
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

Consistent Re�nement of Sequence
Diagrams in the UML 2.0

cand. inform. Claus-André Ohlho�

November 26, 2006

Department of Computer Science

Real-Time and Embedded Systems Group

Advised by:

Prof. Dr. Reinhard von Hanxleden

Dipl. Phys. Carsten Ziegenbein∗

Dipl. Inf. Björn Lüdemann∗

∗Philips Medical Systems, Hamburg, Germany

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

Iterative and incremental development processes are a common way to handle
complex systems. Starting from a high-level view of a system, several consecutive
abstraction layers are created and re�ned until the desired level of detail is reached.
Sequence diagrams provide a comprehensible communication medium for audiences
of di�erent technical knowledge since they are almost self-explanatory due to their
rather lean syntax. By using sequence diagrams to capture the requirements of a
system, stepwise re�nement creates a relationship between the requirements and the
implementation. The consistency of each re�nement step is crucial to achieve a sys-
tem that ful�lls its requirements. The latest release of the UML sequence diagrams
greatly increases their expressive power. The semantical level, however, is raised
from partial orders that are easy to handle to trace languages of factorial complexity
in the worst case. Thus, existing re�nement approaches su�er from very ine�cient
computations. This thesis introduces a re�nement concept�namely intra-level and
inter-level re�nement�that is based on several rules to limit the structural re�ne-
ment. With these structural restrictions it is possible to e�ciently validate re�nement
relations in terms of partial orders. The execution of a Petri net representation helps
to isolate misordered messages if the re�nement is incorrect.

Keywords UML, sequence diagrams, re�nement, incremental development, intra-model

consistency

vi

Contents

1. Introduction 1
1.1. Environment . 1
1.2. Objectives . 3
1.3. Overview . 4

2. Sequence Diagrams 5
2.1. Formalization . 6
2.2. Trace Semantics . 10

3. Re�nement 15
3.1. Examples . 15
3.2. Instance Hierarchy . 17
3.3. Structural Consistency . 19
3.4. Message Order Consistency . 24

4. Implementation 33
4.1. Client . 33
4.2. XML . 35
4.3. Server . 36
4.4. Complexity . 41
4.5. Benchmarks . 42

5. Related Work 47
5.1. Re�nement . 47
5.2. Soundness . 50

6. Conclusion and Further Work 55
6.1. Concept Extensions . 56
6.2. Additional Checks . 58
6.3. A Constructive Approach . 59

A. Bibliography 61

B. XML 65

vii

Contents

viii

List of Figures

1.1. An outline of a single iteration of the Rational Uni�ed Process. . . . 2

2.1. A basic and a regular sequence diagram. 5
2.2. A simple sequence diagram with its formal representation. 7
2.3. Decomposition of a sequence diagram into basic sequence diagrams

and the corresponding tree view. 8
2.4. Interleaving of parallel behavior leads to unmanageable trace sets. . . 12

3.1. A master diagram and an inter-level re�nement diagram. 15
3.2. Intra-level re�nement of the sequence diagram in Figure 3.1(b). . . . 16
3.3. An instance hierarchy with three di�erent levels of abstraction. . . . 17
3.4. The inter-level re�nement diagram must not contain the head chef. . 19
3.5. The messages return empty tray and prepared drink are inconsistent. . 20
3.6. The message delegate may also appear within the master diagram. . 21
3.7. These diagrams are not fragment complete. 22
3.8. The alt fragment is not fragment consistent. 23
3.9. These diagrams are fragment consistent, but the messages order is

inconsistent. 24
3.10. A simple Petri net. 27
3.11. A marked Petri net. 27
3.12. Sequence diagrams and their Petri net representations. 29
3.13. Correct inter-level message re�nement with inconsistent message order. 30
3.14. The Petri net representing the union of the partial event orders. . . . 30
3.15. The Petri net contains two strongly connected components containing

four transitions each. 31
3.16. Cyclic dependencies impede a proper execution of the Petri net. . . . 32

4.1. A client communicates with a checking server. 33
4.2. The user interface of the client application. 34
4.3. XML representation of an instance hierarchy. 35
4.4. XML representation of a sequence diagram. 35
4.5. Overview of the server and checker classes. 37
4.6. Overview of the model element classes. 38
4.7. Overview of the Petri net classes. 39
4.8. Several waiters replace the single waiter of the �rst example. 43
4.9. Coregions in the second example allow the messages to appear in any

order. 43

ix

List of Figures

4.10. Consecutive alt fragments. 45

5.1. Equivalent traces although an alt fragment is missing. 48
5.2. Equivalent traces although the strict fragment covers di�erent messages. 49
5.3. The order of operands of a par fragment does not in�uence the traces. 49
5.4. Unmotivated events lead to incorrect state machines. 51
5.5. Although the customer awaits the meal after the drink, a naïve imple-

mentation cannot assure this. 52
5.6. With in�nite loops the customer can �ood the waiter with messages. 52
5.7. Non-local choices might lead to unspeci�ed behavior. 53

6.1. General orderings replace lost information. 56
6.2. A �rst approach to regard state re�nement. 57
6.3. Not all race conditions according to Chen et al. arise in the ROOM

framework. 58
6.4. Inserting new messages with a constructive approach. 60

x

Glossary of Symbols

e, e′ events 6
E,E′ sets of events 6
m,m′ messages 6
M,M ′ sets of messages 6
!m the send event of the message m 6
?m the receive event of the message m 6
E(M) set of events that belong to messages in M 6

b, b′ basic sequence diagrams 7
B,B′ sets of basic sequence diagrams 7
i, i′ instances 7
I, I ′ sets of instances 7
ι(e) the instance of the event e 7
< a partial event order 7

s, t regular sequence diagrams 9
c, c′ combined fragments 9
C,C ′ sets of combined fragments 9
f the root fragment of a regular sequence diagram 9
τ tree structure of a regular sequence diagram 9
<∗ total order on fragments/operands 9

h instance hierarchy 17
µ relation between master and re�nement instances 17
π relation between parent and child instances 17

o, o′ operands 21
O(c) operands that belong to the fragment c 21
M(c) messages that belong to the fragment c 21

|| c || the partial event order of the fragment c 25
O∗(c) the ordered pairs of operands of the fragment c 25

n, n′ Petri nets 26
p, p′ places 26

xi

Glossary of Symbols

P, P ′ sets of places 26
t, t′ transitions 26
T, T ′ sets of transitions 26
F �ow relation of a Petri net 26

•t input places of transition t 27
•n input places of the Petri net n 27
t• output places of the transition t 27
n• output places of the Petri net n 27
x, x′ markings 27

xii

1. Introduction

The Uni�ed Modeling Language (UML) [23] allows to specify systems by various
structural and behavioral diagram types. A single diagram usually shows only one
part of the system to manage complexity. Thus, speci�cations of complex systems
contain many di�erent diagrams. Furthermore, a common technique is not only
to describe all the important parts, but also to describe single parts from several
di�erent views. In doing so, it is important to keep the di�erent diagrams consistent
[8]. Otherwise a realization of such a system is likely to fail and revising requirements,
design, and implementation in more iterations than necessary dramatically increases
the overall e�ort.

This thesis examines a consistent re�nement concept for sequence diagrams. Se-
quence diagrams focus on inter-object scenario-based behavior [15], i.e., which in-
stances are involved, which messages are exchanged, and in which order are these
messages exchanged. Sequence diagrams are re�ned by inserting additional instances
or by replacing instances with other instances and by inserting new messages (cf.
Chapter 3). Re�nement leads to a set of sequence diagrams that describe the same
scenario from di�erent levels of abstraction, which suit di�erent audiences. The
highest abstraction level, for example, is very useful to discuss requirements with
customers and end-users, and the lowest abstraction level serves as a pattern for the
implementation team. Current modeling tools, however, do not support speci�ca-
tion of re�nement relationships between sequence diagrams, which opens the door for
several inconsistencies, such as missing or wrong instances or messages, and�most
devious�misordered messages.

1.1. Environment

This diploma thesis is developed in cooperation with a software development team
at Philips Medical Systems (PMS) [31] in Hamburg, Germany. This team develops
embedded real-time systems based on a ROOM [3] framework and uses the UML
with real-time extensions [4] as modeling language.

The main components are described by so-called capsules. Capsules are classes
with the stereotype active, i.e., all members are private and the only possibility
to communicate with other capsules is message passing. Capsules are hierarchical,
i.e., they can be arbitrarily nested. A state machine, which can be hierachical too,
speci�es the internal behavior of each capsule. Therefore, sequence diagrams are
particularly suitable to describe the communication of those capsules at almost all
development stages. Sequence diagrams are even used to generate test cases.

1

1. Introduction

Project development in the aforementioned software team follows a customized
version of the Rational Uni�ed Process (RUP) [30]. A detailed description of this
process is beyond the scope of this paper, but the distinction between a horizontal
and a vertical dimension is important for the re�nement concept. The horizontal
dimension is separated in consecutive iterations and phases, where each iteration
leads to a new version and each phase leads to a new generation of the product [35].
The vertical dimension is split into several interdependent work�ows or disciplines,
such as requirements, analysis, design, implementation, and testing.

Requirements

Analysis
&

Design

Implementation

Sequence Diagram
Refinement

Structure
Refinement

Capsule
State Machines

System State
Machines

Generated
Code

Use Cases

Figure 1.1.: An outline of a single iteration of the Rational Uni�ed Process.

Figure 1.1 shows a rough outline of a single iteration of the development process.
The di�erent disciplines introduce several layers, which describe the speci�ed system
from di�erent levels of abstraction. Each layer is a more detailed version of its
predecessor and contains its own set of capsules, state machines, sequence diagrams,
and a so-called system state machine [19]. The requirements discipline creates a set
of use cases, which identify several scenarios and provide informal descriptions of
those scenarios. The requirements discipline also derives the �rst layer that provides
a high-level view of the system. The analysis and design disciplines iteratively re�ne

2

1.2. Objectives

the requirement view of the system until a su�cient level of detail is reached which
serves as a basis for the implementation.
This thesis focuses on the re�nement of sequence diagrams. Each sequence dia-

gram describes a scenario of the requirements discipline from the perspective of the
particular abstraction layer, i.e., a sequence diagram contains only capsules that are
de�ned within the same layer. There are two possibilities to re�ne a sequence dia-
gram. Intra-level re�nement is applied to sequence diagrams that belong to the same
level of abstraction. As mentioned above, capsules may be nested, and an intra-level
re�nement step is used to show the internal communication. Inter-level re�nement
is used to transfer a sequence diagram to the next lower level of abstraction by sub-
stituting the instances according to re�nement of the structural elements. A detailed
description of the re�nement concept is provided by Chapter 3.
Sequence diagrams from the lowest level of abstraction serve as patterns for the

state machine design so that there is a relationship that ranges from the requirements
to the implementation. All known tools, however, seem to neglect the consistent inte-
gration of sequence diagrams. An automatic code synthesis considers only structural
diagrams and state machine diagrams. Developers still have to exploit the relation-
ships between di�erent sequence diagrams and between sequence diagrams and state
machines manually.
Hence, automatic tool support would heavily in�uence the development process

in terms of quality and time and would optimize the product quality relative to
the development e�ort. This is even more apparent when one considers that it is
unrealistic to develop a complete system in a single iteration. Requirements are prone
to changes due to customer requests, or possibly the design team itself discovers that
the requirements need adjustments.
A concept and tool support for synthesis of state machines from sequence diagrams

is already provided by Lüdemann [21], which can be used to assure consistency
between sequence diagrams and state machines. Furthermore, Lischke [19] deals
with di�erent kinds of consistency between sequence diagram. Sequence diagrams
that belong to the same abstraction layer are analyzed with a so-called system state
machine that describes how the global system state changes by the execution of
sequence diagrams. The system state machine detects state inconsistencies that lead
to unwanted execution traces. Lischke also provides a �rst re�nement concept. This
concept, however, is limited to basic sequence diagrams and does not support any
kind of parallelism. This limitation leads to the following objectives.

1.2. Objectives

The main objective of this diploma thesis is to extend the already existing re�nement
concept for basic sequence diagrams [19] to support coregions, implicit parallelism,
and, particularly important, the new combined fragments introduced by UML 2.0
[11]. Several secondary objectives were derived and are ordered by importance below.

1. Evaluate whether other re�nement approaches that deal with sequence dia-

3

1. Introduction

grams are similar or even applicable to the concept that is already applied in
practice.

2. De�ne a concept that allows e�cient decision making whether related sequence
diagrams, i.e., sequence diagrams that are views of the same scenario, are
consistent or not. The source of inconsistency should be identi�ed as precisely
as possible so that inconsistency elimination becomes easier.

3. Implement a plugin into the current modeling tool to evaluate the concept.
The implementation should be as tool independent as possible.

1.3. Overview

After the introduction clari�ed the context and the objectives of this thesis, this
section gives an overview of the remaining chapters.
Chapter 2 introduces the syntax and semantics of sequence diagrams and provides

a formal representation that is used to de�ne the di�erent relationships in the follow-
ing chapter. Furthermore, a rather simple example is used to show that reasoning
about sequence diagrams at trace level is practically impossible due to the factorial
complexity of parallel behavior.
Chapter 3 de�nes the re�nement concept. An instance hierarchy which refers to

the re�nement of capsules restricts the re�nement of sequence diagrams. Several
rather strict structural rules allow to reduce the semantical level to partial event
orders. Strongly connected components and a Petri net simulation accurately identify
misordered messages, if any exist.
Chapter 4 shows how the concept was implemented. A rather small client plugin

generates an XML representation of the sequence diagrams that should be checked
for consistency. An external checking server receives this XML representation and
processes the di�erent rules of the previous chapter.
Chapter 5 presents other approaches that deal with the re�nement of sequence

diagrams. There are three similar approaches that de�ne re�nement relationships in
terms of traces, but do not provide e�cient methods to verify those relationships. A
fourth approach uses a Petri net analysis which is also ine�cient. Besides the di�erent
re�nement concepts several other ambiguities of sequence diagrams are mentioned
that cannot be avoided by the re�nement concept itself. These ambiguities may lead
to errors, such as deadlocks, in an implementation.
Chapter 6 concludes and discusses possible future extensions. A model/view re-

lationship for sequence diagrams, which is inspired by handling of class diagrams
by current modeling tools, could automatically eliminate several sources of inconsis-
tency.
All examples throughout this thesis show sequence diagrams that were taken from

the restaurant example which was already used by Lischke [19] and Lüdemann [21].
This rather simple model provides familiar scenarios, which simpli�es the evaluation
and presentation of new concepts.

4

2. Sequence Diagrams

The current version of UML sequence diagrams has adopted many features of Mes-
sage Sequence Charts (MSC) [18], which have been standardized by the International
Telecommunication Union (ITU) [17], and Life Sequence Charts (LSC), which have
been introduced by Harel et al. [7, 42].

Sequence diagrams are used to describe how instances interact in a speci�c sce-
nario. Such a scenario is usually informally described by a use case. Thus, a sequence
diagram provides the �rst possibility for structural and formal analyses. Distinguish-
ing basic sequence diagrams from regular sequence diagrams is a common approach to
introduce a formal notation [38, 5]. As opposed to regular sequence diagrams, basic
sequence diagrams are �at, i.e., they contain only instances, messages and coregions.
Regular sequence diagrams contain in addition so-called combined fragments that
introduce a kind of hierarchy.

