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Abstract

Reactive programs, often used in embedded, safety critical environments, have to
continuously react to stimuli from outside, processing those inputs and generating
outputs. Their behavior should be deterministic and the outputs should not only be
correct, but also on time. Esterel and Safe State Machines are two languages used for
describing reactive programs. Yet in real life a model alone is not sufficient. It also
has to be mapped to real life hardware, while making sure to retain the semantics,
a difficult task. To this end, special reactive processors have been developed, for
example, the Kiel Esterel Processor (KEP). Esterel can already be compiled to sev-
eral reactive processors, including the KEP. Since Safe State Machines and Esterel
are equivalent, they can be translated to Esterel and then compiled to a reactive
processor. But might it not perhaps be more efficient to directly map Safe State
Machines to an execution environment rather than taking the detour via Esterel?
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1. Introduction

That is why we call it religion. If it was logical, we would call it science.

Prashant Nanivadekar

Controlling airplane movement, medical life-sustaining equipment operation, or
the River Thames’ flood barrier: All of these applications’ correctness not only de-
pends on the correctness of calculation results, but also on their correct timing.
Such systems are called real-time. Asking ourselves how exactly such systems are
implemented, several ideas come to mind: the application logic might be entirely
implemented in special circuits targeted exactly at the requirements of the Thames’
flood barrier, embedded into the motors and sensors. Alternatively, a regular desk-
top PC bought at Woolworth’s in London might be connected to the motors and
sensors running some control program. Or there might be a mixture of both.
Two questions we don’t ask ourselves often enough are: “Is this a reactive system?”

and: “Do I really need a reactive system here?”. Reactive systems are generally over-
looked in our everyday lives, and those of us working with them often get confused
about classifying or implementing specific systems because of the various, not always
consistent, definitions and naming conventions, for example: “reactive system” and
“real-time system.”
Real-time systems are systems which are expected to adhere to some timing con-

straints on their computations, while reactive systems additionally always have to
react in some way to input stimuli from the environment. In this work we will be
dealing with synchronous reactive systems which have properties additional to the
above-mentioned systems.
In synchronous reactive systems, time is treated as discrete events which occur

continuously. A reactive system is connected to the surrounding environment by some
inputs and some outputs (not necessarily distinct from the inputs). In every distinct
event of time (called a “tick”) the system reads its inputs and must react to these
(speaking in the language of automata theory, this means that internally a transition
originating from the current state of the system must be taken), possibly creating
outputs, before the next tick. Therefore, in reactive processing, it is often said that
“computations don’t take any time”. The process described, called a “reaction”, must
be deterministic. Any input and output signals are considered to be broadcasted and
readable anywhere in the system, while the same holds true for local signals within
their respective scope. This is called the “synchrony hypothesis”. Each activation
and taking of transitions within a reactive system is referred to as a “microstep”,
while the sum of all transitions taken in one tick, or the resulting change of state
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1. Introduction

visible to an outside observer in one tick, is a “macrostep”. More concise definitions
and discussions are provided by Pnueli and Harel [24, 32].
An important problem in synchronous reactive systems is the problem of causality,

caused by the property that signals are instantly broadcasted over the entire signal
scope. Imagine a program part that is aborted immediately when a signal S is
present. How then should the system behave if the signal S is emitted from within
that program part? Immediate abortion prevents execution of the aborted code, thus,
it would have been impossible to emit the signal in the first place. Such paradoxical
situations are called causality problems, and a system that suffers such problems is
considered to be invalid.
Languages implementing the synchrony hypothesis are called “synchronous lan-

guages”. They originated from work on specifying languages that implement the
restrictions of reactive processing. These languages offer control constructs compli-
ant with the semantics of a reactive system while attempting to still be convenient
for the developer. An example of such a language is the Esterel language [12, 9, 11].
Of course, just defining reactive systems in theory is not enough. Since we (seem

to) know about their necessity, we also have to specify, implement, verify and ex-
ecute such systems in practice (in fact, as we will see in section 1.3, in this field,
practice tends to outweigh theory). For this purpose a lot of tools have evolved,
most commonly programming languages. Some programming languages exist in this
context only, for example, the Esterel synchronous programming language developed
by Berry and Gonthier in 1992 [12], which will be further detailed in section 2.1. On
the other hand, existing programming languages have been augmented in an attempt
to provide reactivity, real-time Java [5] for example.

1.1. State machines

In the modern age of computer-aided software engineering, system developers make
more use of graphical tools for system design and programming, which make it
unnecessary for them to learn and understand the complicated syntax of yet another
textual programming language. Often, a picture says more than a thousand lines
of code, which is what makes graphical languages easier to learn than textual ones.
There are several definitions for graphical programming languages, for example, the
business process modeling notation (BPMN, see [46] and Figure 1.1) which is capable
of describing everything from customs exchange to your weekly schedule to cooking
recipes. Such languages were introduced to simplify the task of programming to allow
people who did not study IT to create a program. This simplification reached its peak
in the general public with the launch of Lego Mindstorms in 1998, giving children
the opportunity to build and program their own robots. The programming language
originally used for Mindstorms was a type of state machines. State machines provide
a state of the art mechanism for developers to describe the behavior of reactive
systems. Harel [23] contributed to the creation of the StateCharts as an extension
of the finite state machine (FSM) (or automata) by adding syntax and semantics
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1.1. State machines

Figure 1.1.: The most common BPMN icons

Figure 1.2.: A sample state machine

for machines executing in parallel and for machines entirely encapsulated in a state.
André introduced Safe State Machines (SSM, [7]) which are strictly synchronous
statecharts.
At this point, an important remark is necessary: For any given Safe State Machine

(SSM), there is an equivalent Mealy machine (in terms of reactions to inputs by
outputs) and some compilers which exploit this to generate code for their target
architectures. However, the reason for using the additional syntax and semantics
is straightforward: simplicity. Tasks that should be carried out in parallel require
unintuitive Mealy machines. The growth of the number of states for parallel tasks is
exponential in a Mealy machine, while only linear in a SSM (considering the worst
case). Examples of the simplifications a SSM introduces will be discussed in more
detail later. In real life applications, model checking and formal verification are made
significantly easier through a mathematical calculus defining the semantics of a SSM.
Due to the significantly better usability of state machines, especially for the novice

developer, there is also a good deal of research in layouting state machines [39, 13,
20, 34].
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1. Introduction

1.2. Reactive processing

Implementation of reactive systems can be done in several ways: using software only,
pure hardware, or some hybrid system. All design techniques have their advantages
and disadvantages. A pure software system, for example, can be easily changed,
whereas pure hardware is usually the fastest way.
The most difficult way — hardware/software co-design — generates part software

and part hardware used to run the software. This process benefits from recurring
parts in hardware which can implement difficult semantics or speed up otherwise slow
computations, but automatic separation into hardware and software is not trivial,
and most tools leave this task to the designer. So far, hybrid systems consisted of
a regular processor, either directly modified to support reactivity or used together
with a reactive coprocessor (similar to the mathematical coprocessors of the pre-
Intel-Pentium era). One of these is the New Zealand University’s RePIC [14, 36], an
extension of the REFLIX [37].
The real-time and embedded systems workgroup of the University of Kiel took a

“reverse” approach: A processor directly supporting reactive control structures was
implemented and additionally got regular CPU style arithmetic operations. It is
called the Kiel Esterel Processor (KEP) [30]. The KEP aims to be fully capable of
retaining Esterel’s semantics. In a more recent work [45] the KEP was rewritten
in Esterel and became known as the KEPe. The goals were to explore Esterel as
a hardware specification language and better maintain the code. The KEPe imple-
ments the Esterel kernel language without valued signals (since the KEPe is missing
an ALU).
The software specified in Esterel or as SSM somehow has to get on a processor to be

executed. The community has seen several software implementations over the years
such as simulating automata [12], netlists [18], and control flow graphs [17]. Most
approaches target a software simulation, but the RePIC as well as the KEP have an
instruction set architecture (ISA) of their own. Both were designed for compilation
of Esterel to their respective ISA. While the RePIC requires several processors to be
set up for concurrency — making it hard for compilation of more than 2 threads —
the KEP can handle concurrency by multithreading. In 2008, the New Zealand group
responsible for the RePIC introduced their improved concurrency support with the
StarPro [48] processor.
The main difficulty caused by the implementation is the aforementioned concur-

rency. Since processors generally can only perform computation steps sequentially
(unless working with multicore CPUs, which produce other difficulties), true par-
allelism is hard to implement. A further issue is that the semantics of reactive
systems allow instantaneous feedback and parallelism causing data and preemption
dependencies which form the data dependency graph (DDG) and the control flow
graph (CFG), respectively. Thread-spanning dependencies impose further restric-
tions on the sequence in which the reaction’s instructions have to be executed. Boldt
wrote an Esterel compiler for a synchronous reactive processor (in this case meaning
the KEP, see [29]) in 2007, which translated the Esterel language to the KEP ISA.
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1.3. Topic of this thesis — compiling SSMs to the KEP

Even though the KEP is also not capable of true parallelism, with the help of the
compiler it can be simulated well enough. Thus, in Boldt’s compiler, the parallelism
is sequentialized while adhering to dependencies by using the KEP thread priority
feature.

1.3. Topic of this thesis — compiling SSMs to the KEP

This thesis deals with compiling SSM to the KEP ISA by the state machine to KEP
compiler (smakc!). Theoretically, this is already possible in a sequenced approach.
André [6] described how to translate state machines into Esterel, and a modified
technique is used in Esterel Studio [44]. From there, Boldt’s compiler could be used.
But if we look at state machines and processors closely, we find some key similar-

ities (which in fact are not coincidental, but an effect of the evolution of automata
and processors at the same time). The capability of a processor to skip program code
(called “branching”) is usually referred to as the infamous goto statement which has
been subjected to a lot of discussion (for some opinions, see [28, 16]). This state-
ment is provided with the address of some other part of the code, at which point
the processor immediately continues execution. At processor level a necessity, it has
been banned from programming language level by almost all languages by now due
to its incomprehensible side effects. But if we look at the drawing of a state machine,
we see states — usually depicted as circles, boxes or polygons, and transitions —
depicted as arrows. Throughout human history, the arrow symbol and the arrow
itself as a missile always had clear, intuitive semantics: from here to there. smakc!
honors this heritage in the attempt to generate efficient machine ISA code from state
machines.
smakc!ing state machines to the KEP involves several important subtasks.
The first of these tasks is a preprocessing step before compiling: As a state machine

implements the perfect synchrony (meaning that in theory for a computation to take
time, this has to be explicitly specified), it has to be checked for causality problems.
Because the smakc! compiler is implemented as a series of transformations of a state
machine, this step was left out for implementation at a later point.
Next, all parallelism has to be sequentialized (sometimes also called linearized) due

to the limitation that processors are either not capable of parallel computation or,
if so, do not implement the perfect synchrony. This step requires generation of the
DDG which reflects which code part must be executed before another one to retain
semantics. Further details on this topic will be discussed in chapter 5. Analyzing
the DDG allows us to decide if the program is sequentializeable. Cycles in the DDG
have proved to have the most influence on this decision since a cycle means that a
code part has to be executed before itself. In some cases, cycles can be resolved or
broken. This scheduling is one of the main parts of this work.
After causality checking and scheduling, the code for the target architecture can be

generated. Some compilers rely on major restructuring work to sequentialize while
preserving semantics as well as dependencies [49]. Others use an indirect compilation
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1. Introduction

approach by simulating the state machine [19]. We will analyze different strategies
which are not based on interpretation and will introduce computation strategies
borrowed from the field of approximative algorithms. This allows a tradeoff between
increased compiler speed and suboptimal resource usage, such as the KEP thread
priorities which allow fewer programs to run simultaneously the higher the maximum
priority is.

1.4. Compilation of Esterel and SSMs in general

As some reactive processors and multiple compilers already exist, others obviously
had to deal with the problems of how to handle reactive semantics, scheduling or
sequencing, and cycle detection and handling. The first approaches at compiling
synchronous languages came from the inventor of Esterel himself. Berry generated
C code from Esterel programs by producing automata [12], later netlists [18]. The
problems with these methods quickly became obvious: The automata code was ex-
tremely large, and the netlist code, although not as large as automata, was much
too slow. Stephen A. Edwards can be seen as the father of modern Esterel compi-
lation, as he introduced the control flow graph method. His influence in this field
can be seen in several works [17, 19, 18]. Edward’s approaches to compiling Esterel
are in general based on an interpretation/simulation principle; the original code is
simulated to a certain extent, and the simulation results are mapped to sequential
code [19]. Other authors borrowed from or implemented his ideas. To name just a
few: the Saxo-RT [15] and the CEC [17] make use of Edward’s ideas in compiling
concurrent to sequential code.
One would think that the availability of multiple CPUs makes it easier to imple-

ment parallel semantics (in fact an approach taken by the RePIC project [14]) but
the communication times and synchronization between multiple processors have to
be considered when implementing the parallel semantics of reactive languages with
instantaneous signal broadcast. This is one of the reasons why the RePIC has only
two [14] processors. More recent versions have overcome this limitation although the
creators of the RePIC or Emperor processor clearly identify the parallel semantics
and signal broadcasting as the major source of problems [47, 48].

1.5. Scheduling and sequencing

Difficulties naturally arise when trying to execute a program explicitly defined as
having parallel tasks on a single sequential processor. Operating systems simulate
this parallelism by concurrent threads of execution and a short time for switching
between them. Although the task of scheduling multiple threads or processes among a
single CPU or multiple CPUs is already quite challenging, parallel semantics and data
dependencies pose additional problems, as do hardware interrupts in conventional
operating systems. While some systems try to make disruptions of control flow by
preemptions assessable through several methods such as limiting time for interrupts
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1.6. Data dependency and cycle detection

Figure 1.3.: Many paths lead to the KEP.

(for example QNX, see [41]), others treat interrupts as regular inputs which have to
be considered in program design too.
This is why parallel tasks are usually “linearized” adhering to the data dependen-

cies. This problem is a variant of the scheduling problem with precedence constraints.
This will be discussed in more detail in section 6.2.

1.6. Data dependency and cycle detection

The problem of cycle detection for the DDG is also related to other problems. We will
use a similar variant of the dependency detection algorithm from Boldt’s compiler
[29] for use with state machines. It generates a DDG which we will search for cycles.
A cycle is also a strongly connected component (SCC), which provides us with the
possibility of applying SCC algorithms. We could use this for determining the tick
length for the KEP worst case reaction time (WCRT) self-monitoring feature too, but
we will also analyze a different approach using a modified Floyd-Warshall algorithm.

1.7. Contribution of this work

That’s hot!TM

Paris Hilton

This work details the state machine to KEP compiler, or smakc! for short.
André described a way to translate SSMs to Esterel in [6]. The Kiel Integrated

Environment for Layout (KIEL) [4] project and its follow-up, the KIEL for the
Eclipse rich client platform (KIELER) project [3], both originally tools for design
and layout of state machines, synthesize SSMs from Esterel programs (described in
[33]). From Esterel, Boldt’s compiler [29] can transform directly to the KEP ISA.
smakc! completes the picture by adding the possibility to transform state machines
to the KEP, see Figure 1.3.
Multiple approaches exist to accomplish this task. The first method that comes

to the mind is using the existing synthesis from SSMs to Esterel and then using
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1. Introduction

Boldt’s compiler. However, to efficiently transform arbitrary state machines, we
must encode jumps, represented by goto statements. As a state of the art high level
language, Esterel does not even have such a statement. In 2007, Edwards and Tardieu
presented a way to accomplish instantaneous jumps in Esterel (commonly referred to
as “Esterel+Goto”, see [43]), building upon previous work about non-instantaneous
jumps [42] by extending Esterel traps (an exception-handling mechanism). This
introduces new rules, and exchanges some rules in the Esterel formal calculus. On the
implementation side, as the KEPe [45] had to be used, this posed a serious problem.
The trap mechanism had been dropped from the KEP3 to the KEPe, since they can
be transformed into equivalent abort-based programs. However, the transformation
is not trivial. Thus, for transforming state machines to KEP assembler language
(KASM), the Esterel language would have to be modified, rendering all Esterel tools
currently in use obsolete. Boldt’s compiler would have to be heavily modified to
support the new mechanisms in traps and to translate them to aborts accordingly.
Therefore, we opted to directly transform SSMs to KASM.
Several questions arise: Given semantically equivalent Esterel code and a SSM,

which one is more efficient with regard to code size, resource usage, compilation
speed when compiled to a processor? Is transforming Esterel to a SSM and then
compiling the SSM feasible at all? This work will try to answer these questions.
smakc! is a fast, modular and extendable compiler algorithm of runtime O(n log n),

or O(n3) in case the Floyd-Warshall algorithm is used. It is capable of handling black
boxes, and is also parallelizable. Although the latter is only beneficial in terms of
the big-O-Notation if the number of machines is at least logarithmic in the input
size, a constant number of machines provides a significant speedup in practice.
To our best knowledge, so far there has been no attempt to compile and sequential-

ize perfectly synchronous systems such as SSMs or Esterel using the above-mentioned
methods.

1.8. Outline

The main part of this thesis starts out with a step-by-step introduction to Esterel
and SSMs, two synchronous languages. In section 2.3 we will explore the target
architecture, the KEP, in detail. Next, the smakc! compiler will be introduced in a
brief overview, followed by a discussion of the abstract implementation considerations
and issues in chapter 4, chapter 5 and chapter 6. Since scheduling is a major issue, it
will be discussed in more detail. In chapter 7, the details of smakc!s implementation
will be laid out. The results are discussed in chapter 8. The thesis will conclude in
section 9.1. The smakc! command line interface and its API will be detailed in the
user’s guide and developer’s guide, respectively.

