only takes into account random decisions which define positions
of nodes without connections to a neighboring layer. While this kind of random placement
implicitly or explicitly is part of any two-layer crossing minimization algorithm, the barycenter
algorithm implemented in ELK Layered adds some random fluctuations to each barycenter,
to increase diversity of solutions and to decide on a position when two nodes have the same
barycenter value.

Path Counting The problem which remains is how to find the number of paths from and
to random nodes and cross-hierarchical dummies. Since at phase three of the Sugiyama
Framework (see Section 2.2) we know that the graph is a directed, acyclic and layered graph,
this can be done efficiently in a single sweep across the graph. Using these characteristics, we
will describe an algorithm to count these paths which runs in O(|V|+ |E|). To simplify the
description, we only show how to count the number of paths to hierarchical dummies.
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Input: V ordered by layers left-to-right
Output: Number of paths pH coming from or going to hierarchical port dummies

1 pH = 0 for vs in V do
2 if vs is western hierarchical dummy then
3 vs.H = 1
4 end
5 if vs is eastern hierarchical dummy then
6 pH += vs.all
7 end
8 for (vs, vt) in E do
9 pH += |vs.Eout| ¨ vs.H

10 vt.all += vs.all + 1
11 vt.H += vs.H
12 end
13 end

Algorithm 4: influenceCount

For each node v we store extra information: The number of paths from a western hier-
archical dummy to this node, v.H, and the number of all paths ending in this node, v.all.
We iterate the nodes vs P V ordered by layer left-to-right. If a node is a western hierarchical
dummy, we set vs.H to one. If it is an eastern hierarchical dummy, all paths ending in this
node are influenced by this dummy, so we add vs.all to the number of paths to hierarchical
nodes, which we denote as pH. Let {(vs, vt) P E} be the outgoing edges of vs. We increment
pH by the number of outgoing edges multiplied by the number of hierarchical paths to vs,
since each edge is the end of another path from a hierarchical dummy to a normal node. For
each edge (vs, vt), we then transfer the information of the current node vs to the target node
vt, by incrementing vt.all by vs.all + 1 (+1 for the current edge) and vt.H by vs.H.

Algorithm 4 shows this method in pseudocode and Figure 4.6 shows a step by step
example.

Counting the number of paths to and from random nodes is the same problem as for
cross-hierarchical dummies. The algorithm above can therefore easily be expanded to find
both numbers at once, by simply storing for each node the number of paths from nodes with
random influence.

A special problem arises from north/south dummy nodes. Algorithm 4 relies on the fact
that every node in the set of outgoing edges has not been visited yet. However a northern
north/south dummy node will already have been seen when its origin is visited. Therefore
we have to deal with a number of special cases: When the target of an edge is a north/south
dummy, we execute the transfer step between the dummy and its origin node immediately.
If we visit a node with outgoing north/south edges we deal with them in the same manner
as other outgoing edges. When we encounter a north/south dummy, we save them for later
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Figure 4.7. Counting the number of paths from (and to) hierarchical dummy nodes to (and from) other
nodes. This is the same graph as in Figure 4.6. For a node n, n.H denotes the number of hierarchical
dummy nodes which have a path to this node. n.all denotes for a node n the number of all reachable
nodes when traversing edges backward from this node. pH denotes the current count of paths to and
from hierarchical dummy nodes. The sum underneath this value shows how pH is calculated. The
numbering over the graph shows the sequence of layers in the order they are traversed.

processing. Finally, after visiting each node in a layer, we process the north/south dummies
in this list as we would a normal node. Before visiting the next layer, we clear the list.

The previous sections explained the hierarchy-aware sweep, its issues and proposals to
deal with these problems. The following two sections deal with problems that only indirectly
influence the success of HALS. The first is a problem which can occur when we have simple
and hierarchical ports on the same node and layout its child graph with BU. The second
discusses an efficient algorithm for counting both in-layer and between-layer crossings.

4.4 Further Enhancements

The following two sections deal with two problems which are important for crossing mini-
mization, but not directly part of HALS. However, both topics are interesting enhancements
with direct impact on the quality of the algorithm.
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(a) (b)

Figure 4.8. (a) shows an example of an Obviously Non-Optimal Graph (O-NO-graph) with crossings
caused by fixing the port order on a hierarchical node when using BU. Here, n0 has fixed port order,
while n1 originally does not, but the port constraints are set to fixed after layouting the child graph
separately. (b) shows an obviously better layout.

4.4.1 Sorting Simple and Hierarchical Ports on Same Node

The first is a problem which can arise in BU: Here, the order of the ports for each hierarchical
node is fixed and cannot be changed. This makes sense for all edges traversing up the
hierarchy, because the child graph has already been laid out. However, there can also be
simple edges going into a hierarchical node. In this case, fixing the order of all ports can lead
to crossings which could be avoided. This case will probably not occur too often, however
when it does, it will certainly be an O-NO-graph, because in most cases removing the crossing
can be done by moving the port only by a small distance (Consider the example in Figure 4.8).
Therefore it would be helpful if the port sorting algorithm would be able to keep a specific set
of ports with the same relative position to each other (the hierarchical ports) and distribute
another set of ports among these (the simple ports).

Let us look at the two current crossing minimization algorithms implemented in ELK and
see how these could be adapted for this situation.

Greedy Switch Using greedy switch is simple. For two neighboring ports, these are switched
as soon as at least one of them is a simple port and the number of crossings decreases. Here,
the usual problems for greedy switch apply: It leads to orders which are less optimal than
barycenter and has a quadratic complexity.

Barycenter The barycenter port sorting algorithms as presented by Schulze et al. [Sch11]
sort the ports by their barycenter values. Adapting these is more difficult. In our case we
must keep the relative order of the hierarchical ports, effectively preventing us from sorting
on barycenter values. We therefore want to insert the simple ports into the hierarchical
ports, keeping the order of the hierarchical ports and the resulting order as sorted as possible
according to the barycenter values. The degree of sortedness of a list can be evaluated using
the number of inversions, i. e., pairs of unsorted numbers. This problem can therefore be
reduced to the following:
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Input: Original array M = (m0, . . . , mn´1), Element to insert k
Output: Index imin

1 inversions = array of length n + 1
2 curr = 0
3 for i = 1 . . . n do
4 if k ă M[i´ 1] then
5 curr = curr + 1
6 end
7 inversions[i] = curr
8 end
9 curr = 0

10 for i = n´ 2 . . . 0 do
11 if k ą M[i + 1] then
12 curr = curr + 1
13 end
14 inversions[i]+ = inversions[i]
15 end
16 imin = arg miniďn+1 inversions[i]
17 return imin

Algorithm 5: insert

Problem Statement Given are two lists of values K = (k0, k1, . . . , kk´1), and M = (m0, m1, . . . ,
mn´1). Insert the elements of K into M without changing the relative order of the elements
in M, in such a way as to minimize the number of inversions. A pair (mi, mj) from L is an
inversion iff i ă j and mi ą mj. The number of inversions inv(L) is the number of such pairs.

We now present an O ((n + k) log k) algorithm for this problem.

Algorithm Inserting a single element element k from the second list K is simple: We first
try each position in M from left-to-right, accumulating the number of inversions caused at
this position and storing the value in an array of length n + 1, starting at index 1. Remember
that n is the number of elements in M. The size of the array must be n + 1 because the new
element can be inserted at n + 1 positions (including before and after all elements of M). The
left-right traversal finds for each possible position the number of times k is smaller than an
element to its left. Therefore, when comparing the element k with each element m of M, the
accumulated number of inversions increases if k ă m. We then iterate the list from right to left
starting at m = M[n´ 2], once again accumulating the number of inversions and updating the
array. This right-left traversal finds for each possible position the number of times k is larger
than an element to its right. Therefore, when comparing our element k with each element
m of M, the accumulated number of inversions increases if k ą m. Using this information
we find the index with minimal inversion number. Consider Algorithm 5 for a pseudo-code
implementation for inserting a single element.
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This algorithm obviously runs in O(n). Now we extend the problem to inserting all
elements of K into M.