Customer Waiter

order drink

order main dish

serve main dish

prepared drink

Kitchen

forward order

serve drink

prepared main dish

order coffee

serve coffee

(a) A basic sequence diagram.

Customer Waiter

order drink

order main dish

serve main dish

prepared drink

Kitchen

forward order

serve drink

prepared main dish

par

opt order coffee

serve coffee

(b) A regular sequence diagram.

Figure 2.1.: A basic and a regular sequence diagram.

Figure 2.1 shows a basic and a regular sequence diagram. Instances are drawn as
boxes at the top of the diagram. The dashed lines below each instance are lifelines,
which indicate the time elapsed. Messages are drawn as labeled arrows between those
lifelines, thus connecting the sender and the receiver of that message. Furthermore,
basic sequence diagrams may contain coregions, which are drawn as thick lines and
cover an interval of a lifeline. Coregions are used to indicate that several messages

5

2. Sequence Diagrams

may be sent or received in any order. The two coregions in the sequence diagram in
Figure 2.1(a) indicate that the customer can order the drink and the main dish in
any order, and that the waiter can receive these messages in any order. Depending
on the underlying framework it is even possible that one message overtakes another.
This is, however, not allowed in the ROOM [3] framework, and thus not included in
this thesis.

Combined fragments are drawn as rectangles that cover several messages. Each
combined fragment has a so-called operator that is written in the top left corner.
Depending on the type of operator, the combined fragment may be separated with
a dashed line into several regions, so-called operands. The sequence diagram in
Figure 2.1(b) describes basically the same scenario as the basic sequence diagram,
but due to the opt fragment the co�ee order is only optional, i.e., the customer may
or may not order a co�ee at all, which cannot be expressed with basic sequence
diagrams. The following section provides the formalization of sequence diagrams.
Section 2.2 explains the trace semantics and shows that addressing a consistent
re�nement concept at the trace level is much too ine�cient.

2.1. Formalization

This section provides a formal representation of sequence diagrams and their com-
ponents. This formalization is used to de�ne the re�nement concept in Chapter 3.
The formalization of basic sequence diagrams is similar to the notation of Peled [28]
or Haugen et al. [25, 27].

Messages are used to describe the interfaces and protocols between di�erent in-
stances. The communication is asynchronous. Synchronous messages are not sepa-
rately considered since they could be replaced with asynchronous request and reply
messages. Special create or destroy messages, which indicate the creation and ter-
mination of an instance, respectively, are also presented as simple asynchronous
messages. Each message is identi�ed by a pair of events: a send event and a re-
ceive event. From the state machine view [21] a receive event refers to a trigger of a
transition and send events are a part of the action code of a transition.

De�nition (Message):
Let E be a set of send events and let E′ be a set of receive events, so that E and E′

are disjoint. A message m is a pair (s, r) ∈ E ×E′. !m and ?m refer to the sending
event and receiving event of m, i.e., !m = s and ?m = r.

A set M of messages is well-formed if all events are unique, i.e.,

∀m, m′ ∈ M. (m 6= m′) ⇒ (!m 6=!m′∧?m 6=?m′).

For a set M of messages, E(M) refers to the set of all events that belong to these
messages, i.e.,

E(M) = {!m|m ∈ M} ∪ {?m|m ∈ M}.

6

2.1. Formalization

A basic sequence diagram is characterized by a set of instances and messages
and a mapping that assigns an instance to every message. This de�nition facilitates
that messages may appear within several sequence diagrams, which may assign these
messages to di�erent instances according to the re�nement concept (cf. Chapter 3).
Other formalizations of sequence diagrams [38, 5] do not exploit the possibility that
several sequence diagrams share a common set of elements.

De�nition (Basic Sequence Diagram):
A basic sequence diagram is a tuple

b = (I, M, ι,<)

where

� I is a set of instances,

� M is a well-formed set of messages,

� ι : E(M) → I maps every event on an instance,

� < ⊂ E(M)× E(M) is a partial event order, and

� every send event occurs before the corresponding receive event, i.e.,

{(!m, ?m)|m ∈ M} ⊆ < .

The partial order does not only relate send and receive events but also events that
belong to the same instance and occur one after the other. A full de�nition of basic
sequence diagrams should also include an additional restriction of the partial order,
because not every order can be realized by a graphical representation. Assume that
events a, b, and c belong to the same instance and, according to the partial order, a
occurs before b but there is neither a restriction between a and c nor between b and c.
This entails that a, b, and c have to belong to the same coregion, which contradicts
the order of a and b and thus, a graphical representation does not exist. This
restriction, however, has no in�uence on the re�nement concept, which is de�ned in
the next chapter. Figure 2.2 shows a simpli�ed version of the diagram in Figure 2.1(a)
together with its formal representation.

Customer Waiter

A

B

C

D

(a) Graphical representation. (b) Formal representation.

Figure 2.2.: A simple sequence diagram with its formal representation.

7

2. Sequence Diagrams

Combined fragments are used to introduce a hierarchy into sequence diagrams.
Fragments can be arbitrarily nested but must not overlap, so that regular sequence
diagrams can be formalized as a tree, which has ordered nodes. Basic sequence
diagrams represent leaf nodes of such a tree and combined fragments cover the inner
nodes. The root of such a tree is either taken by the outermost fragment or by the
implicit fragment with the weak sequencing operator seq, which has no e�ect on the
semantics of the diagram (cf. Section 2.2). Figure 2.3 shows the decomposition and
the tree view of the sequence diagram in Figure 2.1(b).

Customer Waiter

order drink

order main dish

serve main dish

prepared drink

Kitchen

forward order

serve drink
prepared main dish

par

opt order coffee

serve coffee

(a) A regular sequence diagram.

A B

par

seq

C opt

D

(b) Tree with basic diagrams as leaves and
fragments as inner nodes.

Customer Waiter

order drink

(c) Basic sequence diagram A.

Customer Waiter

order main dish

(d) Basic sequence diagram B.

Customer Waiter

serve main dish

prepared drink

Kitchen

forward order

serve drink

prepared main dish

(e) Basic sequence diagram C.

Customer Waiter

order coffee

serve coffee

(f) Basic sequence diagram D.

Figure 2.3.: Decomposition of a sequence diagram into basic sequence diagrams and
the corresponding tree view.

8

2.1. Formalization

The formalization of regular sequence diagrams separates the combined fragments
from their content, which is similar to the separation from messages and their sending
and receiving instances. Thus, a fragment may appear in several diagrams and po-
tentially even covers di�erent sets of operands and messages, which is quite di�erent
from other approaches that deal with regular sequence diagrams (cf. [38, 5]).

Notation:
In the following, indices are used to distinguish sets, relations, and functions when
the context is unclear, e.g., Ib refers to the instances of a sequence diagram b and
<b′ refers to the event order of sequence diagram b′.

De�nition (Sequence Diagram):
A sequence diagram is a tuple

s = (B,C, f, τ, <∗)

where

� B is a set of basic sequence diagrams without common messages or events, i.e.,

∀b, b′ ∈ B. Mb ∩Mb′ = ∅

and
⋃
b∈B

Mb is well-formed,

� C is a set of combined fragments,

� f ∈ C is the root fragment,

� τ ⊂ C × (C ∪ B) relates combined fragments with their operands, which can
be combined fragments again or basic sequence diagrams, and

� <∗: (B ∪ C) × (B ∪ C) is a total order on the basic sequence diagrams and
fragments.

τ refers to the tree structure of such a diagram and <∗ represents the order of
fragments and basic sequence diagrams. <∗ is a preorder traversal of the tree induced
by τ . The order of the fragments and basic sequence diagrams in Figure 2.3 is:

seq <∗ par <∗ A <∗ B <∗ C <∗ opt <∗ D

9

2. Sequence Diagrams

The following notations that are used for basic sequence diagrams can also be used
for regular sequence diagrams.

Notation:
Let s be a sequence diagram.

� Is refers to the set of all instances in s, i.e.,

Is =
⋃

b∈Bs

Ib.

� Ms refers to the set of all messages in s, i.e.,

Ms =
⋃

b∈Bs

Mb.

� ιs : E(Ms) → Is maps every event on an instance,i.e.,

ιs =
⋃

b∈Bs

ιb.

2.2. Trace Semantics

Partial orders are an adequate semantics for basic sequence diagrams, but are not
su�cient to describe the semantics of regular sequence diagrams. As mentioned at
the beginning of this chapter there is, for example, no possibility to express optional
behavior if only partial orders are available. Furthermore, the current UML speci-
�cation [11] allows to specify alternative and iterative behavior which signi�cantly
increases the expressiveness of sequence diagrams.

The introduction of the combined fragment with their twelve di�erent operator
kinds (cf. Table 2.1) requires a trace semantics. A trace is a sequence of events that
describes an execution of the scenario. To receive the traces of a basic sequence
diagram, one has to enumerate all possible total orders that are completions of the
partial order. The sequence diagram in Figure 2.2 leads to twelve valid traces, such as
〈!A, !B, ?A, ?B, !C, ?C, !D, ?D〉 or 〈!B, !A, ?A, ?B, !C, !D, ?C, ?D〉. In doing so, each
sequence diagram is characterized by its trace language.

The semantics of a sequence diagram, however, is not only given by a set of positive
traces, but also by a set of negative traces. Positive traces refer to possible executions
and negative traces describe unwanted or forbidden executions. Traces that are
neither positive nor negative are usually referred to as inconclusive or incontigent.
Unfortunately, the UML speci�cation itself is rather vague and lacks a precise formal
semantics. There are several approaches [37, 38, 5] that try to �ll this gap. Especially
the possibility to specify negative traces allows many di�erent interpretations [32].
The next section shows that reasoning about sequence diagrams in terms of traces
is very ine�cient so that the re�nement approach, which is de�ned in Chapter 3,

10

2.2. Trace Semantics

is based on partial orders. Although partial orders do not su�ce to discuss the
semantics of regular sequence diagrams, several structural restrictions at least allow
to use partial orders to e�ciently localize misordered messages.
Hence, a complete discussion of the trace semantics is not necessary in this thesis.

Table 2.1 contains a short description of the operators that result in positive traces.
Negative traces are created with the neg and assert fragment. As mentioned above,
there is no best way to handle negative traces yet. A good overview is provided by
Runde et al. [32]. The re�nement concept presented in the next chapter, however,
does not need to distinguish between negative and positive behavior. Complete
descriptions of all operators are provided by several papers [37, 38, 5, 32].

operator description
par Parallel merge: The traces of the operands are interleaved in any way.

The par operator is more expressive than a simple coregion, since it
preserves the order within each operand.

strict Strict sequencing: The traces of the operands are concatenated in the
order of the operands.

alt Choice of behavior: The result is the union of the traces of the operands.
opt Choice of behavior: Similar to an alt fragment where one operand is

empty, i.e., the empty trace is added to the trace set.
seq Weak sequencing: The result is a composition of strict sequencing and

interleaving. The resulting traces ful�ll the following rules:

� The event order of each operand is maintained.

� Events that belong to di�erent operands but to the same instance
are ordered according to the order of the operands.

� Events that belong to di�erent operands and di�erent instances
may come in any order.

loop Repeated behavior: The traces of the single operand are concatenated
via weak sequencing.

break Breaking scenario: The traces of the break fragment appear instead of
the remainder of the enclosing fragment, so that the break fragment has
no in�uence on the traces of its operand, but on the traces of its enclosing
fragment.

critical Critical region: Traces of a critical region must not be interleaved with
traces of parallel behavior. Like the break fragment, critical only alters
the traces of the enclosing fragment.

ignore Ignore messages: The ignore fragment indicates that several messages,
which are not shown within the operand, may appear anywhere within
the resulting traces.

consider Consider messages: As apposed to ignore, consider designates that only
a selection of messages is allowed to appear in the resulting traces.

Table 2.1.: UML operators that result in positive traces.

11

2. Sequence Diagrams

Trace Complexity

The number of traces grows unmanageably fast if parallelism is involved. There
exist several ways to express parallelism within sequence diagrams. Due to the weak
sequencing, events that do not belong to the same instance and that are not related by
a path of messages can occur independently. This is sometimes referred to as implicit
parallelism. Explicit parallelism is introduced with coregions and par fragments.

Customers Waiters

order1

.

.

.

order2

ordern

(a) Abstract view.

Customer1 Waiter1

order1

Customern Waitern

ordern

...

...

...

(b) Detailed view.

Figure 2.4.: Interleaving of parallel behavior leads to unmanageable trace sets.

Figure 2.4 shows two sequence diagrams that describe a scenario from di�erent
levels of abstraction. Each of the n customers has its own personal waiter and may
place his or her order whenever he or she wants to. This allows an almost arbitrary
execution, where only one restriction remains: every send event has to occur before
the corresponding receive event. For n messages this leads to

(2n)!
2n

traces.

Proof:
For n = 1 this is obviously true, since there is only one trace 〈!order1, ?order1〉 and

2!
21

= 1.

Now assume that the statement is true for n = i. Every trace has the length 2i
and if a new message orderi+1 is interleaved into the existing traces, two cases can
be distinguished. If !orderi+1 and ?orderi+1 directly follow each other, they can be
inserted at the beginning of a trace or behind each event, i.e., there are

2i + 1 possibilities.

If !orderi+1 and ?orderi+1 do not follow each other, two positions out of 2i + 1 have
to be selected so that !orderi+1 is inserted before ?orderi+1. This leads to additional(

2i + 1
2

)
possibilities.

12

2.2. Trace Semantics

Overall there are

2i + 1 +
(

2i + 1
2

)
= 2i + 1 +

(2i + 1)!
2!(2i− 1)!

= 2i + 1 +
(2i + 1)(2i)

2

=
4i + 2 + (2i + 1)(2i)

2

=
4i2 + 6i + 2

2

=
(2i + 1)(2i + 2)

2
possibilities.

Since the new message is interleaved into each trace, this �nally leads to

(2i)!
2i

· (2i + 1)(2i + 2)
2

=
(2i)!(2i + 1)(2i + 2)

2 · 2i

=
(2i + 2)!

2i+1

=
(2(i + 1))!

2i+1
traces for i + 1 messages.

Thus, for n = 5 there are 113400 traces and the number of traces for n = 20 already
has 42 digits. Hence, reasoning about traces of such sequence diagrams is virtually
impossible. The general idea of the concept that is de�ned in the next chapter is
to establish several structural restrictions, which can be e�ciently veri�ed. If these
structural rules are ful�lled it su�ces to compare partial event orders.

13

2. Sequence Diagrams

14

3. Re�nement

This chapter uses the formalization and notation from the previous chapter to de�ne
consistency rules for the re�nement of sequence diagrams. As mentioned in the
introduction there are two re�nement steps that are applied in practice: Intra-level
and inter-level re�nement. The intention of this thesis is to de�ne these re�nement
relationships so that they can be veri�ed with an e�ciency that is not provided by
the approaches presented in Chapter 5.

3.1. Examples

This section provides simple examples to informally introduce inter-level and intra-
level re�nement. The following sections de�ne these concept formally. If a sequence
diagram s is inter-level or intra-level re�ned by another sequence diagram t, s is
called t's inter-level or intra-level master diagram and t is called s's inter-level or
intra-level re�nement diagram, respectively.