8



2. Synchronous reactive languages and
reactive processing

We will now take a more detailed tour through Esterel and SSMs. These two “pro-
gramming languages” were both created to implement the “perfect synchrony” in
reactive systems. The perfect synchrony requires that the outputs of a process, gen-
erated for a given set of inputs, must occur instantaneously when the inputs are
read. In physical reality, this is of course not possible, but the assumption allows
considering logical correctness and timing constraints separately. To fulfill real-life
timing constraints, the longest tick is determined. The hardware can then be clocked
accordingly. Since outputs must be generated in a given amount of time1 and the
system has to be deterministic, the system must react in some way to any input, at
any time. As an example, think of the airbag controller chip in your car: It should
continuously check sensor inputs to determine if the car crashed. The calculation’s
outcome had better be on time if you don’t want black and blue marks on your
forehead, and it had better never stop being on time.
To this end, Esterel was developed. Esterel’s control constructs enforce reactivity,

for example, by restricting loops to a finite number of iterations per tick while still
allowing preemption and parallelism, all the while retaining a deterministic system.
The same goes for SSMs and, in fact, the two languages are equivalent in expres-

siveness. We will take a closer look at both of them starting with Esterel, and we
will compare the two using a well-known example called ABRO, a program with the
following semantics:

ABRO: The system has boolean valued inputs A, B, R, and an output O. Output
O shall be true as soon as both inputs A and B have been true. This behavior
should be restarted if R is true.

The program ABRO was inspired by a memory controller which has to wait for an
address (A) and the data (B) to become available. Then the write operation (O) can
take place. At any time, the controller can be reset (R), effectively also preempting
a write operation in the same instant.

2.1. Esterel

Esterel is a textual programming language in the imperative style. Its kernel lan-
guage consists of some constructs which are already known from other programming

1Recall: A reactive system is a system whose correctness also depends on the timeliness of its
calculations.
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2. Synchronous reactive languages and reactive processing

languages:

nothing does exactly that
; the sequence operator
present S then
p1 else p2 end

an if-then-else statement

emit S emits a so-called “signal”, it is considered
to be “present” for the entire tick (signal
status is “absent” by default)

loop p end an infinite loop, but must contain a pause
statement

signal S in p
end

defines a local signal

suspend p when
S end

process suspension as long as the signal S
is present

trap S in p end an exception handler block, somewhat
similar to Java try-catch

exit S raises the exception S

Here, similarities end. Esterel supports a set of operators with special capabilities
which are not easily reproduced in other languages:

pause explicitly let some time pass (wait until
next tick), this is the only way to do this

|| parallel operator, code to the left and to
the right of this operator executes syn-
chronously parallel. The parallel state-
ment terminates when all branches have
terminated.

An exit S statement immediately exits the scope of the corresponding trap. The
above statements make up a kernel language of Esterel (for a full specification of the
Esterel language, see [10]). Our program ABRO uses derived statements, which can
be seen as macros made up of kernel statements:

loop p each R The program is executed and the program
terminates at the end. It is restarted
though whenever signal R is present.

await S waits until the signal S becomes present,
then continues

await S can be written in kernel statements as:

1 trap T in
2 loop
3 pause;
4 present S then

10
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5 exit T
6 end
7 end
8 end

We want to present one more non-kernel statement, the abort statement, because
we will be talking about aborting programs or state machines as a form of preemp-
tion very often:

abort p when S Aborts program p when S becomes present
and immediately starts executing the fol-
lowing code. Since signals are present or
absent for the entire tick, if S is present,
program p will not even be executed in
parts.

In Esterel the program ABRO looks like this:

1 module ABRO:
2 input A,B,R;
3 output O;
4 loop
5 [await A || await B];
6 emit O
7 each R
8 end module

Apart from module name definition and declaration of inputs and outputs, the
program consists mainly of a loop which is restarted instantly whenever signal R
occurs. In the loop, a parallel simultaneously waits for inputs A and B. Once
both parallel branches have terminated (which is the case when both A and B were
present at least once, not necessarily in the same tick), the entire parallel statement
terminates, and the following statement makes O present.

2.2. Safe State Machines

SSMs are a graphical programming language which seem to be different from Esterel
code at first glance. They are an extension of the FSM, containing states and tran-
sitions just like a FSM, but additionally hierarchical states, preemption and parallel
semantics. Transitions leaving a state are considered abortions, meaning that control
currently in the state, possibly executing code associated with that state, is aborted
and resumes at the start of the transition’s target state.
A state can encapsulate other states which in turn form state machines again (and

is then called “macrostate”, “compound”, “composite” or “complex state”). Those
state machines are separated from each other graphically by a dashed line to indicate
they are supposed to execute in parallel. In each of these parallel substatemachines,
exactly one state must be flagged as initial to indicate the start of control flow.

11



2. Synchronous reactive languages and reactive processing

Figure 2.1.: The ABRO program as SSM.

Abort transitions leaving a macrostate preempt control flow in all contained sub-
statemachines at once. But macrostates can also have a different type of outbound
transition: the normal termination. As states can be flagged initial, they can also
be flagged as final. If control flow reaches a final state, it cannot leave that state
anymore. If however control flow of all parallel substatemachines resides in a final
state, the containing macrostate is exited by a normal termination (if there is one).
Normal terminations do not have conditions.

The ABRO program as SSM (Figure 2.1) illustrates the discussed features.

States drawn in other states (such as the AB state) display hierarchical contain-
ment. The dashed line indicates that the states A and B should be executed in
parallel. The same goes for AF and BF . The small red dots at the origin of the tran-
sition are drawn for strong abort transitions (see below). A green triangle is drawn
for normal terminations. Transition labels are of the form “<count|#><trigger>/
<effect>”. The trigger is a signal combination that must evaluate to true for a tran-
sition to be enabled for the tick. The effect is simply a list of signals that are emitted
when the transition is taken. Any of the label parts can be left out. The # sign will
be explained later, trigger counts are not important for this discussion. The double
border states are final states.
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2.2. Safe State Machines

Figure 2.2.: Initial and conditional pseudostates and an immediate transition.

2.2.1. Pseudostates and initial transitions

Figure 2.1 depicts small black dots next to some of the states, with arrows pointing
to the states. Figure 2.3, rendered by KIEL, displays those items more clearly as a
special type of state: initial pseudostates. They belong to a family of special states
called pseudostates. We will deal with two types of pseudostates: the initial and the
conditional pseudostate. The initial pseudostate denotes the entry point for control
flow in a state machine, and serves as a conditional pseudostate at the same time.
Conditional pseudostates have been introduced for the “write things once” principle,
basically replacing signal tests of the form (A and B) or (A and C) with (A and (B
or C)) (see Figure 2.2). Control flow is not allowed to rest at a pseudostate, it must
be immediately transferred to another state. Regular transitions transfer control
only after one tick has passed. The behavior of the transitions leaving pseudostates
can also be applied to regular transitions by flagging them immediate with a “#”
symbol, see the transition from S1 to S2 in Figure 2.2. We will refer to non-pseudo
states as real states.

2.2.2. Strong vs. weak abortion and causality analysis

So far we did not specify when exactly a preemption takes place. In Esterel as
in SSMs, we distinguish two types of abort transitions: the strong and the weak
abortions. A strong abortion preempts a state at the start of a tick, forbidding any
execution of code within the state. A weak abortion on the other hand preempts the
state at the end of a tick, allowing the state to execute one more time. This might
not seem significant at first but consider Figure 2.3.
The state S1 is strongly aborted at the occurrence of signal A, preventing any

execution of code within. Now consider the instant control flow enters state strong.
Control immediately branches to the initial state, and since it is a pseudostate, the
only transition (to S1) is taken, and A is emitted. But signals are always broadcasted,
and due to synchronous reactivity semantics, the signal status is present for the entire
tick. This triggers the strong abortion though, which preempts state S1 at the start
of the tick, preventing any execution of inner states including taking the transition
from the initial state to S3.

To make this example clear: The emission of A prevents the emission of A, which
enables the emission of A again, a causality problem. Such programs are not valid
and must be rejected by compilers.
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2. Synchronous reactive languages and reactive processing

Figure 2.3.: Left: a causality problem.

The state to the right, using a weak abortion instead, is perfectly valid, since weak
abortion allows a state to execute for another tick before preempting at the end of
the tick.

2.2.3. Actions

Testing and emitting signals does not necessarily only have to take place when tak-
ing transitions. So called “actions” allow doing this also when entering, exiting or
resting in a state. Any real state can have actions assigned as onEntry, onExit and
onInside action. An action can have a trigger (a complex signal expression) and an
effect, which is the emission of signals. When entering a state, its onEntry action’s
triggers are evaluated. If the expressions evaluate to true, the actions’ signals are
emitted. Whenever control flow rests in a state, the onInside actions’ triggers are
evaluated and signals are emitted if they evaluate to true. onExit actions are not
quite analogous. Their effect signals are also emitted when their triggers evaluate
to true, and obviously, they are tested when exiting a state. But exiting a state not
only applies to exiting it by a transition. The state can also be exited by preemption
of a containing macrostate at some arbitrary point in the containment hierarchy.
The translation of onExit actions to KEP code is possible, but difficult, and not
implemented in smakc!. We provide some ideas on how to do this in section 9.2. In
fact, onExit actions were even difficult to express in Esterel. Therefore the current
version of Esterel was augmented with additional language features to express the
semantics of onExit actions.

2.3. On the KEP and the KEPe

The KEP was developed by the reactive and embedded systems group of the De-
partment of Computer Science at the University of Kiel. Its purpose is to enable
direct implementation of the perfect synchrony found in Esterel or SSMs by means
of supplying special hardware features. Implementing perfect synchrony along with
parallelism and preemption while still retaining a deterministic system is a very diffi-
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Figure 2.4.: onEntry and onInside actions rendered in KIEL.

cult task with regular hardware, since external hardware as well as the system clock
raise interrupts, thereby making it impossible to exactly predict the system’s behav-
ior. The KEP is a special processor which circumvents these problems (although
some work still has to be done by the compiler). For full information on the KEP,
see [30].
The KEPe is a more recent development, an implementation of the KEP ISA kernel
statements (valued signals as well as an ALU have been left out) written in Esterel.
One of the questions was if the KEP could execute itself. Unfortunately, the question
could not be answered due to Esterel version differences. For full information on the
KEPe, see [29] and http://www.informatik.uni-kiel.de/rtsys/kep.
We will now take a short look at the KEPe commands and their significance regard-
ing SSMs. Since the KEPe implements a subselection of the KEP instructions, the
following considerations are valid for both processors.

The modern KEP family processors all make use of “watchers” which are divided
into abort watchers and thread watchers.
Abort watchers get a start address, an end address and a signal. If the signal

becomes present and control flow currently resides in the code block designated by
the start and end address, control is immediately transferred to the end address.
The multithreading feature first introduced in the KEP3 is more difficult to ex-

plain. PAR statements define start addresses for parallel blocks of code, additionally
defining initial thread priority of the threads. A PARE statement denotes the end of
the last parallel block. For each parallel block, a thread watcher is initialized. The
thread watchers have a similar task as the abort watchers: they watch control flow
within their respective thread. If control flow leaves the thread’s code segment, the
thread watcher terminates the thread. If all parallel threads terminate, control flow
is resumed in the parent thread at the address designated in the PARE statement.
The processor always runs the thread with the highest priority, therefore, to get in-
terleaved execution, the thread priorities have to be modified during runtime. This
introduces the main scheduling difficulty: A thread can only change its own priority.
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2. Synchronous reactive languages and reactive processing

The KEPe ISA consists of the following instructions:

emit S emits the signal S (making it
present)

sustain S control flow stops at this instruction
and continuously emits the signal S

load reg, #val loads a value into the specified reg-
ister (can also be a signal)

present S elseaddr checks if S is present. If so, continues
with the next instruction, otherwise
branches to elseaddr

[w]abort[i] S,
endaddr

branches to end of code block desig-
nated by endaddr when S becomes
present, [w] is a modifier for weak
and [i] a modifier for immediate
abortion

suspend[i] S,
endaddr

suspends (freezes its execution) the
code block designated by endaddr as
long as signal S is present

par addr, prio opens a new thread block with code
segment up until addr, the new
thread starts out with priority prio

pare addr closes the last par block at addr
goto addr immediately branches to addr
signal name opens a new signal scope. This is

simply done by resetting the signal
if it previously existed

await[i] S control flow stops at this instruction
until the signal S becomes present

join prio joins terminated parallel threads
and assigns the parent thread the ar-
gument priority

nothing does exactly that
halt control flow stops at this node

All modern KEP versions are scalable. Upon generating a new KEP microproces-
sor, the number of abort and thread watchers, the size of the instruction memory
and the maximum amount of i/o signals can be specified, for example.
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3. smakc!ing state machines to the
KEP — the big picture

The White Rabbit put on his spectacles. “Where shall I begin, please
your Majesty?” he asked.
“Begin at the beginning,” the King said gravely, “and go on till you come
to the end: then stop.”

from “Alice’s Adventures in Wonderland”

In general, the compiler is provided with a set of input state machines and an
ordered list of transformations to apply to the state machines in that order. The
compiler therefore is quite simple to understand, as can be seen in Figure 3.1.
The compiler algorithm is composed of several sequential steps. In some of these

steps, more than one option exists to perform it. Some steps can be left out entirely
in some cases. The subalgorithms are:

1. A conditionals unrolling which transforms complex signal expressions to simple
signal tests. This algorithm is detailed in section 4.2. It leaves SSMs that do
not contain conditional expressions unchanged and can therefore be left out if
the input state machines are known not to have such expressions.

2. A dependency detection which detects data and control flow dependencies and
adds them to the SSM as special transition type. This transformation can be
left out if the input state machines are known not to have any dependencies or
if no scheduling is wanted.

3. A cycle detection algorithm. The algorithm operates on the data dependencies
found in a state machine and is implemented by the Floyd-Warshall algorithm.
It stops the compiler with an error if a cycle in the data dependencies was
found in any input SSM, or continues with the cycle-free SSMs, depending on
the value of the force compiler flag. This transformation can be left out, since
the scheduling algorithm automatically detects cycles. However, it could be
useful to run it anyway, as the cycle detection also finds out which states lie
on a dependency cycle.

4. A transformation that upgrades all states to states with thread priorities. This
is a true extension of the SSM model, since thread priorities are only needed for
sequencing and are not required in synchronous languages. This transformation
is mandatory if the scheduler or code generator are supposed to be used.
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Figure 3.1.: The smakc! procedure in general.

5. A module linker (not yet implemented). This transformation links all encoun-
tered reference macrostates to the corresponding input state machines and
performs signal renaming on them.

6. A scheduler. This algorithm requires states with thread priorities as input.
It schedules the states according to the encountered dependencies and assigns
thread priorities accordingly. The algorithm is implemented using ideas from
strip packing.

7. A code writer. This transformation also requires states with thread priorities
and generates the target platform’s code. This transformation uses the Apache
Velocity templating engine [35].

A full run would therefore consist of the steps depicted in Figure 3.2.
We will illustrate the full run by smakc!ing the SSM in Figure 3.3.
As noted in the overview of the transformations, the conditional resolving trans-

formation is applied first. Since our SSM does not contain any signal expressions it
is unchanged by that transformation. Next, the dependency detection is started. It
will detect a dependency from T1 to U1 by signal A, and another dependency from
U1 to T2 by signal B. These are shown in red in Figure 3.4. Since these do not
form a cyclic dependency, the cycle detection transformation has nothing to com-
plain about. The states have to be upgraded to states with thread priorities before
they can be scheduled. The scheduling result is shown as the red numbers next to
the state names in Figure 3.4.
Finally, after scheduling, code can be generated by the code writer transformation.

It does not change the SSM, it only writes the target architeture code to an output
stream. The generated code for our sample SSM is shown from 19 to 22.
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Figure 3.2.: Being smakc!ed from the SSM’s point of view.

1 INPUT A
2 INPUT B
3 EMIT _TICKLEN,#0
4

5 BEGINSTARTUPTWODEPENDENCIES:
6 ENDSTARTUPTWODEPENDENCIES:
7 BEGINCOMPLEXSTATETWODEPENDENCIES:
8

9 BEGINSTARTUPS:
10 ENDSTARTUPS:
11 BEGINCOMPLEXSTATES:
12 PAR 3, BEGINSTARTUPT1, 1
13 PAR 2, BEGINSTARTUPU1, 2
14 PARE SUBSTATESENDS, 0
15

16 BEGINSTARTUPT1:
17 ENDSTARTUPT1:
18 BEGINAWAITSTATET1:
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Figure 3.3.: Our example SSM “TwoDependencies”.

19 AWAIT TICK
20 GOTO BEGINSTARTUPT2
21 ENDAWAITSTATET1:
22 BEGINSHUTDOWNT1:
23 ENDSHUTDOWNT1:
24

25 BEGINSTARTUPT2:
26 ENDSTARTUPT2:
27 BEGINAWAITSTATET2:
28 AWAIT B
29 GOTO BEGINSTARTUPT3
30 ENDAWAITSTATET2:
31 BEGINSHUTDOWNT2:
32 ENDSHUTDOWNT2:
33

34 BEGINSTARTUPT3:
35 ENDSTARTUPT3:
36 BEGINSIMPLESTATET3:
37 HALT
38 ENDSIMPLESTATET3:
39 BEGINSHUTDOWNT3:
40 ENDSUSPENDT3:
41 ENDSHUTDOWNT3:
42

43 BEGINSTARTUPU1:
44 ENDSTARTUPU1:
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Figure 3.4.: Our SSM with dependencies shown in red, already upgraded with thread
priorities and scheduled.