We denote a position xl to be an element x P K inserted into M at index l and L[i] the
element in L at index i. The number of inversions added by inserting x at l shall be inv(xl). A
solution is the tuple of positions for all elements in K, sorted by their index.

To find an efficient algorithm we use the following observation:

Lemma 4.1. In a solution with minimal number of inversions, the elements of K will always be sorted
ascendingly.

Proof. To prove our observation we show the following: When two elements x, y P K with
x ă y are positioned as xj and yi in inverted order such that i ă j, the number of inversions
will always be reduced when switching the positions to be xi and yj, i. e.,

@x, y P K, x ă y, i, j ă |M|, i ă j : inv(xj) + inv(yi) ą inv(xi) + inv(yj)

As a first step, observe that for all elements to the left of i and to the right of j the number
of inversions caused with x, y at both positions will not change, because:

With x+
[i,j) = |{k | i ď k ă j, M[k] ą x}| as the number of elements in M between the

indices i and j larger than x and x´
[i,j) = |{k | i ď k ă j, M[k] ă x}| as the number of

elements in the same range smaller than x, we see that inv(xi) = x+
[0,i) + x´

[i,j) + x´
[j,n) and

inv(xj) = x+
[0,i) + x+

[i,j) + x´
[j,n). Remember that n = |M|. Here, x+

[0,i) are the elements to the

left of index i causing inversions with x and x´
[j,n) are the elements to the right of index j

causing inversions with x. Both are contained in inv(xi) as well as in inv(xj). The same holds
equivalently for y.

We therefore only need to look at the indices between i and j for both x and y. Here,
consider the two cases for which the number of inversions could have increased when
switching xj and yi:

First, an inversion to yj could be added with an element L[k] at index k with i ă k ă j
and L[k] ą y. However, because L[k] ą y ą x, L[k] also caused an inversion with xj, which is
removed when moving x to position i. Therefore, no new inversion is introduced.

Second, an inversion to xi could be added with an element L[l] positioned at index l with
i ă l ă j and L[l] ă x. However, because x ă L[l] ă y, L[l] also caused an inversion with yi,
which is removed when moving y to position j. Therefore, no new inversion is introduced.

Finally, the positioning xj and yi causes an inversion because x ă y and j ą i. This
inversion is removed when switching to xi and yj so it holds that inv(xj) + inv(yi) ă inv(xi) +

inv(yj).

We use this observation to construct an efficient algorithm traversing the sorted array K
as a balanced binary tree:

We sort K before the first call. Using Algorithm 5 we calculate the index iminv with the
minimum inversion number for the middle element mk of K. Using our observation, we now
know that all elements to the left of mk in K must be distributed among the elements to the
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left of iminv and all elements to the right of mk in K must be distributed among the elements to
the right of iminv. We use this for our recursive call and place K[mk] in between the results. To
end our recursion we have two cases: If M is empty then return the remaining elements of K
and if K is empty we return the remaining elements of M. Algorithm 6 shows a pseudo-code
implementation.

Given a sorted K, imagine the calls to the insertion algorithm (Algorithm 5) in the form of
binary tree of the sorted array K. Then all elements of L are distributed with no overlapping
between all nodes at each level of the tree of K. Since Algorithm 5 runs in O(n), and the
height of the tree is log k the algorithm runs in O(n log k). See Figure 4.9 for an example.
Since sorting K is in O(k log k), we have a total of O ((n + k) log k).

We now turn to a topic which is not related to hierarchy, but plays an important role in
crossing minimization: Counting the number of crossings.

4.4.2 Efficient In-Layer and Between Layer Crossings Counting

As described in Section 3.3, the current in-layer crossing counter has worse than quadratic
runtime. Aside from the run-time considerations, splitting up in-layer and between-layer
crossings into separate steps leads to an unwieldy implementation, with a greater amount
of code to maintain. Since counting crossings is a large part of the expense of a sweep, it is
worthwhile to make this as efficient as possible. Hence, this section shows a fast and simple
algorithm for counting both in- and between-layer crossings at the same time.

Before describing our new algorithm, we will first take a closer look at the between-layer
edge crossings counting algorithm as suggested by Barth et al. [BJM02] and show why we
cannot use the same method for counting in-layer edge crossings. The following description
is based on the explanation in my bachelor’s thesis [Sch15].

Input: M = (m0, . . . , mn´1), List of elements to insert K
1 if M is empty then
2 return K
3 end
4 if K is empty then
5 return L
6 end
7 mid = |M| ˜ 2
8 k = M[mid]
9 mk = minIndex(M, k)

10 le f t = insert((m0, . . . , mmk), (k0, . . . , kmid´1))
11 right = insert((mmk+1, . . . , mn´1), (kmid+1, . . . , kn))
12 return le f t ++ (k) ++ right

Algorithm 6: merge
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Figure 4.9. Example showing the arguments of the recursive calls to Algorithm 5. The calls are shown
as a binary search tree on the list K. The number in bold font is the middle element, and -|- shows the
index where it will be inserted. Note how the elements of L are distributed among each level of the
tree. The final answer will be: (1, 5, 2, 5, 7, 7, 9, 10, 11, 92, 3, 13, 32). There are other orders with minimal
inversion number. The solution returned by Algorithm 5 depends on the implementation of arg min.
For the answer above, we take the rightmost index with minimal inversion number when inserting a
single element.

(a) (b)

Figure 4.10. (a) shows the lexicographical sort order of the edges. (b) shows the correspondence of
edge crossings to the inversions.

Original Between-Layer Edge Crossings Counter Between-layer edges in a two-layer graph
(Ll , Lr) consisting of a left layer Ll and a right layer Lr can be sorted lexicographically in such
a way that in πE = (e0, . . . , e|E|´1) for each pair of edges ei, ej P πE, it holds that:

ei = {li, ri} ă {lj, rj} = ej iff

posv(li) ă posv(lj) or posv(li) = posv(lj) and posv(ri) ă posv(rj).
(4.3)

We now take a look at a sequence π consisting of the position values of the nodes in
the right layer as they occur in πE. Note that each position value can occur multiple times,
because there can be multiple edges incident to the same node. The number of between-layer
crossings then corresponds to the number of inversions in π. Remember the definition of
inversions from above: A pair (pi, pj) from π is an inversion iff i ă j and pi ą pj.
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4. Hierarchy-Aware Crossing Minimization

As an example, let us take a look at the sequence of the position values of the nodes in the
right layer sorted by their occurrence in πE in Figure 4.10. Here, we have π = (00, 11, 22, 13, 04)

using the form rightNodePositionedgeNumber. The inversions and their corresponding crossings
are marked in Figure 4.10b.

Counting can be simply and efficiently done using a modified merge or other comparison
based sort algorithm, a Fenwick tree, or as chosen by Barth et al. an accumulation tree. All
of these choices result in an O(|E| log |Vsmall|) running time, where Vsmall is the number of
nodes in the layer with fewer nodes. Note that the edges need to be sorted in a preliminary
step. For this step to not dominate the complexity, Barth et al. suggest the use of radix sort. A
comparison based sort would lead to an O(|E| log |E|) complexity. Since collecting the edges
will follow the order of the nodes, in many cases the edges will already be sorted by the
first condition in Equation 4.3: posv(li) ă posv(lj). Therefore, in practice, using an adaptive
comparison based sorting algorithm will often be faster. This is the manner in which it is
implemented in ELK.

This algorithm is explicitly designed for a two-layer graph. To the best of our knowledge,
it cannot be adapted and used for counting in-layer edge crossing. This can be seen by
examining the differences between in-layer and between-layer crossings:

Definition 4.2 (In-layer edge crossings). Given in-layer edges as pairs of node positions (i, j)
with i, j P |L|, two edges e0 = (i, j) e1 = (k, l) can be chosen such that without loss of generality
i ă k. Then there exists a crossing between e0 and e1 iff k ă j^ l ą j. Figure 4.11 shows the
different possibilities for e0 and e1.