Inter-level Re�nement

Customer Restaurant

order drink

order main dish

serve drink

serve main dish

(a) A customer orders a drink and a main
dish in a restaurant.

Customer Waiter

order drink

order main dish

prepared drink

prepared main dish

Kitchen

forward drink order

serve drink

forward main order

serve main dish

(b) Waiter and kitchen substitute the restau-
rant.

Figure 3.1.: A master diagram and an inter-level re�nement diagram.

Inter-level re�nement lowers the level of abstraction, i.e., high-level instances are
substituted with several more detailed instances. Figure 3.1 shows a sequence di-
agram with an inter-level re�nement diagram. The restaurant in Figure 3.1(a) is

15

3. Re�nement

replaced by the waiter and the kitchen in Figure 3.1(b). All messages from the mas-
ter diagram are transferred to the re�nement diagram and a new message may only
appear between the replacing instances.

Intra-level Re�nement

Intra-level re�nement reveals the internal behavior of instances. Figure 3.2 shows an
intra-level re�nement diagram of the sequence diagram in Figure 3.1(b). Barkeeper

and cook are subinstances of kitchen. This example also shows that a re�nement
step may remove instances if their behavior is not important for this diagram. Thus,
the re�nement of a sequence diagram can focus on a speci�c set of instances and the
result remains manageable with respect to the visual size.

Waiter

prepared drink

prepared main dish

Kitchen

forward drink order

forward main order

Barkeeper Cook

drink order

drink

main order

main dish

Figure 3.2.: Intra-level re�nement of the sequence diagram in Figure 3.1(b).

The previous chapter showed that the common approach to de�ne re�nement
relationships in terms of trace languages, which characterize sequence diagrams, is
ine�cient. Thus, the general idea of this thesis is to address the re�nement at a
structural level. Many inconsistencies can be avoided without looking at traces, i.e.,
the semantical part of sequence diagrams. It is an obvious error, if the sender and the
receiver of a message in a sequence diagram and its intra-level re�nement diagram
di�er. In almost the same manner one can prescribe which instances, messages,
and combined fragments have to appear within a sequence diagram, and how these
elements are nested. The next section introduces an instance hierarchy that re�ects
the structural re�nement, i.e., which instances contain or substitute other instances.
This instance hierarchy restricts the inter-level and intra-level re�nement of sequence
diagrams. Section 3.3 introduces several structural rules that establish the basis of
the re�nement concept. Section 3.4 deals with the one remaining partially semantical
problem: the order of messages.

16

3.2. Instance Hierarchy

3.2. Instance Hierarchy

An instance hierarchy speci�es which instances contain or substitute other instances
and, thus, forms the backbone of the re�nement concept. Any re�nement of a se-
quence diagram must be consistent with the instance hierarchy.

Waiter Kitchen

Barkeeper

Cook

Customer Restaurant

Customer

Customer Head Waiter Assistant

Barkeeper

Kitchen
Head Chef

Scullion

<<master>> <<parent>>

<0> <0>

<1> <1>

<1>

<1>

<2> <2> <2> <2>

<2>
<2>

<2>

<1>

Figure 3.3.: An instance hierarchy with three di�erent levels of abstraction.

Figure 3.3 shows the instance hierarchy that is used throughout the remainder
of this chapter. Vertical arrows connect instances with their master instances, i.e.,
the instance which they can replace. Horizontal arrows connect instances with their
parent instances, i.e. the instance which they belong to. The re�nement rules of the
next sections access the following de�nition.

De�nition (Instance Hierarchy):
An instance hierarchy is a tuple

h = (I0, I1, . . . , In, µ, π)

where

� I0, I1, . . . , In are pairwise disjoint sets of instances representing the di�erent
abstraction layers. I denotes the union of these sets.

� µ : I → I ∪ {⊥} maps re�ning instances to their master instance, i.e.,

∀i ∈ I. µ(i) 6= ⊥ ⇒ ∃k ∈ {1, . . . , n}. i ∈ Ik ∧ µ(i) ∈ Ik−1.

� π : I → I ∪{⊥} is an acyclic function that maps child instances to their parent
instance, i.e.,

∀i ∈ I. π(i) 6= ⊥ ⇒ ∃k ∈ {0, . . . , n}. i ∈ Ik ∧ µ(i) ∈ Ik,

and µ and π ful�ll the following restrictions:

∀i ∈ I\I0. µ(i) = ⊥ ⇒ π(i) 6= ⊥, and
∀i ∈ I\I0. π(i) 6= ⊥ 6= µ(i) ⇒ µ(π(i)) = π(µ(i)) 6= ⊥.

17

3. Re�nement

The acyclicity of π prevents mutual inclusion of instances and the latter restric-
tion prescribes that the granularity of parent/child relationships is carried over all
abstraction layers. If an instance i has a parent i′ and a master i′′ at the same time,
the master i′′ must have a parent i′′′ itself that is the master of the parent i′.
The instance hierarchy in Figure 3.3 conforms to this de�nition. The instances

barkeeper, head chef, and scullion have parent and master instances at the same time,
but all of these depend on the instance kitchen. Henceforth, let h be an instance
hierarchy that is referred to in the remainder of this chapter. All sequence diagrams
contain only instances that are de�ned in this instance hierarchy. The following
extensions of the de�nition of sequence diagrams assure that all instances within
a single diagram belong to the same abstraction layer and that no so-called illegal
messages exist.
A message is illegal if it crosses the boundary of at least one instance. As men-

tioned in the introduction, capsules have only private members so that child instance
are only visible to other children of the same parent or to the parent itself. Instances
outside of the parent can only communicate with the parent that may forward mes-
sages to its children. A message from the waiter to the barkeeper in Figure 3.2 would
be illegal. Messages between the barkeeper and the cook are allowed though.

De�nition (Illegal Message):
Let s be a sequence diagram. A message m ∈ Ms is illegal if the sending and
receiving instance of m have di�erent parent instances, and neither is the sending
instance the parent of the receiving instance nor is receiving instance the parent of
the sending instance. The set ILL(s) refers to the illegal messages of s, i.e.,

ILL(s) = {m ∈ Ms | π(ι(!m)) 6= π(ι(?m))
∧ π(ι(!m)) 6= ι(?m)
∧ π(ι(?m)) 6= ι(!m)}.

De�nition (Well-Formed Sequence Diagram):
A sequence diagram s is well-formed, if s contains no illegal message and if all
instances have the same level of abstraction, i.e.,

ILL(s) = ∅ ∧ ∃k ∈ {0, . . . , n}. Is ⊆ Ik.

In the following all sequence diagrams are well-formed.

18

3.3. Structural Consistency

3.3. Structural Consistency

This section provides several structural rules that form the basis of inter-level and
intra-level re�nement. The �rst rule prescribes which instances must appear and
which instances may appear within sequence diagrams that intra-level re�ne each
other.

De�nition (Intra-level Instance Re�nement):
Sequence diagram t is an intra-level instance re�nement of sequence diagram s, if
every instance of t that is not in s has a parent instance in t, i.e.,

∀i ∈ It\Is. π(i) ∈ It.

Following the above de�nition an intra-level re�ning diagram contains only in-
stances from its master diagram and additional instances have to be children of
instances that are already there. A similar rule assures that inter-level re�nement
diagrams conform with the instance hierarchy. The inter-level re�nement relation-
ship also allows the re�ning diagram to contain child instances.

De�nition (Inter-level Instance Re�nement):
Sequence diagram t is an inter-level instance re�nement of sequence diagram s, if s
contains all master instances from instances of t and each instance in t that does not
have a master according to the instance hierarchy has a parent instance in t, i.e.,

∀i ∈ It. µ(i) 6= ⊥ ⇒ µ(i) ∈ Is

∧ ∀i ∈ It. µ(i) = ⊥ ⇒ π(i) ∈ It.

Figure 3.4 shows an incorrect inter-level re�nement. The sequence diagram in
Figure 3.4(b) must not contain the head chef unless the sequence diagram in Fig-
ure 3.4(a) contains the cook.

Customer Waiter

(a) Master diagram.

Customer Head Waiter Head Chef

(b) Incorrect inter-level instance re�nement.

Figure 3.4.: The inter-level re�nement diagram must not contain the head chef.

The following rules prescribe which messages must and must not appear within
sequence diagrams that inter-level or intra-level re�ne each other. For sequence
diagrams that intra-level re�ne each other the common set of messages depends on
the common set of instances.

19

3. Re�nement

De�nition (Intra-level Message Re�nement):
Let s and t be sequence diagrams so that t is an intra-level instance re�nement of s.
t is an intra-level message re�nement of sequence diagram s if the following holds for
all messages in s and t. If the sending and receiving instance of a message in s also
belong to t, this message also occurs in t, and vice versa. Furthermore, the sending
and receiving instances of messages that belong to both diagrams at the same time
are equal in both diagrams, i.e.,

∀m ∈ Ms. {ιs(!m), ιs(?m)} ⊆ It ⇒ m ∈ Mt

∧ ∀m ∈ Mt. {ιt(!m), ιt(?m)} ⊆ Is ⇒ m ∈ Ms

∧ ∀m ∈ Mt ∩Ms. (ιs(!m) = ιt(!m) ∧ ιs(?m) = ιt(?m)).

Waiter

prepared drink

Kitchen

forward drink order

(a) Master diagram.

Waiter

prepared drink

Kitchen

forward drink order

Barkeeper

drink order

drink

return empty tray

(b) Incorrect intra-level message re�nement.

Figure 3.5.: The messages return empty tray and prepared drink are inconsistent.

Figure 3.5 shows an incorrect intra-level message re�nement. The message pre-

pared drink has inconsistent sending and receiving instances and the message return
empty tray has to appear in the master diagram, too. Message re�nement between
two sequence diagrams with di�erent levels of abstraction is similar to intra-level
re�nement.

De�nition (Inter-level Message Re�nement):
Let s and t be sequence diagrams so that t is an inter-level instance re�nement of s. t
is an inter-level message re�nement of sequence diagram s, if the following holds for
all messages in s and t. If the sending and receiving instances of a message in s have
re�nement instances that appear in t, this message also appears in t. If the sending
and receiving instances of a message in t are re�nements of di�erent instances of s,
this message also appears in s. Furthermore, the sending and receiving instances of
messages that appear in both diagrams are compatible with the instance hierarchy,
i.e.,

∀m ∈ Ms. (∃i, i′ ∈ It. µ(i) = ιs(!m) ∧ µ(i′) = ιs(?m)) ⇒ m ∈ Mt

∧ ∀m ∈ Mt. ⊥ 6= µ(ιt(!m)) 6= µ(ιt(?m)) 6= ⊥ ⇒ m ∈ Ms

∧ ∀m ∈ Ms ∩Mt. (µ(ιt(!m)) = ιs(!m) ∧ µ(ιt(?m)) = ιs(?m)).

20

3.3. Structural Consistency

Waiter

return dishes

Kitchen

tidy up

(a) Master diagram.

Head Waiter Assistant Kitchen

return dishes

tidy up

delegate

(b) Correct inter-level message re�nement.

Figure 3.6.: The message delegate may also appear within the master diagram.

Figure 3.6 shows a correct inter-level message re�nement. The messages tidy up

and return dishes are allocated to di�erent instances, which is allowed since both
are re�nements of the same master instance. The message delegate is internal from
the perspective of the master diagram and, thus, needs not to appear in the master
diagram. If the message delegate appears in the master diagram it has to be a self
message of the waiter. Both of the following structural rules deal with combined
fragments. A fragment may or must appear within a sequence diagram depending
on the messages within the sequence diagram.

Notation:
Let s be a sequence diagram and let c ∈ Cs be a combined fragment in s. Os(c)
refers to the set of operands that belong to c in s, i.e.,

Os(c) = {o ∈ Bs ∪ Cs|(c, o) ∈ τs}.

The shortcut Ms(.) refers to the set of messages that belong to fragments and basic
sequence diagrams of s, i.e., for a basic sequence diagram b ∈ Bs is Ms(b) = Mb and
for combined fragments c ∈ Cs is

Ms(c) =
⋃

o∈Os(c)

Ms(o).

De�nition (Fragment Complete):
Let s and t be sequence diagrams so that t is an intra-level or inter-level message
re�nement of s. s and t are fragment complete if s contains all combined fragments
from t that cover messages in t that also appear in s, and vice versa, i.e.,

∀c ∈ Ct. Mt(c) ∩Ms 6= ∅ ⇒ c ∈ Cs

∧ ∀c ∈ Cs. Ms(c) ∩Mt 6= ∅ ⇒ c ∈ Ct.

Figure 3.7 shows a correct inter-level message re�nement. Waiter and kitchen

correctly replace the restaurant, and each diagram contains the necessary messages.
Nevertheless, both diagrams are not fragment complete. The par fragment covers only
messages that do not have to appear within the master diagram so that the fragment

21

3. Re�nement

does not have to appear within the master diagram, either. The opt fragment,
however, covers two messages that also appear in the master diagram, so that the
opt fragment has to appear in that diagram too. Without the opt fragment in the
master diagram there is no hint that the snack order is only optional.

Customer Restaurant

serve snack

order snack

order coffee

serve coffee

(a) Master diagram.

Customer Waiter

serve snack

opt
order snack

Kitchen

order coffee

coffee

forward coffee order

serve coffee

forward snack order

snack

par
prepare bill

(b) Inter-level message re�nement.

Figure 3.7.: These diagrams are not fragment complete.

The de�nition of fragment complete does only prescribe which fragments may
and must appear within sequence diagrams that re�ne each other, but there is no
restriction on how these fragments are nested and which messages they cover. This
is considered by the following de�nition.

De�nition (Fragment consistent):
Let s and t be sequence diagrams so that s and t are fragment complete. s and t
are fragment consistent if their common fragments ful�ll the following property: The
messages that belong to a single operand of such a fragment in one diagram, reside
below a single operand of that fragment within the other diagram, i.e.,

∀c ∈ Cs ∪ Ct. (∀o ∈ Os(c). ∃o′ ∈ Ot(c). Ms(o) ∩Mt ⊆ Mt(o′)
∧ ∀o ∈ Ot(c). ∃o′ ∈ Os(c). Mt(o) ∩Ms ⊆ Ms(o′)).

Figure 3.8(b) shows a correct inter-level message re�nement of the sequence dia-
gram in Figure 3.8(a). The waiter is replaced by the head waiter and the assistant

and all message events are relocated according to the instance hierarchy. The re�ne-
ment diagram shows that each waiter is responsible for one of the two alternatives.
These diagram are also fragment complete since the alt fragment appears in both

22

3.3. Structural Consistency

diagrams. This re�nement, however, is not fragment consistent, since the messages
of one operand in one diagram belong to several operands in the other diagram. The
�rst alternative of the master diagram describes the order of a beer and a snack, and
in the re�nement diagram it is only possible to order a beer together with a cake, or
a snack together with a co�ee. Both diagrams would be fragment consistent if the
snack and cake messages were interchanged.

Customer

order beer

Waiter

serve snack

alt

serve beer

order snack

order coffee

serve coffee

order cake

serve cake

(a) Master diagram.

Customer

order beer

Head Waiter

serve snack

alt

serve beer

order snack

order cake

serve cake

Assistant

order coffee

serve coffee

(b) Inter-level message re�nement.

Figure 3.8.: The alt fragment is not fragment consistent.