45 BEGINAWAITSTATEU1:
46 AWAIT A
47 GOTO BEGINSTARTUPU2
48 ENDAWAITSTATEU1:
49 BEGINSHUTDOWNU1:
50 ENDSHUTDOWNU1:
51

52 BEGINSTARTUPU2:
53 ENDSTARTUPU2:
54 BEGINSIMPLESTATEU2:
55 HALT
56 ENDSIMPLESTATEU2:
57 BEGINSHUTDOWNU2:
58 ENDSUSPENDU2:
59 ENDSHUTDOWNU2:
60

61 SUBSTATESENDS:
62 JOIN 3
63 HALT
64 ENDCOMPLEXSTATES:
65 BEGINSHUTDOWNS:
66 ENDSUSPENDS:
67 ENDSHUTDOWNS:
68

69 SUBSTATESENDTWODEPENDENCIES:
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70 HALT
71 ENDCOMPLEXSTATETWODEPENDENCIES:
72 BEGINSHUTDOWNTWODEPENDENCIES:
73 ENDSUSPENDTWODEPENDENCIES:
74 ENDSHUTDOWNTWODEPENDENCIES:

The exact details of the transformations are discussed in the following chapters.
Except for the Floyd-Warshall cycle detection algorithm, all transformations are

implemented by depth first or breadth first search and thus areO(n log n) algorithms.
The Floyd-Warshall algorithm has a runtime of O(n3) and dominates runtime as well
as memory usage, since it requires setting up a matrix of size n2.
An advantage of the strip packing algorithm is that the algorithm can automati-

cally detect cycles in the DDG since the strip packing steps are bounded from above
by a value in O(n), although by this method we do not know exactly which states
cause the cyclic dependency.
Once the DDG has been set up, most of the remaining compilation tasks can be

split into subtasks which allow parallel execution.
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4. Basic transformation issues

4.1. Semantics, sequencing and dependencies

The most difficult problem in executing a SSM is the instantaneous broadcast of sig-
nals. The testing of a signal at a transition must either succeed or fail, dependent on
the presence status of the signal in question, but not on the time that presence status
is established. This concept, easily expressed in theory, is very difficult to implement,
since processor instructions are generally executed sequentially, meaning that of a
signal testing and a signal emitting statement, one has to go first, and preferably it
should be the emission, since it is a statement that establishes a signal status. This
creates implicit dependencies between code parts that were not explicitly created in
the code when moving from a SSM to a processor. Therefore, the statements have
to be scheduled to ensure the correct order of their execution. This big topic will be
discussed in chapter 6.

4.2. Complex conditional expressions

Just Dropped In To See What Condition My Condition Was In

song from the movie “The Big Lebowsky”

Transforming an abstract representation of a system to an assembler language
naturally also requires some minor restructuring tasks even though the target pro-
cessor architecture already supports most statements directly. One of these tasks is
breaking down boolean formulas (e.g. ((A and B) or C)) to sequenced testing of
single variables. In the case of SSMs this can be done with the common simple trick
of introducing additional variables which are always recalculated to be equal to the
result of a complex formula, and then testing that variable.
Instead of exchanging every complex condition test with the corresponding state

machine in that place, we have opted to introduce a new state machine of its own
in a parallel branch that calculates the signal expressions contained in its direct
parent complex state. This way we save states in case the same signal expression
appears more than once. On the other hand, we have to make sure the additional
parallel state machine does not prevent the parent state from terminating. Imagine
all original parallel branches are in a final state. Then the signal calculation state
machine also has to enter a final state to allow the parent state to take a normal
termination.
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The signal calculation state machine consists of a combination of the state ma-
chines that resolve simple expressions. We will illustrate this for the boolean opera-
tors and, or and not using only literals.
An and expression

is transformed to

whereby the first of the signal calculation states is connected to the initial state
of the signal computation thread, or to the previous endpoint(s). An or expression

is translated to

And a not expression

produces the following state machine:
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4.2. Complex conditional expressions

All of the states in the signal computation thread — except the end points which
have to emit signals — are represented as conditional pseudostates to save resources.
In the above examples, AandBandC, AorBorC and notA are new signals. We already
mentioned that some more transformation has to be done to enable regular termi-
nation of a state with parallel threads. Think of a macrostate that has a normal
termination and each thread contains a final state. Then all threads can terminate
by reaching their final state, and the normal termination transition is taken. If we
add another thread we have to ensure that the new state machine retains the same
behavior. This requires some internal signaling. The original threads must commu-
nicate to the signal computation thread that they are finished to let it know that it
can terminate too. On the other hand, due to the definition of signals being absent
by default, they have to communicate this to the signal computation thread as long
as there is still an original thread running.
To implement this, we used the following idea: Each thread gets a new local signal

(local to the containing macrostate) representing the terminated or not terminated
status. Each final state

is exchanged for a fake final state, in which a signal is repeatedly emitted that the
thread is done:

The conjunction of these final signals is tested just like a regular and conditional
expression in the signal computation thread. That expression’s end point emits the
FinishAll signal, by which it terminates itself, and signals to the other waiting threads
that they can stop emitting the finish signal and continue on to their respective final
states.
The entire process is illustrated in the following example:
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The conditionals unrolling results in a modified state machine:
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5. Analyzing signal dependencies

Just try and stay out of my way. Just try! I’ll get you, my pretty and
your little dog too!

The Wicked Witch of the West

The signal dependency detection used in smakc! is quite straightforward: Signal
sources and signal sinks are identified. Then, for each pair of source and sink, we
check if they could possibly form a dependency. The same method was implemented
in Boldt’s strl2kasm compiler [29], although his compiler determines dependencies
at assembler code level, whereas smakc! determines them at SSM level. In their
work about removing cyclic dependencies [31], Lukoschus and von Hanxleden also
determine signal dependencies and remove cycles in programs that are known not
to have any causality problems. Their approach can not be applied here, as the
scope of the problem is completely different. In compilers, we need to know which
states are origins and which states are targets of dependencies. Lukoschus and von
Hanxleden are only interested in knowing which signals cause cyclic dependencies,
and then remove the dependency by exchanging the signals throughout the entire
program. They do not need to know what program parts cause the dependencies.
Determining these is the main problem in dependency detection. We will now take
a look at how this is done in smakc!.
First, some definitions:

Source: A state is a potential source of a signal S if S is emitted in any of the state’s
actions (onEntry, onInside, onExit), or if it is emitted on any transition leaving
the state.

Sink: A state is a potential dependency sink of signal S if S appears in any expres-
sion that is tested on an outbound transition, in an action’s trigger, or in a
suspension.

Dependency: A source/sink state pair with the same signal form a dependency if
the two states are concurrent to each other.

The reason for not considering dependencies of non-concurrent states is that those
states are already in a fixed ordering which cannot be changed through scheduling
of threads.
Determining possible sources and sinks is a fairly easy task, whereas determining if

two states S1 and S2 are concurrent to each other requires the following calculations:
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5. Analyzing signal dependencies

Concurrency detection algorithm 1

1. For each state, determine the containing parent state.

2. Use information from the previous step to find the topmost state contain-
ing S1 and S2, called Sgcd.

3. For each parallel substatemachine Sp in Sgcd, check if Sp contains both
S1 and S2, in which case they are not concurrent, otherwise they are
concurrent.

The dependencies returned by this algorithm are just rough guesses of what could
be a dependency, since some constellations of simultaneous active states might not be
possible at all in a state machine. As yet, no one is gathering or assessing information
on which states can be active at the same time.
The performance tests on the token ring example (section 8.2) showed that the

algorithm is fairly inefficient, especially for highly parallel SSMs, since it requires
searching through all parallel branches of the gcd state. Imagine a SSM that consists
of the root state, and some arbitrary amount of parallel branches containing an
initial state connected to a final state. In the worst case, the last step of algorithm
1 requires searching (almost) the entire SSM again. By “remembering” the states
traversed during the search for the gcd state, this second search can be avoided and
the runtime can be significantly improved. The modified algorithm consists of the
following steps:

Concurrency detection algorithm 2

Step 1 With a simple DFS, set up a containment graph in which every non-
initial node points to the initial node of its thread (green edges), and
the initial node points to the containing macrostate (red edges), see the
following image for an example:
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Step 2 For any two nodes a and b, let aactive and bactive be boolean variables.
Initially both set to false, the algorithm will be allowed to terminate only if
they are both set to true (the termination of the algorithm is “activated” by
the conjunction of the two variables). Let ap and bp be pointers to states,
initially pointing to a and b respectively. Keeping node ap fixed, traverse
the containment graph starting at node bp, remembering the previously
traversed node. If a red edge is traversed, set bactive to true. If ap is
encountered on the way and (aactive and bactive) holds true, the current
state is the gcd state. If the topmost state is reached, reset bp to b and
bactive to false, and advance ap one step up the containment graph, setting
aactive to true if a red edge is traversed and remembering the previously
traversed node, and repeat the behavior for bp. At the end of this step,
the gcd state for a and b has been found.

Step 3 All that remains to be done is to compare the states remembered on
the way just before encountering the gcd state for equality. If they are
equal, the states are sequential, otherwise concurrent.
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6. Scheduling

Linearizing parallel code is one of the main tasks of the smakc!. Often, we want
multiple programs executing simultaneously on one machine. Reactive programs, in
most cases used for modeling embedded systems, are inherently parallel. In most
cases, there are also dependencies — in this case better known as precedence con-
straints — in the order of the tasks to be executed. A simple example is a web
browser which first has to download an image from a remote computer to be able to
display it for you. However, a single core CPU can only execute one program at a
time. Various strategies have evolved to handle this problem:

The KEP implements semidynamic scheduling by thread priorities, resulting in
the necessity for the compiler to statically schedule programs before they can be
executed on the processor.
Linearizing tasks according to some given precedence constraints is a very old

problem for which several solution methods exist. But first, we want to state the
problem mathematically:

Let T = {T1, . . . , Tn} be n tasks, and let G = (T,D) be a directed acyclic graph
having the tasks as node set and representing precedence constraints. So for any
edge (a, b) ∈ D, task Ta should be executed before Tb. The goal is to find a map
φ : T → {0, . . . , n} such that for (a, b) ∈ D, Taφ > Tbφ.

In most cases, we want to minimize |Tφ|. The reason for this is quite technical:
Due to hardware limitations, there is a maximum priority value. By minimizing the
maximum priority used by a program, more programs can be run simultaneously.
Additionally, by minimizing the highest priority used, the number of priority switches
is also minimized to some extent, saving further processor cycles. Priority switches
also require an instruction on the KEP, so each priority switch also adds to the
total instruction count. Therefore, |Tφ| also has impact on runtime and size of the
generated code.
The KEP self-prioritizing of threads and the implementation of thread priorities

imposes further constraints on the ordering of the tasks because, as mentioned in
section 2.3, increasing the thread priority is essentially not possible during the same
tick, which means that the thread priority can only stay equal or decrease.
In the following two sections, we will review two methods for such constraint-

solving. The first is the simplex algorithm, an exact algorithm and one of the oldest
among constraint solving algorithms. The second is a more recent algorithm from
the class of approximative algorithms, trading accuracy of the result for increased
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Figure 6.1.: A simple state machine with data dependencies.

speed.
As an example, we will use the state machine from Figure 6.1.

6.1. Using the simplex algorithm

In this section we will show how to apply the simplex algorithm to solve the con-
strained ordering of the data dependencies.

6.1.1. Linear constraint problems

The simplex algorithm solves linear constraint problems, in mathematical terms de-
fined as the set of vectors x = (x1, . . . , xn)T which, for a matrix A and a vector v,
form the affine space of solutions to the equation Ax = b (standard form), or the
inequation Ax ≤ b (canonical form), whereby finding the optimal value of the objec-
tive function to a cost vector c defined as min cTx. All matrix and vector dimensions
must be fitting, of course.
A linear constraint problem (linear problem (LP)) is usually noted using the follow-
ing syntax:

min cTx subject to

Ax ≤ b

All variables are required to be integers greater than or equal to zero.
Other forms require strict inequality or equality in the constraints. However, any LP
in one form can be translated into another, equivalent LP of any other form.
To phrase the linearization of a state machine as a LP, we have to define the vari-

ables, the constraints that make up the constraint matrix and boundary vector, and
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the cost vector.
As variables, we use the states of the state machine (referring to them by their name,
or in case of conditional pseudostates or other unnamed state types by some previ-
ously assigned unique indexes). The cost vector will be the vector set to 1 in each
component.
For each dependency from state Sa to Sb, we add the constraint:

Sa − Sb > 0

and for each path of control flow (that is, a regular transition, a normal termina-
tion, or from a complex state to the initial states of its substatemachines) S to Ssuc,
we add the constraint:

S − Ssuc ≥ 0

Variables will be greater than or equal to zero1.
Thus, for our example state machine, we get the following LP:

minV S + S1 + S2 + S3 + S4 + S5 + S6 + S7 s.t.

(1) V S − S1 ≥ 0

(2) V S − S4 ≥ 0

(3) V S − S7 ≥ 0

(4) S1 − S2 ≥ 0

(5) S2 − S3 ≥ 0

(6) S4 − S5 ≥ 0

(7) S5 − S6 ≥ 0

(8) S1 − S4 > 0

(9) S4 − S2 > 0

(10) S2 − S5 > 0

The inequalities from (1) to (7) are the inequalities resulting from control flow,
while (8) to (10) result from the dependencies. To convert the LP to canonical form
we need to introduce new variables to convert the true inequalities into lesser-or-
equal inequalities. These additional variables will not be considered in the results.

1Note that although this might seem like an integer LP, in fact it is not, since we are only interested
in the ordering of the states.
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Such variables are called slack variables, and as all regular variables must be greater
than or equal to zero.
Introducing the slack variables t1, t2 and t3, the true inequalities (8), (9), (10) are

converted to:

(8′) S1 − S4 − t1 ≥ 0

(9′) S4 − S2 − t2 ≥ 0

(10′) S2 − S5 − t3 ≥ 0

Note that for any x,

x ≥ 0⇔ −x ≤ 0

thus our LP is in canonical form. The solution of the LP is an assignment of values
to the variables fulfilling all constraints and minimizing the cost function.

6.1.2. Solving LPs: the simplex algorithm

Research for the simplex algorithm started during World War II and was finished in
1947 by the US mathematician George Dantzig. Since then, it has undergone a lot
of modification, extension and testing, for example by Karmakar in 1984 [27] whose
research provided the foundation for the polynomial time inner point algorithms.
The simplex algorithm searches the vertices of the multidimensional polytope de-
fined by the system of constraints in an ordered fashion, since the optimal solution
is one of the vertices. The number of vertices is constant for any given system of
equations, so the algorithm runs in polynomial time. However, if we want to solve a
series of different LPs, the runtime also depends on the number of vertices, which is
exponential in the number of equations.

The linear constraints and cost function of a LP make it easily understandable in
geometric terms. Looking only at states S1 and S2 of the above example, equation
(4) states that

S1 − S2 ≥ 0⇔ S1 ≥ S2

The cost function, reduced to those variables, reads minS1 + S2. The situation
can be interpreted graphically as can be seen in Figure 6.2.

The inequalities form a convex polyhedron in their vector space (instead called
polytope if it is bounded). If we now fix all of the variables of the cost function
except one, we get a line in the space formed by the variables. Minimizing the cost
function can now be seen as “pushing” that line around in the space until it reaches

36



6.1. Using the simplex algorithm

Figure 6.2.: Geometric interpretation of the simplex method, S1 fixed, S2 variable.

its minimum value.
If you try this experiment by drawing a triangle on a piece of paper and using a pen
as line to push around on it, it is intuitively clear that the maximum or minimum
values of the cost function can always be found on a vertex of the polyhedron, if
there are any at all.
The simplex algorithm exploits this property by starting with one vertex and ad-
vancing to an adjacent vertex with a better cost function value. If at some time
there is no such vertex, the optimal solution has been found.

6.1.3. Disadvantages of the simplex algorithm

The simplex algorithm has been implemented several times and in several different
variations [26]. Such frameworks usually work on standard or canonical form, with
the drawback that additional variables have to be introduced. When using frame-
works, it is difficult to get usable results, since optimizations to the original variables
are often done by pushing the cost to the slack variables which are not subject to
the cost function. Thereby, the cost function is optimized, but we lose differences
between the original variables expressed in our unmodified equations.
Furthermore, although the simplex algorithm runs in polynomial time in the aver-

age case, it can be exponential in the worst case. The ellipsoid method or inner point
method circumvent this problem but have much longer runtime in practice than the
simplex method.
The introduction of black boxes (states with one or more priority switches) also

requires more precalculation in the setup of the LP.
For these reasons, we chose to refrain from implementing the simplex method for

scheduling in smakc!.

37



6. Scheduling

6.2. Using strip packing

Ideas from strip packing can also be used to schedule the state machine parts. Con-
cepts from strip packing almost naturally apply to linearizing, and handling black
boxes becomes very straightforward.
As most strip packing problems are NP-complete, algorithms are usually approx-

imative algorithms, trading accuracy for speed. Strip packing and scheduling are
closely related up to the point of being almost equivalent, and often, they borrow
from each other.
Scheduling started as far back as 1961 when T.C. Hu analyzed parallel sequencing

and assembly line productions [25]. He gave an intuitive algorithm for non-cyclic,
input-independent graphs and calculated completion time given some amount m of
workers (m stood for men, but in later works evolved to machines), and the amountm
of workers needed to complete all tasks in a fixed time. The basic idea of his technique
was reused much later in an LP approach to scheduling with communication costs
and precedence constraints.
If we take a look at the 80s, we find linearization methods researched by Ferrante

and Mace [21, 22]. There is also some more contemporary work on linearization by
Zeng et al. [49], although not specifically geared towards reactive systems.
More sophisticated algorithms taking data dependencies into account have ap-

peared only recently, built on top of the now fairly well explored field of strip pack-
ing and bin packing (which are related in many ways). The strip packing problem
is defined as the problem of packing a set of n-dimensional rectangles into an n-
dimensional strip whose “height” (one of the dimensions) is unbounded, with min-
imal packing height. The sequentialization of tasks with dependencies can be ex-
pressed as the precedence constrained strip packing problem, for which an O(log n)-
approximation algorithm was found in [8]. It makes use of a 2D packing algorithm,
which can be either Steinberg [40] or Schiermeyer [38].
In our scheduling algorithm, we will borrow several ideas from [8].

6.2.1. Strip packing problems

In strip packing, we are given a container of fixed width and infinite height, and a
list of items that all fit into the strip individually (as consequence, they also all fit
into the strip together). The problem is to provide an algorithm that packs the items
into the strip minimizing the height of the packing.

For simplicity’s sake, often the strip base size and item base sizes are normalized
such that the size of the strip is 1. For 2-dimensional strip packing, the problem is
defined as:

Given a strip of base width 1, and n items I1 to In with arbitrary height hi and
width wi ∈ (0, 1], find a packing of the items into the strip (denoted by pairs xi, yi

specifying the coordinates of the lower left corner of the item in the packing) such
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Figure 6.3.: Strip packing with a shelf algorithm.

that the items do not overlap, minimizing the total packing height.