Definition 4.3 (Between-layer edge crossings). Given between-layer edges as pairs of node
positions, two edges e0 = (i, j) and e1 = (k, l) with i ‰ k can be chosen such that without loss
of generality i ă k. Then there exists a crossing between e0 and e1 iff j ą l. Note that if i = k
or j = l, there is no crossing.

As we can see, even when we sort in-layer edges by their source positions, crossings
are dependent on both the position of the source and the target of an edge, e. g., for the
nomenclature used in Definition 4.2 both k and l. On the other hand, after sorting the edges
as described above, between-layer crossings are only dependent on the position of the target
nodes, i. e., j and l as used in Definition 4.3.

Therefore we will now introduce an efficient algorithm for counting in-layer crossings,
and then show how the same algorithm can be used to count between-layer crossings at the
same time.

Preliminaries For the first step, we are given a graph containing only in-layer edges. Fur-
thermore, we will not consider a port-based graph, but instead assume that all edges directly
connect two nodes.

Ignoring ports simplifies our examples and is sufficient for our purposes: Since the ports
are sorted during the layer sweep (see Section 4.1.1), we can assume the port order to be fixed.
In this case the iteration over the nodes can simply be replaced by an iteration over ports.

40



4.4. Further Enhancements

0

1

2

3 0

1

2

3

0

1

2

3

Figure 4.11. Different possibilities for two in-layer edges with no two edges incident to the same node.

Lastly, we will assume that the graph has no self-loops, i. e., edges whose target and source
are the same port. Note that in the case of the reduced port-less graph for this algorithm,
self-loops are edges connecting a single node with itself. In an implementation, these can
simply be skipped, since with proper edge routing, these edges will not cause any crossings.

Note that this type of graph is equivalent to a type of graph drawing called one-page book,
circular, outerplanar or convex. See He and Sýkora [HS04]. Here, as in many other publications,
algorithms for crossing minimization in these types of graphs are proposed, however to the
best of our knowledge, no efficient algorithm for counting crossings has been suggested.

Counting In-Layer Crossings Counting crossings then works as follows: We traverse the
nodes and store the end position of each edge sorted by position in a data-structure T. Since
multiple edges can end in the same node, the same position can be entered in T multiple
times. Each time we visit a new node n we remove all entries equal to the position of n. Then,
for each new end position peend of an edge e, e will cross as many edges as the index of peend in
T. As an intuition, the entries in T are the edges which have started before n and will end
after the current node position. The index of the peend shows the number of edges which will
end before peend and therefore will cross the current edge. Algorithm 7 shows pseudo-code for
this procedure.

As an example, which is illustrated in Figure 4.12, consider the following edges: (0, 3), (1, 2),
(1, 4), (2, 5). Assume that we have already visited v0, then we have currently stored only the
end of the first edge, so T = (3). We now visit v1. There are no entries in T equal to 1, so we
delete nothing from T. Then, for each edge of v1, we check at which index in the list we would
add the end node position. The edge (1, 2) ends at 2. If we would add this to the list, it would
be at index 0, adding no crossings. The edge (1, 4) ends at 4. If we would add this to the list,
it would be at index 1, so we add one crossing. Next, we add all edge ends to T resulting
in T = (2, 3, 4). Note that in case we would have already added them before updating the
crossing number, 4 would have been at index 2, and we would have counted an extra crossing.
We continue with v2. We remove its position 2 from T, resulting in T = (3, 4) The only edge
(2, 5) from this node ends in 5, which would now be at index 2, so we add 2 more crossings,
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4. Hierarchy-Aware Crossing Minimization

Input: Nodes V = (m0, . . . , vk´1)
Output: Number of crossings c

1 c Ð 0
2 T Ð binary indexed tree with size k
3 for vi in V do
4 T.remove(i)
5 for e = (vi, vj) in Ed(vi) = {e|e P E(vi)^ j ą i^ j ‰ i} do
6 c Ð c + T.sum(j)
7 end
8 for e = (vi, vj) in Ed(vi) do
9 T.increment(j)

10 end
11 end

Algorithm 7: countInLayerCrossings

0T = (3)

1(2,3,4)

2(3,4,5)

3(4,5)

4(4)

5()

Figure 4.12. Example for in-layer crossings with edges (0, 3), (1, 2), (1, 4), (2, 5). The annotations beside
the nodes show the content of T after the node beside each annotation has been visited.

resulting in the expected total of 3 crossings. The visits at all remaining nodes only delete the
nodes as they have no more edges pointing toward nodes with higher positions.

Why is this algorithm efficient? In a preprocessing step, we collect the position of each
node. This takes O(|V|) time. We then traverse all edges and nodes, conducting insertion,
looking for the index of a value and removing all instances of a value. The main open question
is therefore the choice of data-structure for T. To be faster than the existing in-layer cross
counting algorithm, all of these operations must run in at most O(log n) time.

There are different possible choices for this data-structure. A possible choice would be to
use an order statistic tree. This is a binary search tree augmented by the operations rank(x)
which finds the index in the sorted list of elements of the tree and usually select(i) which
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Figure 4.13. Intuition behind counting between-layer edge crossings in the same way as in-layer
edge-crossings. (a), (b) and (c) show the rotation of a complete graph. The lower four graphs show
two transformations possible.

finds the i-th smallest element stored in the tree. This could be backed with any kind of tree
such as a perfect binary tree or a self-balancing tree such as a Red-Black tree.

Instead we chose a Binary Indexed Tree (BIT) or Fenwick Tree [Fen94]. Its most attractive
feature is its extraordinarily simple implementation. In its original proposal, it supports two
operations: GetCumul(i), which returns the sum of the entries below and including the index
i and putValue(i, k), which adds to the entry in index i the value k. Since we always only
increment a single value, this can be simplified to an increment(i) operation, incrementing
the entry at index i. Furthermore, we add a remove(i) method which removes all entries at
one index i. To do this, we must save the exact values for each entry in addition to the data
needed for the Fenwick Tree. Then we lookup the value x at i and perform putValue(i,´x)
and set the exact value to 0.

All of the methods of BITs require O(log n) time, where n is the maximum number of
elements which can be added to the BIT. In our case, n is the number of the nodes in the
layer.

In this way, counting in-layer crossings has a running-time of O(|V|+ |E| log |V|).
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4. Hierarchy-Aware Crossing Minimization

Counting Between-Layer Crossings We do not only want to count in-layer crossings, but
crossings involving between-layer edges as well. Using a simple trick, we can convert all
edges between layers to a problem which can be solved using the algorithm described above.
Let us consider a two-level graph with between-layer edges as in Figure 4.13a.

Let (i, j) and (k, l) be two between-layer edges, with i ‰ k and i ă k. Then we have a
crossing when j ą l, as defined in Definition 4.3. We transform these crossings to in-layer
crossings by numbering the nodes in a different manner: We keep the numbering the nodes
of the left layer: Numbered top-down with 0 to |L0| ´ 1 and change the numbering of the
nodes of the right layer by labeling them bottom-up with |L0| to |L0|+ |L1| ´ 1. As before, it
holds that i ă k. Since the indices in the right layer are all larger than in the left layer, it now
holds that k ă j. Furthermore, due to the new numbering we now have j ă l. This fulfills the
condition for in-layer crossings as in Definition 4.2.

Now, we traverse the nodes in the order of this new numbering: Down the left layer, and
up the right layer, executing the same algorithm as before.

Intuitively, the right layer is rotated around its lowest node and added to the bottom
of the left layer, essentially transforming between-layer crossings to in-layer crossings. See
Figure 4.13 for an illustration which also shows the two possible transformations of a pair of
edges, once with a crossing, and once without a crossing.

We can now use this algorithm for counting both in- and between-layer crossings in the
same traversal of both layers. This is because the areas of the in-layer crossings for both layers
still do not overlap. Therefore they remain unchanged from the perspective of the counting
algorithm when the numbering of the nodes is updated.