These structural rules, however, are not su�cient for a consistent re�nement rela-
tionship, since the order of messages is not restricted in any way. Figure 3.9(b) shows
a correct inter-level message re�nement of the sequence diagram in Figure 3.9(a).
Head waiter and assistant replace the single waiter and the messages of the waiter

are distributed between these replacing instances. Both diagrams are also fragment
consistent, because the opt fragment appears in both diagrams and covers the same
messages. The order of messages, however, is not consistent, which is crucial for the
state machine design [21]. The order of order cake and serve co�ee as well as the
order of order snack and serve beer is mixed up.

Assume that the sequence diagram in Figure 3.9(a) represents the requirements,
and the re�nement in Figure 3.9(b) diagram serves as a basis for the implementation.
A customer who follows the requirement scenario is not able to interact with the
implementation, since he would wait for the co�ee to be served before placing the
cake order and at the same time, the head waiter waits for the cake order before he
serves the co�ee. The execution stalls with a deadlock.

A similar problem occurs within the optional beer and snack order, where the
assistant may serve the beer even though the customer does not expect the beer until

23

3. Re�nement

he also orders the snack. At the same time the assistant does not expect an incoming
snack order before serving the beer. Unexpected messages are usually thrown away
or at least deferred until they are needed. Although such a defer mechanism would
resolve the problem here, such situations should be avoided at all costs because a
message order inconsistency in general leads to deadlocks.

Customer Waiter

serve snack

opt

order snack

order coffee

serve coffee

order beer

serve beer

order cake

serve cake

(a) Master diagram.

Customer Head Waiter

serve snack

opt

order snack

Assistant

order coffee

serve coffee

order beer

serve beer

order cake

serve cake

(b) Inter-level message re�nement.

Figure 3.9.: These diagrams are fragment consistent, but the messages order is in-
consistent.

Message order inconsistencies pose the one remaining issue that is usually ad-
dressed in terms of traces. Those rather strict structural rules de�ned above, how-
ever, have one major advantage: Partial event orders now su�ce to detect message
order inconsistencies. As mentioned in the previous chapter, partial orders are an
adequate semantics for basic sequence diagrams. The above structural rules preserve
any combined fragments that modify traces over messages that appear in the master
and in the re�ning diagram at the same time. Thus, the e�ect of those fragments
becomes unimportant when it comes to the comparison of sequence diagrams that
re�ne each other. The next section describes how to reduce regular sequence dia-
grams to partial event orders, and how a combination of Petri net execution and the
detection of strongly connected components is used to localize misordered messages.

3.4. Message Order Consistency

Although the actual semantics of the twelve UML operators is quite di�erent, they
di�er only slightly in their in�uence on the partial event order. Most operators
such as opt, loop, consider, ignore, critical, break, neg, and assert contain only one

24

3.4. Message Order Consistency

operand and have no in�uence on the partial order at all. Thus, each fragment with
one of those operators can be replaced with the fragment or basic sequence diagram
that they contain. The alt operator that allows an arbitrary number of operands
speci�es that only one of its operands is executed, so that there are no relationships
between events that belong to di�erent operands. Since the latter is true for the par
operator, every alt operator can be replaced with a par operator without modifying
the partial order. In conclusion, it su�ces to separately consider only par, seq, and
strict fragments.

Deriving the Partial Order

To derive the partial order from a sequence diagram s, a function ||.|| is introduced
that assigns a partial order to all basic sequence diagrams and combined fragments
of s. For a basic sequence diagram b ∈ Bs that partial order is given by ||b|| =<b. For
combined fragments this partial order is de�ned by structural induction, depending
on the type of the fragment.
Since the operands of a par fragment are completely independent, there is no order

between events of di�erent operands. For a par fragment c ∈ Cs the partial order is
the union of the partial orders of the fragment's operands, i.e.,

||c|| =
⋃

o∈Os(c)

||o||.

The strict operator enforces that every event of one operand occurs before any
event of a following operand. The event order of each operand is maintained. Since
the event order depends on the operand order the following shorthand is used to
denote ordered pairs of operands of a fragment c:

O∗
s(c) = {(o, o′)|o, o′ ∈ Os(c) ∧ o <∗

s o′}.

For a strict fragment c ∈ Cs the partial order is given by

||c|| =
⋃

o∈Os(c)

||o|| ∪
⋃

(o,o′)∈O∗
s (c)

E(Ms(o))× E(Ms(o′)).

The seq operator leads to a weak sequencing of the operands. As mentioned in
the previous chapter, the order of each operand is maintained, and all events that
belong to the same instance are ordered according to the order of the operands. For
a set E of events and an instance i that appear both in a sequence diagram s, E|i
refers to the subset of E that contains only events of i, i.e.,

E|i = {e ∈ E|ιs(e) = i}.

For a seq fragment c ∈ Cs the partial order is given by

||c|| =
⋃

o∈Os(c)

||o|| ∪
⋃

i∈Is, (o,o′)∈O∗
s (c)

E(Ms(o))|i × E(Ms(o′))|i.

25

3. Re�nement

The partial orders of sequence diagram now complete the de�nition of the re-
�nement relationships. Two sequence diagrams are consistent with respect to their
partial orders, if these orders are compatible with each other, i.e. the orders do not
contain any contradicting relations between events, which belong to both diagrams.

De�nition (Intra-level/Inter-level Re�nement):
Sequence diagram t is an intra-level/inter-level re�nement of sequence diagram s if t
is an intra-level/inter-level message re�nement of s, t and s are fragment consistent,
and ||t|| ∪ ||s|| is acyclic.

Following the de�nition of inter-level and intra-level re�nement it seems straight-
forward to search for cyclic dependencies to detect misordered messages. These
dependency cycles, however, usually involve more messages than just the misor-
dered ones, so that further manual investigations are necessary. The remainder of
this chapter introduces Petri nets and shows how a combination of the detection of
strongly connected components, which cover the dependency cycles, and a Petri net
execution leads to a very accurate set of misordered messages.

Petri Nets

According to Murata [22], Petri nets are a graphical and mathematical modeling tool
[. . .] for describing and studying information processing systems that are charac-
terized as being concurrent, asynchronous, distributed, parallel, non-deterministic,
and/or stochastic. Thus, Petri nets qualify for the analysis of sequence diagrams in
the context of this diploma thesis. Basically, a Petri net is a bipartite directed graph
with two di�erent kinds of nodes: places and transitions. The following de�nition
provides the mathematical basis.

De�nition (Petri Net):
A Petri net is a tuple

n = (P, T, F)

where

� P is a set of places,

� T is a set of transitions, and

� F ⊂ (P × T) ∪ (T × P) is a �ow relation.

Figure 3.10 shows a graphical representation of a Petri net. Places are usually
drawn as circles and transitions as rectangles. Arrows connect places and transitions
according to the �ow relation, so that there are no arrows that connect places to
places or transitions to transitions.

26

3.4. Message Order Consistency

t1

t3

t5t4

t2
p1 p2 p3

p6 p7 p8

p4 p5

Figure 3.10.: A simple Petri net.

De�nition (Input/Output Places):
Let n be a Petri net and let t ∈ T be a transition of n. •t and •n refer to the input
places of t and n, i.e.,

•t = {p ∈ P | (p, t) ∈ F} and
•n = {p ∈ P | ∀t ∈ T. (t, p) /∈ F}.

t• and n• refer to the output places of t and n, i.e.,

t• = {p ∈ P | (t, p) ∈ F} and
n• = {p ∈ P | ∀t ∈ T. (p, t) /∈ F}.

p1 and p6 are the input places and p3 and p8 are the output places of the net in
Figure 3.10. p2 and p4 are the input places of transition t3 and p5 and p7 are the
output places of that transition. Figure 3.11 shows a marked Petri net, where places
p1 and p6 contain so-called tokens.

t1

t3

t5t4

t2
p1 p2 p3

p6 p7 p8

p4 p5

Figure 3.11.: A marked Petri net.

The marking of a Petri net indicates the current state of the net. A single place
is in general allowed to contain an arbitrary number of tokens. Since this is not
necessary for this diploma thesis, the following de�nition is based on sets instead of
multisets [22].

De�nition (Marking):
Let n be a Petri net. A marking x of n is a subset of the places, i.e., x ⊆ P . The
marking that contains only the input places of n is called the initial marking and
the marking that contains only the ouput places of n is called the �nal marking of
n.

The marking of a Petri net may change if a transition is �red. The transition t1 in
Figure 3.11 may �re since all of its input places are marked. The transition t4 may
not �re because there is no token in p4. If transition t1 is �red p1 is removed from
the current marking while p2 and p4 become marked.

27

3. Re�nement

De�nition (Transition Firing Rule):
Let n be a Petri net, t ∈ T a transition of n, and let x be the current marking of n.
t is said to be enabled if all of its input places are marked, i.e.,

•t ⊆ x.

An enabled transition may �re and change the current marking to a next marking
x′ of n, which is written as

x
t−→
n

x′.

The new marking x′ contains all places from the previous marking x except for the
input places of t plus the output places of t, i.e.,

x′ = (x\ • t) ∪ t • .

The previous de�nitions are simpli�cations of de�nitions provided by Murata [22].
The following de�nitions are based on the approach of van der Aalst et al. [2, 41].
The usage of these de�nition, however, is quite di�erent in this thesis (cf. Chapter 5).

De�nition (Petri Net Trace):
Let n be a Petri net and let t1, . . . , tk ∈ T be transitions of n. 〈t1, . . . , tk〉 is a trace of
n if there are markings x1, . . . , xk+1 ⊂ P of n, so that x1 is the initial marking of n
and transition ti is enabled in marking xi and �ring this transition leads to marking
xi+1, i.e.,

∀i ∈ {1, . . . , k}. xi
ti−→
n

xi+1.

A trace is said to be proper if it contains each transition of the net exactly once
and if it reaches the �nal marking of the net. A trace is said to be improper if it is
neither proper nor extendable to a proper trace. A Petri net is said to be well-formed
if none of its traces is improper. The simple example that is shown in Figure 3.11 is
not proper. The trace 〈t1, t3, t5〉 leads to the marking {p6, p8} which is not the �nal
marking. Removing the transition t3 from the net leads to a proper net.

Locating Misordered Messages

Kluge [24] and Graubmann et al. [10] suggest Petri nets as a semantic model for basic
sequence diagrams. Each transition of a Petri net refers to an event of a sequence
diagram and a place between two transitions exists if the corresponding events are
ordered. In doing so a transition is only eligible to �re if all transitions that refer to
events that have to occur before also �re before, so that the sequence diagram and
the Petri net are equivalent.
Since this thesis reduces regular sequence diagrams to partial orders, the Petri

net transformation is applicable, too. The transformation of par, strict, and seq
fragments is analogous to the de�nition of the partial order function ||.||. Figure 3.12
shows two sequence diagrams and the Petri nets that represent their partial event
orders. Without the need to consider repetitive, alternative, or optional behavior,

28

3.4. Message Order Consistency

the Petri net representation remains straightforward. The traces of such a Petri net
are in general not equivalent to traces of the original sequence diagram, since, for
example, there is a di�erence between par and alt. This equality is of no importance
though, because only the order information is relevant.

Customer Waiter

A

C

Kitchen

B

D

(a) A basic sequence diagram.

!A ?A

!B ?B

?C !C

?D !D

(b) A straightforward Petri net representa-
tion.

Customer Waiter

B

D

C

E

PAR

A

F

(c) A sequence diagram with a par fragment.

!B ?B

!C?C

?D!D

?E !E

?A !A

!F ?F

(d) Parallel nets are indepedent.

Figure 3.12.: Sequence diagrams and their Petri net representations.

All Petri nets that are created from sequence diagrams belong to the subclass
of so-called Marked Graphs [22]. Places of such marked graphs have at most one
incoming and one outgoing arc, so that transitions do not share common places.
The most important property, however, is that all nets that are based upon partial
orders are proper, since an execution of such a net is equivalent to a construction of
a total order that extends its underlying partial order.

29

3. Re�nement

Customer Waiter

B

D

C

A

F

E

(a) The master diagram.

Customer Head Waiter

B

D

C

A

Assistant

F

E

G

H

(b) The inter-level message re�nement dia-
gram.

Figure 3.13.: Correct inter-level message re�nement with inconsistent message order.

!B ?B

?C!C

?D!D

!E ?E

!A ?A

!F ?F

!G ?G

!H ?H

Figure 3.14.: The Petri net representing the union of the partial event orders.

The remainder of this chapter uses the example in Figure 3.13 to show how mis-
ordered messages are detected. Figure 3.13(a) shows the master diagram and Fig-
ure 3.13(b) shows a correct inter-level message re�nement, i.e., all structural rules

30

3.4. Message Order Consistency

are ful�lled. The message order, however, is inconsistent, since the message C obvi-
ously occurs at di�erent locations in the master and the re�ning diagram. To detect
this order inconsistency both diagrams are reduced to a Petri net that represents
their partial event order. These Petri nets are joined so that a single net represents
the union of both orders. The resulting net is shown in Figure 3.14. The next step
is to evaluate whether the union of the partial event orders remains acyclic. Tarjans
algorithm [39] is used to compute strongly connected components. A cycle exists
if there is a component with more than one element. The result is shown in Fig-
ure 3.15. There are two cyclic dependencies that contain four transitions each. The
�rst cycle contains the transitions !C, !D, !E, and !F and the second cycle contains
the transitions ?C, ?D, ?E, and ?F.

!B ?B

?C!C

?D!D

!E ?E

!A ?A

!F ?F

!G ?G

!H ?H

Figure 3.15.: The Petri net contains two strongly connected components containing
four transitions each.

The computation of cyclic dependencies does not only reveal that the re�nement
in this example is incorrect but also isolates the messages that are involved. The
message C, D, E, and F need to be checked. The result, however, can still be
improved,i.e. made more precise, by executing the Petri net. As mentioned above
Petri nets based on partial orders always arrive at the �nal marking. In this example,
however, there is a cyclic dependency, i.e., the event relation is not a partial order,
and the execution will stall with a marking di�erent from the �nal marking. If at least
two transitions depend on each other neither of them can �re since they require the
other transitions to �re �rst. The idea is to execute the net until there is no enabled

31

3. Re�nement

transition left. If the current marking is not the �nal marking, all transitions that
have at least one marked input place indicate a possible inconsistency. Figure 3.16
shows that the execution stops before the �nal marking is reached. A trace that
leads to this marking is, for example, 〈!A, ?A, !B, ?B, !G, ?G〉 and the messages that
are involved in this inconsistency are C, D, and H.

!B ?B

?C!C

?D!D

!E ?E

!A ?A

!F ?F

!G ?G

!H ?H

Figure 3.16.: Cyclic dependencies impede a proper execution of the Petri net.

The Petri net execution and the computation of strongly connected components
yield di�erent results. These results, however, will always have a common core,
since the cyclic dependency prevents the net from beeing executed properly. In this
example only the messages C and D are present in both results.
This order inconsistency, however, must be solved manually, since it is unclear

which of the concerned sequence diagrams is actually wrong. The approach de-
scribed above localizes the �rst essential di�erence between both diagrams and, thus,
provides a good starting point for further investigations.