Several methods of solving strip packing problems exist, most algorithms are sur-
prisingly simple, almost trivial. The proofs for their performance however are ex-
tremely difficult and often make use of LPs. Most algorithms in this field belong to
the class of “shelf algorithms”, that is, they pack items onto an imaginary shelf and
open up a new shelf on top of the highest item of the current shelf when it is full
(see Figure 6.3).
Several variations of the problem exist, for example, with more dimensions, special

item types (all squares), allowing rotations for the items or precedence constraints
on the placement of the items.
Applying strip packing to state machines is very straightforward: We will use the

states as items, and the dependencies as precedence constraints for the placement
of the items. Using the states as items has the significant advantage that we can
assign a height of 1 to simple states, whereas state machines which have already
been scheduled can be reused in a new scheduling by assigning them the total height
of their respective packing. This exploits the property that a finished packing can
itself be used as item again in a new packing, using the packing height as item
height. Then, a valid packing reflects the ordering of the states in such a way that
the constraints are fulfilled.

6.2.2. Solving precedence-constrained strip packing for a SSM

So let S be the set of states of a state machine and G = (S,E) the directed acyclic
graph representing the precedence constraints. For s ∈ S, let hs be 1 for regu-
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lar states, and the height of a strip packing for pre-scheduled state machines. The
inbound-neighborhood of a state is defined as:

IN (s) = {s′ | (s′, s) ∈ E}

The function F will serve as a lower bound for the height of the top edge for an
item under a valid placement:

If IN (s) = ∅ define F (s) = 0

If IN (s) 6= ∅ define F (s) = max
s′∈IN (s)

(F (s′) + hs)

For any subset S′ of the item set, define H(S′) = maxs∈S′ F (s). For an arbitrary
subset S of the item set, we additionally define the following partition:

Smid = {s : (F (s) ≥ H(S)/2) ∧ (F (s)− hs < H(S)/2)}

Sbot = {s : F (s) < H(S)/2}

Stop = {s : F (s)− hs ≥ H(S)/2}

The following lemmas form the foundation of the packing algorithm.

Lemma 1: For a fixed arbitrary y, let S′ be the set of items s such that F (s) ≥ y
and F (s)− hs < y. Then there are no dependencies between the items in S′.

Proof. Assume for a contradiction that there are s, s′ ∈ S′ such that there is a
path in G from s to s′. Let spre be the predecessor of s′ on this path. Since
(spre, s

′) ∈ E, F (s′) = maxs′′∈IN (s′)(F (s′′) + hs′) ≥ F (spre) + hs′ . Since the
values of the function F do not decrease along a path due to the definition by
a maximum,

(∗) F (s′) ≥ F (s) + hs′

but since s ∈ S′, F (s) > y, and since s′ ∈ S′, F (s′) − hs′ ≤ y, putting these
inequalities together, we get

F (s) + hs′ > F (s′),

a contradiction to (∗).

Lemma 2: Let S 6= ∅ be a subset of the item set and Stop, Smid and Sbot be the
aforementioned partition. Then the set Smid can not be empty.

Proof. We will prove this by contradiction too. Assume Smid = ∅.
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1. ∃s ∈ Stop:
Since F (s) = 0 if IN (s) = ∅ and hs > 0, F (s) − hs < 0 for items with
inbound degree 0, and therefore, such items cannot be in Stop. Thus, any
item in Stop must have an inbound degree of at least 1 in G.
Now consider the subgraph Gtop of G induced by Stop. Pick any item
s ∈ Stop with inbound degree of 0 in Gtop. All items s′ with (s′, s) ∈ E
must be in Sbot (as Smid is empty). Since F (s) = maxs′∈IN (s) F (s′) + hs,
and F (s′) < H(S)/2 for all s′ ∈ Sbot,

F (s) < H(S)/2 + hs ⇒ F (s)− hs < H(S)/2,

thus, s /∈ Stop, a contradiction.

2. Stop = ∅:
By definition, H(S) = maxs∈S F (s). Since all items are in Sbot, there is
at least one item s ∈ Sbot such that F (s) = H(S). But by definition of
Sbot, F (s) < H(S)/2, a contradiction.

We can now use the following algorithm for scheduling the states of a state machine,
using a subroutine A(y, S) that schedules the states in S at position y and returns
the maximum height of an item in S under the placement: A(y, S) = maxs∈S(y+hs).

The following algorithm will be called DC in analogy with [8].

Algorithm DC(y, S)

1. If S = ∅, return y
2. Recalculate F (s) for each s ∈ S using the subgraph of G induced by S

3. Partition S into Sbot, Smid and Stop as defined above.

4. Assign ybot = DC(y, Sbot)

5. Assign ymid = A(ybot, Smid)

6. Return DC(ymid, Stop)

Lemma 1 ensures that there are no dependencies between the items of Smid, so
they can all be placed at the same height in the strip. By lemma 2, we know that in
each call to DC there is at least one item in Smid, meaning that each call schedules
at least one state. Thus, the algorithm is correct.

6.3. Applying the result to the sequencing of SSMs

Once we have a sequencing of the states, obtained by some method (for example the
simplex or strip packing methods introduced above), the sequence can be applied to
the target architecture. As with the KEP, this is done by thread priorities (see sec-
tion 2.3). The processor always executes the thread with the highest priority, which
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means that the ordering of the states corresponds to decreasing thread priorities. So,
in the example in Figure 6.1, the ordering would be V S, S1, S4, S2, S5, S3, S6
and S7 (this is due to the control flow dependency). KEP thread priorities could
therefore be assigned as follows:

V S 4
S1 4
S2 2
S3 2
S4 3
S5 1
S6 1
S7 1

As mentioned above, smakc! uses an approximate algorithm for scheduling. The
algorithm implemented in smakc! considers immediate transitions to be dependencies
too, as the target of such a transition can be reached with only one tick, therefore
the correct priority must be set already in the previous state. This method can
produce suboptimal maximum priorities and can make some valid state machines
unschedulable. An example for this would be a cyclic control flow among states,
with all transitions immediate except for one. If that one transition contains a signal
dependency, smakc! would consider these transitions as a dependency cycle.
In KASM, thread priorities are set with the prio n instruction. Such instructions

are inserted into the code at transitions whenever the target state should be executed
with a different priority than the source state. For a full code sample, see section 7.3.

6.4. Comparison to Boldt’s compiler

While part of the real-time and embedded systems workgroup at the University of
Kiel, Boldt wrote a compiler to translate the Esterel language to KEP assembler
[29]. As outlined in chapter 2, SSMs and Esterel programs are equivalent. Boldt had
to deal with scheduling too. We will now point out the differences and similarities
between the two methods.
Boldt creates a vaguely treelike structure called the concurrent KEP assembler

graph (CKAG) in which each node is labeled with a KASM instruction. The tree
edges represent control flow successors (also taking into account several types of pre-
emption successors and dependencies). Upon the CKAG, dependencies are calculated
and schedulability is decided. Boldt stores two values for nodes: prio (the prior-
ity the node should be executed with) and prionext (the priority, with which the
node should be resumed after a tick). In a recursive approach descending through
the graph in DFS order, (next-)priorities are set as maximum of the priorities of
successor nodes.
The obvious difference is that scheduling does not take place on source level, but

on target (KASM) level, as KASM instructions are annotated. This has the advan-
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tage that granularity of scheduling is brought down to the smallest level, which will
eliminate unnecessary priority changes in some cases. On the downside, scheduling
becomes target platform dependent.
At first glance, the recursive, maximum-based approach seems different from our

strip packing method, but reconsider the definition of the function F in subsec-
tion 6.2.2 for the special case where all items are of uniform height. That function
basically implements the same concept. The addition of variable item sizes makes
the algorithm more versatile. Boldt’s compiler could be modified to also support
KASM modules by assigning weights to the edges of the CKAG.
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Solution How Where
Multiple threads
and context
switching

The operating system man-
ages a list of processes and it
assigns amounts of CPU time
to them, allowing them to exe-
cute for some small amount of
time before assigning the CPU
to the next process (called
“context switching”)

software

Multiple CPU
cores or multiple
CPUs

Tasks are executed in true
parallelism on different CPUs
(or different cores). Here,
new problems arise, since de-
lays in communication be-
tween the CPUs have to be
considered, as well as the max-
imum throughput of the wires
leading to a multicore CPU.
Also, multiple CPUs might
want to access the same mem-
ory block at the same time

mostly
hardware

One
multithreading-
capable CPU
core

The operating system is
mostly relieved of having to
manage context switching,
but the programmer or com-
piler is additionally burdened
with having to fix in advance
a scheduling for the user
programs

hardware
and soft-
ware

Table 6.1.: Variations of scheduling.
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7. smakc! implementation

This is how we go about it — to make our heads explode all night!

Monster Magnet: Heads Explode

smakc! was implemented in the Java programming language and uses several other
projects, in particular Eclipse EMF [1] for KIELER integration, and the Apache
Velocity engine for code generation.

7.1. Compiler package

As noted earlier, the compiler simply takes a set of state machines and an ordered
list of transformations as arguments, and applies the transformations to the state
machines in the given order. The transformations must implement the
smakc.compiler.interfaces.compiler.Transformation<A,B> interface. The in-
terface consists of a sole method, the
Collection<A>transform(Collection<B>) method, meaning that a set of objects
of type B should be transformed to a set of objects of type A. The compiler applies
the first transformation to the input state machines, caches the result, and continues
with the next transformation. The relationship between these classes is depicted in
Figure 7.1. The class is implemented using sets of SSMs since originally, a linker
was also planned which would link reference macrostates to the corresponding state
machine. The transformations naturally have to be applied in the correct order
if a later transformation requires an extension of the state machine which is pro-
vided by an earlier transformation. Transformations must be located in the package
smakc.compiler.transformations.

The SSMs are represented in an internal datastructure also represented by inter-
faces. During the development of smakc!, a SSM data model was also developed in
parallel for the KIELER project [3]. After significant simplification, the KIELER
SSM model is now almost equal to the smakc! internal model. As smakc! also accepts
the KIELER model as input, we will take a look at the KIELER model in Figure 7.2
and point out the differences:
The emissions class is missing entirely, since the KEPe does not support valued

signals. Suspensions as well as the suspension immediate flag are located in the state
class for simplicity. Signal renamings belong to the special BlakcBox (not a spelling
mistake) class which is used to represent entire encapsulated SSMs.
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Figure 7.1.: The Compiler uses Transformations which are Configurable to process
States, which refer to the root state of a state machine.

Figure 7.2.: The SSM model as used by the KIELER project
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Figure 7.3.: A simple state with an outbound transition.

7.2. Statemachineproviders package

This package contains the input modules for different SSM formats. The format load-
ers must implement the interface StateMachineLoader which has only one method:
State load(String source) which is supposed to load the file designated by the
source string and return a state (the topmost state of the state machine). smakc!
looks for the implementation in the smakc.statemachineproviders.<file extension>
package for a class called LoaderImpl and will use it, if found.

The loader package itself is responsible for the representation and implementation
of the ssm interfaces, for a simple reason: SSMs could be represented very differently
in their source format, and what should be loaded immediately and what can be
“lazily” loaded differs as formats differ. A lot of optimization could be lost when
forcing all formats to the smakc! internal format.

7.3. Generating code with the Apache Velocity engine

The Apache Velocity [35] engine was chosen for code generation. It is a templating
engine, meaning that it uses static content templates with placeholders which will
be filled with datastructure values by the engine at parse time. Velocity additionally
provides a simple scripting language which allows setting variables, looping over
arrays and conditional code output. It was originally designed for dynamic web
content. The engine caches templates that have already been requested and reuses
them when requested again to avoid unnecessary function calls and memory usage.
We chose a templating engine because of its versatility, for migrating to a new ISA
should be only a matter of creating a new set of templates.
To make states recognizable in the target code, state parts start and end with

specific keywords, represented as jump labels in code. A state initializer block begins
with BEGINSTARTUP and ends with ENDSTARTUP. The state itself analogously starts
with BEGINSIMPLESTATE and ends with ENDSIMPLESTATE (in case of a simple state).
To illustrate this, the code for the state shown in Figure 7.3 is shown below:

1 BEGINSTARTUP98:
2 ABORT B, ENDABORT_98B127_P1
3 ENDSTARTUP98:
4

5 BEGINSIMPLESTATE98:
6 PAUSE
7 GOTO BEGINSIMPLESTATE98
8 ENDSIMPLESTATE98:
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9

10 BEGINSHUTDOWN98:
11 ENDSUSPEND98:
12 ENDABORT_98B127_P1:
13 EMIT X2
14 PRIO 1
15 GOTO BEGINSTARTUP127
16 ENDSHUTDOWN98:

As the generated code shows, the transition has been translated to an abort block
which spans the entire state. The state itself just idles. When signal B becomes
present, the abort block fires and the processor starts executing code at the abort
end label. The signal X2 is emitted and priority is switched. Then, the goto
statement jumps to the beginning of the startup block of state 127 (the final state
seen in Figure 7.3). The outer startup and shutdown blocks are common to (almost)
all state types. The inner simple state block is only parsed in for simple states.
smakc! also implements some optimizations to the code which are made possible by
the KEP ISA: A simple state without inner code (actions) is represented as a halt
instruction, and an empty state with only one outbound transition as optimized to
an await instruction. Complex states such as the one in Figure 7.4, get the following
inner code block:

1 BEGINSTARTUPMODULE_ABORT40B:
2 ENDSTARTUPMODULE_ABORT40B:
3

4 BEGINCOMPLEXSTATEMODULE_ABORT40B:
5 PAR 1, BEGINSTARTUPINITIAL_0, 1
6 PAR 1, BEGINSTARTUPINITIAL_1, 2
7 PAR 1, BEGINSTARTUPINITIAL_2, 3
8 PAR 1, BEGINSTARTUPINITIAL_4, 4
9 PAR 1, BEGINSTARTUPINITIAL_5, 5

10 PARE SUBSTATESENDMODULE_ABORT40B, 0
11

12 ( inner states here)
13

14 SUBSTATESENDMODULE_ABORT40B:
15 JOIN 1
16 HALT
17 ENDCOMPLEXSTATEMODULE_ABORT40B:
18

19 BEGINSHUTDOWNMODULE_ABORT40B:
20 ENDSUSPENDMODULE_ABORT40B:
21 ENDSHUTDOWNMODULE_ABORT40B:

As an optimization, conditional pseudostates are not implemented as states with
abort blocks around them, but rather as series of present tests (just like several if
tests). The conditional pseudostate in Figure 7.5 generates the following code:

1 BEGINSTARTUP37:
2 ENDSTARTUP37:
3

4 BEGINCONDITIONALPSEUDOSTATE37:
5 PRESENT W, ENDSIGNALTEST_W_37
6 EMIT X1
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Figure 7.4.: A complex state.

Figure 7.5.: Conditional pseudostate with priority 1 on the W transition.

7 PRIO 2
8 GOTO BEGINSTARTUP59
9 ENDSIGNALTEST_W_37:

10 PRESENT TICK, ENDSIGNALTEST_TICK_37
11 PRIO 2
12 GOTO BEGINSTARTUP59
13 ENDSIGNALTEST_TICK_37:
14 ENDCONDITIONALPSEUDOSTATE37:
15

16 BEGINSHUTDOWN37:
17 HALT
18 ENDSHUTDOWN37:

For more about Velocity script coding, please refer to [35]. We will just show the
conditional pseudostate as a simple example:

1 #set ($empty = ${list.add(${State})})
2

3 BEGINSTARTUP${State.getId().toUpperCase()}:
4 #foreach ($action in ${State.getStateEntryActions ()})
5 #parse("${basepath}Action.kasm")
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6 #end
7 ENDSTARTUP${State.getId().toUpperCase()}:
8 BEGINCONDITIONALPSEUDOSTATE${State.getId().toUpperCase()}:
9 #foreach ( $transition in ${State.getScheduledOutboundTransitions()})

10 #if (${ transition .hasCondition()})
11 #set ($condname = ${transition.getCondition().getExtendedName().toUpperCase()})
12 #else
13 #set ($condname = "TICK")
14 #end
15 PRESENT ${condname}, ENDSIGNALTEST_${condname}_${State.getId().toUpperCase()}
16 #foreach ($signal in ${ transition . getEffectSignals ()})
17 #parse("${basepath}Emit.kasm")
18 #end
19 #if (${State. getThreadPriority ()} != ${ transition . getDestination (). getThreadPriority ()})
20 PRIO ${transition . getDestination (). getThreadPriority ()}
21 #end
22 GOTO BEGINSTARTUP${transition.getDestination().getId().toUpperCase()}
23 ENDSIGNALTEST_${condname}_${State.getId().toUpperCase()}:
24 #end
25 ENDCONDITIONALPSEUDOSTATE${State.getId().toUpperCase()}:
26 BEGINSHUTDOWN${State.getId().toUpperCase()}:
27

28 HALT
29

30 ENDSHUTDOWN${State.getId().toUpperCase()}:
31

32 #foreach ( $transition in ${State.getScheduledOutboundTransitions()})
33 #set ($State = ${transition . getDestination ()})
34 #if (!${ list . contains($State)})
35 #if (${State. isConditionalPseudoState ()})
36 #parse("${basepath}PseudoState.kasm")
37 #else
38 #parse("${basepath}InitBlokc.kasm")
39 #end
40 #end
41 #end

The code shows some features of the Velocity scripting language. For example, a
foreach loop is provided. In this example, it is used to traverse the outbound tran-
sitions and parse them into the code, additionally adding emit and prio statements
where necessary. The parse directive parses a subtemplate into the current template
at the point where it is called.
The scripting capabilities and the template mechanism should make it fairly easy

to migrate to new architectures.
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Sensory perception only — O son of Kunt̄ı; winter, summer, happiness
and pain; giving, appearing, disappearing; nonpermanent, all of them;
just try to tolerate, O descendant of the Bharata dynasty.

Krishna, in the Bhagavad Gı̄tā

8.1. Automated verification of compilation results

The output code produced by smakc! must be verified. For this, we used the same
samples as benchmark originally created by Boldt [29], Li [30] and Tiedje [45]. In
total, there are 757 Esterel programs testing various Esterel language features. Fig-
ure 8.1 lists the maximum counts per operator in all samples. Figure 8.2 lists the
average count per operator. They were automatically translated to SSMs in the kit
format by the KIEL tool [33]. Using the Krepevalbench [2], the results produced by
smakc! could be verified against original Esterel traces produced by Esterel Studio,
see Figure 8.3. Since the KEPe was used for verification, code using valued signals
could not be used. Some other examples could also not be ported to kit due to
version conflicts. In total, 428 of the 757 examples could be used in the verification
process.