Concluding Remarks This chapter showed a number of different contributions to the topic
of minimizing crossings in hierarchical graphs. It described HALS which was extended by
a heuristic to flexibly switch between separating simple graphs and sweeping across them
together with their parents. This was done because depending on the characteristics of the
graph, in some cases solution quality and running time can worsen. We then examined further
issues related to crossing minimization, namely sorting ports on nodes with only partly fixed
port orders and efficiently counting crossings of in-layer and between-layer edges.

We now turn to some practical considerations and describe the most important features
and ideas behind the implementation into ELK Layered.
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Chapter 5

Integration into ELK Layered

A major goal for the hierarchical crossing minimization phase is to be as easy to maintain as
possible. To reach this goal, we will first examine the current architecture and define what
makes easy maintainability in our case. Then the architecture chosen for hierarchical crossing
minimization is described. The description of the current architecture in ELK Layered is
partly based on the one of my bachelor’s thesis [Sch15].

5.1 ELK Layered

ELK Layered principally follows the framework suggested by Sugiyama et al. However, it is
designed to be able to deal with more types of graphs than described in the original paper.
ELK Layered does not assume that all graphs which are given to the algorithm are acyclic.
Therefore another phase is added at the beginning of the algorithm to remove the cycles. The
removed edges are then re-added at the end of the algorithm. Another issue dealt with by
ELK Layered in a separate phase is edge routing, resulting in a total number of five phases.

To name just a few of the cases considered during the layout not covered by the Sugiyama
algorithm, the graphs processed by ELK are port-based graphs and contain labels, hyperedges
(edges connecting more than two nodes) and comment nodes.

To keep complexity under control and to have sufficient flexibility in the implementation,
all cases that the five main phases were not specifically designed for are kept separate in
so-called Intermediate Processors [Sch11], which are executed in between the phases. This
modular structure of the algorithm enhances the freedom to adapt and extend the algorithm.
For a simple overview, see Figure 5.1.

For the algorithm to know when to execute the intermediate processors, each phase
must specify their dependencies. This defines in between which phases which intermediate
processor must be run. The execution order of processors which are in between the same
phases must be manually defined by the programmer.

The list of processors proc(G) for a simple graph G depends on the specifics of each
graph. For example, special processors are activated when north/south ports are used. Others
depend on layout options chosen by the user, such as whether edges should be drawn
orthogonally or with splines. This is also true for each simple graph in the inclusion tree, so
while one graph might have one list of processors, the graphs containing its nodes’ ancestors
or descendants might well have others.
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1 Cycle Removal

2 Layer Assignment

3 Crossing Minimization

4 Node Placement

5 Edge Routing

Intermediate
Processors

Phases

Non-Topological

Hierarchical

Figure 5.1. Overview of ELK Layered’s architecture.

Phases four and five, the intermediate processors between and after these phases and some
of the intermediate processors between phases three and four change the exact coordinates
of the drawing, while phases one through three do not. These processors are marked as
non-topological in Figure 5.1.

The algorithm is controlled by the ELKLayered class which steps through the list of
processors and executes one after another. As described above, the BU method for laying out
hierarchical graphs ensured that all descendants of each graph were completely processed
before starting the algorithm.

To be able to implement processors which operate on the complete hierarchy, the algorithm
for controlling the processors must be changed. The following section describes the aim and
details of the solution chosen here.

5.2 Design of Hierarchy Aware Layer Sweep

5.2.1 Maintainable Processor Control

A major goal of the implementation of HALS is to keep the code as maintainable as possible.
This leads to a few important consequences:

A We split the processors into hierarchical and non-hierarchical processors. As stated, using
BU reduces the complexity by enabling the programmer to only deal with simple graphs
when working on a processor. Therefore this advantage must be kept on all processors
that do not have to be hierarchical.

B There must be no processors which need two separate implementations, i. e., once for sim-
ple and once for hierarchical graphs. In the case of hierarchical processors, the developer
has to ensure that the processor can deal with both simple and hierarchical graphs.

C The controlling ELKLayered class should not need to differentiate between hierarchical and
simple graphs, but should be able to execute the same method for both.
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Input: Graph G = (V, E, F, r, P, vp) with inclusion tree Ti = (V, F, r)
Output: laid out Graph G

1 simpleGraphs = breadthFirstSearch(Ti)
2 simpleGraphs = reverse(simpleGraphs)
3 while proc(simple(r)) is not empty do
4 for G1 in simpleGraphs do
5 while proc(G1) is not empty do
6 p = remove head from proc(G1)
7 if (p is not hierarchical) then
8 run p
9 end

10 else if G1 == simple(r) then
11 run p
12 break
13 end
14 else
15 break
16 end
17 end
18 end
19 end

Algorithm 8: layout

The layout(Graph) algorithm (Algorithm 8) shows the way these requirements were fulfilled.
In a first step the graphs in the inclusion tree are collected using a breadth-first search. This
list is then reversed. In this manner each graph in the list is before the graph containing its
parent node. If we were to execute all processors on each graph in the order given by this list,
it would behave the same as BU. The algorithm ends as soon as the last processor of the root
graph is executed. Since an executed processor is always removed from the processor list, this
is the case when proc(G) is empty, G being the root graph. We then step through the list of
graphs and execute a processor normally if it is not marked as hierarchical. If it is marked as
hierarchical, only the root graph may execute it. If the current graph is not the root graph,
the execution of the processors on this level is stopped and the current processor removed
from the processor list of this graph. In this way, hierarchical processors are never executed
on any graph that is not the root graph. When the hierarchical processor has been executed
by the root graph, the execution of the processors is continued with the graphs in the lowest
hierarchy level.

For this thesis, only processors dealing with crossing minimization were implemented to
be hierarchical. To be able to judge whether other phases could also work on the complete
hierarchy, let us consider Figure 5.1 once again. The processors marked as non-topological
change the exact coordinates of the graph, e. g., the size of a parent node or the exact position
of external ports. For this reason, these processors must be executed the same way as with BU.
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Figure 5.2. Overview of the classes to be changed for further modifications.

Otherwise it is impossible to know the exact sizes of the hierarchical nodes or to calculate the
positions of their ports. Therefore, it is not allowed to add a hierarchical processor in this area.
This is enforced in the implementation by not permitting processors marked as hierarchical to
be placed after the start of phase four. When implementing other processors, developers must
take care never to change exact coordinates before any hierarchical processors. Furthermore,
they must not work across hierarchies in processors which are not explicitly hierarchical, i. e.,
they must not access child or parent graphs.

5.2.2 Extending Crossing Minimization

The implementation of the layer sweep algorithm was chosen in such a manner as to enable a
flexible development and exchange of some parts of the algorithm. This includes the two-layer
crossing minimization heuristic, the crossings counter algorithm and the port sorting heuristic.
For an overview, see Figure 5.2.

To integrate a new two-layer crossing minimization heuristic, the interface ICrossing-

MinimizationHeuristic must be implemented. It requires four methods:
The method alwaysImproves determines whether the heuristic can only improve the

number of crossings. This is for example the case when using two-sided greedy switch, as
described in my bachelor’s thesis [Sch15]. This is necessary because the layer sweep class can
refrain from counting crossings and only needs to continue sweeping when the order of the
nodes has changed.

The method isDeterministic defines whether an algorithm, given a specific order in the
input, will always return the same order or not. If this method returns false, the layer sweep
is repeated as many times as defined by the thoroughness parameter and the order with the
lowest number of crossings is taken.
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setFirstLayerOrder is needed because the order of the first layer is often dealt with in
a specific manner. For example, while barycenter sets a random order to achieve a higher
diversity in the solutions, greedy switch when used as a post-processor wants to build on the
results set by the barycenter processor and therefore does not change the order.