32

4. Implementation

This chapter describes how the theoretical concepts of the previous chapters are
realized and evaluated. As mentioned in the introduction, the software team that
supervises this diploma thesis develops embedded real-time systems. Their mod-
eling tool is based on the ROOM framework [3, 4], where active classes, so called
capsules, are �rst-class citizens. This modeling tool provides an API that allows to
implement customized plugins. These plugins range from straightforward macros
that speed up recurring development steps to complex validating and consistency
checking algorithms.
To realize the re�nement concept as platform-independent as possible, it is not

directly integrated into the modeling tool. Instead, an external server application
covers the consistency checking and a rather thin client is implemented as a plugin
for the modeling tool (cf. Figure 4.1). This client (Section 4.1) converts a subset of
the current model into an XML representation (Section 4.2), which is then processed
by the server application (Section 4.3).

modeling tool

current model addin
client

checking
serverxml

Figure 4.1.: A client communicates with a checking server.

4.1. Client

The advantage of having a thin client is that only minor modi�cations are necessary
to apply the re�nement concept to di�erent modeling tools. The main task of the
client is to generate and export an XML representation of the sequence diagrams,
which the server should check. This XML representation is straightforward (cf.
Section 4.2) and is generated by a recursive traversal of the model. Furthermore, the
client allows the developer to specify which sequence diagrams re�ne each other and
which of those should be checked. The modeling tool itself does not support this,
but allows to add meta properties to every model element, so that plugins have a
possibility to store this necessary information.

33

4. Implementation

(a) The client main dialog. (b) The options dialog.

Figure 4.2.: The user interface of the client application.

Figure 4.2(a) shows the main dialog of the client application. The user can specify
a checking depth that determines which de�nitions presented in the previous chapter
are veri�ed. There are �ve di�erent checking levels, where each level includes the
checks of its predecessor:

instance de�nitions This check assures that the hierarchy conforms with the de�-
nition of the instance hierarchy in Chapter 3. This is always the �rst check,
since the correctness of the structural rules depends on a well-formed instance
hierarchy.

interaction de�nitions This check assures that each sequence diagram is well-formed,
i.e., that all instances of a sequence diagram belong to the same abstraction
layer and that no illegal messages exist.

intralevel re�nement As mentioned above developers can specify pairs of sequence
diagrams that intra-level re�ne each other. This check assures for each of those
pairs that the de�nition of intra-level message re�nement is ful�lled, and that
both sequence diagrams are fragment complete and fragment consistent. This
check, however, does not consider any message order.

interlevel re�nement Similar to the intra-level check, this check veri�es pairs of
inter-level re�ning sequence diagrams.

full check (with colors) This check �nally evaluates for every pair of re�ning se-
quence diagram whether the message order is consistent or not. This check
optionally uses colors to highlight erroneous elements.

Besides the checking depth the graphical user interface provides an options dialog
(Figure 4.2(b)) that allows the user to specify the location where the server appli-
cation is running. Furthermore, this options dialog can also be used to generate
and delete the meta properties that are used to store the re�nement relationships.
The client displays any discrepancies in the error log window of the modeling tool.
Since many inconsistencies, such as an illegal message, involve only a single model
element the client is able to focus the modeling on that erroneous element, if the user
selects one of those log entries. The modeling tool, however, is not able to focus on
several elements at the same time, so that errors that involve a set of elements need

34

4.2. XML

manual handling. In the case of a set of misordered messages the client optionally
highlights those messages in red. In order to avoid interferences with other plugins
that depend on colors, this color mechanism is only optional and the options dialog
(Figure 4.2(b)) provides two functions to restore the previous colors or the default
color of changed elements.

4.2. XML

This section introduces the XML model representation, which is exchanged between
the client and the server application. The XML data contains the instance hierarchy
and a set of sequence diagrams to be validated.

<instances>
<instance label="Customer" level="0"/>
<instance label="Restaurant" level="0/>
<!-- ... -->
<instance label="Kitchen" level="2" master="Kitchen"/>
<instance label="Barkeeper" level="2" master="Barkeeper" parent="Kitchen"/>

</instances>

Figure 4.3.: XML representation of an instance hierarchy.

Figure 4.3 shows a part of the XML representation of the instance hierarchy in
Figure 3.3. There is an instance element for each instance. The label attribute
holds the instance's name, the level attribute refers to the abstraction level and
the master and parent attributes refer to the optional master and parent instance,
respectively.

<sd label="sequence diagram 2.1(b)" instances="Customer Waiter Kitchen">
<fragment type="seq">

<fragment type="par">
<fragment type="basic">

<fragment type="lifeline" label="Customer">
<fragment type="send" label="order drink"/>

</fragment>
<fragment type="lifeline" label="Waiter">

<fragment type="receive" label="order drink"/>
</fragment>

</fragment>
<!-- ... -->

</fragment>
</sd>

Figure 4.4.: XML representation of a sequence diagram.

The XML representation of sequence diagrams is straightforward due to their hier-
archical character. Figure 4.4 shows a part of the XML representation of the sequence
diagram in Figure 2.1(b). The most important element is the fragment element,
which is used to represent combined fragments, basic sequence diagrams, lifelines,
coregions, and events. Depending on its type, a fragment may contain an arbitrary

35

4. Implementation

number of fragments. The par fragment in the above example may contain any other
combined fragment or basic sequence diagram. A basic fragment, which refers to a
basic sequence diagram, contains lifeline fragments and a lifeline fragment
contains send, receive, and coregion fragments. The order of a sequence of
fragments refers to the visual order of the operands or events. Complete versions
of these two examples can be found in the appendix. Furthermore, the appendix
contains an XML schema de�nition for the model representation.

4.3. Server

The server checks whether the given sequence diagrams and their re�nement re-
lationships conform to the de�nitions of the previous chapter. The client/server
communication is based on the Java Socket API. The server listens on a speci�c port
and waits for a client to connect. A new ConnectionHandler is created for every
incoming connection, so that the server is able to handle several clients at the same
time. The remainder of this section gives a short overview of the components of the
server application.

Server and Checker Classes

Server The Server class itself is a rather simple. Its only purpose is to create a
ConnectionHandler for every connected client.

ConnectionHandler As presented in Figure 4.5 the ConnectionHandler class is the
central component of the server application. A ConnectionHandler waits until
the corresponding client transmits a complete model and then runs the desired
checks. Any error message that is generated by one of the checking components
is forwarded to the client. The ConnectionHandler closes the connection and
terminates itself when the check is completely evaluated. The di�erent checks
are evaluated in the order of the checking depth and if a sequence diagram
fails a check, this diagram is not considered by subsequent checks to suppress
subsequent errors.

StructureChecker StructureChecker is an abstract basic class for four di�erent struc-
ture checkers, which refer to the �rst four levels of the checking depth mentioned
in Section 4.1. The di�erent structure checkers use the XML representation
to generate the model representation whilst checking if the di�erent structural
de�nitions are ful�lled (cf. Chapter 3).

InstanceDe�nitions The InstanceDe�nitions class checks whether the given instance
relationships conform to the de�nition of an instance hierarchy that is given in
Chapter 3.

InteractionDe�nitions The InteractionDe�nitions class assures that all sequence di-
agrams are well-formed, i.e., all instances of a single diagram belong to the
same level of abstraction and if no illegal messages exist.

36

4.3. Server

Server

port : int

ConnectionHandler

StructureChecker

OrderChecker

Converter

PetriNetSCComponents

InstanceDefinitions InteractionDefinitions InterlevelIntralevel

Model
<<creates>>

<<checks>>

<<converts>>

<<creates>>

<<uses>>

<<creates>>

<<uses>>

<<uses>>

<<uses>>

<<checks>>

Figure 4.5.: Overview of the server and checker classes.

IntraLevel The IntraLevel class validates pairs of master and intra-level re�nement
diagrams. This check veri�es the de�nitions of intra-level message re�nement,
fragment consistency, and fragment completeness.

InterLevel The InterLevel class checks master and inter-level re�nement diagrams in
almost the same manner as IntraLevel validates intra-level re�nement diagrams.

OrderChecker The OrderChecker veri�es the message order for all re�ning diagrams
by combining a Petri net simulation with a computation of strongly connected
components.

Converter The Converter class is used by the OrderChecker to create a Petri net
representation of the partial order of sequence diagrams.

PetriNet The PetriNet class together with several subclasses are used to create a
Petri net representation of a sequence diagram. These subclasses are explained
later.

SCComponents The SCComponents class is used by the OrderChecker to compute
strongly connected components within a Petri Net. The intersection of the re-

37

4. Implementation

sult of the Petri net simulation and the strongly connected components localize
any misordered messages very well.

Model Element Classes

Model

checkingdepth : int

SequenceDiagram

label : String
level : int

Instance

label : String
level : int

Fragment

label : String
type : FragmentType

Message

label : String

<<enumeration>>
FragmentType

send
receive
coregion
lifeline
basic
seq
strict
par
alt
opt
loop
break
critical
consider
ignore
neg
assert

parent
master

sender
receiver

interlevel masters
intralevel masters

child fragments

sequence diagrams

instances

instances

messages

top fragment

Figure 4.6.: Overview of the model element classes.

Model The Model is recreated by deserializing the XML representation that is ex-
ported by the client application. A model consists of a set of instances and a
set of sequence diagrams. The checking depth speci�es which checks should be
executed.

Instance An Instance has a label and a level that refers to the abstraction layer.
Each instance also has optional references to its parent and master instance.
These references implement the instance hierarchy (cf. Chapter 3).

SequenceDiagram A SequenceDiagram has a label that contains the name of the
diagram. The level attribute refers to the level of the instances within the
sequence diagram. Each sequence diagram has optional references to its intra-
level and inter-level master diagrams. A root fragment represents the structure
of the sequence diagram.

Message A Message is characterized by its label. According to the re�nement con-
cept a single message may belong to several sequence diagrams that possibly
relate the message to di�erent sending and receiving instances.

38

4.3. Server

Fragment A Fragment represents a part of the structure of a sequence diagram.
Fragments are identi�ed by their label and, similar to messages, a single frag-
ment may appear within several sequence diagram. Each fragment has a type
and represents either a send event, a receive event, a coregion, a lifeline, a basic
sequence diagram, or one of the twelve UML 2.0 operator kinds.

Petri Net Classes

PetriNet

places

Place

Transition

label : String
instance : Instance

transitions

input
output

input
output

Marking

marked places

BasicNet

Lifeline

Coregion

Fragment

SEQ

STRICT PAR

Merge

Figure 4.7.: Overview of the Petri net classes.

Figure 4.7 shows the di�erent Petri net classes that are used to derive and represent
the partial order of sequence diagrams. Petri nets are constructed from sequence
diagrams by a recursive traversal of the sequence diagram structure. Thereby each
subclass of PetriNet is used to convert a speci�c element of a sequence diagram.

PetriNet PetriNet is an abstract class that serves as a basis for other classes. As

39

4. Implementation

introduced in the previous chapter, a Petri net consists of a set of places and
transitions that compose a bipartite directed graph. This class provides basic
methods to add, remove, or connect places and transitions.

Transition Transition objects represent send or receive events of a sequence diagram.
Each transition has a reference to the instance to which the event belongs. A
transition may �re if all of its input places belong to the current marking of
the net.

Place Place objects are used to connect at least two transitions and thus represent
the partial event order.

Marking Marking represents the marking of a net, i.e. a marking contains a set of
places that are considered to be marked. Markings are used during the Petri
net simulation.

BasicNet A BasicNet is created from a basic sequence diagram that only contains
lifelines, coregions, and send and receive events.

Lifeline Lifeline represents a single lifeline of a basic net. Lifeline objects are created
by BasicNet classes during the conversion routine.

Coregion A Coregion contains a set of transitions that belong to the same instance
but are not ordered at all. Coregion objects are created from Lifeline objects if
the corresponding lifeline contains a coregion.

Fragment A Fragment is created from a list of Petri nets, which represent the
operands of that fragment. Fragment is the abstract basic class for the three
subclasses SEQ, STRICT, and PAR.

PAR The PAR class represents the parallel operator. Since parallel operands are
completely independent the resulting Petri net is a simple union of the nets
representing the di�erent operands.

STRICT The STRICT class implements the strict sequencing operator. All sinks of
a Petri net are connected via places with the sources of the following net. A
transition is called sink or source if it has no output or input places, respectively.
In doing so all transitions of the �rst net have to be �red before any event of
the second net. This re�ects exactly the semantics of the strict operator.

SEQ The SEQ class provides the weak sequencing mechanism. The construction
is similar to the construction of the strict sequencing operator with the only
di�erence that sinks and sources of di�erent nets are only connected if they
belong to the same instance. Thus, events that belong to the same lifeline can
only occur in the operand order, and events of di�erent lifelines may occur in
any order.

40

4.4. Complexity

Merge A Merge Petri net is created from several sequence diagrams that re�ne each
other. Each of these sequence diagram is converted into a Petri net and the
Merge net is the result of a straightforward union of these Petri nets. A cyclic
dependency between the event order of at least two sequence diagrams leads
to a cyclic dependency between several transitions, which impedes a proper
execution of the resulting net.

4.4. Complexity

All checking algorithms are derived from the formal de�nitions of the corresponding
structural rules of Chapter 3. Since many rules require to check the containedness
of di�erent objects in di�erent sets, hash tables are used as basic data structures to
provide a look-up in constant time.

Illegal Message Check Let s be a sequence diagram. Each message of s has to ful�ll
�ve conditions that are veri�ed in O(1), so that the complete check is evaluated
in O(|Ms|).

Intra-level Instance Re�nement Check Let t be an intra-level instance re�nement
of s. This check requires to evaluate for each instance of t whether it also
belongs to s or if its parent instance belongs to t. Since each instance is
veri�ed in O(1), the complete check runs in O(|It|).

Inter-level Instance Re�nement Check Let t be an inter-level instance re�nement
of s. This check assures that each instance of t has either a corresponding
master instance in s or a parent instance in t. Similar to the intra-level instance
re�nement check each instance is checked in O(1) and the complete check is
computed in O(|It|).

Intra-level Message Re�nement Check Let t be an intra-level message re�nement
of s. Each message of s that has sending and receiving instances that also
belong to t must also belong to t and vice versa. Each message in s and
t is checked in O(1). Furthermore, the sending and receiving instances of
messages that appear in both diagrams have to be equal in both diagrams.
This is evaluated in O(1) for each of those messages. The intra-level message
re�nement check runs in O(|Ms|+ |Mt|+ |Ms ∩Mt|).

Inter-level Message Re�nement Check Let t be an inter-level message re�nement
of s. Each message of s that has sending and receiving instances with re�ning
instances in t must belong to t. Furthermore, each message of t that has
sending and receiving instances that re�ne di�erent instances in s must also
belong to s. Finally, sending and receiving instances of messages that appear in
both diagrams must conform to the instance hierarchy. The inter-level message
re�nement check runs in O(|Ms|+ |Mt|+ |Ms ∩Mt|).

41

4. Implementation

Fragment Completeness Check Let s and t be two fragment complete sequence
diagrams. Each fragment in one of these diagrams that covers messages that
appear in both diagrams has to appear in the other diagram, too. Let mmax

be the maximum number of messages within a fragment in s and t. A check
of a single fragment runs in O(mmax) in the worst case, so that the complete
check is evaluated in O((|Cs|+ |Ct|) ·mmax).