8.2. Compilation speed and code size

For performance testing, a prominent example called the “token ring arbiter” was
used. As the name already implies, stations are arranged on a ring, and a token
(representing the usage of a shared resource) is passed through the stations. A token
ring with three stations is shown below:

A station is connected in the network by its token (T) and pass (P) input/output
signals, and locally by its request (R) and grant (G) signals. At startup, one station
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Figure 8.1.: Maximum operator count encountered in the benchmark samples, per
operator.

gets the token. The token ring arbiter example is one of the most often used bench-
marks in sychronous language processing, the name of its inventor however seems to
have been forgotten. Berry first introduced it as example for Esterel [10]. However
he attributes it to someone else.

The token ring arbiter is an example of cyclic data dependency although the net-
work does not suffer from causality problems since the token is given to one station
at startup. It also shows the power of SSMs, or Esterel: The stations all run in
synchronous concurrency, causing extreme state counts in equivalent automata. The
high level of concurrency makes it a good example for performance testing. Due to
the cyclic dependency in the token ring arbiter, scheduling could not be applied, but
smakc! was tested on rings of sizes 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 350, 400, 450 and 500 stations using four configurations: In the first config-
uration, conditional expressions were resolved, then dependency and cycle detection
were applied (1). Since the cycle detection employs the only O(n3) algorithm in
an otherwise O(n log n) process, the second configuration was resolving conditionals
and dependency detection only, for comparison (2). The third configuration for the
token ring arbiter was resolving conditionals, upgrading the states to states with
thread priorities and finally generating KASM code (3). Note that the scheduling
was left out, since the DDG contains cycles. Instead, in configuration (4), a variant
of the token ring arbiter in which the feedback line to the first station is missing was
used. This example can be compiled by both smakc! and Boldt’s strl2kasm compiler.
Thus, the last configuration allowed measuring compile times of both compilers. For
measuring CPU time, the Unix time utility was used.
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Figure 8.2.: Average operator count encountered in the benchmark samples, per
operator.

Figure 8.4 shows the results on configuration (1). The runtime quickly exceeds the
average user’s patience, the 150 station ring already takes almost 4 minutes, and the
300 station ring takes not quite half an hour.
At this point, it should be noted that the SSM for a station of the token ring already

consists of several states and a transition with a complex conditional expression
further adding to the state count after conditionals resolving. Therefore, a 500 station
ring consists of roughly 6000 states by the time the cycle detection is launched.
An advantage of the Floyd-Warshall algorithm is that although it sets up a n2 size

matrix the calculation of the matrix requires neither more space nor more function
calls, so once the algorithm has been started, it will also terminate without an “out
of memory” error.
As expected, leaving out the O(n3) cycle detection in configuration (2) drastically

cuts the runtime, as can be seen in Figure 8.5 (note that the numbers on the runtime
axis are smaller by two orders of magnitude).
Generating code in configuration (3) was mainly influenced by the Apache Velocity

[35] engine (see chapter 7). Code generation fails for rings of size greater than 200
(that is about 2400 states), since the Velocity engine steps through the structure in
DFS, and recursive calls stack up memory space, exceeding the 2GB limitation of the
Java VM used for testing. Code generation time also matches the overall O(nlogn)
runtime as can be seen in Figure 8.6, except for smaller values, which is due to the
initialization of the templating engine.
The least surprising result is the size of the generated code. Thanks to the tem-

plating mechanism (see chapter 7), the size of the code for a single state can be
bounded from above by the code for the state with the highest outbound transition
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Figure 8.3.: The validation process.

count. Therefore, the code size is linear in the number of states, see Figure 8.7.

Another result that is not really surprising is the compile time of the two compilers
pitched against each other. For this performance test, the token ring was split
to a token line, allowing both compilers to produce scheduled code. As strl2kasm
is implemented in C++ and compiled to native binary code, whereas smakc! was
written in Java and executed as bytecode by the Java VM, naturally smakc! is slower.
Additionally, smakc!s transformations are all implemented sequentially to keep the
program modular, while strl2kasm generates most information needed in a single
pass on the source code. Figure 8.8 shows the results. Obviously, both compilers
have equal runtime in terms of the O notation, but smakc! has larger constant factors
(of about 10).
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Figure 8.4.: Compile time with conditionals resolving, dependency and cycle
detection.

8.3. Two-way comparison to Boldt’s compiler

In this section we will compare smakc! to the Esterel compiler of Marian Boldt
(strl2kasm). To make the challenge fair we will first start from SSMs, directly com-
piling them with smakc!. Then we will use Esterel Studio [44] to convert the SSM
to Esterel and compile the code with Boldt’s compiler. In the second test, we will
start from Esterel code, directly compiling it with Boldt’s compiler, and then porting
the Esterel code to an SSM using KIEL [4]. After that, we can apply the smakc!
transformation. The two-way comparison process is depicted in Figure 8.9.
Since instruction memory is scarce on embedded computers, we will especially pay

attention to code size, usage of watcher ids and thread ids (since each watcher spared
is less chip space used) and runtime of the generated code.
The Esterel examples we used for testing are listed in Appendix C, the SSMs in

Appendix D. As Esterel Studio1 already optimizes code when exporting to Esterel,
the optimize feature of KIEL was applied to all state machines. Additionally, as
smakc! produces a lot of labels which only serve the purpose of recognizing the orig-
inal states in the generated code and a lot of whitespace results from the templating
process, another module was run on smakc!s output code which strips the code of
whitespace and labels that are never targeted.
Both compilers do optimizations. smakc! represents empty simple states as halt

instructions, and states waiting for just one condition as await statements. Condi-

1Not to be confused with hair spray.
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Figure 8.5.: Compile time with conditionals resolving and dependency detection.

tional pseudostates are implemented as series of present tests. The algorithm also
tries to save on abort watcher and thread ids. The latter also goes for Boldt’s com-
piler. He does not save on watcher ids though since not all KEP versions support
assigning watcher ids. As Boldt does not compile from SSMs but rather from Es-
terel, he takes a different approach at optimizing code size. The strl2kasm compiler
performs some “undismantling” on the finished code to transform statements such as
an empty loop back to a halt instruction.

8.3.1. Code size

For code size, we measured the file size (Figure 8.10), line count (Figure 8.11) and
line count of the generated KEP listing file (Figure 8.12). The listing file line count
corresponds directly to the size of the program in the instruction memory of the
KEP, which is why it was not necessary to explicitly compare binaries. The KASM
file sizes differ a lot, since smakc! produces much longer labels, making smakc! much
less competitive in this respect.
Since the KEP ISA was kept close to Esterel syntax and semantics, it is no surprise

the generated code looks very similar. In the case of the ABRO program, apart from
the labels, the code is almost the same (Figure 8.13). In all tests, the VEND_B
example seems to be off the normal values. The vending machine was translated to
several EXIT statements, which are the KASM equivalents of the Esterel trap/exit
statement, bloating the code. The “parhierarchy” example was especially created as
an example that translates to Esterel very badly and produces a lot of code, causing
the higher line count in Figure 8.11.
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Figure 8.6.: Compile time for generating target platform code.

8.3.2. Watchers

Watchers for aborts (or for trap/exits) also take up more space on the KEP micropro-
cessor. Boldt’s compiler strl2kasm does not save on watcher ids. Most KEP versions
do not support assigning watcher ids anyway. Just to demonstrate the feature by
simple example, the SSM in Figure 8.14 can reassign all watcher ids used immedi-
ately, as the code runs entirely sequentially. smakc! does this, as the generated code
shows. Watcher ids are the last numbers in a line starting with abort or wabort:

1 %%% −−−BEGIN KEP CODE−−−
2 EMIT _TICKLEN,#0
3 ABORT TICK, ENDABORT_S1S2_P1, 1
4 ABORT TICK, ENDABORT_S1S3_P2, 2
5 HALT
6 ENDABORT_S1S3_P2:
7 GOTO BEGINSTARTUPS3
8 ENDABORT_S1S2_P1:
9 GOTO BEGINSTARTUPS2

10 BEGINSTARTUPS2:
11 ABORT TICK, ENDABORT_S2S4_P1, 1
12 ABORT TICK, ENDABORT_S2S5_P2, 2
13 HALT
14 ENDABORT_S2S5_P2:
15 GOTO BEGINSTARTUPS5
16 ENDABORT_S2S4_P1:
17 GOTO BEGINSTARTUPS4
18 BEGINSTARTUPS4:
19 HALT
20 BEGINSTARTUPS5:
21 HALT
22 BEGINSTARTUPS3:
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Figure 8.7.: Size of the code generated for the token ring.

23 ABORT TICK, ENDABORT_S3S6_P1, 1
24 ABORT TICK, ENDABORT_S3S7_P2, 2
25 HALT
26 ENDABORT_S3S7_P2:
27 GOTO BEGINSTARTUPS7
28 ENDABORT_S3S6_P1:
29 GOTO BEGINSTARTUPS6
30 BEGINSTARTUPS6:
31 HALT
32 BEGINSTARTUPS7:
33 HALT
34 HALT
35 %%% −−−END KEP CODE−−−

The numbers found in Figure 8.15 are not really comparable, since strl2kasm does
not try to save abort watchers by reusing them. Some watchers can be optimized
anyway, as single aborts can be “undismantled” back to await statements.

8.3.3. Thread priorities

Both compilers try to reuse threads, as threads also require watchers. The thread
watchers monitor the thread’s program counter to check if it is within the thread’s
instruction scope. If it leaves that scope, the thread is considered terminated. By
reusing thread ids, these units can be saved. Here, both compilers fare equally well
(Figure 8.16).
Code generated for a specific example, the thread saver test, is also almost equal
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Figure 8.8.: Compile time of smakc! and strl2kasm on the token line.

Figure 8.9.: Process of comparing smakc! with strl2kasm by Boldt.
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Figure 8.10.: File size of the generated KASM files. smakc! competitive only on state
machines (“displays” and beyond)

Figure 8.11.: Line counts of the generated KASM files. “parhierarchy” was espe-
cially created to translate badly to Esterel, “VEND_B” is a surprising
anomaly.
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Figure 8.12.: Sizes of the listing generated from kasm2klist.

between the two compilers (Figure 8.17).

8.3.4. Reaction times

The reaction time is the time a program’s tick takes, counted by the number of
instructions executed. The longest tick is especially important since the hardware
has to be clocked according to the length of the longest tick and real-life physical
timing constraints. The timing constraints and the length of the longest tick are
fixed for a given problem and a given KASM program implementing a solution to
that problem. By those two and a simple formula, the necessary clock rate of the
hardware can be determined. However, by making the tick length as short as possible,
the clock rate can also be slower, resulting in less power consumption. The examples
used in the two-way compare were also checked for minimum (Figure 8.18), average
(Figure 8.19) and maximum (Figure 8.20) tick length. The results show that in some
cases, smakc! performs better than strl2kasm on regular Esterel code (see for example
“absync” and “test_present7” in Figure 8.20), and strl2kasm performs better than
smakc! on SSMs (“savethreadids” in Figure 8.20). However, in general, the KASM
code produced by strl2kasm has the better reaction times.
One should note that reaction times were measured by the K(r)epevalbench [2]

using random traces generated by Esterel Studio. The traces do not perform an ex-
haustive search on all possible program and signal states, and therefore the minimum
and maximum tick lengths could differ a little from the measured values presented
here.
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Figure 8.13.: A diff by meld on the KASM code for ABRO, on the left generated
by strl2kasm, on the right by smakc!. Both programs clearly have the
same structure.

8.3.5. Examination of an example

We will now examine a special example in detail. The example (Figure 8.21) is
basically the complete graph on three nodes.

The SSM was originally created with Esterel Studio. It is exported to the Esterel
code shown on page 63. As the code shows, the states are represented in a very
unintuitive way.

Figure 8.14.: A SSM to test the usage of watchers.
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Figure 8.15.: Usage of abort watchers in the example programs. Exits were counted
as aborts in VEND_B.

1 module threenode:
2 input R,S,T;
3 signal sc_cache in
4 signal sc_go_1_S, sc_go_2_T in
5 emit sc_cache;
6 loop
7 present
8 case [sc_go_2_T] do
9 % state T

10 await
11 case [R] do
12 emit sc_cache
13 case [S] do
14 emit sc_cache;
15 emit sc_go_1_S
16 case [T] do
17 emit sc_cache;
18 emit sc_go_2_T
19 end await
20 case [sc_go_1_S] do
21 % state S
22 await
23 case [R] do
24 emit sc_cache
25 case [T] do
26 emit sc_cache;
27 emit sc_go_2_T
28 case [S] do
29 emit sc_cache;
30 emit sc_go_1_S
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Figure 8.16.: Usage of threads — strl2kasm and smakc! equally good

31 end await
32 else
33 % state R
34 await
35 case [S] do
36 emit sc_cache;
37 emit sc_go_1_S
38 case [T] do
39 emit sc_cache;
40 emit sc_go_2_T
41 case [R] do
42 emit sc_cache
43 end await
44 end present
45 end loop
46 end signal
47 end signal
48 end module

The power of the goto statement becomes clear with this example, as smakc! has
the advantage in transforming the transitions of the states. The code generated by
smakc! is found on page 65, the strl2kasm code on page 67.
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Figure 8.17.: A diff by meld on the KASM code for the thread id saver example. On
the left the strl2kasm code, on the right smakc! generated code.

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT R
3 INPUT S
4 INPUT T
5 EMIT _TICKLEN,#0
6 BEGINSTARTUPR:
7 ABORT S, ENDABORT_RSS_P1
8 ABORT T, ENDABORT_RTT_P2
9 ABORT R, ENDABORT_RRR_P3

10 HALT
11 ENDABORT_RRR_P3:
12 GOTO BEGINSTARTUPR
13 ENDABORT_RTT_P2:
14 GOTO BEGINSTARTUPT
15 ENDABORT_RSS_P1:
16 GOTO BEGINSTARTUPS
17 BEGINSTARTUPS:
18 ABORT R, ENDABORT_SRR_P1
19 ABORT T, ENDABORT_STT_P2
20 ABORT S, ENDABORT_SSS_P3
21 HALT
22 ENDABORT_SSS_P3:
23 GOTO BEGINSTARTUPS
24 ENDABORT_STT_P2:
25 GOTO BEGINSTARTUPT
26 ENDABORT_SRR_P1:
27 GOTO BEGINSTARTUPR
28 BEGINSTARTUPT:
29 ABORT R, ENDABORT_TRR_P1
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Figure 8.18.: Shortest tick length in the sample programs.

30 ABORT S, ENDABORT_TSS_P2
31 ABORT T, ENDABORT_TTT_P3
32 HALT
33 ENDABORT_TTT_P3:
34 GOTO BEGINSTARTUPT
35 ENDABORT_TSS_P2:
36 GOTO BEGINSTARTUPS
37 ENDABORT_TRR_P1:
38 GOTO BEGINSTARTUPR
39 HALT
40 %%% −−−END KEP CODE−−−
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Figure 8.19.: Average tick length in the sample programs.

1 %%% Esterel Module: threenode
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT R,S,T
5 %%% ERROR: NO OUTPUT SIGNALS, DEFINE DUMMY:
6 OUTPUT _NO_OUTPUT_PORT_ERROR
7 %%%−−−−−TOP LOCAL SIGNALS−−−−−
8 SIGNAL SC_CACHE,SC_GO_1_S,SC_GO_2_T
9 %%%−−−−−INTERFACE STATEMENTS−−−−−

10 EMIT _TICKLEN,#13
11

12 EMIT SC_CACHE
13 A0:
14 PRESENT SC_GO_2_T,A1
15 A3:
16 A4:
17 A5:
18 A6:
19 A7:
20 PAUSE
21 PRESENT R,A8
22 EXIT AC,A4
23 A8:
24 PRESENT S,A9
25 EXIT AC_0,A5
26 A9:
27 PRESENT T,A10
28 EXIT AC_1,A6
29 A10:
30 GOTO A7
31 AC_1:
32 EMIT SC_CACHE
33 EMIT SC_GO_2_T
34 EXIT AWAIT_CASE,A3
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Figure 8.20.: Length of the longest tick in the sample programs.

Figure 8.21.: The complete graph on three nodes as SSM.

35 AC_0:
36 EMIT SC_CACHE
37 EMIT SC_GO_1_S
38 EXIT AWAIT_CASE,A3
39 AC:
40 EMIT SC_CACHE
41 EXIT AWAIT_CASE,A3
42 AWAIT_CASE:
43 GOTO A2
44 A1:
45 PRESENT SC_GO_1_S,A11
46 A13:
47 A14:
48 A15:
49 A16:
50 A17:
51 PAUSE
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52 PRESENT R,A18
53 EXIT AC_2,A14
54 A18:
55 PRESENT T,A19
56 EXIT AC_3,A15
57 A19:
58 PRESENT S,A20
59 EXIT AC_4,A16
60 A20:
61 GOTO A17
62 AC_4:
63 EMIT SC_CACHE
64 EMIT SC_GO_1_S
65 EXIT AWAIT_CASE_0,A13
66 AC_3:
67 EMIT SC_CACHE
68 EMIT SC_GO_2_T
69 EXIT AWAIT_CASE_0,A13
70 AC_2:
71 EMIT SC_CACHE
72 EXIT AWAIT_CASE_0,A13
73 AWAIT_CASE_0:
74 GOTO A12
75 A11:
76 A21:
77 A22:
78 A23:
79 A24:
80 A25:
81 PAUSE
82 PRESENT S,A26
83 EXIT AC_5,A22
84 A26:
85 PRESENT T,A27
86 EXIT AC_6,A23
87 A27:
88 PRESENT R,A28
89 EXIT AC_7,A24
90 A28:
91 GOTO A25
92 AC_7:
93 EMIT SC_CACHE
94 EXIT AWAIT_CASE_1,A21
95 AC_6:
96 EMIT SC_CACHE
97 EMIT SC_GO_2_T
98 EXIT AWAIT_CASE_1,A21
99 AC_5:

100 EMIT SC_CACHE
101 EMIT SC_GO_1_S
102 EXIT AWAIT_CASE_1,A21
103 AWAIT_CASE_1:
104 A12:
105 A2:
106 GOTO A0

The strl2kasm compiler tries to do its best by avoiding nested aborts and using
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trap/exit combinations instead. However, due to the rather awkward Esterel code,
there is not much to save in performance in this example. The listing (opcode) size
amounts to 104 instructions for the strl2kasm code, whereas smakc! produces only
64. This small example shows that SSMs with highly interconnected states produce
bad code when compiled to Esterel. However, in real-life applications, such extreme
interconnection is quite unlikely, since programs usually follow a control flow which
is somewhat linear.