Finally, minimizeCrossings minimizes crossings in the layer indicated by freeLayerIndex.
We pass the order of all the nodes in the graph, because in cases such as the two-sided greedy
switch, we take the layers on both sides of the free layer into account. The barycenter heuristic
as implemented in ELK Layered assigns random barycenters to nodes with no connection
to the sweep direction only in the first sweep across the graph. In all following sweeps
the barycenter value is calculated from the order created by the last sweep. For this, a flag
isFirstSweep is needed.

A new crossing minimization heuristic will almost always make it necessary to adapt
the same heuristic to sort ports. For example the two-sided greedy switch heuristic could
lead to endless loops, if the corresponding port sorting heuristic cannot guarantee that the
number of crossings is always reduced. For this we use the SweepPortDistributor interface
which defines the method distributePortsWhileSweeping.

Currently, three crossing counting algorithms exist, for which we can define no joint
interface because they solve different problems: While the NorthSouthEdgeCrossingsCounter

only counts crossings of north/south ports in a single layer, the HyperedgeCrossingsCounter

and the CrossingsCounter count between-layer crossings. However, there is currently no way
to count in-layer edge hyperedges. Instead crossings of in-layer edges which will be drawn
as hyperedges are counted as normal in-layer edge crossings by the CrossingsCounter. To
have a joint place to deal with counting all edge crossings, a utility class AllCrossingsCounter

collects all methods to have a central place to call countAllCrossings.
Finally, it might be an interesting alternative to implement a global crossing minimization

processor. However, this would have to be done in a completely new crossing minimization
processor.
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Chapter 6

Experimental Evaluation

This chapter presents the results of the experimental evaluation of HALS. The first section
will shortly introduce the datasets the experiments were performed on. The second section
discusses the solution quality and performance of applying the new algorithm in relation to
the heuristic threshold value. Finally, in the third section we try to find graph characteristics
which influence the success of HALS for random graphs with different properties.

6.1 Datasets

6.1.1 SCGs with Basic Blocks

A Sequentially Constructive Graph (SCG) with basic blocks is a graphical representation
of a synchronous programming language for safety critical applications [vHDM+14]. Basic
blocks are parts of the program which can be executed monolithically. They are part of the
compilation process. In the context of the development tools for SCG, this compilation process
can be visualized step by step. Showing basic blocks is part of this visualization.

Figure 6.1 shows an example of an SCG with basic blocks. The basic blocks are shown by
the light gray unfilled boxes around at most two nodes and for easy processing by the layout
algorithm are modeled as hierarchical nodes with the parent node modeling the basic block.

The dataset consists of 106 graphs none of which fail to meet the criteria described
previously (hierarchical nodes, more than two hierarchical edges, at least one edge crossing).

The largest difference to the other datasets is the number of simple child nodes contained
within a single hierarchical node. Here the average mean number of such nodes is only 1.1
with an average standard deviation of 0.01.

6.1.2 Ptolemy Graphs

Ptolemy is a project studying modeling, simulation and design of concurrent, real-time and
embedded systems.1 ELK Layered is integrated into the system and can be used to lay out
the models. The dataset originally contained 194 graphs. To only use graphs relevant for
reducing crossings in hierarchical graphs, we filtered out graphs containing no hierarchical
nodes and fewer than two edges. Furthermore, we also excluded graphs which had no edge
crossings. This reduced the dataset to 139 graphs.

1See Ptolemy.eecs.berkeley.edu, accessed 16/05/27
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(a) BU: Six edge crossings.

(b) HALS: One edge crossing.

Figure 6.1. Comparing BU and HALS on SCG. The straight edges across the graph show dependencies
in the compilation process and are not laid out using layered layout.

The dataset still remains heterogeneous. The size of the graphs vary widely, with a mean
of 103.0 nodes per graph and standard deviation of 134.1. The hierarchical edges almost
always connect simple nodes and only rarely end on the outside of a hierarchical node. The
largest difference to the SCG is the number of simple nodes in a hierarchical node. Here we
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1 generate 500 graphs {

2 nodes = 10 +/- 6 { // normally distributed number of simple nodes per

hierarchical node (incl. root).

3 remove isolated // no nodes without incoming edges

4 ports {

5 re-use = 0.1 // More than one edge leaving a port leads to hyperedges

6 }

7 }

8 edges relative = 0.7 to 1.2 // Equally distributed number of edges relative to

the number of simple nodes within a hierarchical node

9 hierarchy {

10 nodes = 3 +/- 1.5 // Number of hierarchical nodes in each hierarchical node

11 edges relative = 0.025 to 0.3 // Total number of hierarchical edges relative to

the number of nodes.

12 levels = 3 // Maximum depth of inclusion tree.

13 }

14 }

Listing 6.1. Specification in the random graph creation DSL used to generate 500 strongly varying
random graphs. The comments show the effect of each statement.

have an average mean of 7.7 nodes (calculated across all hierarchical nodes of a graph) with
an average standard deviation of 3.7. Figure 6.2 shows an example of a Ptolemy graph.

6.1.3 Random Graphs

Since the number of graphs in the other datasets described below is quite small for an
experimental evaluation, a DSL for the flexible generation of random graphs with specific
characteristics was implemented. Listing 6.1 shows the specification used to generate 500
random graphs with strongly varying characteristics. Here, as in the following sections, the
exact semantics of the DSL will be explained in the comments of each listing.

6.2 Quality and Speed

This section answers a number of questions:

A) How does HALS perform when not using the heuristic?

B) Does the heuristic perform better than a random choice?

C) Is there some boundary value which can be set as a sensible default value?

D) How does the algorithm perform on different datasets?
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(a) BU: Seven edge crossings.

(b) HALS: Two edge crossings.

Figure 6.2. Comparing BU and HALS on Ptolemy graphs. The shadowed boxes are hierarchical nodes.
The nodes such as CompositeActor with the symbol of three connected nodes can be expanded by the
user to hierarchical nodes with a double click to show the containing child graph.
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As described in Section 4.3.2, the decision heuristic compares the number of paths to
nodes with random influence to the number of paths to nodes with hierarchical influence.
This is normalized to return values between ´1 and +1, where ´1 is the same as always
using the BU approach and +1 is equal to always sweeping into the child graph except for
those cases where no improvement is possible by doing so.

6.2.1 Setup

Percent Change We use percent change instead of absolute values in order be able to
compare crossing numbers and running time independent of the size of the graph. Percent
change is calculated by new´old

old or in the case of the crossing number ci´cBU
cBU

where ci is the
number of crossings for boundary value i and cBU is the number of crossings when using BU.
This is equivalent to setting i to -1, i. e., c-1 = cBU . As described before, all graphs with no
crossings in the BU setting were removed from the datasets, thereby preventing divisions by
zero. Note that a negative percent change indicates a reduction in the number of crossings
compared to using the BU strategy, while a positive percent change shows an increase of
crossings. While a negative percent change can at most be ´100%, i. e., in the case when no
crossings remain, there is no limit to an increase of crossings.

Crossing Numbers For showing the change in crossing number we use box plots. As an
example see Figure 6.3. Box plots show the distribution of the data: The top and bottom edges
of the boxes show the first and third quartiles and the fliers are positioned at a distance of
1.5 ¨ IQR, where IQR is the inter-quartile range or the distance between the first and third
quartile. All points outside of the fliers are considered to be outliers (shown as +-signs in the
plot). Note that in some settings, there is a large partition of graphs with no change, resulting
in a lot of the data being centered at zero. In the case where 50% or more of the data is at
the same point, the fliers disappear due to the way they are calculated. In this case, all other
values are shown as outliers. The median of the data is shown as a bold line within the box.
In the case where the median lies at the same point as one of the box edges, 25% of the data
lies on the median. The mean of the data is shown as a small black point. In many cases, the
median stays quite stable, while the mean often changes more strongly toward improved
values. This shows that while the number of graphs with improved crossings stays equal, the
amount of improvement in graphs with improved crossing number increases. We show the
change in crossing number by using one box plot per threshold value.