Fragment Consistency Check Let s and t be two fragment consistent sequence di-
agrams. The check requires to iterate through the operands of each fragment
that appears in both diagrams. Each operand that belongs to such a fragment
in one diagram is compared with each operand that belongs to the same frag-
ment in the other diagram. Comparing two operands means to check whether
they contain the same messages with respect to the messages that appear in
both diagrams. Let mmax and omax be the maximum number of messages
and operands within a fragment, respectively. Let c∗ be the number of frag-
ments that appear in both diagrams. The fragment consistency check runs in
O(c∗ · o2

max ·mmax).

Partial Order / Petri Net Construction Chapter 3 gives an inductive de�nition of
the ||.|| function that is used to derive the partial order of sequence diagrams.
Petri net are used to represent these partial orders. The worst case during the
construction occurs when a strict fragment is involved, because each event of
one operand has to be connected to each event of the following operands. The
partial order is computed O(m2), where m is the number of messages. The
actual implementation, however, is more e�cient, since the transitivity of a
partial order is inherent in the Petri net representation (cf. [24, 10]). During
the conversion of a strict fragment, for example, it su�ces to connect the sinks
of an operand with the sources of the directly following operand.

Petri Net Execution Let s and t be two sequence diagrams that re�ne each other.
The Petri net that represents the union of the partial orders contains n =
2·|Ms∪Mt| transitions. Each transition �res exactly once during the execution.
Let pmax be the maximum number of input and output places of a transition.
pmax is usually very small compared to the number of transitions. Checking
and �ring a transition is computed in O(pmax). Searching for the next �ring
transition requires to iterate through all transitions in the worst case. The
Petri net execution is computed in O(n2 · pmax).

4.5. Benchmarks

This section contains some benchmarks to demonstrate the e�ciency of the struc-
tural approach. Two examples, shown in Figure 4.8 and Figure 4.9, are used to
compare the duration of the structural approach with a complete trace enumeration
that is required by other re�nement approaches as described in the next chapter.

42

4.5. Benchmarks

Furthermore, the structural approach is compared with the inheritance checker of
the WOFLAN tool by van der Aalst et al. [13, 12, 2, 41]. The inheritance checker is
based on labeled transition systems and branching bisimulation (cf. Chapter 5).

Customer Waiters

order1

.

.

.

order2

ordern

(a) Abstract view.

Customer Waiter1

order2

Waitern

ordern

Waiter2

order1

...

.

.

.

(b) Detailed view.

Figure 4.8.: Several waiters replace the single waiter of the �rst example.

Customers Waiters

order1

.

.

.

order2

ordern

(a) Abstract view.

Customer1 Waiter1

order1

Customern Waitern

ordern

...

...

...

(b) Detailed view.

Figure 4.9.: Coregions in the second example allow the messages to appear in any
order.

Both examples show a correct inter-level re�nement, so that no inconsistency
aborts the evaluation early without measuring the complete time. In the �rst exam-
ple the single waiter is replaced by n di�erent waiters and each waiter receives the
corresponding order message. In the second example the customer is also replaced
by n di�erent customers. Furthermore, the second example contains two coregions
that allow the messages to appear in any order. The second example is also used in
Chapter 2 to show that trace sets are of factorial complexity.

Both examples are evaluated for increasing values of n, i.e., increasing number
of messages and instances. Table 4.1 shows the results for the �rst example. The
value of n and the number of messages is given by the �rst column. The second
column contains the number of instances. The third column shows how long the
structural approach takes for a complete evaluation. This includes the veri�cation
of all structural rules that cover inter-level re�nement and the construction and

43

4. Implementation

simulation of the Petri net. The fourth column shows the number of valid traces for
the given value for n. The time in parenthesis behind the number of traces states
how long it takes to enumerate those traces.

WOFLAN's results are shown in the last column. These results were taken manu-
ally, since the built-in inheritance checker does not provide any duration details. All
benchmarks were run on an AMD Athlon� 64 3200+ (2GHz) with 1GByte of main
memory. Some table entries are empty because the duration was either to short (in
the case of WOFLAN) or to long to be measured.

n / # messages # instances duration # traces (duration) WOFLAN
6 7 8 ms 132 (14 ms) -
7 8 8 ms 429 (37 ms) -
8 9 8 ms 1430 (119 ms) -
9 10 9 ms 4862 (421 ms) -
10 11 9 ms 16796 (1507 ms) -
11 12 9 ms 58786 (5563 ms) -
12 13 9 ms 208012 (22718 ms) < 500 ms
20 21 19 ms - (-) 1000 ms
30 31 31 ms - (-) 4500 ms
40 41 43 ms - (-) 27000 ms
50 51 57 ms - (-) 88000 ms
60 61 76 ms - (-) > 360000 ms
100 101 183 ms - (-) -

Table 4.1.: Verifying the sequence diagrams in Figure 4.8.

The structural approach presented in this thesis is able to validate the �rst example
without a remarkable delay even if it contains 100 messages. The inheritance checker
and trace based approaches can handle only small examples. The results of the
second example (Table 4.2) show that the structural approach is even insensitive
to parallelism. Compared to the �rst example there is a only minor di�erence that
is caused by the fact that the second example contains almost the double number
of instances. The validation of an example without parallelism but with the same
number of instances would take just as long.

n / # messages # instances duration # traces (duration) WOFLAN
3 6 6 ms 90 (47 ms) -
4 8 6 ms 2520 (250 ms) -
5 10 7 ms 113400 (11594 ms) < 500 ms
6 12 7 ms 7484400 (672297 ms) 1500 ms
7 14 8 ms 681080400 (-) 42000 ms
50 100 96 ms - (-) -
100 200 333 ms - (-) -

Table 4.2.: Verifying the sequence diagrams in Figure 4.9.

Figure 4.10 shows the last example of this chapter. Since the �rst two examples

44

4.5. Benchmarks

do not contain any combined fragments, the most complex fragment consistency
rule is not applied. The third example contains n alt fragments with four message
each. The results in Table 4.3 show that the complex fragment consistency rule has
a minor impact on the duration. For n = 25 the diagram contains 100 messages
and the evaluation takes 190ms. This is even faster than the evaluation of the
previous example with 100 messages that does not contain any fragments at all.
Table 4.3 contains no entries for WOFLAN's inheritance checker, since this tool
does not support combined fragments, yet.

Customer Waiter

order A1

alt

serve A1

order B1

serve B1

.

.

.

order An

serve An

order Bn

serve Bn

alt

(a) Abstract view.

Customer Waiter1

order A1

alt

serve A1

order B1

serve B1

.

.

.

order An

serve An

order Bn

serve Bn

alt

Waitern...

(b) Detailed view.

Figure 4.10.: Consecutive alt fragments.

n / # fragments # messages # instances duration
20 80 21 130 ms
25 100 26 190 ms
40 160 41 400 ms
60 240 61 840 ms
80 320 81 1440 ms
100 400 101 2250 ms

Table 4.3.: Verifying the sequence diagrams in Figure 4.10.

45

4. Implementation

46

5. Related Work

This chapter provides an overview of the existing approaches that deal with the re-
�nement of sequence diagrams. As mentioned in the introduction, current projects
consist of several layers with consecutive levels of abstraction, so that according to
Elaasar et al. [8] inter-level re�nement assures inter-model consistency. Furthermore,
intra-level re�nement assures intra-model consistency that refers to the consistency
between di�erent diagrams within a single model. Another example for intra-model
consistency is the consistency between sequence diagrams and state machine dia-
grams [21].

Three of the four concepts presented in the following section are basically very
similar since they address the re�nement at trace level, i.e., the relationship between
sequence diagrams is expressed in relationships between their positive and negative
trace sets. The fourth approach is quite di�erent because it uses a Petri net analysis
to decide re�nement in an operational way.

Several problems of working with sequence diagrams that exist besides the re-
�nement concept are mentioned in Section 5.2. These problems are likely to cause
errors, such as deadlocks, in an implementation, because the re�nement concept
cannot avoid these problems by itself.

5.1. Re�nement

Cengarle et al. [5] have introduced a relation between processes and sequence dia-
grams. A process I is an implementation of a sequence diagram S if at least one
linearization of I is a valid trace of S and if no linearization is a negative trace. In
addition a sequence diagram T is a re�nement of a sequence diagram S, if every
implementation of T is also an implementation of S. This de�nition is very abstract
and a practical implementation cannot be derived. Furthermore, the concept does
not provide a possibility to decide if sequence diagrams re�ne each other without
accessing an implementation, but a set of sequence diagrams should already be con-
sistent before an implementation is actually generated. Expressing this concept in
terms of traces reveals that every re�nement step leads to a sequence diagram with
less or equal positive traces, so that it di�ers from the re�nement concept presented
in Chapter 3.

Another re�nement approach is presented by Störrle [37, 38]. Störrle refers directly
to traces and characterizes re�nement as enrichment and restriction. An enrichment
step increases the number of positive traces, where restriction increases the number
of negative traces. Furthermore, Störrle distinguishes three classes of design steps.

47

5. Related Work

Detailing removes uncertainty, i.e., contingent traces become either positive or neg-
ative. Since the previous positive and negative traces are maintained, a detailing
step is only able to introduce additional alternative or optional behavior. Adapting
allows to change the design completely and thus cannot be expressed or analyzed
formally. Finally, Realizing refers to the �nal implementation step where every trace
becomes either valid or invalid.

The STAIRS project by Haugen et al. [25, 26, 27] follows a similar approach.
STAIRS distinguishes three basic kinds of incremental design steps. Supplement-
ing corresponds to Störrle's detailing concept, i.e., inconclusive traces become either
positive or negative. Narrowing is similar to the approach by Cengarle and Knapp.
Narrowing is used to remove underspeci�cation, i.e., positive traces become nega-
tive and negative traces remain negative, which can only be achieved by inserting
additional neg fragments. Finally, detailing is characterized as introducing a more
detailed description without signi�cantly altering the externally observable behavior
[25]. Detailing can be viewed as a combination of lifeline substitution and black-box
re�nement and is very similar to the approach presented in this thesis.

All three approaches mentioned so far have in common that they require to com-
pute the positve and negative trace sets that are then checked for equivalence or
inclusion to verify a re�nement relationship. They do not provide other suggestions
for e�cient implemenations yet, so that practical applications become nearly impos-
sible due to the factorial complexity of interleaving traces (cf. Sections 2.2 and 4.5).
The possibility to create in�nite traces with in�nite loops poses another problem: In
general, it is not even possible to characterize trace languages as ω-regular languages
(cf. [7, 28]).

Customer Waiter

order drink

alt

alt

order fish

order meat

(a) Nested alt fragments.

Customer Waiter

order drink

alt

order fish

order meat

(b) A single alt fragment with three alterna-
tives.

Figure 5.1.: Equivalent traces although an alt fragment is missing.

The structural approach presented in this thesis can be computed more e�ciently
than the trace-based approaches presented above. However, a price to pay for this

48

5.1. Re�nement

e�ciency is that the structural approach is more restrictive than the trace-based ap-
proaches. Figure 5.1(a) and 5.1(b) show two sequence diagrams with identical trace
sets. In each diagram the customer orders either a drink, �sh, or meat. Nevertheless,
such a situation is rejected by two di�erent structural rules (cf. operand consistency
and fragment completeness in Chapter 3). Since both diagrams contain the same
messages, they automatically have to contain the same combined fragments. Fur-
thermore, the outer alt fragment is not consistent, because the messages order �sh
and order meat in Figure 5.1(a) have to appear in the same operand in Figure 5.1(b),
but they do not.

Customer Waiter

serve drink

strict
order drink and dish

serve dish

(a) A strict fragment covering all messages.

Customer Waiter

serve drink
strict

order drink and dish

serve dish

(b) One message is not covered by the strict

fragment.

Figure 5.2.: Equivalent traces although the strict fragment covers di�erent messages.

The trace sets of the sequence diagrams in Figure 5.2 are equal. The strict frag-
ment, however, is not operand consistent so that such a situation is rejected too.

Customer Waiter

order drink

par

order main dish

(a) Parallel messages

Customer Waiter

order drink

par

order main dish

(b) Changed order of operands.

Figure 5.3.: The order of operands of a par fragment does not in�uence the traces.

At �rst this might seem too restrictive, but as sequence diagram are often larger
than a single screen, such a situation becomes very misleading and confusing. Al-
though there is no additional restriction on the sequence diagram layout yet, the
strict approach at least helps to preserve a mental map [29] of a scenario. A minor

49

5. Related Work

modi�cation of the operand consistency rule (cf. Chapter 3) makes the concept even
stricter by not allowing to change the order of operands within a par or alt fragment.
Figure 5.3 shows two sequence diagrams with equal trace sets that could be rejected
too.

Petri Nets

The approach presented by van der Aalst et al. [2, 41] is quite di�erent from the
previous three. Initially, van der Aalst et al. focused on the analysis of work�ows
providing a tool called WOFLAN [13, 12]. Work�ows are represented as Petri nets
[22] and are analyzed for a soundness property that assures a proper execution.
Further investigations of van der Aalst et al. lead to an inheritance concept on
work�ows and Petri nets. They introduced the notions protocol, projection, and life
cycle inheritance. These concepts can also be applied to UML behavior diagrams,
such as state machine diagrams or sequence diagrams, if these diagrams are given
as an equivalent Petri net [40]. The transformation from basic sequence diagrams
to Petri nets is rather straightforward [10, 24]. The inheritance concept is similar to
the re�nement concept, since it allows to add instances and messages, if the primal
structure is maintained. Replacing or removing instances, however, is not supported.
Although the Petri net inheritance is very interesting, it is decided by a branching

bisimulation that leads to an exponential-size search space. Furthermore, at the
moment the Petri net approach considers only basic sequence diagrams, i.e., sequence
diagrams without combined fragments, and it is still an open question whether the
semantic of all operator kinds can be represented by equivalent Petri nets. The
loop fragment, for example, allows to specify unbounded iterations that can lead to
unbounded Petri nets. Unbounded Petri nets require places that contain an arbitrary
number of tokens, which is not supported by WOFLAN.
Nevertheless, Petri nets are very suitable candidates to discuss the semantics of

sequence diagrams, since they provide an executable mechanism instead of the ab-
stract trace notation. That is why the present thesis uses Petri nets to detect message
order inconsistencies (cf. Chapter 4).

5.2. Soundness

Even if a set of sequence diagrams is consistent with respect to one of the re�nement
concepts some problems still remain, namely unmotivated events, race conditions,
process divergence, and non-local choices. These problems might lead to deadlocks,
bu�er over�ows, and to an unspeci�ed or unwanted behavior in an implementation
[34, 16]. Since these problems are induced by a wrong or too weak message order and
since one important aspect of a re�nement concept is to generally maintain the order
of messages, these errors are preserved as well. Developers even need to pay attention
that they do not accidentally use a re�nement concept to propagate an error across
several diagrams. Although there is little tool support, many approaches exist that
help to detect and to avoid these problems.

50

5.2. Soundness

Unmotivated Events

As mentioned before, a common approach is to use sequence diagrams as patterns
to design interdependent and communicating state machines. Such state machines
are usually event driven, i.e., spontaneous actions are unwanted or even impossible,
depending on the underlying framework. Besides presenting a re�nement concept,
Lischke [19] also provides a sequence diagram consistency checker that discovers
so-called unmotivated events, i.e., events within a sequence diagram that do not
depend on a previously received trigger event. The send event of the message serve
drink in Figure 5.4(a) is unmotivated, because there is no incoming message after the
local state. Figure 5.4(b) shows the state machine fragment that corresponds to the
unmotivated event. Such a state machine must change its state without an incoming
trigger, which is not allowed by the ROOM framework [3].