8.3.6. Summary of the comparison

In all Esterel based examples, the strl2kasm compiler by Boldt produced more ef-
ficient code than smakc!. When starting from state machines, it was often more
beneficial to use smakc!, a compiler especially devised for SSMs. However, the gain
was quite small except for an occasional anomaly. This is mainly due to the target
ISA, which was especially designed for Esterel. The transformation of state machines
into KASM code is, after all, a transformation into an Esterel-like code. This makes
the produced code very similar in most cases.
The “parhierarchy” example which caused strl2kasm to produce more code than

smakc! was in fact an example especially geared to translate badly into Esterel (a
combination of cyclic control flow and hierarchy, mixed with parallelism produces
large code). This is also the punch line of the comparison: the story of fooling
strl2kasm into producing bad KASM code is the story of fooling Esterel Studio into
producing bad Esterel code.
Saving watchers and threadids is very similar. The missing watcher id saving could

probably also be quickly implemented in strl2kasm.
Reaction times are not significantly different on average, and except for some weird

anomalies strl2kasm performs slightly better than smakc!.
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9.1. Conclusion

In our work we have designed and implemented a compiler to directly translate
SSMs to KASM, the assembler language of the KEP, a reactive processor. This
was already possible by first translating a SSM to the Esterel language and then
using an existing compiler to transform Esterel code to the KEP ISA. Directly
transforming SSMs seemed to be a promising approach, as the KEP, just as most
other processor architectures, supports a goto statement, by which it is very easy to
express transitions of a state machine.
The resulting compiler was tested against taking the other two transformations

in series as described above. The experiments show that the direct translation is
more efficient in most cases; however only very marginally. A notable result: the
bottleneck of transforming SSMs to the KEP does not lie in KASM code generators,
but in SSM to Esterel code generators. If the transformation from SSMs to Esterel
were more efficient, the transformation going from SSMs to Esterel to KASM would
probably be equally good or even better than the direct compilation. The Esterel
language augmentation Esterel+Goto [43] might be the solution, but currently we
are missing support for this language extension in all stages of KASM generation as
well as in verification frameworks.
Examples that make it hard for the Esterel to KASM compiler are in fact examples

that make it hard for the SSM to Esterel compiler. A real gain over multistage
compilation in contrast to direct compilation of SSMs is only achieved in some rare
special cases.
The true advantage of using a direct SSM to target architecture compiler lies in

design verification and debugging. The code produced by smakc! is much easier to
understand than code generated using Esterel as an intermediate language, as the
multistage compilation tends to obfuscate the code. In smakc! generated code, the
original states of a state machine can easily be found. For developers, this means
that adding debugging code becomes easier.
So, in short, the answer to the question if one should use a direct SSM to target

architecture compiler or go via Esterel as intermediate language is: If you are inter-
ested in automated verification, easy debugging and recognizing states in the code,
then you should use a direct compiler. If you are only interested in code efficiency
and don’t care what it looks like, then spare yourself the time and stick with Esterel
as intermediate language.
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9.2. Open questions and problems

We must know. We will know.

David Hilbert, not knowing that the day before Gödel proved that we
can’t know

Apply Lukoschus’ cycle elimination algorithm to SSMs Lukoschus and von Hanxle-
den [31] devised a method for removing cyclic signal dependencies in Esterel
programs known to be constructive. The interesting part: it is a source code
transformation. Since Esterel programs and SSMs are equivalent, this trans-
formation could be applied to SSMs as well and would fit in nicely as a smakc!
transformation.

Estimated workload: A full semester’s worth of a student research project.

Improve abort and thread watcher usage Usage (or rather, reusage) of abort watcher
ids and thread ids is not optimal, neither in strl2kasm nor in smakc!, quite ob-
viously because no knowledge is used whatsoever about the possibility of two
states executing in parallel or not. If two states (semantically) cannot execute
in parallel, they can use the same abort watchers. The question about the best
possible approximation ratio is even more interesting.

Estimated workload: Seminar paper or student research project.

Improve the signal dependency algorithm So far, the signal dependency algorithm
considers all sources and sink of the same signal a dependency if they are con-
current to each other. Just as above, this does not take additional information
into account if it is semantically possible for source and sink to also execute
concurrently.

Estimated workload: Seminar paper or student research project.

Implement onExit actions smakc!s SSM datastructure supports onExit actions, but
they are not processed in code generation. This is due to the extremely difficult
semantics. onExit actions are executed whenever a state is exited, by means of
an outbound transition or if any containing macrostate is exited or preempted.
Let e be an onExit action. Then this could be implemented by adding e to
every containing state, and adding a new signal Se. The new signal shall denote
the firing of e in that instant. In assembler code generation, onExit actions
would then be implemented as first testing if Se is present, and if not, executing
e and then emitting Se.

Estimated workload: Implementation work for 4 hours per week for a full
semester.

Linker Since SSMs feature a reference macrostate, smakc! was originally supposed to
get a linker to be able to do modular compilation. The linker would insert the
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appropriate state machines for the reference macrostates and perform signal
renaming on the interface. Due to time restrictions, this was not implemented
yet. Since macrostates can also be textual states, this would allow linking
SSMs and finished KASM produced from any source.

Estimated workload: Implementation work for 4 hours per week for a full
semester.

Distributed compilation Almost all parts of smakc! can be executed on different ma-
chines, as almost all transformations are inherently distributable. For example,
a state machine containing three parallel branches could be split into four parts
(the three parallel parts and the containing state). The three parallel parts are
full state machines on their own already, and the containing macrostate can be
made to one by inserting reference macrostates instead. Then all parts could
be compiled separately to be put back together by the above-mentioned linker
when finished. This would allow compilation of state machines with more
than 2500 states (which is approximately the current limit). Such distributed
or modular compilation suffers additional complexity from data dependencies
between different program parts.

Estimated workload: Implementation work for 8 hours per week for a full
semester.

Other model output smakc! can currently read from KIELER’s XMI format and
from KIEL’s kit format. It might be interesting to implement transforma-
tions that act as output modules. For example, a state machine transformed
by smakc! could be transformed back into kit and then written to secondary
output for graphical display (in KIELER for example). smakc! handles data
dependencies as (interlevel) transitions internally so this might be a nice way
to display dependencies for the user.

Estimated workload: Implementation work for 2 hours per week for a full
semester.

KEP3 KASM output The KEP3 has an ALU, in contrast to the KEPe. This enables
the compilation of valued signal SSMs however, the smakc! internal data model
would also have to be adjusted accordingly (emissions will have to be added,
as seen in the KIELER SSM datastructure).

Estimated workload: Implementation work for 2 hours per week for a full
semester.
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A. smakc! user guide

smakc! requires several other projects to be referenced in the classpath, depending
on the features you want to use. Input modules require the respective API classes
for loading and processing the format in question, that is, kieler.ssm.jar and the
Eclipse Ecore API (emf.common, emf.ecore, emf.ecore.xmi, [1]) for KIELER SSMs
and kiel.kit.jar for the legacy kit format. The org.fast.utilities.jar provides
classes and algorithms used all throughout smakc!. The velocity-dep-1.5.jar
contains the current Apache Velocity engine as well as all other packages it depends
on. If you are using the jar bundle of smakc!, then smakc.jar contains the main
compiler. If you wrote your own extensions, for example, enabling more input formats
(see this chapter below, Appendix B), do not forget to add those jars to the classpath
too.
smakc! supports several arguments, some of which are command line specific and

others can only be used when directly calling the compiler API. We will discuss the
call arguments in the following two sections.

A.1. Using command line smakc!

If you are using the smakc shellscript, you do not need to worry about options. The
reasonable options are already set, all you have to provide are the paths to the state
machines you wish to compile. If you want to call smakc! directly however, you
should know about the most important options. smakc! is located in the launchers
package, thus, you have to call launchers.smakc.
Options are:

-if or --input-file: List any number of files here. The files should be accessible
by you and they should contain valid state machines in an input format that
smakc! understands. It is important to note that smakc! will attempt to load
all input SSMs simultaneously, so you should make sure that the Java VM has
enough memory.

-od or --output-directory: Write compiled state machines to the specified direc-
tory instead of the source directories. The compiler ignores all arguments after
the first one. If this value is not specified, output is written to standard output.

-f or --force: Causes smakc! to swallow some error messages and continue with
compilation. This includes:
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Ignores missing, inaccessible or corrupted input state machines and continues
with the rest, does not abort compilation if a state machine contains cyclic
dependencies and continues with the rest, ignores arguments in excess of one
in negation operators instead of aborting (uses only the first one).

-v or --verbose: Produces more output (if you really want to see what is going on
in smakc! during compilation).

-tr or --apply-transformations: Provide a list of classes implementing the Transformation
interface, writing the class names only. The transformations will be loaded by
reflection from smakc.compiler.transformations.<name>, where <name> is
the class name of the transformation. The compiler does not check if the
transformations are loadable beforehand and will abort compilation with an
error message if the reflection loading fails. Transformations have to be given
in function call notation, so calling smakc! with -tr A B C will apply transfor-
mation C first, then B, then A. Compilation will also fail if a transformation
does not get the correct input class piped from the previous one.

-ta or --target-architecture: Provide a list of paths to code templates. The
paths will automatically be searched in the templates subdirectory in the class-
path. Code will be generated for each target architecture specified.

A.2. Using the smakc! API

Using the API is somewhat different from using the command line. The main class
is not the launchers.smakc class, it is the smakc.compiler.Compiler class. The
Compiler class takes only two arguments: a java.lang.Collection<State>, a set
of input SSMs, and a java.util.Properties as configuration. The configuration
holds additional call arguments, and is handed through every transformation by the
compiler, so transformations that alter the configuration also indirectly influence the
subsequent transformations.
smakc! is generally much more flexible when configured through the API.

-f or --force,

-v or --verbose,

-od or --output-directory,

-tr or --apply-transformations: The same as on the command line.

return value: The compile method returns a Collection of Objects representing
the outcome of all transformations applied to the input state machines.
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-o2 or --secondary-output: Some transformations produce secondary output, for
example, the cycle detection (it displays the states on a dependency cycle).
This secondary output is written to the streams found in the provided Map for
that SSM. Thus, this field should contain a Map<String, OutputStream>.

The streams default to standard output if nothing is specified.

-ol or --logging-output: Same as the secondary output map. The streams found
here will be used for logging output. Defaults to standard error output.
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Extending smakc! is as easy as copying files, thanks to the reflection-loading and
templating mechanism.

B.1. Adding more input formats

Allowing smakc! to process a new format for state machines requires you to imple-
ment smakc!s SSM interfaces. Some of these interfaces are actually abstract classes,
enforcing certain rules, for example: state and signed names must be unique.
A new state machine format just needs to be wrapped into classes capable of access-

ing new format on the one side and implementing smakc!s SSM format on the other
(which is why such classes are called wrapper classes). Once you have all of those
classes, simply add them to the package smakc.statemachineproviders.<file extension>.
When launching smakc! be sure to have the original foreign format classes and your
wrapper class in the classpath.
In either case, the most important thing is to implement the

smakc.statemachineproviders.StateMachineLoader interface. The implementa-
tion must be called LoaderImpl, and must be located at
smakc.statemachineproviders.<file extension>.LoaderImpl. You do not need
to modify smakc! code. Simply add your own code to the classpath.

B.2. Adding more output formats

This is even easier than adding more input or transformations. Just create a new
set of Velocity templates in a path listed on the smakc! classpath. You must have
a template that starts with the word start. Code generation will begin with that
template. See chapter 7 and [35] for full Velocity documentation. Velocity uses
contexts for passing on data through the templating process and to subtemplates.
The CodeWriter transformation initializes the context with the field “State” set to the
root state of the statemachine and the “ContainmentTree” is set to contain a special
datastructure, the state containment tree, and adds ListGenerator, MapGenerator
and StackGenerator factories into fields of the same name. These factories generate
List, Map and Stack classes respectively, allowing the use of any amount of these
datastructures during the templating process. The start template should be used for
initialization only.
The ContainmentTree datastructure was especially created for efficiency reasons

in smakc!. Basically, it is a simple tree structure in which each state points to a
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containing macrostate. However, the ContainmentTree can present a view of itself
as a Collection of states. If a certain state is specified, the ContainmentTree can
be accessed as a collection of the states on the path from the specified state up
to the root state. Accessing the state containment path multiple times becomes
more efficient this way, since the ContainmentTree generates the Collection view by
internal tricks and does not initialize new Collections every time. This of course
causes problems when accessing the datastructure from more than one concurrent
Java thread.
To make smakc! use your set of templates, specify the path to them with the -ta

compiler option.

B.3. Adding transformations

Adding your own transformations is similar to adding input formats. You have
to implement an interface (this time smakc.interfaces.compiler.Transformation) and
your transformation must be located at smakc.compiler.transformations.<name>.
Implementing the transformation interface is very straightforward. Depending on
what types you provided when you wrote the class declaration (let us say you wrote
MyTrans implements Transformation <StateA, StateB>) you have to transform
an object of type StateB to an object of type StateA. The only other method is
the configure method, inherited from Configurable. Here, the compiler provides you
with the configuration that should be used.
Please keep in mind that for reasons of coding style and abstraction you should

never assume more information about the input state machines than is given by the
interface.
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ABRO The most famous Esterel example.

1 module ABRO:
2

3 input A, B, R;
4

5 output O;
6

7 loop
8 [ await A || await B];
9 emit O;

10 each R
11

12 end module
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT B
4 INPUT R
5 OUTPUT O
6 EMIT _TICKLEN,#0
7 BEGINSTARTUPSTATEMENTLIST39STATE:
8 ABORT R, ENDABORT_STATEMENTLIST39STATERSTATEMENTLIST39STATE_P1, 1
9 PAR 1, BEGINSTARTUP157, 1

10 PAR 1, BEGINSTARTUP191, 2
11 PARE SUBSTATESENDPARALLELSTATEMENTLIST40STATE, 0
12 BEGINSTARTUP157:
13 AWAIT A
14 GOTO BEGINSTARTUP161
15 BEGINSTARTUP161:
16 GOTO SUBSTATESENDPARALLELSTATEMENTLIST40STATE
17 BEGINSTARTUP191:
18 AWAIT B
19 GOTO BEGINSTARTUP195
20 BEGINSTARTUP195:
21 GOTO SUBSTATESENDPARALLELSTATEMENTLIST40STATE
22 SUBSTATESENDPARALLELSTATEMENTLIST40STATE:
23 JOIN 1
24 EMIT O
25 GOTO BEGINSTARTUP234
26 BEGINSTARTUP234:
27 GOTO SUBSTATESENDSTATEMENTLIST39STATE
28 SUBSTATESENDSTATEMENTLIST39STATE:
29 HALT
30 ENDABORT_STATEMENTLIST39STATERSTATEMENTLIST39STATE_P1:
31 GOTO BEGINSTARTUPSTATEMENTLIST39STATE
32 HALT
33 %%% −−−END KEP CODE−−−
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1 %%% Esterel Module: ABRO
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,B,R
5 OUTPUT O
6 %%%−−−−−INTERFACE STATEMENTS−−−−−
7 EMIT _TICKLEN,#11
8

9 A0:
10 ABORT R,A1
11 PAR 1,A2,1
12 PAR 1,A3,2
13 PARE A4,1
14 A2:
15 AWAIT A
16 A3:
17 AWAIT B
18 A4:
19 JOIN 0
20 EMIT O
21 HALT
22 A1:
23 GOTO A0

83



C. Esterel examples used in the two-way compare

Absync An example of code generated by EStudio (and later optimized by hand).