Running Times As described in Section 4.2.2, the more often the algorithm sweeps into a
child graph, the more nodes and edges are visited per sweep and the higher the probability
of sweeping more often. To measure this, we need to take a look at the speed of the algorithm.
Instead of measuring actual running time, we count the number of edges and nodes visited
during an execution of the layer sweep algorithm using the barycenter heuristic for node and
port sorting. Remember that the run-time of the barycenter algorithm is in O(|E|+ |V| log |V|)
for each layer. We use this method instead of actual running time to have a more stable
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measure not prone to random fluctuations caused by things such as Java JIT compiler, caching
effects or other processes competing for system resources. Once again we compute the percent
change in number of visited edges and nodes compared to only using the BU algorithm. For
each threshold value we take the average value across all graphs. To find possible trade-offs
between running time and solution quality, we plot the change in crossing number and the
average increase of visited edges and nodes directly above each other using the same x-axis.

Threshold Values For each dataset we tried all boundary values from ´1 to +1 with a
resolution of 0.1. For each graph and each boundary value, we count the number of crossings
and then calculate the percent change to the number of crossings when using the BU strategy,
i. e., when the boundary is set to ´1. Remember that the heuristic is used to increase the
success of the method without changing the thoroughness value as described in Section 4.3.2.

Random and Always on We plot two other settings in the same manner: As described
in Section 4.3.2, even when setting the threshold value to the maximum value of 1.0, the
algorithm does not sweep into a child graph in the cases where no improvement can be made.
To examine the effect of this decision, we show the results for the original idea of always
sweeping into every child graph. The other part of the plot shows a setting where the decision
whether to sweep into the child graph is simply randomized. We use this as a baseline to
check whether the heuristic makes reasonable decisions. Both settings are compared to a
threshold value of 0.1.

We shall now analyze and interpret the results for each datasets, starting with the random
dataset, followed by the Ptolemy graphs and finally the SCGs. In each case, we split up the
plot into regions of similar behavior. For quickly finding each region, they are shown explicitly
in each plot, annotated in the description and the plot with capital letters.

6.2.2 Random Graphs

We first examine the results on the random graphs described in Section 6.1.3. Figure 6.3 shows
the plots in the form described above We can roughly divide the results into three regions:

The first region (A) has threshold values of ´0.9 to ´0.5. Here, the change between the
values is small. At least 50% of the graphs have equal or only slightly improved crossing
numbers and almost all outliers lie within ˘ 50% difference. The average number of visited
nodes and edges also stays mostly the same.

The second region (B) spans threshold values of ´0.5 to 0.5. Here, the amount of improve-
ment increases steadily. In the same period the amount of graphs with worsened layouts stays
roughly the same. The number of visited nodes and edges quickly increases, up to about 35%.

Starting at a threshold value of about 0.5 and upwards (region C), there are more graphs
whose crossing numbers increase. After a threshold of 0.7, the layout of most graphs stays the
same, which can be seen in the rare changes in crossing number as well as in the only very
slight increase of visited nodes and edges.
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Figure 6.3. Random graphs: Plot (a) shows success and runtime for the against different thresholds
for the heuristic. Plot (b) compares random choice (RND), a threshold of 0.1 and always sweeping into
child graphs (ON).

In general, only at a threshold value of 0.4 does a majority of graphs have improved
crossing numbers. In all other cases, the median percent change is exactly at 0. Note however
that up to a threshold of 0.3, 25% or more graphs have unchanged crossing numbers. The
spread of outliers increases with a higher threshold value, including one graph with all
crossings removed and one graph where the number of crossings has tripled (i. e., a 200%
change).

The right hand plot in Figure 6.3 shows the same type of plot for a random choice (RND),
for setting the threshold to 0.1 and for always sweeping into the graph (ON). It can be seen
that using the heuristic with a setting of 0.1 is more successful and faster compared to the
base case of a random setting. Always sweeping into the graph results in significantly worse
performance. In the latter case we can observe an increase in the number of crossings in
a majority of cases including outliers with a very high increase of crossing numbers. The
number of visited nodes also increases by 83%.

The measured data shows the evenly distributed randomness of this dataset. At both
ends of the spectrum, the crossing numbers and visited elements only change slowly. In the
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Figure 6.4. Ptolemy graphs: Plot (a) shows success and runtime plotted against different thresholds
for the heuristic. Plot (b) compares random choice (RND), a threshold of 0.1 and always sweeping into
child graphs (ON).

region of ´1.0 to ´0.5, the algorithm is mostly identical to the BU setting. In the upper region
on the other hand, the heuristic almost always chooses to sweep into the graph. Noticeable
improvement only happens in the region of ´0.4 to 0.5. Choosing a value in this region can
then be traded against running time: While the only value with a majority of improved graphs
is at 0.4, the difference to 0.1 is small, but the percent change in number of visited elements
compared to BU has increased by 10%.

6.2.3 Ptolemy Graphs

Next, we examine the results on the Ptolemy graphs described in Section 6.1.2. Figure 6.4
shows the first of the two plots. Once again, we can divide the plot into three regions:

In the region from ´0.9 to ´0.3 (region A), the results stay roughly equal, with 50% of the
graphs remaining unchanged (up to ´0.5) or with only slight improvement (´0.4 and ´0.3).
After a jump of 27% increase in the number of nodes visited after activation of the algorithm
with a threshold value of ´0.9, the number of visited elements rises to a 38% increase in

58



6.2. Quality and Speed

number of nodes visited. The amount of improvement increases in the range between ´0.2
and 0.1 (region B). Starting at the value 0.2 and above (region C), both the crossing numbers
and the number of visited nodes and edges show no further change.

Compared to the random graphs examined previously, the spread of the outliers stays
constantly large. In all cases, the number of improved graphs are not in the majority. However,
also in all cases, at least 25% of all crossing numbers remain unchanged.

The right hand plot in Figure 6.4 once again compares random choice, always-on and a
threshold value of 0.1. Using the heuristic returns better results but slower performance than
a random choice. Once again, always sweeping into each child graph leads to a very strong
increase in visited nodes and edges, with an average of 114% increase. The crossing number
change shows a much larger variation up to an extreme outlier with 6 times the number of
crossings compared to BU.

The measurements of this real world dataset show less smooth characteristics than the
random dataset. The amount of improvement compared to BU is strongest above a value
of 0.1 after which the numbers change only a little. Since the number of visited elements
continues to increase up to a threshold value of 0.3, there is no reason to choose any value
above 0.1. Since the increase in the number of visited elements between ´0.4 and 0.1 is small,
once again, 0.1 seems to be a good default threshold setting for the heuristic.

6.2.4 SCGs with Basic Blocks

Next, we examine the results on the SCGs described in Section 6.1.1. Figure 6.5 shows the
first of the two plots. This dataset shows the strongest decrease of crossing numbers and the
strongest increase in visited elements.

Following a jump after the activation of the algorithm the graphs stay the same up to
a threshold value of -0.3 (region A). Here, the median improvement of crossing numbers
is at -37 % and the number of visited nodes increases quite strongly by 40 %. The large
difference between the increase in visited edges and nodes could be explained by the form of
the graph: Many simple graphs in the input graph have only one node. For any hierarchical
edge incident to that node, an extra hierarchical dummy node is created. This can lead to
cases where a single node in the input graph with a single incident hierarchical node leads to
two nodes (the node and the hierarchical dummy) and only one edge being visited in the
crossing minimization phase.

Region B shows a short range of decrease in crossing number up to an improvement of
-63% at a threshold value of -0.1, after which neither the crossing numbers nor the number of
visited elements change (region C). Interestingly, the increase of visited elements is lessened
at the same time. The average increase in the number of visited nodes is only 34% in region
C. This is contrary to the expectations formulated in Section 4.3.2, and presumably is due to
the characteristics of this type of graph. In cases where the number of crossings is zero after
the first sweep, the algorithm stops sweeping immediately.