Customer Waiter

order drink

serve drink

wait

(a) Sequence diagram with an unmotivated

event.

Waiter

order drink / / serve drink

wait... ...

(b) Incorrect state machine fragment caused
by unmotivated events.

Figure 5.4.: Unmotivated events lead to incorrect state machines.

Race Conditions

The classic notion of race condition refers to the situation where a result unintention-
ally depends on the relative timing of at least two independent processes. A similar
problem exists for sequence diagrams that arises from a possibly too weak message
order. Alur et al. [33] de�ne the problem as follows: a race condition exists when
two events appear in (visual) order, but can be shown to occur in the opposite order
during an actual system execution.

Figure 5.5 shows a simple sequence diagram that contains a race condition ac-
cording to the de�nition just mentioned. The customer assumes that the drink and
the meal arrive in exactly the given order, but since both waiters are completely
independent a naïve implementation cannot assure this. Chen et al. [6] introduce a
rather strict race free property that can be checked easily. Furthermore, they provide
an algorithm that eliminates race conditions by inserting additional silent messages
that strengthen the causal ordering.

51

5. Related Work

Customer Assistant

order drink

serve drink

Head Waiter

order meal

serve meal

Figure 5.5.: Although the customer awaits the meal after the drink, a naïve imple-
mentation cannot assure this.

Process Divergence

The loop fragment, which was explained in Chapter 2, allows to specify an unbounded
iterative behavior. A problem that may arise due to the asynchronous communication
and the basic weak sequencing mechanism is process divergence. Ben-Abdallah et al.
[14] de�ne process divergence as a system execution where one process sends a mes-
sage an unbounded number of times ahead of the receiving process. Figure 5.6 shows
an unbounded loop where the customer has not to wait for the waiter, which allows
him to �ood the waiter with messages. This leads to bu�er over�ows or lost messages
within the implementation. A syntactically veri�able property that impedes process
divergence is com-boundedness [7]. Com-boundedness is also a su�cient condition
for the regularity of the induced trace language.

Customer Waiter

order drink

loop

order meal

Figure 5.6.: With in�nite loops the customer can �ood the waiter with messages.

Non-local Choices

Another well-studied problem is the non-local choice problem [1, 20] of message se-
quence charts. This problem now also occurs in sequence diagrams since the alt

fragment allows to specify alternative behavior. A non-local choice refers to a situ-
ation in which several instances can independently select di�erent alternatives. As
Muccini [16] shows, this may lead to implied scenarios [36, 34]. An implied scenario
is characterized as an execution that is not covered by the speci�cation. Figure 5.7
shows a sequence diagram with a non-local choice. Either waiter should serve the
main dish. The diagram itself, however, does not explain how the waiters agree

52

5.2. Soundness

on who serves it. They both may assume that it is their turn since there is no
communication between them and the customer will �nally receive two main dishes.

Customer Assistant

serve main dish

Head Waiter

alt

serve main dish

Figure 5.7.: Non-local choices might lead to unspeci�ed behavior.

It is, however, still possible that an implementation does not contain an error even
if a sequence diagram contains one of the problems mentioned above. In general,
a sequence diagram does not provide a complete description of a scenario, since it
focuses on the inter-object behavior. There is most likely additional information that
cannot be expressed if only messages are available and which nevertheless has in�u-
ence on the execution of an implementation. This information can be, for example,
the execution time of an internal computation or even a property of the environment
of the system.
In the last scenario, for example, there could be a board with the pending orders

that is hanging in the kitchen. If each waiter obliterates the dish he wants to serve
next, there is no possibility that a customer receives two dishes, unless he was very
hungry and ordered two.

53

5. Related Work

54

6. Conclusion and Further Work

Sequence diagrams are a convenient way to capture requirements. Due to their
rather lean syntax and semantics and their focus on inter-object behavior, they are a
suitable communication medium between di�erent stakeholders, such as developers,
testers, customers, and end-users. Furthermore, sequence diagrams can be used at
nearly all development stages. During the implementation, for example, they serve
as a pattern for the state machine design [21]. A good technique to obtain an
implementation that ful�lls the requirements is to incrementally re�ne the sequence
diagrams from the requirement level until an adequate level of detail is reached. In
doing so consistency management becomes mandatory [8].

This thesis de�nes a re�nement concept that re�ects the informal concept that is al-
ready applied in practice. A �rst approach, presented by Lischke [19] has introduced
the concept for basic sequence diagrams without coregions or implicit parallelism.
This approach is extended here to support parallelism, and moreover the new UML
2.0 combined fragments, which signi�cantly increase the expressiveness. The concept
presented in Chapter 3 separates structural from behavioral information.

Several strict rules prescribe which messages and combined fragments have to
appear in which sequence diagrams without considering any semantic domain. If
all these rather simple structural rules are ful�lled, it remains to verify whether the
message order is consistent or not. As opposed to other approaches that deal with
the re�nement of sequence diagrams (cf. Chapter 5), this approach does not require
to compute the positive and negative trace sets, which can be of factorial complexity.
Instead, it su�ces to reduce sequence diagrams to Petri nets that maintain the partial
event orders. These Petri nets are used to validate di�erent diagrams against each
other. The construction and the evaluation of the Petri nets are e�cient and the
combination of a simulation and a computation of strongly connected components
precisely identi�es misordered messages.

The plugin that is described in Chapter 4 allows to evaluate the concept. The
developers specify which sequence diagrams re�ne each other and can then run the
consistency check. As the experimental results con�rm, this approach scales very
well to large diagrams. The sources of inconsistencies, if any exist, are located
precisely. If, for example, some messages are wrongly ordered, these messages are
highlighted in all diagrams in which they appear. It is, however, not possible to repair
inconsistencies automatically, since in the case of a contradicting message order it is
unclear which diagram is right.

Although the results are already satisfying, since all objectives that were mentioned
in the introduction are ful�lled, there are several potential extensions, which are
outlined on the following.

55

6. Conclusion and Further Work

6.1. Concept Extensions

The developed re�nement concept focuses on instances, messages, and combined
fragments. Sequence diagrams, however, can contain several other elements, such as
general orderings, local states, or local actions.

General Orderings

General orderings are drawn as dotted lines between two independent event occur-
rences. An arrowhead in the middle of the line indicates the direction. General
orderings strengthen the partial order so that they are basically used to introduce
dependencies between event occurrences that otherwise would not be ordered at all.
The re�nement concept could use general orderings to maintain relations between
event occurrences that were lost due to a re�nement step.

Customer Waiter

order drink

order main dish

serve drink

serve main dish

ask for drink order

ask for main order

(a) A customer ordering a drink and a main

dish.

Customer Assistant

order drink

order main dish

serve drink

serve main dish

ask for drink order

ask for main order

Head Waiter

(b) Drinks and meals are served by di�erent
waiters.

Figure 6.1.: General orderings replace lost information.

Figure 6.1(a) shows a scenario of a customer ordering a drink and a main dish from
a waiter. This simple scenario is consistently re�ned in Figure 6.1(b) by replacing
the single waiter with a head waiter and an assistant. Without general orderings
the information that, for example, the message ask for drink order is sent before the
message ask for main order would be lost.

Local Actions / States

Local actions and local states are usually used to denote internal behavior and state
changes, respectively. They should also be included in the re�nement concept because
their order is just as important as the order of messages. Especially local states are
important for the state machine design (cf. [21]). There is no best way to relate
actions between di�erent abstraction levels, but for local states one approach could
be to introduce a state hierarchy similar to the hierarchy of instances (cf. Chapter

56

6.1. Concept Extensions

3). If an instance is replaced with its re�ning instances, the states of this instance
must be replaced by the given states.

Customer Waiter

order drink

order main dish

serve drink

serve main dish

waiting

waiting

(a) Local states denote internal behavior.

waiting

wait for
drink
order

wait for
dish
order

<<refines>><<refines>>

<<Assistant>> <<Head Waiter>>

<<Waiter>>

(b) A state hierarchy restricts the state re-
�nement.

Customer Assistant

order drink

order main dish

serve drink

serve main dish

wait for
drink
order

Head Waiter

wait for
dish
order

wait for
drink
order

wait for
dish
order

(c) The state waiting is correct re�ned.

Customer Assistant

order drink

order main dish

serve drink

serve main dish

wait for
drink
order

Head Waiter

wait for
dish
order

wait for
drink
order

wait for
dish
order

(d) A wrong re�nement of the state waiting.

Figure 6.2.: A �rst approach to regard state re�nement.

Figure 6.2(a) shows a sequence diagram with local states and Figure 6.2(b) shows
the corresponding state hierarchy that restricts how local states are replaced in re-
�nement steps. Every re�nement step that replaces the instance waiter with the
instances assistant and/or head waiter must also replace the local states according
to the given hierarchy. The re�ning sequence diagram in Figure 6.2(c) is consistent
with the state hierarchy, but Figure 6.2(d) is inconsistent because the states wait for
drink order and wait for dish order are interchanged.

57

6. Conclusion and Further Work

6.2. Additional Checks

Besides a re�nement concept, there are several other approaches to improve modeling
with sequence diagrams (cf. Chapter 5). It is obviously dangerous if a set of sequence
diagrams is only consistent because they all contain the same error. Race conditions,
for example, arise due to an event order that is too weak. Since the main principle of
the re�nement concept is to maintain the event order, a re�ning sequence diagram
will contain a possible race condition too.

Customer Waiter

order drink

order main dish

serve drink

serve main dish

(a) ROOM does not allow message overtak-
ing.

Customer Assistant

order drink

order main dish

serve drink

serve main dish

Head Waiter

(b) Run-to-completion semantics and shared
message queues avoid race conditions too.

Figure 6.3.: Not all race conditions according to Chen et al. arise in the ROOM
framework.

Chen et al. [6] present a concept to detect and repair race conditions (cf. Chap-
ter 5). This concept, however, may be too strict to be applied to all frameworks.
According to Chen et al. Figure 6.3(a) contains two race conditions that are marked
by dotted rectangles. If the underlying framework, however, does not allow message
overtaking, i.e., channels between di�erent components preserve the order of mes-
sages, these race condition cannot occur. Another example is shown in Figure 6.3(b).
In the ROOM framework [3], for example, it is possible that all instances share a
single message queue. Assume that the customer initiates the scenario by sending
the message order drink. Due to the run-to-completion semantics [3] the customer

also sends the message order main dish before he has to wait for the message serve

drink to arrive. Now the �rst message, which is order drink, is taken from the queue
and forwarded to the assistant, which then appends the message serve drink at the
end of the queue. Finally, the head waiter is able to receive his message and send
the next message and the queue contains only messages for the customer exactly
in the expected order. An extension of the race condition concept is needed that
considers whether message overtaking is possible or not. Furthermore, the concept
must support the possibility that several instances share a single message queue.

Other problems of sequence diagrams, such as non-local choices and process di-
vergence mentioned in Chapter 5, can also be detected syntactically according to
Ben-Abdallah et al. [14]. To detect non-local choices a sequence diagram is given as
a so-called message �ow graph that is similar to the Petri net representation used

58

6.3. A Constructive Approach

in this thesis. For each choice node the set of events that might directly follow is
computed. There is no non-local choice if all successors of a choice node belong to
the same instance.

A so-called coordination graph is derived from the message �ow graph to detect
process divergence. The nodes of this graph are instances and directed arcs between
two instances exist if one instance sends a message to the other. There is no process
divergence if the transitive closure of the coordination graph is symmetric. Both
algorithms run in linear time with the number of events within the sequence diagram
and, with minor modi�cations, can be applied to the Petri net representation that
already exists.

6.3. A Constructive Approach

Many modeling tools support consistency between di�erent structural views. It is,
for example, self-evident that a new class attribute immediately appears in all class
diagrams that contain the corresponding class. These modeling tools usually also
provide consistency between structural and behavioral views. It is possible to drag
and drop classes from class diagrams into sequence diagrams. Messages are then
simply created by selecting the corresponding operations. The modeling tools are
able to automatically preserve consistency by separating the graphical representation
from the actual model elements. This separation is similar to the Model-View-
Controller (MVC) architectural design pattern [9] that enforces a strict separation
from data (model), information display (view) and user input handling (controller).
Views contain only references that point to the model elements so that there is
no redundancy, which is one of the main reasons for inconsistency. Any change
to the model elements automatically changes the information that is shown by the
depending views. Such a mechanism would automatically eliminate several sources
of inconsistencies during the re�nement of sequence diagrams.

As shown in Chapter 4, the re�nement concept is evaluated using an existing mod-
eling tool. All information necessary is exported and checked by an external server
application. Although this approach encourages reusability and maintainability, the
development of a new tool that would provides a model view separation for sequence
diagrams exhibits several major advantages. First of all, messages, instances, and
combined fragments could be separated from their graphical representation and thus
could be shared by all re�ning sequence diagrams. Any change to the label of a mes-
sage or instance would automatically change the label in all dependent diagrams. If
a message is deleted it would be deleted from the model and simultaneous from all
views that contain this message. Other inconsistencies could be avoided by simply
not allowing them to be made. For example, it could be forbidden to insert instances
into a sequence diagram that are not consistent with the instance hierarchy. Further-
more, according to the structural rules in Chapter 3 it would always evident which
elements are still missing. If a new message is inserted into a sequence diagram all
sequence diagrams that describe the same scenario could be immediately noti�ed

59

6. Conclusion and Further Work

if they have to contain this message too. However, it is not possible to insert new
messages or combined fragments automatically because in general there are several
consistent possibilities. Figure 6.4(a) contains a basic diagram with a new message
and Figure 6.4(b) shows the re�nement diagram. It is obvious where to append the
sending message end but there exist six consistent locations for the receiving end.
If those situations occur, it would be convenient if the developer only has to choose
one of the consistent possibilities.

Customer Restaurant

order drink

serve drink

ask for peanuts

(a) A new message was added to the basic
diagram.

Customer Waiter

order drink

serve drink

Kitchen

forward drink order

 drink is ready

ask for peanuts

(b) Several possibilities to locate the receiv-
ing end of the new message exist in the re-
�ning diagram.

Figure 6.4.: Inserting new messages with a constructive approach.

The optimal solution would be to include the consistency between sequence dia-
grams and state machines [21]. The relationship between these diagrams, however, is
even more intricate than the re�nement of sequence diagrams. A modi�cation of one
sequence diagram may lead to inconsistencies between several state machines and
vice versa. Since sequence diagrams and state machines focus on di�erent domains,
i.e., inter-object and intra-object behavior, respectively, additional syntactical and
semantical restrictions are most likely necessary and it still has to be evaluated
whether this is practicable or not.

60

A. Bibliography

[1] Arjan J. Mooij and Nicolae Goga and Judi Romijn. Non-local Choice and Be-
yond: Intricacies of MSC Choice Nodes. In Fundamental Approaches to Software
Engineering (FASE '05), pages 273�288, 2005.

[2] Twan Basten and Wil M. P. van der Aalst. Inheritance of Behavior. In Comput-
ing Science Report, volume 17, Eindhoven University of Technology, Eindhoven,
1999.

[3] Bran Selic and Garth Gullekson and Paul T. Ward. Real-Time Object-Oriented
Modeling (ROOM). John Wiley & Sons, 1994.