1 module absync:
2 input A ;
3 output AB ;
4 input B ;
5 input P ;
6 input R ;
7

8 signal Disarm
9 in

10 nothing;
11 loop
12 % state ABSync
13 abort
14 weak abort
15 signal Arm
16 in
17 [
18 nothing;
19 % state idle
20 await case [Arm] do
21 nothing;
22 % state Counting
23 suspend
24 nothing;
25 loop
26 % state count
27 await case 2 [ tick ] do
28 emit Disarm
29 end await
30 end loop
31 when [P]
32 end await
33 ||
34 nothing;
35 % state WaitAB
36 [
37 nothing;
38 % state wA
39 await case [A] do
40 emit Arm
41 end await
42 ||
43 nothing;
44 % state wB
45 await case [B] do
46 emit Arm
47 end await
48 ];
49 emit AB;
50 % state done
51 halt
52 ]
53 end signal
54 when [Disarm]
55 do
56 nothing
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57 end weak abort
58 when [R]
59 do
60 nothing
61 end abort
62 end loop
63 end signal
64 end module
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT B
4 INPUT P
5 INPUT R
6 OUTPUT AB
7 EMIT _TICKLEN,#0
8 SIGNAL DISARM
9 BEGINSTARTUPABORT49STATE:

10 SIGNAL ARM
11 ABORT R, ENDABORT_ABORT49STATERABORT49STATE_P1, 1
12 ABORT DISARM, ENDABORT_PARALLELSTATEMENTLIST55STATEDISARM9605_P1, 2
13 PAR 2, BEGINSTARTUP9201, 1
14 PAR 1, BEGINSTARTUPPARALLELSTATEMENTLIST77STATE, 2
15 PARE SUBSTATESENDPARALLELSTATEMENTLIST55STATE, 0
16 BEGINSTARTUP9201:
17 AWAIT ARM
18 GOTO BEGINSTARTUPSTATEMENTLIST63STATE
19 BEGINSTARTUPSTATEMENTLIST63STATE:
20 SUSPEND P, ENDSUSPENDSTATEMENTLIST63STATE
21 BEGINSTARTUP9247:
22 LOAD _COUNT,#2
23 AWAIT TICK
24 GOTO BEGINSTARTUP9247
25 HALT
26 ENDSUSPENDSTATEMENTLIST63STATE:
27 BEGINSTARTUPPARALLELSTATEMENTLIST77STATE:
28 PAR 1, BEGINSTARTUP9406, 3
29 PAR 1, BEGINSTARTUP9480, 4
30 PARE SUBSTATESENDPARALLELSTATEMENTLIST77STATE, 0
31 BEGINSTARTUP9406:
32 AWAIT A
33 GOTO BEGINSTARTUP9411
34 BEGINSTARTUP9411:
35 GOTO SUBSTATESENDPARALLELSTATEMENTLIST77STATE
36 BEGINSTARTUP9480:
37 AWAIT B
38 GOTO BEGINSTARTUP9485
39 BEGINSTARTUP9485:
40 GOTO SUBSTATESENDPARALLELSTATEMENTLIST77STATE
41 SUBSTATESENDPARALLELSTATEMENTLIST77STATE:
42 JOIN 1
43 EMIT AB
44 GOTO BEGINSTARTUP9563
45 BEGINSTARTUP9563:
46 HALT
47 SUBSTATESENDPARALLELSTATEMENTLIST55STATE:
48 JOIN 1
49 HALT
50 ENDABORT_PARALLELSTATEMENTLIST55STATEDISARM9605_P1:
51 GOTO BEGINSTARTUP9605
52 BEGINSTARTUP9605:
53 GOTO SUBSTATESENDABORT49STATE
54 SUBSTATESENDABORT49STATE:
55 GOTO BEGINSTARTUPABORT49STATE
56 ENDABORT_ABORT49STATERABORT49STATE_P1:
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57 GOTO BEGINSTARTUPABORT49STATE
58 HALT
59 HALT
60 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: absync
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,B,P,R
5 OUTPUT AB
6 %%%−−−−−TOP LOCAL SIGNALS−−−−−
7 SIGNAL DISARM
8 %%%−−−−−INTERFACE STATEMENTS−−−−−
9 EMIT _TICKLEN,#0

10

11 NOTHING
12 A0:
13 ABORT R,A1
14 WABORT DISARM,A3
15 SIGNAL ARM
16 PAR 1,A5,1
17 PAR 1,A6,2
18 PARE A7,1
19 A5:
20 NOTHING
21 AWAIT ARM
22 SUSPEND P,A10
23 NOTHING
24 A11:
25 LOAD _COUNT,#2
26 ABORT TICK,A12
27 A13:
28 PRIO 2
29 PAUSE
30 PRIO 1
31 GOTO A13
32 A12:
33 EMIT DISARM
34 PRIO 1
35 GOTO A11
36 A10:
37 NOTHING
38 A6:
39 NOTHING
40 PAR 1,A14,3
41 PAR 1,A15,4
42 PARE A16,1
43 A14:
44 NOTHING
45 AWAIT A
46 EMIT ARM
47 A15:
48 NOTHING
49 AWAIT B
50 EMIT ARM
51 A16:
52 JOIN 0
53 EMIT AB
54 HALT
55 A7:
56 JOIN 0
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57 A3:
58 NOTHING
59 A4:
60 GOTO A2
61 A1:
62 NOTHING
63 A2:
64 GOTO A0
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Runner Another (in-)famous example for pure Esterel.

1 module RUNNER :
2

3 input METER;
4 input SECOND;
5 input MORNING;
6 input LAP;
7 input STEP;
8 input HEART_BEAT;
9

10 output WALK;
11 output RUN;
12 output JUMP;
13 output GO_TO_WORK;
14 output GO_TO_HOSPITAL;
15

16 relation SECOND # METER # STEP;
17 relation MORNING => SECOND;
18 relation LAP => METER;
19

20 trap HEART_ATTACK in
21 every MORNING do
22 do
23 loop
24 do
25 emit WALK
26 upto 100 METER;
27 signal HEART_ATTACK in
28 do
29 do
30 every STEP do emit JUMP end
31 upto 15 SECOND;
32 emit RUN;
33 watching HEART_ATTACK timeout exit HEART_ATTACK end
34 ||
35 copymodule CHECK_HEART
36 end
37 each LAP
38 upto 2 LAP;
39 emit GO_TO_WORK
40 end
41 handle HEART_ATTACK do
42 emit GO_TO_HOSPITAL
43 end
44 .
45

46 module CHECK_HEART :
47 input SECOND;
48 input HEART_BEAT;
49 output HEART_ATTACK;
50

51 loop
52 await SECOND do emit HEART_ATTACK end
53 each HEART_BEAT
54 .
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1 %%% −−−BEGIN KEP CODE−−−
2 INPUT METER
3 INPUT SECOND
4 INPUT MORNING
5 INPUT LAP
6 INPUT STEP
7 INPUT HEART_BEAT
8 OUTPUT WALK
9 OUTPUT RUN

10 OUTPUT JUMP
11 OUTPUT GO_TO_WORK
12 OUTPUT GO_TO_HOSPITAL
13 EMIT _TICKLEN,#0
14 SIGNAL HEART_ATTACK_
15 SIGNAL HALTTRAP51_
16 WABORTI HALTTRAP51_, ENDABORT_EVERY52STATEHALTTRAP51_21102_P1, 1
17 WABORTI HEART_ATTACK_, ENDABORT_EVERY52STATEHEART_ATTACK_21476_P2, 2
18 AWAIT MORNING
19 GOTO BEGINSTARTUPSTATEMENTLIST53STATE
20 BEGINSTARTUPSTATEMENTLIST53STATE:
21 ABORT MORNING, ENDABORT_STATEMENTLIST53STATEMORNINGSTATEMENTLIST53STATE_P1, 3
22 LOAD _COUNT,#2
23 ABORT LAP, ENDABORT_LOOPEACH55STATELAP21425_P1, 4
24 BEGINSTARTUPSTATEMENTLIST56STATE:
25 SIGNAL HEART_ATTACK
26 ABORT LAP, ENDABORT_STATEMENTLIST56STATELAPSTATEMENTLIST56STATE_P1, 5
27 LOAD _COUNT,#100
28 AWAIT METER
29 GOTO BEGINSTARTUPPARALLELSTATEMENTLIST64STATE
30 BEGINSTARTUPPARALLELSTATEMENTLIST64STATE:
31 PAR 2, BEGINSTARTUPSTATEMENTLIST66STATE, 1
32 PAR 1, BEGINSTARTUPAWAIT80STATE, 2
33 PARE SUBSTATESENDPARALLELSTATEMENTLIST64STATE, 0
34 BEGINSTARTUPSTATEMENTLIST66STATE:
35 ABORT HEART_ATTACK, ENDABORT_STATEMENTLIST66STATEHEART_ATTACK21266_P1, 6
36 LOAD _COUNT,#15
37 ABORT SECOND, ENDABORT_EVERY68STATESECOND21242_P1, 7
38 AWAIT STEP
39 GOTO BEGINSTARTUPINIT21186
40 BEGINSTARTUPINIT21186:
41 PRESENT TICK, ENDSIGNALTEST_TICK_INIT21186
42 EMIT JUMP
43 GOTO BEGINSTARTUP21186
44 ENDSIGNALTEST_TICK_INIT21186:
45 HALT
46 BEGINSTARTUP21186:
47 AWAIT STEP
48 GOTO BEGINSTARTUPINIT21186
49 HALT
50 ENDABORT_EVERY68STATESECOND21242_P1:
51 EMIT RUN
52 GOTO BEGINSTARTUP21242
53 BEGINSTARTUP21242:
54 GOTO SUBSTATESENDSTATEMENTLIST66STATE
55 SUBSTATESENDSTATEMENTLIST66STATE:
56 GOTO BEGINSTARTUP21170
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57 ENDABORT_STATEMENTLIST66STATEHEART_ATTACK21266_P1:
58 EMIT HEART_ATTACK_
59 GOTO BEGINSTARTUP21266
60 BEGINSTARTUP21170:
61 GOTO SUBSTATESENDPARALLELSTATEMENTLIST64STATE
62 BEGINSTARTUP21266:
63 HALT
64 BEGINSTARTUPAWAIT80STATE:
65 ABORT HEART_BEAT, ENDABORT_AWAIT80STATEHEART_BEATAWAIT80STATE_P1, 8
66 AWAIT SECOND
67 GOTO BEGINSTARTUP21317
68 BEGINSTARTUP21317:
69 GOTO SUBSTATESENDAWAIT80STATE
70 SUBSTATESENDAWAIT80STATE:
71 HALT
72 ENDABORT_AWAIT80STATEHEART_BEATAWAIT80STATE_P1:
73 GOTO BEGINSTARTUPAWAIT80STATE
74 SUBSTATESENDPARALLELSTATEMENTLIST64STATE:
75 JOIN 1
76 HALT
77 HALT
78 ENDABORT_STATEMENTLIST56STATELAPSTATEMENTLIST56STATE_P1:
79 GOTO BEGINSTARTUPSTATEMENTLIST56STATE
80 HALT
81 ENDABORT_LOOPEACH55STATELAP21425_P1:
82 EMIT GO_TO_WORK
83 GOTO BEGINSTARTUP21425
84 BEGINSTARTUP21425:
85 GOTO SUBSTATESENDSTATEMENTLIST53STATE
86 SUBSTATESENDSTATEMENTLIST53STATE:
87 HALT
88 ENDABORT_STATEMENTLIST53STATEMORNINGSTATEMENTLIST53STATE_P1:
89 GOTO BEGINSTARTUPSTATEMENTLIST53STATE
90 HALT
91 ENDABORT_EVERY52STATEHEART_ATTACK_21476_P2:
92 EMIT GO_TO_HOSPITAL
93 GOTO BEGINSTARTUP21476
94 ENDABORT_EVERY52STATEHALTTRAP51_21102_P1:
95 GOTO BEGINSTARTUP21102
96 BEGINSTARTUP21102:
97 HALT
98 BEGINSTARTUP21476:
99 GOTO SUBSTATESENDMODULE_RUNNER

100 SUBSTATESENDMODULE_RUNNER:
101 HALT
102 %%% −−−END KEP CODE−−−
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1 %%% Esterel Module: RUNNER
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT METER,SECOND,MORNING,LAP,STEP,HEART_BEAT
5 OUTPUT WALK,RUN,JUMP,GO_TO_WORK,GO_TO_HOSPITAL
6 %%%−−−−−INTERFACE STATEMENTS−−−−−
7 EMIT _TICKLEN,#18
8

9 A0:
10 AWAIT MORNING
11 A3:
12 ABORT MORNING,A4
13 LOAD _COUNT,#2
14 ABORT LAP,A5
15 A6:
16 ABORT LAP,A7
17 LOAD _COUNT,#100
18 ABORT METER,A8
19 EMIT WALK
20 HALT
21 A8:
22 SIGNAL HEART_ATTACK_0
23 PAR 1,A10,1
24 PAR 1,A11,2
25 PARE A12,1
26 A10:
27 ABORT HEART_ATTACK_0,A13
28 LOAD _COUNT,#15
29 ABORT SECOND,A14
30 ABORT STEP,A15
31 A16:
32 PRIO 2
33 PAUSE
34 PRIO 1
35 GOTO A16
36 A15:
37 A17:
38 PRIO 1
39 ABORT STEP,A18
40 EMIT JUMP
41 A19:
42 PRIO 2
43 PAUSE
44 PRIO 1
45 GOTO A19
46 A18:
47 PRIO 1
48 GOTO A17
49 A14:
50 EMIT RUN
51 A13:
52 EXIT HEART_ATTACK,A0
53 A11:
54 A20:
55 ABORT HEART_BEAT,A21
56 ABORT SECOND,A22
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57 A23:
58 PRIO 2
59 PAUSE
60 PRIO 1
61 GOTO A23
62 A22:
63 EMIT HEART_ATTACK_0
64 A24:
65 PRIO 1
66 PAUSE
67 GOTO A24
68 A21:
69 PRIO 1
70 GOTO A20
71 A12:
72 JOIN 0
73 A7:
74 GOTO A6
75 A5:
76 EMIT GO_TO_WORK
77 HALT
78 A4:
79 GOTO A3
80 HEART_ATTACK:
81 EMIT GO_TO_HOSPITAL
82 HALT
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test-present7 A simple program testing present statements.

1 module test_present7:
2 input A;
3 input B;
4 input C;
5 output W;
6 output X;
7 output Y;
8 output Z;
9

10 loop
11 present A then
12 pause
13 end present;
14 present B else
15 emit W
16 end present;
17 present
18 case A do
19 pause;
20 emit X
21 case B
22 case C do
23 emit Y
24 end present;
25 present A then
26 present B then
27 pause
28 else
29 emit Z
30 end present;
31 present C else
32 pause
33 end present
34 else
35 present
36 case A
37 case B do
38 emit X
39 case C
40 end present
41 end present;
42 pause
43 end loop
44

45 end module
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT B
4 INPUT C
5 OUTPUT W
6 OUTPUT X
7 OUTPUT Y
8 OUTPUT Z
9 EMIT _TICKLEN,#0

10 BEGINSTARTUP582:
11 PRESENT A, ENDSIGNALTEST_A_582
12 GOTO BEGINSTARTUP584
13 ENDSIGNALTEST_A_582:
14 PRESENT TICK, ENDSIGNALTEST_TICK_582
15 GOTO BEGINSTARTUP636
16 ENDSIGNALTEST_TICK_582:
17 HALT
18 BEGINSTARTUP584:
19 AWAIT TICK
20 GOTO BEGINSTARTUP636
21 BEGINSTARTUP636:
22 PRESENT B, ENDSIGNALTEST_B_636
23 GOTO BEGINSTARTUP682
24 ENDSIGNALTEST_B_636:
25 PRESENT TICK, ENDSIGNALTEST_TICK_636
26 EMIT W
27 GOTO BEGINSTARTUP682
28 ENDSIGNALTEST_TICK_636:
29 HALT
30 BEGINSTARTUP682:
31 PRESENT A, ENDSIGNALTEST_A_682
32 GOTO BEGINSTARTUP685
33 ENDSIGNALTEST_A_682:
34 PRESENT B, ENDSIGNALTEST_B_682
35 GOTO BEGINSTARTUP797
36 ENDSIGNALTEST_B_682:
37 PRESENT C, ENDSIGNALTEST_C_682
38 EMIT Y
39 GOTO BEGINSTARTUP797
40 ENDSIGNALTEST_C_682:
41 PRESENT TICK, ENDSIGNALTEST_TICK_682
42 GOTO BEGINSTARTUP797
43 ENDSIGNALTEST_TICK_682:
44 HALT
45 BEGINSTARTUP685:
46 AWAIT TICK
47 GOTO BEGINSTARTUP797
48 BEGINSTARTUP797:
49 PRESENT A, ENDSIGNALTEST_A_797
50 GOTO BEGINSTARTUP800
51 ENDSIGNALTEST_A_797:
52 PRESENT TICK, ENDSIGNALTEST_TICK_797
53 GOTO BEGINSTARTUP929
54 ENDSIGNALTEST_TICK_797:
55 HALT
56 BEGINSTARTUP800:
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57 PRESENT B, ENDSIGNALTEST_B_800
58 GOTO BEGINSTARTUP802
59 ENDSIGNALTEST_B_800:
60 PRESENT TICK, ENDSIGNALTEST_TICK_800
61 EMIT Z
62 GOTO BEGINSTARTUP865
63 ENDSIGNALTEST_TICK_800:
64 HALT
65 BEGINSTARTUP802:
66 AWAIT TICK
67 GOTO BEGINSTARTUP865
68 BEGINSTARTUP865:
69 PRESENT C, ENDSIGNALTEST_C_865
70 GOTO BEGINSTARTUP930
71 ENDSIGNALTEST_C_865:
72 PRESENT TICK, ENDSIGNALTEST_TICK_865
73 GOTO BEGINSTARTUP877
74 ENDSIGNALTEST_TICK_865:
75 HALT
76 BEGINSTARTUP930:
77 AWAIT TICK
78 GOTO BEGINSTARTUP582
79 BEGINSTARTUP877:
80 AWAIT TICK
81 GOTO BEGINSTARTUP930
82 BEGINSTARTUP929:
83 PRESENT A, ENDSIGNALTEST_A_929
84 GOTO BEGINSTARTUP930
85 ENDSIGNALTEST_A_929:
86 PRESENT B, ENDSIGNALTEST_B_929
87 EMIT X
88 GOTO BEGINSTARTUP930
89 ENDSIGNALTEST_B_929:
90 PRESENT C, ENDSIGNALTEST_C_929
91 GOTO BEGINSTARTUP930
92 ENDSIGNALTEST_C_929:
93 PRESENT TICK, ENDSIGNALTEST_TICK_929
94 GOTO BEGINSTARTUP930
95 ENDSIGNALTEST_TICK_929:
96 HALT
97 HALT
98 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: test_present7
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,B,C
5 OUTPUT W,X,Y,Z
6 %%%−−−−−INTERFACE STATEMENTS−−−−−
7 EMIT _TICKLEN,#16
8

9 A0:
10 PRESENT A,A1
11 PAUSE
12 A1:
13 PRESENT B,A2
14 GOTO A3
15 A2:
16 EMIT W
17 A3:
18 PRESENT A,A4
19 PAUSE
20 EMIT X
21 GOTO A5
22 A4:
23 PRESENT B,A6
24 GOTO A7
25 A6:
26 PRESENT C,A8
27 EMIT Y
28 A8:
29 A7:
30 A5:
31 PRESENT A,A9
32 PRESENT B,A11
33 PAUSE
34 GOTO A12
35 A11:
36 EMIT Z
37 A12:
38 PRESENT C,A13
39 GOTO A14
40 A13:
41 PAUSE
42 A14:
43 GOTO A10
44 A9:
45 PRESENT A,A15
46 GOTO A16
47 A15:
48 PRESENT B,A17
49 EMIT X
50 GOTO A18
51 A17:
52 A18:
53 A16:
54 A10:
55 PAUSE
56 GOTO A0
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savethreadids A program to test if thread ids are saved by compilers.