The right hand plot in Figure 6.5 compares a random choice with the use of the heuristic
and always sweeping into every graph. Randomly deciding still improves the crossing number
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Figure 6.5. SCGs with basic blocks: Plot (a) shows success and runtime plotted against different
thresholds for the heuristic. Plot (b) compares random choice (RND), a threshold of 0.1 and always
sweeping into child graphs (ON).

compared to BU, but much less than at a threshold of 0.1. Always sweeping into the graph
returns worse results than when using the heuristic, with a median improvement of 57% and
a high increase of visited nodes to 233% compared to BU.

Even though looking at the number of visited nodes and edges has the benefit of being an
exact measurement, we take a short look at measured computation time for the SCGs dataset.
We do this to because it simplifies the interpretation of the percentage increase of visited
elements. We take the minimum of five measured values in an attempt to compensate for the
problems of measuring running time.

The graph in the SCG dataset with the slowest layout time needs 40 ms for crossing
minimization using BU. The same graph needed 61 ms when setting the threshold to 1.0
which in the case of the SCGs is the same running time as when using a threshold such as 0.1,
as can be expected from the measurements shown in Figure 6.5. Crossing Minimization took
167 ms when always sweeping into the graph. The average crossing minimization time for an
SCG using BU was 4 ms, 6 ms with 1.0 and 16 ms when always sweeping into the graph. To
set these times into perspective, the complete layout including all phases needed on average
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across all graphs in the dataset 40 ms when using BU. For the layout of the largest graph as
above it needed 144 ms with BU.

Since the number of simple nodes in most hierarchical graphs in the SCG is one, fixing
the port orders of the parent nodes leads to a large number of nodes with fixed port order.
This effectively prevents the success of the crossing minimization, stopping the algorithm
very early. Also, since most child graphs have many paths with hierarchical influence, HALS
mostly sweeps across the complete hierarchy, increasing the number of visited nodes and
edges. While the median crossing number is best starting at a threshold value of ´0.5, a good
trade-off between solution quality and performance could already be at a threshold value of
´0.9.

6.2.5 General Interpretation

We now answer the questions posed at the beginning of this section.

A) How does the algorithm perform on different datasets?
The success of the algorithm is very dependent on the type of graph. The number of
graphs with equal or improved crossing numbers is greater than the number of graphs
with worsened crossing number in all datasets. However, the SCG dataset shows a much
stronger improvement in crossing numbers than all other datasets. The running time is
always slower, with up to 40 % increase in the number of visited nodes.

B) How does HALS perform when not using the heuristic?
In all cases, using the heuristic is much better and faster than sweeping into every graph.

C) Does the heuristic perform better than a random choice?
For all datasets, using a threshold value of 0.1 returns superior values than random
choice.

D) Is there some boundary value which can be set as a sensible default value?
In general, the best threshold value strongly depends upon the dataset in question. In all
cases, a value of 0.4 is one of the threshold settings that leads to the highest improvement,
however when trading off runtime and quality, the data for random and Ptolemy datasets
seem to suggest a value more like 0.1. Choosing between these values then also depends
on whether slower run-time turns out to be an actual problem in practical applications.
Note that choosing a value above zero also removes crossings in trivial examples where
the number of paths with hierarchical influence is equal to the number of paths with
random influence as shown in Figure 6.6.

6.3 Graph Characteristics Influencing Layout Quality

The previous results suggest that the success of HALS strongly depends on the characteristics
of the graphs. This section examines a number of different graph types using the random
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(a) (b)

Figure 6.6. Example of a simple graph where the number of paths with hierarchical influence is equal
to the number of paths with random influence. The value calculated according to Equation 4.1 is
zero. The graph is swept into only if this value is strictly smaller than the threshold as defined in
Equation 4.2. Therefore with the threshold value set to zero, we still keep the O-NO layout of (a).
Setting the threshold to any value greater than zero returns the layout in (b).

graph DSL described earlier. To examine the effect of one specific characteristic, such as the
number of hierarchical edges, we keep the specification of the rest of the graph equal and
only change one element. This can be done using a range declaration in the DSL, as can be
seen in Listing 6.2.

6.3.1 Increasing Hierarchical Edges

The specification shown in Listing 6.2 increases the absolute number of hierarchical edges
from 0 to 50 on graphs containing six simple nodes and three hierarchical nodes per simple
graph with an inclusion tree depth of two and 1.1 simple edges per simple node. For each
setting, two graphs are created. Figure 6.7a shows the average percent change in crossing
numbers comparing BU to hierarchy-aware sweep, setting the heuristic threshold to 1.0.

In most graphs, above a certain number of hierarchical edges we can see a slight improve-
ment in crossing numbers. In general, however, there is no clear correlation between the
absolute number of hierarchical edges and the relative improvement

A similar result can be seen in Figure 6.7b. Here we created graphs with a similar
specification as above except that we set the number of simple edges to zero, creating graphs
whose edges are all hierarchical. As expected, many crossings are removed using HALS
for this setting. However, the improvement is less for graphs with more hierarchical edges.
Presumably, this is because the complexity of the graphs increases with the number of edges,
and there are simply fewer crossings which can be removed by the algorithm in any case.

6.3.2 Increasing Number of Simple Child Nodes

The predominant feature of the SCG graphs with basic blocks is the small size of the simple
child graphs. To verify the assumption that this is a reason for the large improvements
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1 generate per configuration 2 graphs { // Generate two graphs per value in range

declaration.

2 hierarchy {

3 nodes = 3 // Fixed number of hierarchical nodes in each hierarchical node

4 edges total = range 0 : 1 : 50 // Range declaration: From 0 to 50, with a

stepping size of one.

5 levels = 2 // Maximum depth of inclusion tree.

6 }

7 nodes = 6 { // number of simple nodes per hierarchical node (incl. root).

8 remove isolated // no nodes without incoming edges

9 }

10 edges relative = 1.1 // Fixed number of edges relative to the number of simple

nodes within a hierarchical node

11 }

Listing 6.2. Random graph DSL specification for increasing number of hierarchical edges using the
range statement
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Figure 6.7. (a) shows average crossing numbers while increasing hierarchical edges in graphs contain-
ing simple edges. (b) shows the same with no simple edges except between dummy nodes.

using the hierarchy aware sweep, we compare the percent change for random graphs when
increasing the number of nodes in simple child graphs. For this we increased the number of
simple nodes from one to ten, while keeping the other specifications constant. In this case
we used 1.1 edges per simple node, four hierarchical nodes per hierarchical graph with an
inclusion tree of depth 3 and 0.5 hierarchical edges per node.

Figure 6.8 shows the results of this experiment. As expected, the hierarchy aware sweep is
especially effective for graphs with few simple nodes and less effective, the larger the simple
graphs are.
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Figure 6.8. Increase number of simple nodes.

Conclusion In this chapter we evaluated the success of HALS using three datasets: Random
graphs, Ptolemy graphs and SCG with basic blocks. The evaluation showed that the success
of the algorithm varies greatly between different types of graphs, however in all cases using
HALS resulted in a majority of graphs with improved or equal crossing numbers. The
findings suggested a reasonable default value for the heuristic threshold value to be 0.1. We
furthermore found that the algorithm is especially effective in graphs with few simple child
nodes.

The following chapter summarizes the results and contributions of this thesis and describes
open questions as well as further interesting avenues of research.
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Chapter 7

Conclusions

In this thesis we examined an extension of the crossing minimization step in hierarchical
layered graphs which we call Hierarchy-Aware Layer Sweep (HALS). It was developed and
implemented as a part of ELK Layered, an algorithm for automatic layout of layered graphs.
The main goal was to improve the crossing minimization of hierarchical graphs, while at the
same time not placing a burden on the maintenance of the code-base.