[4] Branislav Selic and James Rumbaugh. Using UML for Modeling Complex Real-
Time Systems. http://www-128.ibm.com/developerworks/rational/library/,
1998. IBM, White Paper.

[5] María Victoria Cengarle and Alexander Knapp. UML 2.0 Interactions: Se-
mantics and Re�nement. In Proceedings of the 3rd Intl. Workshop on Critical
Systems Development with UML (CSDUML '04), pages 85�99. Technische Uni-
versität München, 2004.

[6] Chien-An Chen, Sara Kalvala, and Jane Sinclair. Race Conditions in Message
Sequence Charts. In Proceedings of the 3rd Asian Symposium on Programming
Languages and Systems (APLAS '05), pages 195�211, 2005.

[7] David Harel and P. S. Thiagarajan. Message Sequence Charts. UML for Real:
Design of Embedded Real-Time Systems, pages 77�105, 2003. Kluwer Academic
Publishers.

[8] M. Elaasar and L. Briand. An Overview of UML Consistency Management.
Technical Report SCE-04-18, Carleton University, August 2004.

[9] Frank Buschmann and Regine Meunier and Hans Rohnert and Peter Sommer-
lad and Michael Stal. Pattern-Oriented Software Architecture: A System of
Patterns. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[10] Peter Graubmann, Ekkart Rudolph, and Jens Grabowski. Towards a Petri Net
Based Semantics De�nition for Message Sequence Charts. In Speci�cation and
Description Language (SDL) '93 - Using Objects, October 1993.

[11] OMG Object Modelling Group. Uni�ed Modelling Language: Superstructure.
http://www.omg.org/technology/documents/formal/uml.htm, July 2004.

61

A. Bibliography

[12] H. M. W. (Eric) Verbeek and Twan Basten and Wil M. P. van der Aalst. Diag-
nosing Work�ow Processes using Wo�an. The Computer Journal, 44(4):246�279,
2001.

[13] H. M. W. (Eric) Verbeek and Wil M. P. van der Aalst. Wo�an 2.0: A Petri-
Net-Based Work�ow Diagnosis Tool. In Proceedings of the 21st International
Conference on Application and Theory of Petri Nets (ICATPN) 2000, pages
475�484, 2000.

[14] Hanêne Ben-Abdallah and Stefan Leue. Syntactic Detection of Process Diver-
gence and non-Local Choice in Message Sequence Charts. In Proceeding of 2nd
Int. Workshop on Tools and Algorithms for the Construction and Analysis of
Systems, 1997.

[15] David Harel and Rami Marelly. Come, Let's Play: Scenario-Based Programming
Using LSC's and the Play-Engine. Springer-Verlag New York, Inc., 2003.

[16] Henry Muccini. Detecting Implied Scenarios Analyzing Non-local Branching
Choices. In Fundamental Approaches to Software Engineering (FASE '05), pages
372�386, 2003.

[17] International Telecommunication Union (ITU). ITU Homepage.
http://www.itu.int/home/, 2006.

[18] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC99).
Geneva, 1999.

[19] Andrea Lischke. Consistency Check of Sequence Diagrams, 2005. Diploma
Thesis, TU Cottbus.

[20] Loïc Hélouët. Some Pathological Message Sequence Charts, and how to detect
them. In SDL '01: Proceedings of the 10th International SDL Forum Copen-
hagen on Meeting UML, pages 348�364, London, UK, 2001. Springer-Verlag.

[21] Björn Lüdemann. Synthesis of human-readable Statecharts from Sequence Dia-
grams in the ROOM Environment, 2005. Diploma Thesis, Christian-Albrechts-
Universität zu Kiel.

[22] Tadao Murata. Petri nets: Properties, analysis and applications. In Proceedings
of the IEEE, pages 541�580, April 1989.

[23] Object Managment Group (OMG). Uni�ed Modeling Language (UML).
http://www.uml.org/, 2006.

[24] Olaf Kluge. Petri Nets as a Semantic Model for Message Sequence Chart Spec-
i�cations. In Proceedings of the European Joint Conferences on Theory and
Practice of Software (ETAPS), pages 138�147, 2002.

62

A. Bibliography

[25] Øystein Haugen and Ketil Stølen. STAIRS - Steps to Analyze Interactions with
Re�nement Sematics. In Proceedings of the Sixth International Conference on
UML (UML'2003), pages 388�402, 2003.

[26] Øystein Haugen and Knut Eilif Husa and Ragnhild Kobro Runde and Ketil
Stølen. Why Timed Sequence Diagrams Require Three-Event Semantics. In
Scenarios: Models, Transformations and Tools, pages 1�25. Springer, 2003.

[27] Øystein Haugen and Knut Eilif Husa and Ragnhild Kobro Runde and Ketil
Stølen. STAIRS towards formal design with sequence diagrams. Software and
System Modeling, 4(4):355�357, 2005.

[28] Doron Peled. Speci�cation and Veri�cation using Message Sequence Charts.
Electronic Notes in Theoretical Computer Science, 65(7), 2002.

[29] Marian Petre. Why looking isn't always seeing: readership skills and graphical
programming. Communications of the ACM, 38(6):33�44, 1995.

[30] Philippe Kruchten. The Rational Uni�ed Process: An Introduction. Addison
Wesley, 2003.

[31] Philips Medical Systems (PMS). PMS Homepage.
http://www.medical.philips.com/de/, 2006.

[32] Ragnhild Kobro Runde and Øystein Haugen and Ketil Stølen. How to transform
UML neg into a useful construct. In Proceedings of the Norwegian Informatics
Conference (Norsk Informatikkonferanse), 2005.

[33] Rajeev Alur and Gerard J. Holzmann and Doron Peled. An Analyzer for Mes-
sage Sequence Charts. In Proceedings of the 2nd International Workshop on
Tools and Algorithms for Construction and Analysis of Systems (TACAS),,
pages 35�48, 1996.

[34] Rajeev Alur and Kousha Etessami and Mihalis Yannakakis. Inference of Message
Sequence Charts. IEEE Transactions on Software Engineering, 29(7):623�633,
July 2003.

[35] Rational Software. The Rational Uni�ed Process: Best
Practices for Software Development Teams. http://www-
128.ibm.com/developerworks/rational/library/253.html, 1998.

[36] Sebastian Uchitel and Je� Kramer and Je� Magee. Detecting Implied Sce-
narios in Message Sequence Chart Speci�cations. In 9th European Software
Engineering Conference and 9th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2001.

[37] Harald Störrle. Assert, Negate and Re�nement in UML 2 Interactions. In
Proceedings of the International Workshop on Critical Systems Development with
UML 2003, pages 79�94, October 2003.

63

A. Bibliography

[38] Harald Störrle. Trace Semantics of Interactions in UML 2.0. Technical Re-
port 09, University of Munich, February 2004.

[39] Robert E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal
of Computing, 1(2):146�160, 1972.

[40] Wil M. P. van der Aalst. Inheritance of Dynamic Behavior in UML. In Proceed-
ings of the Second Workshop on Modelling of Objects, Components and Agents
(MOCA 2002), volume 561, pages 105�120, August 2002.

[41] H. M. W. (Eric) Verbeek and Twan Basten. Deciding life-cycle inheritance on
petri nets. In Proceedings of the 24th International Conference on Application
and Theory of Petri Nets (ICATPN) 2003, pages 44�63, 2003.

[42] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45�80, 2001.

64

B. XML

This appendix contains the full XML representation of the instance hierarchy that is
shown in Figure 4.3 and the sequence diagram that is shown in Figure 4.4. Further-
more, this appendix contains the XML schema de�nitions that describe the structure
of the information that is exchanged between the client and the server application.

65

B. XML

instancehierarchy.xml

<!-- XML representation of Figure 3.3 -->

<instances>

<!-- abstraction layer 0 -->

10 <instance label="Customer " level="0"/>
<instance label=" Res t au r an t " level="0"/>

<!-- abstraction layer 1 -->

<instance label="Customer " level="1" master="Customer "/>
<instance label="Waiter " level="1" master=" Res t au r an t "/>
<instance label="Ki tchen " level="1" master=" Res t au r an t "/>

20 <instance label="Barkeeper " level="1" parent="Ki tchen "/>
<instance label="Cook" level="1" parent="Ki tchen "/>

<!-- abstraction layer 2 -->

<instance label="Customer " level="2"/>
<instance label="Head Waiter " level="2" master="Waiter "/>
<instance label=" A s s i s t a n t " level="2" master="Waiter "/>

30 <instance label="Ki tchen " level="2" master="Ki tchen "/>
<instance label="Barkeeper " level="2" master="Barkeeper " parent="Ki tchen "/>
<instance label="Head Chef " level="2" master="Cook" parent="Ki tchen "/>
<instance label=" S c u l l i o n " level="2" master="Cook" parent="Ki tchen "/>

</instances>

66

sequencediagram.xml

<!-- XML representation of Figure 2.1(b) -->

<sd label=" sequence d iagram 2 . 1 (b) " instances="Customer Waiter K i t chen ">

<fragment type=" seq ">

<fragment type=" par ">

<fragment type=" b a s i c ">
10

<fragment type=" l i f e l i n e " label="Customer ">
<fragment type=" send " label=" o r d e r d r i n k "/>

</fragment>

<fragment type=" l i f e l i n e " label="Waiter ">
<fragment type=" r e c e i v e " label=" o r d e r d r i n k "/>

</fragment>

</fragment>
20

<fragment type=" b a s i c ">

<fragment type=" l i f e l i n e " label="Customer ">
<fragment type=" send " label=" o r d e r main d i s h "/>

</fragment>

<fragment type=" l i f e l i n e " label="Waiter ">
<fragment type=" r e c e i v e " label=" o r d e r main d i s h "/>

</fragment>
30

</fragment>

</fragment>

<fragment type=" b a s i c ">

<fragment type=" l i f e l i n e " label="Customer ">
<fragment type=" r e c e i v e " label=" s e r v e d r i n k "/>
<fragment type=" r e c e i v e " label=" s e r v e main d i s h "/>

40 </fragment>

<fragment type=" l i f e l i n e " label="Waiter ">
<fragment type=" send " label=" fo rwa rd o r d e r "/>
<fragment type=" r e c e i v e " label=" p r epa r ed d r i n k "/>
<fragment type=" send " label=" s e r v e d r i n k "/>
<fragment type=" r e c e i v e " label=" p r epa r ed main d i s h "/>
<fragment type=" send " label=" s e r v e main d i s h "/>

</fragment>

50 <fragment type=" l i f e l i n e " label="Ki tchen ">
<fragment type=" r e c e i v e " label=" fo rwa rd o r d e r "/>
<fragment type=" send " label=" p r epa r ed d r i n k "/>
<fragment type=" send " label=" p r epa r ed main d i s h "/>

</fragment>

</fragment>

<fragment type=" opt ">

60 <fragment type=" b a s i c ">

<fragment type=" l i f e l i n e " label="Customer ">
<fragment type=" send " label=" o r d e r c o f f e e "/>
<fragment type=" r e c e i v e " label=" s e r v e c o f f e e "/>

</fragment>

<fragment type=" l i f e l i n e " label="Waiter ">
<fragment type=" r e c e i v e " label=" o r d e r c o f f e e "/>
<fragment type=" send " label=" s e r v e c o f f e e "/>

70 </fragment>

</fragment>

</fragment>

</fragment>

</sd>

67

B. XML

model.xsd

<xs:schema xmlns:xs=" h t tp : //www.w3 . org /2001/XMLSchema">

<xs:element name="model " type="modelType"/>

<xs:complexType name="modelType">
<xs:sequence>

<xs:element name=" i n s t a n c e s " type=" l i s t O f I n s t a n c e s "/>
<xs:element name=" sd s " type=" l i s tO f SD s "/>

</xs:sequence>
10 <xs:attribute name=" c h e c k l e v e l " type=" xs : i n t e g e r " use=" r e q u i r e d "/>

</xs:complexType>

<xs:complexType name=" l i s t O f I n s t a n c e s ">
<xs:sequence>

<xs:element name=" i n s t a n c e " type=" i n s t anceType " minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name=" i n s t anceType ">
20 <xs:attribute name=" l a b e l " type=" xs : s t r i n g " use=" r e q u i r e d "/>

<xs:attribute name=" pa r en t " type=" xs : s t r i n g " use=" o p t i o n a l "/>
<xs:attribute name="master " type=" xs : s t r i n g " use=" o p t i o n a l "/>

</xs:complexType>

<xs:complexType name=" l i s tO f SD s ">
<xs:sequence minOccurs="1" maxOccurs="unbounded">

<xs:element name=" sd " type=" sdType"/>
</xs:sequence>

</xs:complexType>
30

<xs:complexType name=" sdType">
<xs:sequence>

<xs:element name=" f ragment " type=" fragmentType "/>
</xs:sequence>
<xs:attribute name=" l a b e l " type=" xs : s t r i n g " use=" r e q u i r e d "/>
<xs:attribute name=" i n s t a n c e s " type=" l i s t O f L a b e l s " use=" r e q u i r e d "/>
<xs:attribute name=" i n t r a l e v e l " type=" l i s t O f L a b e l s " use=" r e q u i r e d "/>
<xs:attribute name=" i n t e r l e v e l " type=" l i s t O f L a b e l s " use=" r e q u i r e d "/>

</xs:complexType>
40

<xs:complexType name=" fragmentType ">
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name=" f ragment " type=" fragmentType "/>
</xs:sequence>
<xs:attribute name=" l a b e l " type=" xs : s t r i n g " use=" o p t i o n a l "/>
<xs:attribute name=" type " type=" f ragmentS impleType " use=" r e q u i r e d "/>

</xs:complexType>

<xs:simpleType name=" f ragmentS impleType ">
50 <xs:restriction base=" xs : s t r i n g ">

<xs:enumeration value=" b a s i c "/>
<xs:enumeration value=" par "/>
<xs:enumeration value=" seq "/>
<xs:enumeration value=" s t r i c t "/>
<xs:enumeration value=" l oop "/>
<xs:enumeration value=" a l t "/>
<xs:enumeration value=" opt "/>
<xs:enumeration value=" break "/>
<xs:enumeration value=" c r i t i c a l "/>

60 <xs:enumeration value=" c o n s i d e r "/>
<xs:enumeration value=" i g n o r e "/>
<xs:enumeration value="neg"/>
<xs:enumeration value=" a s s e r t "/>
<xs:enumeration value=" l i f e l i n e "/>
<xs:enumeration value=" send "/>
<xs:enumeration value=" r e c e i v e "/>
<xs:enumeration value=" c o r e g i o n "/>

</xs:restriction>
</xs:simpleType>

70

<xs:simpleType name=" l i s t O f L a b e l s ">
<xs:list itemType=" xs : s t r i n g "/>

</xs:simpleType>

</xs:schema>

68

	Titlepage
	Assertion
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Environment
	Objectives
	Overview

	Sequence Diagrams
	Formalization
	Trace Semantics

	Refinement
	Examples
	Instance Hierarchy
	Structural Consistency
	Message Order Consistency

	Implementation
	Client
	XML
	Server
	Complexity
	Benchmarks

	Related Work
	Refinement
	Soundness

	Conclusion and Further Work
	Concept Extensions
	Additional Checks
	A Constructive Approach

	Bibliography
	XML