1 module savethreadids:
2 input A;
3 input B;
4 [
5 await A;
6 ||
7 await B;
8 ];
9 [

10 await A;
11 ||
12 await B;
13 ];
14 end module
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT B
4 EMIT _TICKLEN,#0
5 PAR 1, BEGINSTARTUP17STATE.2, 1
6 PAR 1, BEGINSTARTUP25STATE.4, 2
7 PARE SUBSTATESEND4STATE.1, 0
8 BEGINSTARTUP17STATE.2:
9 AWAIT A

10 GOTO BEGINSTARTUP21STATE.3
11 BEGINSTARTUP21STATE.3:
12 GOTO SUBSTATESEND4STATE.1
13 BEGINSTARTUP25STATE.4:
14 AWAIT B
15 GOTO BEGINSTARTUP29STATE.5
16 BEGINSTARTUP29STATE.5:
17 GOTO SUBSTATESEND4STATE.1
18 SUBSTATESEND4STATE.1:
19 JOIN 1
20 GOTO BEGINSTARTUP56STATE.6
21 BEGINSTARTUP56STATE.6:
22 PAR 1, BEGINSTARTUP71STATE.7, 1
23 PAR 1, BEGINSTARTUP79STATE.9, 2
24 PARE SUBSTATESEND56STATE.6, 0
25 BEGINSTARTUP71STATE.7:
26 AWAIT A
27 GOTO BEGINSTARTUP75STATE.8
28 BEGINSTARTUP75STATE.8:
29 GOTO SUBSTATESEND56STATE.6
30 BEGINSTARTUP79STATE.9:
31 AWAIT B
32 GOTO BEGINSTARTUP83STATE.10
33 BEGINSTARTUP83STATE.10:
34 GOTO SUBSTATESEND56STATE.6
35 SUBSTATESEND56STATE.6:
36 JOIN 1
37 HALT
38 HALT
39 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: savethreadids
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,B
5 %%% ERROR: NO OUTPUT SIGNALS, DEFINE DUMMY:
6 OUTPUT _NO_OUTPUT_PORT_ERROR
7 %%%−−−−−INTERFACE STATEMENTS−−−−−
8 EMIT _TICKLEN,#9
9

10 PAR 1,A0,1
11 PAR 1,A1,2
12 PARE A2,1
13 A0:
14 AWAIT A
15 A1:
16 AWAIT B
17 A2:
18 JOIN 0
19 PAR 1,A7,1
20 PAR 1,A8,2
21 PARE A9,1
22 A7:
23 AWAIT A
24 A8:
25 AWAIT B
26 A9:
27 JOIN 0
28 HALT
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D. SSM examples used in the two-way
compare

The SSMs for the two-way comparison were created with Esterel Studio v5. Esterel
Studio was also used to export them to Esterel. The KIEL tool, on the other hand,
transformed Esterel Studio scg SSMs to the kit format for processing by smakc!.

“displays” A simple three-part SSM.
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT D
4 EMIT _TICKLEN,#0
5 BEGINSTARTUPTIME:
6 AWAIT A
7 GOTO BEGINSTARTUP1042STATE.5
8 BEGINSTARTUP1042STATE.5:
9 ABORT A, ENDABORT_1042STATE.5A1015STATE.4_P1, 1

10 BEGINSTARTUPOFF:
11 LOAD _COUNT,#2
12 AWAIT D
13 GOTO BEGINSTARTUPOFF
14 HALT
15 ENDABORT_1042STATE.5A1015STATE.4_P1:
16 GOTO BEGINSTARTUP1015STATE.4
17 BEGINSTARTUP1015STATE.4:
18 ABORT A, ENDABORT_1015STATE.4ACHIME_P1, 2
19 BEGINSTARTUP1019STATE.8:
20 LOAD _COUNT,#2
21 AWAIT D
22 GOTO BEGINSTARTUP1019STATE.8
23 HALT
24 ENDABORT_1015STATE.4ACHIME_P1:
25 GOTO BEGINSTARTUPCHIME
26 BEGINSTARTUPCHIME:
27 LOAD _COUNT,#2
28 ABORT A, ENDABORT_CHIMEATIME_P1, 3
29 BEGINSTARTUPOFF1:
30 LOAD _COUNT,#2
31 AWAIT D
32 GOTO BEGINSTARTUPOFF1
33 HALT
34 ENDABORT_CHIMEATIME_P1:
35 GOTO BEGINSTARTUPTIME
36 HALT
37 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: displays
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,D
5 %%% ERROR: NO OUTPUT SIGNALS, DEFINE DUMMY:
6 OUTPUT _NO_OUTPUT_PORT_ERROR
7 %%%−−−−−TOP LOCAL SIGNALS−−−−−
8 SIGNAL SC_CACHE
9 %%%−−−−−INTERFACE STATEMENTS−−−−−

10 EMIT _TICKLEN,#5
11

12 A0:
13 AWAIT A
14 ABORT A,A3
15 A5:
16 AWAIT D
17 AWAIT D
18 GOTO A5
19 A3:
20 ABORT A,A10
21 A12:
22 AWAIT D
23 AWAIT D
24 GOTO A12
25 A10:
26 ABORT A,A17
27 A19:
28 AWAIT D
29 AWAIT D
30 GOTO A19
31 A17:
32 AWAIT A
33 A18:
34 A11:
35 A4:
36 GOTO A0
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“parhierarchy” A state machine especially designed to exploit the weaknesses of
Esterel code generation.
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT A
3 INPUT B
4 INPUT C
5 INPUT D
6 INPUT E
7 INPUT R
8 EMIT _TICKLEN,#0
9 BEGINSTARTUPR:

10 WABORT R, ENDABORT_RRR_P1, 1
11 PAR 3, BEGINSTARTUPS1, 1
12 PAR 1, BEGINSTARTUPT1, 2
13 PARE SUBSTATESENDR, 0
14 BEGINSTARTUPS1:
15 LOAD _COUNT,#4
16 ABORT C, ENDABORT_S1CS3_P1, 2
17 BEGINSTARTUPU1:
18 LOAD _COUNT,#2
19 AWAIT A
20 GOTO BEGINSTARTUPU1
21 HALT
22 ENDABORT_S1CS3_P1:
23 EMIT R
24 GOTO BEGINSTARTUPS3
25 BEGINSTARTUPS3:
26 LOAD _COUNT,#3
27 ABORT D, ENDABORT_S3DS1_P1, 3
28 BEGINSTARTUPV1:
29 AWAIT E
30 GOTO BEGINSTARTUPV2
31 BEGINSTARTUPV2:
32 AWAIT B
33 GOTO BEGINSTARTUPV1
34 HALT
35 ENDABORT_S3DS1_P1:
36 EMIT B
37 GOTO BEGINSTARTUPS1
38 BEGINSTARTUPT1:
39 LOAD _COUNT,#5
40 ABORT E, ENDABORT_T1ET2_P1, 4
41 BEGINSTARTUPW1:
42 AWAIT TICK
43 GOTO BEGINSTARTUPW2
44 BEGINSTARTUPW2:
45 AWAIT TICK
46 GOTO BEGINSTARTUPW1
47 HALT
48 ENDABORT_T1ET2_P1:
49 GOTO BEGINSTARTUPT2
50 BEGINSTARTUPT2:
51 AWAIT TICK
52 GOTO BEGINSTARTUPT3
53 BEGINSTARTUPT3:
54 AWAIT B
55 GOTO BEGINSTARTUPT1
56 SUBSTATESENDR:
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57 JOIN 1
58 HALT
59 ENDABORT_RRR_P1:
60 GOTO BEGINSTARTUPR
61 HALT
62 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: parhierarchy
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT A,B,C,D,E,R
5 %%% ERROR: NO OUTPUT SIGNALS, DEFINE DUMMY:
6 OUTPUT _NO_OUTPUT_PORT_ERROR
7 %%%−−−−−TOP LOCAL SIGNALS−−−−−
8 SIGNAL SC_CACHE
9 %%%−−−−−INTERFACE STATEMENTS−−−−−

10 EMIT _TICKLEN,#0
11

12 A0:
13 WABORT R,A1
14 PAR 1,A3,1
15 PAR 1,A4,2
16 PARE A5,1
17 A3:
18 A6:
19 LOAD _COUNT,#3
20 ABORT C,A7
21 A9:
22 AWAIT A
23 AWAIT A
24 EMIT B
25 GOTO A9
26 A7:
27 AWAIT C
28 EMIT R
29 LOAD _COUNT,#3
30 ABORT D,A16
31 A18:
32 AWAIT E
33 EMIT D
34 AWAIT B
35 EMIT D
36 GOTO A18
37 A16:
38 EMIT B
39 A17:
40 A8:
41 GOTO A6
42 A4:
43 A23:
44 LOAD _COUNT,#5
45 ABORT E,A24
46 A26:
47 PAUSE
48 EMIT E
49 PAUSE
50 EMIT E
51 GOTO A26
52 A24:
53 PAUSE
54 EMIT C
55 AWAIT B
56 EMIT C
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57 A25:
58 GOTO A23
59 A5:
60 JOIN 0
61 A1:
62 A2:
63 GOTO A0
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“Traffic Light” A famous example for a pure SSM.
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D. SSM examples used in the two-way compare

smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT SEC
3 INPUT ERROR
4 INPUT OK
5 INPUT PSTOP
6 INPUT PGO
7 EMIT _TICKLEN,#0
8 BEGINSTARTUPNORMAL:
9 ABORT ERROR, ENDABORT_NORMALERRORERROR_P1, 1

10 PAR 2, BEGINSTARTUPPRED, 1
11 PAR 1, BEGINSTARTUPCRED, 2
12 PARE SUBSTATESENDNORMAL, 0
13 BEGINSTARTUPPRED:
14 AWAIT PGO
15 GOTO BEGINSTARTUPPGREEN
16 BEGINSTARTUPPGREEN:
17 AWAIT PSTOP
18 GOTO BEGINSTARTUPPRED
19 BEGINSTARTUPCRED:
20 LOAD _COUNT,#30
21 AWAIT SEC
22 GOTO BEGINSTARTUPCREDYEL
23 BEGINSTARTUPCREDYEL:
24 LOAD _COUNT,#26
25 AWAIT SEC
26 GOTO BEGINSTARTUPCRED
27 SUBSTATESENDNORMAL:
28 JOIN 1
29 HALT
30 ENDABORT_NORMALERRORERROR_P1:
31 GOTO BEGINSTARTUPERROR
32 BEGINSTARTUPERROR:
33 ABORT OK, ENDABORT_ERROROKNORMAL_P1, 2
34 PAR 1, BEGINSTARTUPPOFF, 1
35 PAR 1, BEGINSTARTUPCYELLOW, 2
36 PARE SUBSTATESENDERROR, 0
37 BEGINSTARTUPPOFF:
38 HALT
39 BEGINSTARTUPCYELLOW:
40 LOAD _COUNT,#4
41 AWAIT SEC
42 GOTO BEGINSTARTUPCYELLOW
43 SUBSTATESENDERROR:
44 JOIN 1
45 HALT
46 ENDABORT_ERROROKNORMAL_P1:
47 GOTO BEGINSTARTUPNORMAL
48 HALT
49 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: traffic_light
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT SEC,ERROR,OK,PSTOP,PGO
5 %%% ERROR: NO OUTPUT SIGNALS, DEFINE DUMMY:
6 OUTPUT _NO_OUTPUT_PORT_ERROR
7 %%%−−−−−TOP LOCAL SIGNALS−−−−−
8 SIGNAL SC_CACHE
9 %%%−−−−−INTERFACE STATEMENTS−−−−−

10 EMIT _TICKLEN,#15
11

12 A0:
13 ABORT ERROR,A1
14 PAR 1,A3,1
15 PAR 1,A4,2
16 PARE A5,1
17 A3:
18 A6:
19 AWAIT PGO
20 AWAIT PSTOP
21 GOTO A6
22 A4:
23 A11:
24 LOAD _COUNT,#30
25 AWAIT SEC
26 EMIT PSTOP
27 LOAD _COUNT,#3
28 AWAIT SEC
29 LOAD _COUNT,#20
30 AWAIT SEC
31 LOAD _COUNT,#3
32 AWAIT SEC
33 EMIT PGO
34 GOTO A11
35 A5:
36 JOIN 0
37 A1:
38 ABORT OK,A20
39 PAR 1,A22,1
40 PAR 1,A23,2
41 PARE A24,1
42 A22:
43 HALT
44 A23:
45 A26:
46 LOAD _COUNT,#2
47 AWAIT SEC
48 LOAD _COUNT,#2
49 AWAIT SEC
50 GOTO A26
51 A24:
52 JOIN 0
53 A20:
54 A21:
55 A2:
56 GOTO A0
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“VEND_B” A chewing gum vending machine. A gum costs 15 cents, but you don’t
get any change returned.
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smakc! KASM

1 %%% −−−BEGIN KEP CODE−−−
2 INPUT FIVE
3 INPUT TEN
4 OUTPUT GUM
5 EMIT _TICKLEN,#0
6 BEGINSTARTUPM0:
7 WABORTI TEN, ENDABORT_M0TENM10B_P1
8 WABORTI FIVE, ENDABORT_M0FIVEM5_P2
9 HALT

10 ENDABORT_M0FIVEM5_P2:
11 GOTO BEGINSTARTUPM5
12 ENDABORT_M0TENM10B_P1:
13 GOTO BEGINSTARTUPM10B
14 BEGINSTARTUPM10B:
15 WABORTI FIVE, ENDABORT_M10BFIVEPAUSE_P1
16 WABORTI TEN, ENDABORT_M10BTENPAUSE_P2
17 HALT
18 ENDABORT_M10BTENPAUSE_P2:
19 EMIT GUM
20 GOTO BEGINSTARTUPPAUSE
21 ENDABORT_M10BFIVEPAUSE_P1:
22 EMIT GUM
23 GOTO BEGINSTARTUPPAUSE
24 BEGINSTARTUPPAUSE:
25 AWAIT TICK
26 GOTO BEGINSTARTUPM0
27 BEGINSTARTUPM5:
28 WABORT FIVE, ENDABORT_M5FIVEM10A_P1
29 WABORTI TEN, ENDABORT_M5TENPAUSE_P2
30 HALT
31 ENDABORT_M5TENPAUSE_P2:
32 EMIT GUM
33 GOTO BEGINSTARTUPPAUSE
34 ENDABORT_M5FIVEM10A_P1:
35 GOTO BEGINSTARTUPM10A
36 BEGINSTARTUPM10A:
37 WABORT FIVE, ENDABORT_M10AFIVEPAUSE_P1
38 WABORTI TEN, ENDABORT_M10ATENPAUSE_P2
39 HALT
40 ENDABORT_M10ATENPAUSE_P2:
41 EMIT GUM
42 GOTO BEGINSTARTUPPAUSE
43 ENDABORT_M10AFIVEPAUSE_P1:
44 EMIT GUM
45 GOTO BEGINSTARTUPPAUSE
46 HALT
47 %%% −−−END KEP CODE−−−
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strl2kasm KASM

1 %%% Esterel Module: VEND_B
2

3 %%%−−−−−I/O SIGNALS−−−−−
4 INPUT TEN,FIVE
5 OUTPUT GUM
6 %%%−−−−−TOP LOCAL SIGNALS−−−−−
7 SIGNAL SC_CACHE
8 %%%−−−−−INTERFACE STATEMENTS−−−−−
9 EMIT _TICKLEN,#15

10

11 A0:
12 A1:
13 A2:
14 A3:
15 PRESENT TEN,A4
16 EXIT AC,A2
17 A4:
18 PRESENT FIVE,A6
19 EXIT AC_0,A3
20 A6:
21 A7:
22 PAUSE
23 PRESENT TEN,A8
24 EXIT AC,A2
25 A8:
26 PRESENT FIVE,A9
27 EXIT AC_0,A3
28 A9:
29 GOTO A7
30 AC_0:
31 A10:
32 A11:
33 A12:
34 PRESENT TEN,A13
35 EXIT AC_2,A12
36 A13:
37 A14:
38 PAUSE
39 PRESENT FIVE,A15
40 EXIT AC_1,A11
41 A15:
42 PRESENT TEN,A16
43 EXIT AC_2,A12
44 A16:
45 GOTO A14
46 AC_2:
47 EXIT AWAIT_CASE_0,A10
48 AC_1:
49 A17:
50 A18:
51 A19:
52 PRESENT TEN,A20
53 EXIT AC_4,A19
54 A20:
55 A21:
56 PAUSE
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57 PRESENT FIVE,A22
58 EXIT AC_3,A18
59 A22:
60 PRESENT TEN,A23
61 EXIT AC_4,A19
62 A23:
63 GOTO A21
64 AC_4:
65 EXIT AWAIT_CASE_1,A17
66 AC_3:
67 EXIT AWAIT_CASE_1,A17
68 AWAIT_CASE_1:
69 EXIT AWAIT_CASE_0,A10
70 AWAIT_CASE_0:
71 EXIT AWAIT_CASE,A1
72 AC:
73 A24:
74 A25:
75 A26:
76 PRESENT FIVE,A27
77 EXIT AC_5,A25
78 A27:
79 PRESENT TEN,A29
80 EXIT AC_6,A26
81 A29:
82 A30:
83 PAUSE
84 PRESENT FIVE,A31
85 EXIT AC_5,A25
86 A31:
87 PRESENT TEN,A32
88 EXIT AC_6,A26
89 A32:
90 GOTO A30
91 AC_6:
92 EXIT AWAIT_CASE_2,A24
93 AC_5:
94 EXIT AWAIT_CASE_2,A24
95 AWAIT_CASE_2:
96 EXIT AWAIT_CASE,A1
97 AWAIT_CASE:
98 EMIT GUM
99 PAUSE

100 GOTO A0
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E. List of acronyms and abbreviations

KEP Kiel Esterel Processor
smakc! state machine to KEP compiler
ISA instruction set architecture
SCC strongly connected component
CFG control flow graph
LP linear problem
DDG data dependency graph
WCRT worst case reaction time
SSM Safe State Machine
KASM KEP assembler language
FSM finite state machine
KIEL Kiel Integrated Environment for Layout
KIELER KIEL for the Eclipse rich client platform
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