This extension is based on the local layering scheme, where each child graph has its own
separate set of layers. Previously, ELK Layered used the Bottom-Up (BU) approach, where the
layout of each child graph and its parent node was completed before the layout of the graph
containing its parent node. For each simple graph, the layer sweep method was applied: The
layers are visited two at a time, keeping the order of one layer fixed while permuting the order
of the other. The two-layer crossing minimization problem can be solved by using one of many
heuristics, where currently the barycenter and greedy switch heuristics are implemented in
ELK Layered. Using HALS, on each hierarchical node we sort the ports after each re-sorting
of the free layer. Then, the port dummy nodes on the sweep side of the hierarchical node
are sorted according to the order of their respective hierarchical ports. Finally, the algorithm
proceeds to sweep across the child graph.

We showed that there are many cases where this intuitive idea for HALS leads to worse
layouts with slower running times. This is due to the fact that BU is a divide-and-conquer
approach, where the algorithm is executed separately on much smaller graphs. Since the
two-layer crossing minimization heuristics are non-deterministic, the chance is higher to make
a better combination of the right random decisions. Furthermore, the algorithm must sweep
across the complete hierarchical graph and not only on the smaller child graphs, increasing
computation time. To alleviate these caveats, we developed and implemented a heuristic
which decides for each child graph whether or not to sweep into it. To do this, the heuristic
compares the influence of hierarchical edges to the influence of nodes whose position is
determined randomly.

Furthermore, we presented two other contributions. Firstly, an efficient algorithm for
counting both in-layer and between-layer edge crossings. Counting edge crossings is an
important part of crossing minimization. Previous efforts have only enabled efficient counting
of between-layer edge crossings and an inefficient algorithm for counting in-layer crossings.
Secondly, we show an efficient port-sorting heuristic using barycenters for the case where
some of the ports have a fixed order but others can be freely inserted with the goal of
minimizing edge crossings.
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All of the algorithms except for the port insertion were implemented in ELK Layered.
HALS was evaluated using two real-world datasets and a set of random graphs. The results
show that when using the heuristic, the number of crossings in most hierarchical graphs is
reduced. However, the effectiveness of the algorithm strongly depends on the characteristics
of the graph. The improvement in crossing number comes at the price of an increase in
running time, with an up to 40% higher number of nodes visited.

7.1 Future Work

To conclude this thesis, we examine areas of future research related to crossing minimization,
hierarchical graphs and ELK Layered.

When dealing with crossing minimization, there is a very large number of heuristics
which have been developed. When using a two-layer heuristic, the changes in ELK Layered
which have occurred in the context of this thesis enable future programmers to implement
other heuristics for crossing minimization and port sorting with no change to the rest of
the algorithm. While all other heuristics are slower than barycenter and its variants (see the
comparisons by Jünger et al. [JM97] and Martì et al. [ML03]), the size of the current graph
or child graph could be used to switch between barycenter and slower but more effective
algorithms. Experience shows that O-NO-graphs (for an example of an O-NO-graph, see
Figure 4.8) are more common in cases when the graph is small, because in large graphs it is
often more difficult to see how to remove edge crossings. Whether or not this is correct could
be examined in a user study. If the assumption proves to be correct, this might make such an
approach interesting.

While two-layer crossing minimization algorithms can now easily be integrated into
ELK Layered, the crossing minimization processor would have to be rewritten for the use of a
global crossing minimizer. In some cases, the method for adapting a global crossing minimizer
to a locally layered hierarchical graph is easily apparent. Sifting, for example, is a quadratic
algorithm which has been adapted to be used as a global crossing minimizer by Bachmeier
et al. [BBBH10] and Matuszewski et al. [MSM99]. In sifting, starting from a predefined order,
for each node every possible position is considered while keeping the relative order of the
other nodes fixed. To use this for a locally layered hierarchical graph, these algorithms would
only have to be changed in two manners: They must be able to chose any node in any child
graph and when changing the position of a port dummy, its corresponding port must be
moved at the same time.

As we showed for crossing counting in Section 3.3, a two-layered graph can be transformed
into a one-page book drawing, while keeping the same crossings as before. There is a large
amount of literature on crossing minimization in one-page book drawings, which could
conceivably be adapted for the two-layer case, with the restriction that nodes must be
restricted to stay on their layers.

Hyperedges are edges connecting a tuple H = (S, T) of source ports S and target ports
T. Crossings of hyperedges not only depend on the ordering of the nodes in the layers,

66



7.1. Future Work

1

3

52

1

3

52

4

6

4

6

1

3

52

4

6

Figure 7.1. Crossings of hyperedges depend on the actual position of the nodes.
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Figure 7.2. The crossing estimation algorithm counts four crossings: Three crossings between h4 and
h5 because the virtual edges (2, 8) and (3, 7) cross and the ranges spanned by the corners overlap in
both layers. Example taken from Spönemann et al. [SSRvH14].

but also on the positioning of the nodes and the arrangement of vertical line segments. See
Figure 1.1 for an example. In layer based graph layouts the crossing minimization knows
nothing about hyperedges and minimizes crossings between normal edges. These are then
converted into hyperedges in a later stage of the algorithm, where a hyperedge combines
every edge going into the same port. As an extension for improving the effectiveness of
crossing minimization, Spönemann et al. [SSRvH14] developed an algorithm to estimate the
number of hyperedge crossings the resulting node order will create. For this it transforms
a hyperedge into polygons with four corners: The uppermost and lowermost ports of the
hyperedge on both layers. It then counts the number of crossings between virtual edges
formed by the upper corners of each polygon formed by a hyperedge and adds the number
of overlapping areas of the hyperedges on both layers. See Figure 7.2 for an example of this
method. This algorithm currently cannot estimate the number of in-layer hyperedge crossings.
Using the idea for counting normal edge crossings elaborated in Section 3.3, it might be
possible to adapt the hyperedge crossing counter to also take these into account. The only
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Figure 7.3. Example of a Ptolemy graph where the expanding of a hierarchical node changes the order
of the nodes and the drawing of the hyperedges in the graph containing the hierarchical node, making
it harder for the user to understand the data flow graph.

differences to the algorithm would be three things. First, we create the virtual edges using
in-layer edges as well as between-layer edges. Secondly, we can then use the new crossing
counting algorithm to count the crossings between the top virtual edges. Thirdly, we must
adapt the range detection to work on the transformed port indices.

The algorithm suggested in Section 4.4.1 for inserting ports with no fixed order into a
list of ports whose order cannot be changed is currently not implemented in ELK Layered.
Implementing this, evaluating it and considering other algorithms is a very interesting
possible future research topic. Note that it might not only be interesting for the case of BU
layout of hierarchical graphs with edges that are not all hierarchical. It could also be a feature
interesting to users, where they would be able to specify a fixed order for some ports, while
leaving the order of the other ports to the algorithm.

As Raitner pointed out [Rai05], a feature enabling the user to contract and expand
hierarchical nodes can lead to changes of the order of the nodes in the parent graph. These
changes interfere with what is called the mental map of the users, since now the placement
of the nodes has changed from what they are used to. As an example see Figure 7.3. Since
the ease of understanding the content of the graph is important in the layout of data flow
diagrams, this is an issue which could be addressed. The problem could obviously be solved
by using a top-down approach, laying out the parent graph first and fixing the port orders
for the child graphs. This way, when a hierarchical node is expanded, the order of the ports
and therefore the nodes around the node will stay the same. However, this will obviously
lead to the same problems which we tried to solve in this thesis. An alternative would be
to layout the complete graph in the background while only showing the user the reduced
graph with contracted nodes. The drawback of this would be that in the case of large graphs,
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contracting nodes would not lead to faster computation of the graph layout. When using
contractable nodes as modules however when developing in languages such as SCGs, the
size of the complete expanded graph can grow exponentially with the use of more and more
abstract modules. It is obvious that there are many trains of thought to follow for this topic.

The implementation of HALS as described in Chapter 5 made it necessary to create
processors which can be hierarchical. The algorithm enables the creation of multiple hierar-
chical processors as long as they are not executed after any non-topological processor, i. e.,
a processor which changes exact coordinates. Examples could be processors which change
the layer assignment of nodes for example with the goal of reducing whitespace across the
complete graph, or perhaps for certain aspect ratios for parent node or root graph dimensions.
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